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A FEYNMAN-KAC SOLUTION TO A
RANDOM IMPULSIVE EQUATION OF

SCHRÖDINGER TYPE

Abstract

If a force is applied to a particle undergoing Brownian motion, the
resulting motion has a state function which satisfies a diffusion or Schrö-
dinger-type equation. We consider a process in which Brownian motion
is replaced by a process which has Brownian transitions at all times
other than random times at which the transitions have an additional
“impulsive” displacement. Using a Feynman-Kac formulation based on
generalized Riemann integration, we examine the resulting equation of
motion.

1 Introduction.

As an introduction, we give a broad outline of the underlying ideas and
methodology of the paper.
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1.1 Some Underlying Ideas.

When some system parameter has a discontinuity, the term “impulse” or
“jump” can be a vivid way of describing this characteristic of the system.

Sometimes the state of a system can be described by a differential equation.
For instance, a diffusion can be described by a parabolic partial differential
equation satisfied by some function of displacement and time.

The purpose of this paper is to examine the relationship between discon-
tinuities in the state function which characterizes the diffusion, and impulsive
changes in the underlying diffusion itself. We use a Feynman-Kac formulation
to show the connection between these two classes of discontinuities.

Our method of analysis is based on the generalized Riemann approach
of Henstock. In effect, our Feynman-Kac formulation of the problem is a
generalized Riemann (or Henstock) integral.

The generalized Riemann integral is an adaptation of the standard Rie-
mann integral such that Riemann sums can be used to give results for which
Lebesgue methods are usually required. The general idea of this is as follows.
We have some domain which is partitioned by means of a finite collection {I}
of disjoint sets, which we can think of as “intervals”, with |I| denoting the
measure of an interval I. By “shrinking” the partitions, we can estimate the
Riemann integral of a function f(x) of values x in the domain by forming the
Riemann sums

∑
f(x)|I|.

In the standard Riemann integral, in any term f(x)|I| of the Riemann sum,
the only restriction on the choice of the evaluation point x is that it should
belong to the corresponding partitioning interval I. The generalized Riemann
adaptation is to make the selection of each interval I in the partition depend
on the choice of each corresponding evaluation point x in

∑
f(x)|I|. What

difference does this make? It means that we can form the Riemann sums in a
way which is sensitive to, or responsive to, the local behavior of the integrand.
For instance, if f is highly oscillatory in a particular neighborhood, taking
very large positive and negative values there, we can force the local terms of
the Riemann sum to correspond to the local behavior of f . So in a scenario
where f has a positive value at x and a negative value at the nearby point
x′, the partitioning intervals I, I ′ can be chosen so that the Riemann sum
. . .+f(x)|I|+f(x′)|I ′|+. . . captures the variation of f ; so that, in this scenario,
we produce in the Riemann sum a cancellation effect from the neighboring x,
x′.

In this way it is found that we can define an integral of f which is equal
to the Lebesgue integral of f whenever the latter exists. We call this the
generalized Riemann integral (also known as Henstock integral or Henstock-
Kurzweil integral).
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Instead of using the Lebesgue measure |I|, we can use arbitrary interval

functions µ(I), and the resulting definition of an integral

∫
f(x)µ(I) by Rie-

mann sums remains valid. More generally, instead of integrating a product
f(x)µ(I), we can integrate functions h(x, I) by taking Riemann sum estimates∑
h(x, I) over x-dependent partitions {I} of the domain of integration.
The discussion above can be read in a way which assumes that the domain

of integration is a bounded real interval [a, b], so that each of the partition-
ing intervals I is itself a bounded real interval. But the points made in the
discussion remain valid if the domain of integration is a more general, multi-
dimensional space, such as Rn, in which some of the partitioning intervals are
not bounded or compact.

The scenario we tackle in this paper requires us to consider displacements
xt at various times t in some time interval (τ ′, τ), and also to consider the
possibility that, at arbitrary times τ ′ < t1 < · · · < tn−1 < τ , the displacements
xtj satisfy uj ≤ xtj ≤ vj for 1 ≤ j ≤ n − 1; or xj ∈ Cl(Ij) (closure of Ij),
where we write Ij = [uj , vj) and xj = xtj for each j.

Writing

x = (xt)t∈(τ ′,τ) and I = {x : xj ∈ Ij , 1 ≤ j ≤ n− 1}

we are led to consider Riemann sums such as
∑
f(x)µ(I). The corresponding

integrals are

∫
f(x)µ(I). The domain of integration is the set {x}, where each

x is a mapping of the form

x : (τ ′, τ) 7→ R, with xt = x(t) ∈ R for τ ′ < t < τ.

We denote this domain by R(τ ′,τ), which can be viewed as a Cartesian prod-
uct of R by itself uncountably many times. The partitioning intervals I are
cylindrical subsets of R(τ ′,τ).

The framework of generalized Riemann integration outlined above can be
adapted to this scenario, and this is explained in more detail in [8].

Treating the elements x as sample paths in some version of the Brownian
motion, we develop a Feynman-Kac representation

u(ξ, τ) =

∫
R(τ′,τ)

f(x)µ(I),

with ξ := x(τ), of the solutions u(ξ, τ) of a partial differential equation

∂u

∂τ
− 1

2

∂2u

∂ξ2
+ V (ξ)u = 0,
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where V is a potential function.
With the aid of this theoretical framework, we can relate discontinuities in

u(ξ, τ) to “impulses” in the sample paths x.

1.2 Outline of the Theory.

To begin, we define the different kinds of cylindrical intervals

I = P−1
N (I1 × · · · × In−1)

which are used to partition the domain of integration R(τ ′,τ). Given

N = {t1, . . . , tn} ⊂ (τ ′, τ), with τ ′ = t0 < t1 < · · · < tn−1 < tn = τ,

PN is the projection function which maps R(τ ′,τ) to the n-dimensional product
space RN or Rn.

In general, if we want to define an integral

∫
R(τ′,τ)

f(x)µ(I), we must show

how the approximating Riemann sums
∑
f(x)µ(I) are constructed, and that

is done in [8].
We are especially interested in volume functions (or measures) µ on the sets

I which are related to the Brownian motion function in which each difference
x(tj)− x(tj−1) is normally distributed with mean zero and variance tj − tj−1,
giving

µ(I) =

∫
I1

· · ·
∫
In−1

n∏
j=1

 e
− 1

2

(yj−yj−1)2

tj−tj−1√
2π(tj − tj−1)

 dy1 . . . dyn−1 (1)

as the joint probability that the motion takes a value xj in Ij at time tj , for
1 ≤ j ≤ n− 1. (There is a technical, notational reason for having 1, . . . , n− 1,
rather than 1, . . . , n, as the range of j). The finite-dimensional expression
on the right hand side of (1) is used to give meaning to the function on the
left which has an infinite-dimensional domain. The essential simplicity of
the expression on the right helps to simplify the analysis, in comparison with
other formulations of the theory which introduce measurable sets at this point,
instead of the simpler cylindrical intervals I. Because if the integrand f(x)

takes the value 1 for all x, then

∫
R(τ′,τ)

f(x)µ(I) is approximated by Riemann

sums
∑
µ(I) whose value, in every case, turns out to be

∫ +∞

−∞
· · ·
∫ +∞

−∞

m∏
j=1

 e
− 1

2

(yj−yj−1)2

tj−tj−1√
2π(tj − tj−1)

 dy1 . . . dym−1,
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where {t1, . . . , tm−1} is the maximal of the sets of times {· · · , tj , · · · } which
appear, as variable sets, in each of the terms µ(I) of the Riemann sum.

The latter integral can be evaluated by iterated integration, and this is
demonstrated in [8]. Alternatively, with x0 = x(t0) = x(τ ′) and xn = x(tn) =
x(τ), basic probability theory tells us that this integral gives the probability
density function of a normal random variable x(τ)−x(τ ′) with mean zero and
variance τ − τ ′, so the value of the integral is

e
− (x(τ)−x(τ′))2

2(τ−τ′)√
2π(τ − τ ′)

.

Some of these ideas occur in the analysis of Brownian motion, but are often
expressed somewhat differently.

1.3 Impulsive Processes with Drift.

When the underlying Brownian process undergoes impulsive changes of amounts
Jk at specified times τk, then we get a process

z = {zt} = {z(t) : t ∈ (τ ′, τ)}, where z(t) = x(t) +
∑
τk≤t

Jk.

From this we are led to consider a measure

µ(I) =

∫
I1

· · ·
∫
In−1

n∏
j=1

 e
− 1

2

(zj−yj−1)2

tj−tj−1√
2π(tj − tj−1)

 dy1 . . . dyn−1,

where zj = yj + Jj , if tj is one of the instants τk, and zj = yj otherwise.
Our purpose is to investigate systems in which the impulsive process is sub-

ject to some external force which produces a further manifestation of drifting
motion in the process, represented by a potential function V which, at any
time t, depends on the displacement x(t). The study of systems of this kind
leads to examination of the function

f(x) = exp

− n∑
j=1

V (z(tj))(tj − tj−1)


= exp

− n∑
j=1

V

x(tj) +
∑
τi≤tj

Ji

 (tj − tj−1)
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defined for x ∈ R(τ ′,τ). (Indeed, f depends also on the choice of the set
{t1, . . . , tn} which, like x, is a variable in successive terms of a Riemann sum.
Suitable notation for this dependence is presented in a later section.)

The state function u(ξ, τ) describing the evolution of this system, with
ξ = x(τ), is often obtained as a solution to an appropriate parabolic diffusion
equation, and sometimes this has a Feynman-Kac representation

u(ξ, τ) =

∫
R(τ′,τ)

f(x)µ(I).

We investigate each of these methods of determining u(ξ, τ) and, by examin-
ing Riemann sum estimates of u, we show how discontinuities in u are related
to impulsive phenomena in the underlying process z. The latter can be re-
garded as initial conditions or boundary conditions for the constitutive partial
differential equation.

Our investigation is restricted to impulses J which are functions of the
displacement x(t), at random times. In the concluding section of the paper,
we illustrate the theory by explicit evaluation of u when each of the impulse
functions is a constant.

2 The Henstock Integral in Function Space.

In this section we present the basic definitions and notation of the theory
of Henstock Integral in Function Spaces. We also include some fundamental
results which are necessary for understanding the basis of the theory.

Let R denote the set of real numbers and let R+ denote the set of positive
real numbers. Let I be a real interval of the form:

(−∞, v), [u, v) or [u, +∞). (2)

A partition of R is a finite collection of disjoint intervals I whose union is R.
We say that I is attached to x (or associated with x) if

x = −∞, x = u or v, x = +∞,

respectively.
Let R denote the union of the domain of integration R with the set of

associated points x of the intervals I of R, so that R = R ∪ {−∞, +∞}.
In generalized Riemann integration, the convention is that the domain of

integration is the space which is partitioned by intervals. A point x is not
always an element of the associated interval I to which it is attached. Thus
the set of associated points x may constitute a set which differs from the
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domain of integration. In our case, the domain of integration is R and the set
of associated points is R.

Let δ : R → R+ be a positive function defined for x ∈ R. If I is attached
to x, we say that (x, I) is δ-fine if

v < − 1

δ(x)
, v − u < δ(x), or u >

1

δ(x)
, (3)

respectively.
In this version of the integral, the attached or associated points x of an

interval I are its vertices. In another version (see [9]), they are chosen from
the union of I with the vertices: that is, the closure of I in the open-interval
topology. These two versions are equivalent whenever the integrator (measure
or interval function) is finitely additive, because if x is an interior point of
[u, v), then f(x)m([u, v)) = f(x)m([u, x)) + f(x)m([x, v)), see [9]. In yet
another version (see [7]), an equivalent of the Lebesgue integral is produced if
the associated or attached intervals of a point x are the intervals I satisfying
I ⊆ (x−δ(x), x+δ(x)). In this case, the attached points of an interval may be
outside the closure of I in the open-interval topology. In all cases, the domain
of integration is the space which is partitioned by the intervals.

If N = {t1, ..., tn} is a finite set, with Rtj = R and Rtj = R, let x =
(x(t1), ..., x(tn)) denote any element of∏

{Rtj : tj ∈ N} = RN .

Denote x(tj) by xj , 1 ≤ j ≤ n. For each tj ∈ N , let Ij = I(tj) denote
an interval of form (2). Then I = I1 × ... × In is an interval of

∏
{Rtj : tj ∈

N} = RN . A pair (x, I) is associated, or attached, in RN if each (xj , Ij)

is associated in R, 1 ≤ j ≤ n, that is, x is a vertex of I in RN . Given a

function δ : RN → R+, an associated pair (x, I) of the domain RN is δ-fine
if each (xj , Ij) satisfies one of the inequalities in (3), depending on the kind
of interval Ij (see (2)). A finite collection E = {(xj , Ij)} of associated pairs
(xj , Ij), where each (xj , Ij) is associated in RN , is a division of RN if the
intervals Ij are disjoint with union RN , and the division is δ-fine if each of the
pairs (xj , Ij), 1 ≤ j ≤ n, is δ-fine. A proof of the existence of such a δ-fine
division is given in [9], Theorem 4.1.

Let B denote any infinite set, and let F(B) denote the family of finite
subsets of B. In what follows, we consider the product space

∏
t∈B Rt with

Rt = R for each t ∈ B, that is, the set of all functions on B to R. We prefer to
use, for this product, the notation RB which is usual in the theory of stochastic
processes.
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Let x = xB denote any element of RB . With

N = NB = {t1, ..., tn} ∈ F(B),

let x(N) = x(NB) denote a point (x1, ..., xn) = (x(t1), ..., x(tn)) of RN . Con-
sider the projection

PN : RB → RN , PN (x) = (x(t1), ..., x(tn)),

and similarly we define the projection PN : RB → RN . Then, to each interval
I1 × ... × In of RN there corresponds a cylindrical interval I[N ] := P−1

N (I1 ×
...× In), which is a subset of RB . It is often convenient to denote I1 × ...× In
by I(t1)× ...× I(tn) or I(N), so I[N ] = I(N)× RB\N . Similarly,

PN (xB) = x(N) ∈ RN , for x = xB ∈ RB .

Given x ∈ RB and I[N ] ⊂ RB , we say that (x, I[N ]) is associated in RB ,
if (x(N), I(N)) is an associated pair in RN . Our domain of integration is RB

and the set of associated points is RB .

Definition 2.1. A finite collection E = {(x, I[N ]) : x ∈ RB and N ∈ F(B)}
of associated pairs is said to be a division of RB, if the intervals I[N ] are
disjoint and have union RB.

Divisions of cylindrical intervals in RB are defined similarly.
We now address the question of a gauge for RB , that is, a rule which

determines which associated point-interval pairs (x, I[N ]) are admissible, as
elements of a division, in forming a Riemann sum approximation of an integral
in the infinite dimensional space RB . To do this, we define mappings LB on the

sets of associated points RB of the domain of integration RB , and mappings

δB on RB ×F(B), which give us an effective class of gauges. Let

LB : RB → F(B), LB(x) ∈ F(B);

δB : RB ×F(B)→ R+, 0 < δB(x, N) < +∞.

A choice of LB and δB gives us a representative member of this class of gauges:

γB := (LB , δB). (4)

We say that an associated point-interval pair (x, I[N ]) is γB-fine if

N ⊇ LB(x), and (x(N), I(N)) is δB-fine in RN .



A random impulsive equation of Schrödinger type 115

Definition 2.2. A division E = {(x, I[N ]) : x ∈ RB and N ∈ F(B)} of
the domain of integration is γB-fine, or is a γB-division, if each of the pairs
(x, I[N ]) is γB-fine. In this case, we denote E by EγB .

The space RB admits a γB-division. This result is stated next and a proof
of it can be found in [8], Theorem 1.

Theorem 2.1. For any infinite set B and for any given gauge γB, there exists
a γB-fine division of RB.

The generalized Riemann integral of a function h of an associated pair
(x, I[N ]) is defined as follows (see [14]).

Definition 2.3. The function h is generalized Riemann integrable over RB,

with integral α =

∫
RB

h, if, given ε > 0, there exists a gauge γB such that∣∣∣∣∣∣
∑

(x, I[N ])∈EγB

h(x, I[N ])− α

∣∣∣∣∣∣ < ε

for every γB-division EγB of RB.

Sometimes we integrate functions h(I[N ]) which do not depend on the
associated point x of the variable I[N ]. In generalized Riemann integra-
tion, this must be handled carefully. We should think of the integrand as
h(x, I[N ]) = h(I[N ]) for every x associated with I[N ]. Thus, even though the
variable x does not appear explicitly in the integrand, the terms

∑
h(I[N ])

of the Riemann sum still depend on the x’s of the division {(x, I[N ])} which
determines the Riemann sum.

Definition 2.4. Two functions h1(x, I[N ]) and h2(x, I[N ]) are variationally
equivalent in RB if, given ε > 0, there exists γB such that, for all divisions
EγB , ∑

(x, I[N ])∈EγB

|h1(x, I[N ])− h2(x, I[N ])| < ε.

If h1 is integrable in X ⊆ RB and if h2 is variationally equivalent to h1,

then h2 is integrable in X and

∫
X

h1 =

∫
X

h2 (see [14], Proposition 18, page

32 for a proof). This result is important because sometimes, when we want to

establish a property of

∫
X

h1, it is easier to demonstrate it first for an integral∫
X

h2, where h2 is “equivalent”, in the variational sense, to h1.
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3 Additional definitions.

The following result is a version of the Tonelli theorem for generalized Riemann
integrals and it will be useful in the main results. See [22], Theorem 6.6.5, for
a proof of it.

Theorem 3.1. Let J be an interval in Rn, with J = H ×K, where H and K

belong to Rl and Rm, n = l +m. Let f be a function defined on Rn. If

i) f is measurable on J ;

ii) there is a function g such that |f | ≤ g on J and either

A1 =

∫
H

(∫
K

g(x, y)dy

)
dx <∞

or

A2 =

∫
K

(∫
H

g(x, y)dx

)
dy <∞.

Then, f is generalized Riemann integrable (or Henstock-Kurzweil inte-
grable) on J and ∫ ∫

J

f =

∫
H

(∫
K

f(x, y)dy

)
dx.

The next result can be found in [22], Corollary 6.6.7.

Corollary 3.1. If f is measurable and non-negative, then∫ ∫
J

f =

∫
H

(∫
K

f(x, y)dy

)
dx =

∫
K

(∫
H

f(x, y)dx

)
dy,

provided that at least one of the three integrals exists and is finite.

The following result corresponds to Lebesgue’s dominated convergence the-
orem. A proof of it can be found in [14], Proposition 33.

Theorem 3.2. Suppose hj(x, N, I) is integrable in RB, j = 1, 2, 3, ..., and
for each associated pair (x, I[N ]), the sequence {hj(x, I, N)}j≥1 converges to
a value h(x, N, I). Suppose, if ε > 0 is given, there exists a gauge γ1 such
that, whenever (x, I[N ]) is γ1-fine, there exists j0 = j0(x, I[N ]) > 0 such that
j > j0 implies

|h(x, N, I)− hj(x, N, I)| < εg0(x, N, I),
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where g0 is a positive function, integrable in RB. Suppose there exist functions
g1(x, N, I) and g2(x, N, I), integrable in RB, and a gauge γ2 satisfying

g1(x, N, I) ≤ hj(x, N, I) ≤ g2(x, N, I)

for each j and each γ2-fine (x, I[N ]). Then h is generalized Riemann integrable
in RB and

lim
j→+∞

∫
RB

hj(x, N, I) =

∫
RB

h(x, N, I).

4 The Main Results.

We divide this section into two parts. The first part is concerned with the
properties of the volume function of a process with random impulses and with
the integrability of this volume function. In the second part, we present an
impulsive partial differential equation of Schrödinger type and we show that its
solution can be represented by an integral with respect to the volume function
of an underlying impulsive process. This is the Feynman-Kac representation.

4.1 The Volume Function of a Random Impulsive Process.

Let {xt}t≥0 be a Brownian motion. Suppose at time tj−1 > 0, the displace-
ment is xj−1 = x(tj−1). For the later time tj , the increment xj − xj−1 is
normally distributed, with mean zero and variance tj − tj−1. Therefore, the
probability that xj = x(tj) ∈ [uj , vj [ (uj < vj) is

1√
2π(tj − tj−1)

∫ vj

uj

exp

(
−1

2

(yj − xj−1)2

tj − tj−1

)
dyj .

Thus, given x(t0) = ξ′ (t0 ≥ 0 and ξ′ ∈ R), the joint probability that x1 ∈
I1,..., xn ∈ In, where Ij = [uj , vj [, 1 ≤ j ≤ n, is

∫ v1

u1

...

∫ vn

un

n∏
j=1

exp
(
− 1

2
(yj−yj−1)2

tj−tj−1

)
√

2π(tj − tj−1)
dy1...dyn. (5)

Therefore, in Brownian motion, we are lead to consider expressions of the form

n∏
j=1

exp
(
− 1

2
(yj−yj−1)2

tj−tj−1

)
√

2π(tj − tj−1)
. (6)
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In the sequel, we shall present a version for the expressions (5) and (6),
when the underlying Brownian process undergoes impulsive changes at some
moments of time.

We start by giving some notations in order to define the impulsive process.
Let {ωi : i = 1, 2, . . .} be a series of random variables with ωi ∈ (0, T ),
0 < T ≤ +∞, where ωi is independent of ωj when i 6= j for all i, j = 1, 2, . . ..
Let Ji : R→ R, i = 1, 2, . . . , be a collection of continuous functions. Let τ ′, τ
be real numbers such that 0 < τ ′ < τ . Now, let

τj = τ ′ +

j∑
i=1

ωi,

j = 1, 2, . . .. We also assume that for any bounded interval [a, b] ⊆ R the set
{τi}i≥1 ∩ [a, b] is finite.

Given x ∈ R(τ ′, τ), suppose τ ′ < τ1 < . . . < τp < τ < τp+1. Consider the

function z ∈ R(τ ′, τ) such that

z(t) = x(t), for τ ′ < t < τ1,

z(t) = x(t) +
∑
τj≤t

Jj(x(τj)), τj ≤ t < τj+1, j = 1, 2, ..., p− 1,

z(t) = x(t) +
∑
τj≤t

Jj(x(τj)), τp ≤ t < τ.

Figure 1 illustrates the behavior of the impulsive process z(t), τ ′ < t < τ ,
when x ∈ C((τ ′, τ)), where C((τ ′, τ)) denotes the set of those x which are
continuous at each t in (τ ′, τ).

t

x(t)

a b c d

e

s
r

Figure 1: Process z ∈ R(τ ′, τ).
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Given the interval (τ ′, τ) ⊂ R let N = {t1, ..., tr−1} ⊂ (τ ′, τ), where
τ ′ = t0 and τ = tr. We define Nω by

Nω = N ∪{τ1, . . . , τp} whenever τ1, . . . , τp ∈ (τ ′, τ) with τp < τ < τp+1.

Note that Nω = N if τ1 > τ . If {τ1, τ2, ..., τp} ⊂ (τ ′, τ), p ≥ 1, we enu-
merate Nω = {t1, t2, . . . , tn−1}, where τ ′ = t0, τ = tn and {τ1, τ2, ..., τp} =
{ti1 , ti2 , ..., tip} with ij ∈ {1, 2, ..., n − 1} for 1 ≤ j ≤ p. Let N = N (Nω) =
{1, 2, ..., n} and J = J (Nω) = {i1, i2, ..., ip}.

We now define a volume function for the impulsive process. First, corre-
sponding to w(y, N) in the Brownian motion, that is

w(y, N) =

n∏
j=1

exp
(
− 1

2
(yj−yj−1)2

tj−tj−1

)
√

2π(tj − tj−1)
,

(see [14], chapter 3, for more details), we define gI(y, Nω) for the impulsive
process by

∏
j∈N\J

exp
(
− 1

2
(yj−yj−1)2

tj−tj−1

)
√

2π(tj − tj−1)

∏
j∈J

exp
(
− 1

2
(yj−(yj−1−Jj(yj)))2

tj−tj−1

)
√

2π(tj − tj−1)

which is equal to

∏
j∈N\J

exp
(
− 1

2
(yj−yj−1)2

tj−tj−1

)
√

2π(tj − tj−1)

∏
j∈J

exp
(
− 1

2
(Jj(yj)+yj−yj−1)2

tj−tj−1

)
√

2π(tj − tj−1)
. (7)

Note that if τ1 > τ then gI(y, Nω) = w(y, N).
Let I(tj) = Ij = [uj , vj) ⊂ R and ∆Ij = vj − uj , 1 ≤ j ≤ n − 1. Recall

that I(N) = I1 × ...× In−1.
A volume function for the impulsive process is then given by

QI(I[Nω]) = QI(I[Nω]; τ ′, τ, ξ′, ξ) =

∫
I(Nω)

gI(y, Nω)dy(Nω),

where ξ′, ξ ∈ R and 0 < τ ′ < τ .
Let

Z =

Jj ∈ C(R, R) :

∫ +∞

−∞

exp
(
− 1

2
(Jj(yj)+yj−yj−1)2

tj−tj−1

)
√

2π(tj − tj−1)
dyj = 1, for j = 1, 2, . . .
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where C(R, R) = {g : R → R : g is continuous}. In particular, if Jj are
constant functions for all j = 1, 2, . . ., then clearly Z 6= ∅.

If Jj ∈ Z, j = 1, 2, . . ., then QI(I[Nω]) is the probability distribution
function for the impulsive process which gives the probability that xj ∈ Ij for
1 ≤ j ≤ n− 1.

If (x, I) is an associated pair, where I = I[Nω], let

GI(x, I[Nω]) := GI(x, I[Nω]; τ ′, τ, ξ′, ξ) = QI(I[Nω]). (8)

Now we shall prove that GI(x, I[Nω]) is generalized Riemann integrable in
R(τ ′, τ). In order to do that, we need to prove an auxiliary result. So, let us
start by introducing some auxiliary functions.

Suppose that τ ′ < τ1 < . . . < τp < τ < τp+1, where τj = τ ′ +

j∑
i=1

ωi,

j = 1, 2, . . . as defined before. Then, we define φ1, φ2 : R× (τ ′, τ) −→ R and
Φj : R× R× (τ ′, τ)× (τ ′, τ) −→ R, j = 1, 2, ..., p− 1, by

φ1(yk, tk) =
1√

2π(tk − τ ′)
exp

(
−1

2

(yk − ξ′)2

tk − τ ′

)
,

for k ∈ {1, 2, ..., i1 − 1},

φ2(yip , tip) =
1√

2π(τ − tip)
exp

(
−1

2

(ξ − yip)2

τ − tip

)
and

Φj(yij , yij+1−1, tij , tij+1−1) =
1√

2π(tij+1−1 − tij )
exp

(
−1

2

(yij+1−1 − yij )2

tij+1−1 − tij

)
,

j = 1, 2, ..., p− 1.
Analogously, define φ1(Jk(yk), tk), for k ∈ J , replacing yk by Jk(yk) + yk

in the expression of φ1(yk, tk), and define Φj(yij , Jij+1
(yij+1

), tij , tij+1
) re-

placing yij+1−1 by Jij+1
(yij+1

) + yij+1
and tij+1−1 by tij+1

in the expression of
Φj(yij , yij+1−1, tij , tij+1−1), for j ∈ {1, 2, ..., p− 1}.

We can prove the next lemma by completing the square in the exponential.

Lemma 4.1. If a, b, u, v ∈ R, with a > 0 and b > 0, then the function

h(α) =

√
a

π
e−a(u−α)2

√
b

π
e−b(α−v)2
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is Riemann integrable and∫ +∞

−∞

√
a

π
e−a(u−α)2

√
b

π
e−b(α−v)2dα =

√
ab

π(a+ b)
exp

(
− ab

a+ b
(u− v)2

)
.

Proposition 4.1 in the sequel says that, for y = (y1, . . . , yn−1) ∈ Rn−1, the
function gI(y, Nω) defined by equation (7) is generalized Riemann integrable
with respect to y in Rn−1.

Proposition 4.1. Let Nω = {t1, t2, ..., tn−1} ⊂ (τ ′, τ) be given with τ ′ = t0
and τ = tn. Let gI be the function defined in (7), where y(τ ′) = y(t0) = ξ′

and y(τ) = y(tn) = ξ (ξ′, ξ ∈ R). Then, gI is generalized Riemann integrable
with respect to y in Rn−1 and∫

Rn−1

gI(y, Nω)dy1dy2...dyn−1 =
1√

2π(τ − τ ′)
exp

(
−1

2

(ξ − ξ′)2

τ − τ ′

)
whenever τ1 > τ . Also∫

Rn−1

gI(y, Nω)dy1dy2...dyn−1 =

∫ +∞

−∞
φ1(Ji1(yi1), ti1)φ2(yi1 , ti1)dyi1

whenever τ ′ < τ1 < τ < τ2, and∫
Rn−1

gI(y, Nω)dy1dy2...dyn−1 =

=

∫ +∞

−∞
...

∫ +∞

−∞
φ1(Ji1(yi1), ti1)

p−1∏
j=1

Φj(yij , Jij+1
(yij+1

), tij , tij+1
)

×
×φ2(yip , tip)

p∏
j=1

dyij

whenever τ ′ < τ1 < . . . < τp < τ < τp+1, p ≥ 2.

Proof. If τ1 > τ the result is proved in [14] (see Proposition 36). Let us
prove the case when J = {i1, . . . , ip}, p ≥ 2. Indeed, let I = {τ1, τ2, ..., τp} =
{ti1 , ti2 , ..., tip} ⊂ (τ ′, τ) with ij ∈ {1, 2, ..., n− 1} for 1 ≤ j ≤ p, p ≥ 2. Let

N = {1, 2, ..., i1 − 1, i1, i1 + 1, ...., ip − 1, ip, ip + 1, ..., n− 1, n}.

Define

ψj(yj , yj−1) =
1√

2π(tj − tj−1)
exp

(
−1

2

(yj − yj−1)2

tj − tj−1

)
, j ∈ N \ J ,
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and

ϕj(yj , yj−1) =
1√

2π(tj − tj−1)
exp

(
−1

2

(Jj(yj) + yj − yj−1)2

tj − tj−1

)
, j ∈ J .

By Lemma 4.1, we obtain∫ +∞

−∞
...

∫ +∞

−∞
ψ1(y1, y0)...ψi1−1(yi1−1, yi1−2)dy1...dyi1−2 =

=
1√

2π(ti1−1 − τ ′)
exp

(
−1

2

(yi1−1 − ξ′)2

ti1−1 − τ ′

)
= φ1(yi1−1, ti1−1), (9)

∫ +∞

−∞
...

∫ +∞

−∞
ψij+1(yij+1, yij )...ψij+1−1(yij+1−1, yij+1−2)dyij+1...dyij+1−2 =

=
1√

2π(tij+1−1 − tij )
exp

(
−1

2

(yij+1−1 − yij )2

tij+1−1 − tij

)
= Φj(yij , yij+1−1, tij , tij+1−1),

(10)
j = 1, 2, ..., p− 1, and also∫ +∞

−∞
...

∫ +∞

−∞
ψip+1(yip+1, yip)...ψn(yn, yn−1)dyip+1...dyn−1 =

=
1√

2π(τ − tip)
exp

(
−1

2

(ξ − yip)2

τ − tip

)
= φ2(yip , tip). (11)

Thus, taking tip+` := tn−1, ` ∈ N, from equations (9), (10) and (11), we have

∫ +∞

−∞
...

∫ +∞

−∞
gI(y, Nω)

i1−2∏
j=1

dyj

p−1∏
j=1

dyij+1...dyij+1−2

∏̀
j=1

dyip+j =

(12)

= φ1(yi1−1, ti1−1)

p−1∏
j=1

ϕij (yij , yij−1)Φj(yij , yij+1−1, tij , tij+1−1)

×
×ϕip(yip , yip−1)φ2(yip , tip).

Using Lemma 4.1, we have∫ +∞

−∞
φ1(yi1−1, ti1−1)ϕi1(yi1 , yi1−1)dyi1−1 = φ1(Ji1(yi1), ti1) (13)
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and ∫ +∞

−∞
Φj(yij , yij+1−1, tij , tij+1−1)ϕij+1

(yij+1
, yij+1−1)dyij+1−1 = (14)

= Φj(yij , Jij+1
(yij+1

), tij , tij+1
), j = 1, ..., p− 1.

Then, from (12), (13) and (14), it follows that∫ +∞

−∞
...

∫ +∞

−∞
gI(y, Nω)

∏
j∈N\J

dyj =

= φ1(Ji1(yi1), ti1)

p−1∏
j=1

Φj(yij , Jij+1
(yij+1

), tij , tij+1
)

φ2(yip , tip). (15)

Define the functions f, F : Rp → R by

f(yi1 , ..., yip) =

p−1∏
j=1

Φj(yij , Jij+1
(yij+1

), tij , tij+1
)

φ2(yip , tip)

and
F (yi1 , ..., yip) = φ1(Ji1(yi1), ti1)f(yi1 , ..., yip).

Thus F is a continuous function, |F (yi1 , ..., yip)| ≤
f(yi1 , ..., yip)√

2π(ti1 − τ ′)
and

∫ +∞

−∞
...

∫ +∞

−∞

f(yi1 , ..., yip)√
2π(ti1 − τ ′)

dyi1 ...dyip =
1√

2π(ti1 − τ ′)
.

By the Tonelli theorem (Theorem 3.1), the function F is generalized Riemann
integrable in Rp and∫

Rp
F (yi1 , ..., yip)dyi1 ...dyip =

∫ +∞

−∞
...

∫ +∞

−∞
F (yi1 , ..., yip)dyi1 ...dyip

is finite. Hence, from (15),∫ +∞

−∞
...

∫ +∞

−∞
gI(y, Nω)dy1dy2...dyn−1 =

=

∫ +∞

−∞
...

∫ +∞

−∞
F (yi1 , ..., yip)dyi1 ...dyip <∞.
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Using Corollary 3.1, gI(y, Nω) is generalized Riemann integrable with respect
to y in Rn−1 and ∫

Rn−1

gI(y, Nω)dy1...dyn−1 =

=

∫ +∞

−∞
...

∫ +∞

−∞
gI(y, Nω)dy1dy2...dyn−1 =

=

∫ +∞

−∞
...

∫ +∞

−∞
φ1(Ji1(yi1), ti1)

p−1∏
j=1

Φj(yij , Jij+1(yij+1), tij , tij+1)

×
×φ2(yip , tip)

p∏
j=1

dyij ,

which completes the proof.

The next result says that GI(x, I[Nω]) given by (8) is generalized Riemann
integrable in the function space R(τ ′, τ).

Theorem 4.1. The generalized Riemann integral∫
R(τ′, τ)

GI(x, I[Nω])

exists.

Proof. If τ1 > τ the result is proved in [14] (see Proposition 36). Suppose
J = {i1, . . . , ip}, p ≥ 1. Then, consider a division E = {(x, I[Nω])} of R(τ ′, τ),
with each Nω chosen so that I = {τ1, . . . , τp} ⊆ Nω ∈ F((τ ′, τ)), p ≥ 1. Then
the Riemann sum of GI is given by∑

(x, I[Nω])∈E

GI(x, I[Nω]) =
∑

(x, I[Nω])∈E

QI(I[Nω]).

Let Mω = ∪{Nω : (x, I[Nω]) ∈ E} and enumerate Mω as {t1, ..., tm−1}, where
τ ′ = t0, τ = tm and t0 < t1 < ... < tm−1 < tm. Each term QI(I[Nω]) of the
Riemann sum can be rewritten as QI(I[Mω]) by inserting additional yj ’s in
the expression of gI , j ∈ N \J , and integrating from −∞ to +∞ on the extra
yj ’s. Then the Riemann sum becomes∑

(x, I[Mω])∈E

QI(I[Mω]).
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with Mω a fixed set of dimensions. So we are now dealing, in effect, with
some Riemann sum estimate of an integral in m − 1 dimensions. Then each
term of the Riemann sum is an integral over I[Mω] ⊂ Rm−1, and, by the finite
additivity of these integrals in Rm−1,

∑
(x, I[Mω])∈E

QI(I([Mω]) =

∫ +∞

−∞
...

∫ +∞

−∞
gI(y, Mω)dy1...dym−1. (16)

By Proposition 4.1, the integral (16) exists and we can rewrite∑
(x, I[Mω])∈E

QI(I[Mω])

as ∫ +∞

−∞
φ1(Ji1(yi1), ti1)φ2(yi1 , ti1)dyi1 (17)

if p = 1, and

∫ +∞

−∞
...

∫ +∞

−∞
φ1(Ji1(yi1), ti1)

p−1∏
j=1

Φj(yij , Jij+1
(yij+1

), tij , tij+1
)

×
×φ2(yip , tip)

p∏
j=1

dyij (18)

if p ≥ 2. Let β1 be the integral in (17) and β2 be the integral in (18). Thus,
given ε > 0, for any gauge γ chosen so that L(x) ⊇ I, we have that for every
(x, I[Nω]) ∈ Eγ , I ⊆ L(x) ⊆ Nω implies∣∣∣∣∣∣

∑
(x, I[Nω])∈Eγ

GI(x, I[Nω])− β1

∣∣∣∣∣∣ < ε if p = 1

and ∣∣∣∣∣∣
∑

(x, I[Nω ])∈Eγ

GI(x, I[Nω])− β2

∣∣∣∣∣∣ < ε if p ≥ 2.

Therefore,

∫
R(τ′, τ)

GI(x, I[Nω]) = β1 if p = 1 or

∫
R(τ′, τ)

GI(x, I[Nω]) = β2 if

p ≥ 2 and the proof is complete.
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Let us show that the expressions gI(x, Nω)

n−1∏
j=1

∆Ij and GI(x, I[Nω]) are

variationally equivalent in R(τ ′, τ). This result is a consequence of the next
proposition.

If (x, I) is an associated pair, where I = I[Nω], define the auxiliary function
qI(x, I[Nω]) by

qI(x, I[Nω]) = gI(x, Nω)

n−1∏
j=1

∆Ij .

Proposition 4.2. Let k(x(Nω)) = k(x(t1), ..., x(tn−1)) be a real-valued func-
tion which depends on (x(t1), ..., x(tn−1)). If k is jointly continuous in xj,
1 ≤ j ≤ n − 1, then the expressions k(x(Nω))qI(x, I[Nω]) and∫
I(Nω)

k(y(Nω))gI(y, Nω)dy(Nω) are variationally equivalent in R(τ ′, τ), pro-

vided at least one the two integrals exists.

Proof. Let ε > 0 be given. Let us consider the case when τ1 ∈ (τ ′, τ). A
proof for the case when τ1 > τ can be found in [14], Proposition 37. Since Jj ,

j = 1, 2, . . ., are continuous functions, given x ∈ R(τ ′,τ)
, we can choose L(x)

and δ(x, Nω) such that, if Nω ⊇ L(x) ⊇ I = {τ1, . . . , τp}, then (I(Nω), x(Nω))
is δ−fine, and if y ∈ I(Nω), then

|k(x(Nω))gI(x, Nω)− k(y(Nω))gI(y, Nω)| < ε

4

√
2π(ti1 − τ ′)gI(x, Nω)

and

gI(y, Nω) >
1

2
gI(x, Nω).

Thus, ∣∣∣∣∣k(x(Nω))qI(x, I[Nω])−
∫
I(Nω)

k(y(Nω))gI(y, Nω)dy(Nω)

∣∣∣∣∣ =

=

∣∣∣∣∣∣k(x(Nω))gI(x, Nω)

n−1∏
j=1

∆Ij −
∫
I(Nω)

k(y(Nω))gI(y, Nω)dy(Nω)

∣∣∣∣∣∣ =

=

∣∣∣∣∣
∫
I(Nω)

[k(x(Nω))gI(x, Nω)− k(y(Nω))gI(y, Nω)] dy(Nω)

∣∣∣∣∣ ≤
≤ ε

2

√
2π(ti1 − τ ′)

∫
I(Nω)

gI(y, Nω)dy(Nω).
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Now, we can choose a gauge γ such that for each division Eγ ,

∑
(x, I[Nω])∈Eγ

∣∣∣∣∣k(x(Nω))qI(x, I[Nω])−
∫
I(Nω)

k(y(Nω))gI(y, Nω)dy(Nω)

∣∣∣∣∣ ≤
≤ ε

2

√
2π(ti1 − τ ′)

∑
(x, I[Nω])∈Eγ

∫
I(Nω)

gI(y, Nω)dy(Nω) =

=
ε

2

√
2π(ti1 − τ ′)

∫
Rn−1

gI(y, Nω)dy(Nω) < ε.

Therefore,∫
R(τ′,τ)

k(x(Nω))qI(x, I[Nω]) =

∫
R(τ′,τ)

∫
I(Nω)

k(y(Nω))gI(y, Nω)dy(Nω),

which completes the proof.

As a direct consequence of Proposition 4.2, we have the next corollary.

Corollary 4.1. The expressions qI(x, I[Nω]) and GI(x, I[Nω]) are varia-
tionally equivalent in R(τ ′, τ).

From now up to the end of this section, we are going to consider that

(τ ′, τ) ⊂ R contains at least one point of the sequence {τj}j≥1, τj = τ ′+

j∑
i=1

ωi,

j = 1, 2, . . .. When τ1 > τ the reader can find the next results in [14] chapter
3.

Let τ ′ < T1 < τ and D1 = {x ∈ R(τ ′, τ) : x is discontinuous at T1}. We

intend to prove that

∫
D1

GI(x, I[Nω]) exists and equals zero, because this

result will be useful in the next section. We need to show some auxiliary
results in order to prove this.

Let M = {T1, ..., Tm} ⊂ (τ ′, τ) be fixed and suppose a functional h satisfies
h(x) = h(x(M)) for all x ∈ R(τ ′, τ). Then h is called a cylinder functional.
Note that h depends only on the values taken by x at T1, ..., Tm, and we can
treat it as a function of x(M) ∈ Rm or as a function of x ∈ R(τ ′,τ). Thus,
consider the particular case when M = {T1, T2} and h(x) = h(x(M)). Let
HI(I[Nω]) be given by

HI(I[Nω]) =

∫
I(Nω)

h(x(M))gI(x, Nω)dx1...dxn−1.
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If τk < T1 < T2 < τk+1 for some k ∈ {0, 1, 2, ..., p} and τ0 = τ ′, define

H1(x,M) = h(x(M))


k∏
j=1

exp

(
−1

2

(xτj + Jij (xτj )− xτj−1
)2

τj − τj−1

)
√

2π(τj − τj−1)

×

×
exp

(
−1

2

(xT1
− xτk)2

T1 − τk

)
√

2π(T1 − τk)

exp

(
−1

2

(xT2
− xT1

)2

T2 − T1

)
√

2π(T2 − T1)
×

×
exp

(
−1

2

(xτk+1
+ Jik+1

(xτk+1
)− xT2)2

τk+1 − T2

)
√

2π(τk+1 − T2)
×

×


p∏

j=k+2

exp

(
−1

2

(xτj + Jij (xτj )− xτj−1
)2

τj − τj−1

)
√

2π(τj − τj−1)


exp

(
−1

2

(xτ − xτp)2

τ − τp

)
√

2π(τ − τp)

and, if T1 = τk and T1 < T2 < τk+1 for some k ∈ {1, 2, ..., p}, define

H2(x,M) = h(x(M))


k∏
j=1

exp

(
−1

2

(xτj + Jij (xτj )− xτj−1
)2

τj − τj−1

)
√

2π(τj − τj−1)

×

×
exp

(
−1

2

(xT2
− xτk)2

T2 − τk

)
√

2π(T2 − τk)

exp

(
−1

2

(xτk+1
+ Jik+1

(xτk+1
)− xT2

)2

τk+1 − T2

)
√

2π(τk+1 − T2)
×

×


p∏

j=k+2

exp

(
−1

2

(xτj + Jij (xτj )− xτj−1
)2

τj − τj−1

)
√

2π(τj − τj−1)


exp

(
−1

2

(xτ − xτp)2

τ − τp

)
√

2π(τ − τp)
.

The next theorem states conditions on H1(x, M) or H2(x, M) so that the
function HI(I[Nω]) is generalized Riemann integrable in R(τ ′,τ).

Theorem 4.2. Suppose h, considered as a function of x(M) = (x(T1), x(T2))
∈ R2, is almost everywhere continuous and positive.
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1. If τk < T1 < T2 < τk+1 for some k ∈ {0, 1, ..., p}, p ≥ 1, and H1(x, M)
is generalized Riemann integrable in Rp+2 with respect to the variables
xτ1 , ..., xτk , xT1

, xT2
, xτk+1

, ..., xτp , then HI(I[Nω]) is generalized Rie-

mann integrable in R(τ ′,τ), and∫
R(τ′,τ)

HI(I[Nω]) =

∫
Rp+2

H1(x, M)dxτ1 ...dxτkdxT1dxT2dxτk+1
...dxτp .

2. If T1 = τk and T1 < T2 < τk+1 for some k ∈ {1, 2, ..., p}, p ≥ 1, and
H2(x, M) is generalized Riemann integrable in Rp+1 with respect to the
variables xτ1 , ..., xτk , xT2 , xτk+1

, ..., xτp , then HI(I[Nω]) is generalized

Riemann integrable in R(τ ′,τ), and∫
R(τ′,τ)

HI(I[Nω]) =

∫
Rp+1

H2(x, M)dxτ1 ...dxτkdxT2dxτk+1
...dxτp .

Proof. Let us prove item 1. Let E = {(x, I[Nω])} be a division of R(τ ′, τ)

with each Nω satisfying I ⊆ Nω ∈ F((τ ′, τ))}. We recall that

HI(I[Nω]) =

∫
I(Nω)

h(x(M))gI(x, Nω)dx1...dxn−1.

Let O = ∪{Nω : (x, I[Nω]) ∈ E} and enumerate O as {t1, ..., tr−1}, where
τ ′ = t0, τ = tr and t0 < t1 < ... < tr−1 < tr. As in the proof of Theorem
4.1, each term HI(I[Nω]) of the Riemann sum can be rewritten as HI(I[O]).
Then, by the finite additivity of these integrals, the Riemann sum becomes∑

(x, I[Nω])∈E

HI(I[Nω]) =
∑

(x, I[O])∈E

HI(I[O]) =

=
∑

(x, I[O])∈E

∫
I(O)

h(x(M))gI(x, O)dx1...dxr−1.

But, ∑
(x, I[O])∈E

∫
I(O)

h(x(M))gI(x, O)dx1...dxr−1 =

=

∫ +∞

−∞
...

∫ +∞

−∞
h(x(M))gI(x, O)dx1...dxr−1 =

=

∫ +∞

−∞
...

∫ +∞

−∞
H1(x,M)dxτ1 ...dxτkdxT1

dxT2
dxτk+1

...dxτp ,
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where the last equality follows from Lemma 4.1.
Let β be the value of∫ +∞

−∞
...

∫ +∞

−∞
H1(x,M)dxτ1 ...dxτkdxT1dxT2dxτk+1

...dxτp .

Given ε > 0, we can choose a gauge γ, with I ⊂ L(x) ⊆ Nω, such that∣∣∣∣∣∣
∑

(x, I[Nω])∈Eγ

HI(I[Nω])− β

∣∣∣∣∣∣ < ε.

for every division Eγ . Therefore

∫
R(τ′, τ)

HI(I[Nω]) = β.

Analogously, we prove item 2.

Let τ ′ < T1 < τ and let D1 = {x ∈ R(τ ′, τ) : x is discontinuous at T1}. Let
τ ′ < T2 < τ , T2 6= T1, and let

X1 =

{
x ∈ R(τ ′, τ) : lim sup

T2→T1

|x(T2)− x(T1)|2 ≥ 1

}
,

Xj =

{
x ∈ R(τ ′, τ) :

1

j
≤ lim sup

T2→T1

|x(T2)− x(T1)|2 ≤ 1

j − 1

}
,

j = 2, 3, .... Let Dr =

r⋃
j=1

Xj . Then, D1 =

+∞⋃
r=1

Dr.

In the next lines, we prove that GI(x, I[Nω]) is generalized Riemann in-
tegrable in Dr with integral zero. Then we conclude that this function is
generalized Riemann integrable in D1 with integral zero.

Lemma 4.2. For r = 1, 2, 3, ...,

∫
Dr
GI(x, I[Nω]) exists and equals zero.

Proof. At first, suppose T1 /∈ {τ1, ..., τp}, p ≥ 1. We can suppose, without
loss of generality, that τk < T1 < T2 < τk+1 for some k ∈ {0, 1, 2, ..., p − 1},
τ0 := τ ′. If τp < T1 < T2 < τ the case is handled analogously. Note that

1√
2π(T2 − T1)

∫ +∞

−∞
(xT2 − xT1)2 exp

(
−1

2

(xT2 − xT1)2

T2 − T1

)
dxT1 =

=
2(T2 − T1)√

π

∫ +∞

−∞
u2 exp(−u2)du =

2(T2 − T1)√
π

Γ

(
3

2

)
=
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=
2(T2 − T1)√

π

√
π

2
= T2 − T1 = |T2 − T1|.

Then,

∫ +∞

−∞
...

∫ +∞

−∞

|xT2
− xT1

|2√
2π(τ1 − τ ′)

k∏
j=2

exp

(
−1

2

(xτj + Jij (xτj )− xτj−1
)2

τj − τj−1

)
√

2π(τj − τj−1)
×

×
exp

(
−1

2

(xT1
− xτk)2

T1 − τk

)
√

2π(T1 − τk)

exp

(
−1

2

(xT2
− xT1

)2

T2 − T1

)
√

2π(T2 − T1)
×

×
exp

(
−1

2

(xτk+1
+ Jik+1

(xτk+1
)− xT2)2

τk+1 − T2

)
√

2π(τk+1 − T2)
×

×
p∏

j=k+2

exp

(
−1

2

(Jij (xτj ) + xτj − xτj−1)2

τj − τj−1

)
√

2π(τj − τj−1)
×

×
exp

(
−1

2

(xτ − xτp)2

τ − τp

)
√

2π(τ − τp)
dxτ1 ...dxτkdxT1dxT2dxτk+1

...dxτp =
|T2 − T1|√
2π(τ1 − τ ′)

.

Let ς be the last integral. Let h(x(M)) = (xT2 − xT1)2 in the expression
of H1(x, M). Then, by Theorem 4.2, item 1., we have∫

R(τ′, τ)
HI(I[Nω]) =

=

∫ +∞

−∞
...

∫ +∞

−∞
|xT2 − xT1 |2

k∏
j=1


exp

(
−1

2

(xτj + Jij (xτj )− xτj−1)2

τj − τj−1

)
√

2π(τj − τj−1)

×

×
exp

(
−1

2

(xT1 − xτk)2

T1 − τk

)
√

2π(T1 − τk)

exp

(
−1

2

(xT2 − xT1)2

T2 − T1

)
√

2π(T2 − T1)
×

×
exp

(
−1

2

(xτk+1
+ Jik+1

(xτk+1
)− xT2

)2

τk+1 − T2

)
√

2π(τk+1 − T2)
×
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×
p∏

j=k+2


exp

(
−1

2

(xτj + Jij (xτj )− xτj−1)2

τj − τj−1

)
√

2π(τj − τj−1)

×

×
exp

(
−1

2

(xτ − xτp)2

τ − τp

)
√

2π(τ − τp)
dxτ1 ...dxτkdxT1

dxT2
dxτk+1

...dxτp

≤ ς =
|T2 − T1|√
2π(τ1 − τ ′)

,

where the last inequality follows from the Tonelli theorem (Theorem 3.1).

Given ε > 0 and j ∈ N, we can choose T2 and a division Eγ such that

ε

j
>

∑
(x, I[Nω])∈Eγ

HI(I[Nω]) =

(∗)
=

∑
(x, I(O))∈Eγ

∫
I(O)

(xT2
− xT1

)2gI(x, O)dx1...dxr−1 ≥

≥
∑

(x, I[O])∈Eγ

χ(Xj , x)

∫
I(O)

(xT2
− xT1

)2gI(x, O)dx1...dxr−1 ≥

≥ 1

j

∑
(x, I[O])∈Eγ

χ(Xj , x)

∫
I(O)

gI(x, O)dx1...dxr−1 =

=
1

j

∑
(x, I[O])∈Eγ

χ(Xj , x)GI(x, I[O]).

The symbol O after the first equality (∗) denotes O = ∪{Nω : (x, I[Nω]) ∈
Eγ}. Since ε > 0 is arbitrary,∫

R(τ′, τ)
χ(Xj , x)GI(x, I[Nω]) = 0

for every j = 1, 2, .... Then, by the finite additivity of the integral,∫
R(τ′, τ)

χ(Dr, x)GI(x, I[Nω]) = 0.
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If T1 ∈ {τ1, ..., τp}, then T1 = τk for some k ∈ {1, 2, ..., p}. Considering
T1 < T2 < τk+1 (denote in this case τ := τp+1), since

1√
2π(T2 − τk)

∫ +∞

−∞
|xT2 − xτk |2 exp

(
−1

2

(xT2
− xτk)2

T2 − τk

)
dxτk = |T2 − T1|,

then

∫ +∞

−∞
...

∫ +∞

−∞

|xT2
− xT1

|2√
2π(τ1 − τ ′)

k∏
j=2


exp

(
−1

2

(xτj + Jij (xτj )− xτj−1)2

τj − τj−1

)
√

2π(τj − τj−1)

×

×
exp

(
−1

2

(xT2 − xτk)2

T2 − τk

)
√

2π(T2 − τk)

exp

(
−1

2

(Jik+1
(xτk+1

) + xτk+1
− xT2

)2

τk+1 − T2

)
√

2π(τk+1 − T2)
×

×
p∏

j=k+2

exp

(
−1

2

(xτj + Jij (xτj )− xτj−1
)2

τj − τj−1

)
√

2π(τj − τj−1)

exp

(
−1

2

(xτ − xτp)2

τ − τp

)
√

2π(τ − τp)
×

×dxτ1 ...dxτkdxT2dxτk+1
...dxτp =

|T2 − T1|√
2π(τ1 − τ)

.

Thus, ∫
R(τ′, τ)

HI(I[Nω]) ≤ |T2 − T1|√
2π(τ1 − τ ′)

,

where ∫
R(τ′,τ)

HI(I[Nω]) =

∫
Rp+1

H2(x, M)dxτ1 ...dxτkdxT2
dxτk+1

...dxτp

with h(x(M)) = (xT2
− xT1

)2 in the expression of H2(x, M).
The rest of the proof follows by analogous argument.

Theorem 4.3. The integral

∫
D1

GI(x, I[Nω]) exists and equals zero.

Proof. We have D1 =

+∞⋃
r=1

Dr and Dr ⊂ Dr+1. For each associated pair

(x, I[Nω]), define

fk(x, I[Nω]) = χ(Dk, x)GI(x, I[Nω]), k = 1, 2, 3....
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Given x ∈ D1, there exists a positive integer k0 such that x ∈ Dk for k ≥ k0.
Thus, χ(Dk, x) = χ(D1, x) for k ≥ k0. Consequently, for each associated pair
(x, I[Nω]), we have

fk(x, I[Nω])
k→+∞−→ f0(x, I[Nω]),

where f0(x, I[Nω]) = χ(D1, x)GI(x, I[Nω]). Note that

|f0(x, I[Nω])| ≤ GI(x, I[Nω]) and |fk(x, I[Nω])| ≤ GI(x, I[Nω]),

k = 1, 2, 3, . . ..
Given ε > 0, there exists k1 > 0 such that

|f0(x, I[Nω])− fk(x, I[Nω])| < εGI(x, I[Nω]),

for k > k1 and all associated pairs (x, I[Nω]). By Theorem 4.1, GI(x, I[Nω])
is generalized Riemann integrable in R(τ ′, τ). By Theorem 3.2, f0 is generalized
Riemann integrable in R(τ ′, τ) and∫

R(τ′, τ)
f0(x, I[Nω]) = lim

k→+∞

∫
R(τ′, τ)

fk(x, I[Nω]).

Using Lemma 4.2, we obtain∫
R(τ′, τ)

χ(D1, x)GI(x, I[Nω]) = 0

and the proof is complete.

4.2 An equation of Schrödinger type random with impulses.

We start by defining the solution of an impulsive partial differential equation.
The idea of this definition is inspired by [13].

Suppose 0 = τ0 < τ1 < τ2 < ... < τp < τ are given numbers and τ ∈
]0, +∞[. Define

∆ = R× [0, τ ],

Γk = {(ψ, t) : ψ ∈ R, t ∈ (τk, τk+1)} , 0 ≤ k ≤ p− 1,

Γk = {(ψ, t) : ψ ∈ R, t ∈ [τk, τk+1)} , 0 ≤ k ≤ p− 1,

Γp = {(ψ, t) : ψ ∈ R, t ∈ (τp, τ)} ,
Γp = {(ψ, t) : ψ ∈ R, t ∈ [τp, τ)} ,

Γ =

p⋃
k=0

Γk and Γ =

p⋃
k=0

Γk.

Let K(∆, R) be the class of all functions u : ∆→ R such that
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i) the functions u|Γk , k = 0, 1, ..., p, are continuous.

ii) for each k, k = 1, ..., p, the limit lim
(ν, t)→(ψ, τ−k )

u(ν, t) = u(ψ, τ−k ), ψ ∈ R,

exists.

iii) for each k, k = 1, ..., p, the limit lim
(ν, t)→(ψ, τ+

k )
u(ν, t) = u(ψ, τ+

k ), ψ ∈ R,

exists.

iv) for each k, k = 1, ..., p, we have u(ψ, τk) = u(ψ, τ+
k ), ψ ∈ R.

We consider the equation of Schrödinger type in Γ

∂

∂t
u(ψ, t)− 1

2

∂2

∂ψ2
u(ψ, t) + V (ψ)u(ψ, t) = 0, (19)

subject to the impulse condition

u(ψ, τk)− u(ψ, τ−k ) = I(ψ, τk, u(ψ, τk)), (20)

where k = 1, 2, ..., p, and V : R→ R and I : R3 → R are functions taking real
values and I is not identically zero.

Definition 4.1. The function u : ∆ → R is called a solution of the problem
(19)− (20) if:

i) u ∈ K(∆, R);

ii) the derivatives ut(ψ, t) and uψψ(ψ, t) exist, for (ψ, t) ∈ Γ;

iii) u satisfies (19) in Γ and (20) at each τk, k = 1, 2, ..., p.

From now up to the end of this section we are going to consider that given

0 < τ ′ < τ , {τp}p≥1 ∩ (τ ′, τ) 6= ∅, where τj = τ ′ +

j∑
i=1

ωi, j = 1, 2, . . .,

and {ωi : i = 1, 2, . . .} is a sequence of random variables with ωi ∈ ]0, T [,
0 < T ≤ +∞, where ωi is independent of ωj when i 6= j for all i, j = 1, 2, . . ..
When {τp}p≥1 ∩ (τ ′, τ) = ∅ the main result of this section, namely Theorem
4.7, is found in [14], Proposition 57.

Let UI : R→ R be a continuous function.
Given s ∈ (τ ′, τ) and ς ∈ R, let N

(s)
ω be the set {t1, ...., tr−1}, where

t0 = τ ′ and tr = s (r = r(s) ∈ N). From now, we denote N
(s)
ω simply by N (s).

Then define

vI(N (s), I(s); ς, s) =

∫
I(N(s))

gI(y, N (s))e−UI(xr(s)−1)(s−τ ′)dy(N (s))
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and

qI(x, N (s), I(s)) = gI(x, N (s))

r(s)−1∏
j=1

∆Ij ,

where I(s) = I[N (s)].

Let WI(x, N (s), I(s); ς, s) = qI(x, N (s), I(s))e−UI(xr(s)−1)(s−τ ′). If
WI(x, N (s), I(s); ς, s) is generalized Riemann integrable in R(τ ′, s), define

φI(ς, s) =

∫
R(τ′, s)

WI(x, N (s), I(s); ς, s).

The proof given in [14], shows that the expressions WI(x, N (s), I(s); ς, s),
vI(N (s), I(s); ς, s) and e−UI(xr(s)−1)(s−τ ′)GI(x, I[N (s)]) are variationally equiv-
alent in R(τ ′, s). Therefore we have the following result.

Proposition 4.3. The following equalities hold

φI(ς, s) =

∫
R(τ′, s)

vI(N (s) I(s); ς, s) =

∫
R(τ′, s)

e−UI(xr(s)−1)(s−τ ′)GI(x, I[N (s)]),

whenever any of the integrals exist.

Note that, here, the domain of integration is R(τ ′, s) rather than R(τ ′, τ),
and the elements x, N (s) and I(s) are taken in R(τ ′, s).

We shall show that φI(ς, s) satisfies the equation of Schrödinger type in Γ

∂

∂s
u(ς, s)− 1

2

∂2

∂ς2
u(ς, s) + UI(ς)u(ς, s) = 0, (21)

subject to the impulse condition

u(ξk, τk)− u(ξk, τ
−
k ) = I(ξk, τk, u(ξk, τk)), (22)

where τj = τ ′+

j∑
i=1

ωi, j = 1, 2, . . ., {ωi : i = 1, 2, . . .} is a sequence of random

variables with ωi ∈ ]0, T [, 0 < T ≤ +∞, ωi is independent of ωj when i 6= j for
all i, j = 1, 2, . . ., x(τk) = ξk ∈ R, k = 1, 2, ..., p, p ≥ 1, and I(ξk, τk, u(ξk, τk))
is some function which is not identically zero taking values in R.

In the next result, we establish the integrability of the function
WI(x, N (s), I(s); ς, s).
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Proposition 4.4. Let τ ′ < s < τ and x(s) = ς. Then WI(x, N (s), I(s); ς, s)
is generalized Riemann integrable in R(τ ′, s) and∫

R(τ′, s)
WI(x, N (s), I(s); ς, s) = e−UI(ς)(s−τ ′)×

×
∫ +∞

−∞
...

∫ +∞

−∞

r(s)+1∏
j=1

exp

(
− 1

2

(xij+Jij (xij )−xij−1
)2

tij−tij−1

)
√

2π(tij − tij−1
)

 dxi1 ...dxir(s) ,

where ti0 = t0 = τ ′, r(s) = max
{
j : j ∈ {1, 2, ..., p} and tij < s

}
, p ≥ 1,

and tir(s)+1
= s.

Proof. Since UI is continuous, given ε > 0, Theorem 4.3 says that for x ∈
R(τ ′, s) continuous at s, we can choose L(x) such that

N (s) = {t1, ..., tr−1} ⊇ L(x) ⊇ I

implies ∣∣∣e−UI(xr−1)(s−τ ′) − e−UI(ς)(s−τ ′)
∣∣∣ < ε

ϕ(ς, s)
,

where

ϕ(ς, s) =

∫ +∞

−∞
...

∫ +∞

−∞

r(s)+1∏
j=1

exp

(
− 1

2

(xij+Jij (xij )−xij−1
)2

tij−tij−1

)
√

2π(tij − tij−1
)

 dxi1 ...dxir(s) .

By Proposition 4.1, 0 < ϕ(ς, s) < +∞, for every s ∈ (τ ′, τ) and ς ∈ R. By
Theorem 4.1, we have ∫

R(τ′, s)
GI(x, I[N (s)]) = ϕ(ς, s).

Then, we can choose a gauge γ such that, for every division Eγ ,∣∣∣∣∣∣
∑

(x,I[N(s)])∈Eγ

[
e−UI(xr−1)(s−τ ′)GI(x, I[N (s)])− e−UI(ς)(s−τ ′)GI(x, I[N (s)])

]∣∣∣∣∣∣ <
<

ε

ϕ(ς, s)

∑
(x,I[N(s)])∈Eγ

GI(x, I[N (s)]) <
ε

ϕ(ς, s)
(ε+ ϕ(ς, s)).

Hence, we have the result.
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Now, we give a result which establishes conditions for the continuity of the
function φI at intervals with no impulse action.

Proposition 4.5. Let s ∈ (τ ′, τ) \ {τ1, ..., τp} (p ≥ 1) and ς ∈ R. Given
ε > 0, there exists δ > 0 such that, if |s1 − s| < δ and |ς1 − ς| < δ, then
|φI(ς1, s1)− φI(ς, s)| < ε.

Proof. Let s ∈ (τ ′, τ) \ {τ1, ..., τp}, p ≥ 1. We can suppose, without loss of
generality, that τk < s < τk+1, for some k ∈ {0, 1, ...., p}, where τ0 = t0 = τ ′

and τp+1 := τ (in this case τp+1 := τ is not an impulsive point). Then, there
exits δ > 0 such that ]s− δ, s+ δ[⊂ (τk, τk+1). By Proposition 4.4, we have

φI(ψ, β) = e−UI(ψ)(β−τ ′)×

×
∫ +∞

−∞
...

∫ +∞

−∞

k+1∏
j=1

exp

(
− 1

2

(xij+Jij (xij )−xij−1
)2

tij−tij−1

)
√

2π(tij − tij−1)

 dxi1 ...dxik ,

for every β ∈ ]s − δ, s + δ[ and every ψ ∈ R, where ti0 = τ ′, tik+1
= β,

x(τ ′) = ξ′, x(β) = ψ and J(xik+1
) = 0. Given β ∈ ]s − δ, s + δ[, β 6= s,

consider the following expressions

κI(ς, s) = e−UI(ς)(s−τ ′)×

×

 k∏
j=1

exp

(
− 1

2

(xij+Jij (xij )−xij−1
)2

tij−tij−1

)
√

2π(tij − tij−1
)

 exp
(
− 1

2

(ς−xik )2

s−tik

)
√

2π(s− tik)

and

κI(ψ, β) = e−UI(ψ)(β−τ ′)×

×

 k∏
j=1

exp

(
− 1

2

(xij+Jij (xij )−xij−1
)2

tij−tij−1

)
√

2π(tij − tij−1)

 exp
(
− 1

2

(ψ−xik )2

β−tik

)
√

2π(β − tik)
.

Since UI is continuous, we have κI(ψ, β) → κI(ς, s) as ψ → ς and β → s.
Note that κI(ς, s) > 0. Then, given ε > 0, there exists δ1 > 0, with δ1 < δ,
such that

|κI(ψ, β)− κI(ς, s)| < εκI(ς, s),
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whenever 0 < |β−s| < δ1 and 0 < |ψ−ς| < δ1. By the dominated convergence
theorem (Theorem 3.2, see also [9], Theorem 9.2), we have

φI(ψ, β)→ φI(ς, s)

as ψ → ς and β → s. Therefore the result is proved.

Theorem 4.4 below says the lateral limits of the function φI at the moments
{τ1, ..., τp}, p ≥ 1, exist.

Theorem 4.4. Let x(τk) = ξk ∈ R, k = 1, 2, ..., p, p ≥ 1. Then, the limits

lim
(ς, s)→(ξk, τ

+
k )
φI(ς, s) and lim

(ς, s)→(ξk, τ
−
k )
φI(ς, s)

exist for k = 1, 2, ..., p, p ≥ 1.

Proof. Let τk where k ∈ {1, 2, ...} and τ ′ < τk < τ . Let δ > 0 be arbitrarily
small. By Proposition 4.4, we have

φI(ς, τk + δ) = e−UI(ς)(τk+δ−τ ′)×

×
∫ +∞

−∞
...

∫ +∞

−∞

 k∏
j=1

exp

(
− 1

2

(xij+Jij (xij )−xij−1
)2

tij−tij−1

)
√

2π(tij − tij−1)

×

×
exp

(
− 1

2
(ς−ξk)2

δ

)
√

2πδ
dxi1 ...dxik .

Now, note that k∏
j=1

exp

(
− 1

2

(xij+Jij (xij )−xij−1
)2

tij−tij−1

)
√

2π(tij − tij−1)

 exp
(
− 1

2
(ς−ξk)2

δ

)
√

2πδ
≤

≤

(
1√

2π(ti1 − ti0)

) k∏
j=2

exp

(
− 1

2

(xij+Jij (xij )−xij−1
)2

tij−tij−1

)
√

2π(tij − tij−1
)

 exp
(
− 1

2
(ς−ξk)2

δ

)
√

2πδ
.



140 E. M. Bonotto, M. Federson and P. Muldowney

Define α as being the righthand side of the inequality above. Then, the

integral

∫ +∞

−∞
...

∫ +∞

−∞
αdxi1 ...dxik exists and it is equal to

1√
2π(ti1 − ti0)

=
1√

2π(τ1 − τ ′)
.

Then,

φI(ς, τk + δ) ≤ e−UI(ς)(τk+δ−τ ′)√
2π(τ1 − τ ′)

.

Hence the limit lim
(ς, s)→(ξk, τ

+
k )
φI(ς, s) exists.

Now, we note that

φI(ς, τk − δ) = e−UI(ς)(τk−δ−τ ′)×

×
∫ +∞

−∞
...

∫ +∞

−∞

k−1∏
j=1

exp

(
− 1

2

(xij+Jij (xij )−xij−1
)2

tij−tij−1

)
√

2π(tij − tij−1
)

×

×
exp

(
− 1

2
(ς−ξk−1)2

(τk−δ−τk−1)

)
√

2π(τk − δ − τk−1)
dxi1 ...dxik−1

.

Analogously, we have

φI(ς, τk − δ) ≤
e−UI(ς)(τk−δ−τ ′)√

2π(τ1 − δ − τ ′)
if k = 1,

and

φI(ς, τk − δ) ≤
e−UI(ς)(τk−δ−τ ′)√

2π(τ1 − τ ′)
if k = 2, 3, ..., p, p ≥ 2.

Thus, the limit lim
(ς, s)→(ξk, τ

−
k )
φI(ς, s) also exists.

As a consequence of Proposition 4.4 and Theorem 4.4, we have the following
result.

Theorem 4.5. Let τk, k ∈ {1, 2, ...}, such that τ ′ < τk < τ and x(τk) = ξk.
The function φI satisfies the condition given by (22) where I(ξk, τk, φI(ξk, τk))
= φI(ξk, τk)− φI(ξk, τ

−
k ) and φI is given by Proposition 4.4.
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Now, let us denote WI(x, N (s), I(s); ς, s) by ωI(ς, s), where

WI(x, N (s), I(s); ς, s) = qI(x, N (s), I(s))e−UI(xr−1)(s−τ ′)

and

qI(x, N (s), I(s)) = gI(x, N (s))

r−1∏
j=1

∆Ij .

By differentiation, for s 6= τj , j = 1, 2, . . ., we get

∂ωI(ς, s)

∂s
= −UI(xr−1)ωI(ς, s)− 1

2(s− tir )
ωI(ς, s) +

1

2

(
ς − xir
s− tir

)2

ωI(ς, s),

∂ωI(ς, s)

∂ς
= − (ς − xir )

s− tir
ωI(ς, s)

and
∂2ωI(ς, s)

∂ς2
= − 1

s− tir
ωI(ς, s) +

(
ς − xir
s− tir

)2

ωI(ς, s).

Thus,
∂ωI(ς, s)

∂s
− 1

2

∂2ωI(ς, s)

∂ς2
+ UI(xr−1)ωI(ς, s) = 0. (23)

The next result says that UI(xr−1)ωI(ς, s) is generalized Riemann inte-
grable. Since UI is continuous the proof of Proposition 4.6 is analogously to
the proof of Proposition 4.4.

Proposition 4.6. Let τ ′ < s < τ , s 6= τj for every j = 1, 2, ..., p and x(s) = ς.
Then the function UI(xr−1)ωI(ς, s) is generalized Riemann integrable and∫ +∞

−∞
...

∫ +∞

−∞
UI(xr−1)ωI(ς, s)dxi1 ...dxir = UI(ς)φI(ς, s).

By Proposition 4.6, the expression
∂ωI(ς, s)

∂s
− 1

2

∂2ωI(ς, s)

∂ς2
in equation

(23) is generalized Riemann integrable and∫ +∞

−∞
...

∫ +∞

−∞

(
∂ωI(ς, s)

∂s
− 1

2

∂2ωI(ς, s)

∂ς2

)
dxi1 ...dxir = −UI(ς)φI(ς, s).

The problem now is to prove the following equalities∫ +∞

−∞
...

∫ +∞

−∞

∂ωI(ς, s)

∂s
dxi1 ...dxir =

∂

∂s

∫ +∞

−∞
...

∫ +∞

−∞
ωI(ς, s)dxi1 ...dxir
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and∫ +∞

−∞
...

∫ +∞

−∞

∂2ωI(ς, s)

∂ς2
dxi1 ...dxir =

∂2

∂ς2

∫ +∞

−∞
...

∫ +∞

−∞
ωI(ς, s)dxi1 ...dxir

and to conclude that

∂φI
∂s

(ς, s)− 1

2

∂2φI
∂ς2

(ς, s) + UI(ς)φI(ς, s) = 0

for (ς, s) ∈ Γ. Thus, in order to prove the equalities, we introduce some
additional notations below.

Given f(ς, s), let

Dabcf(ς, s) =
1

a
fa(ς, s)− 1

2bc
fbc(ς, s),

where
fa(ς, s) = f(ς, s+ a)− f(ς, s)

and

fbc(ς, s) = f(ς + b+ c, s)− f(ς + b, s)− f(ς + c, s) + f(ς, s)

for non-zero real numbers a, b, c. Then the limit

lim
a,b,c→0

Dabcf(ς, s)

exists and equals
∂f

∂s
(ς, s)− 1

2

∂2f

∂ς2
(ς, s),

if and only if the partial derivatives

∂f

∂s
,
∂2f

∂ς2

exist.

In our case, since the derivatives
∂ωI
∂s

(ς, s) and
∂2ωI
∂ς2

(ς, s) exist, we have

lim
a,b,c→0

DabcωI(ς, s) =
∂ωI
∂s

(ς, s)− 1

2

∂2ωI
∂ς2

(ς, s) = −UI(xr−1)ωI(ς, s). (24)

By Proposition 4.6, the limit lim
a,b,c→0

DabcωI(ς, s) is generalized Riemann in-

tegrable and∫ +∞

−∞
...

∫ +∞

−∞
lim

a,b,c→0
DabcωI(ς, s)dxi1 ...dxir = −UI(ς)φI(ς, s). (25)
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Thus, if we prove that∫ +∞

−∞
...

∫ +∞

−∞
lim

a,b,c→0
DabcωI(ς, s)dxi1 ...dxir =

= lim
a,b,c→0

∫ +∞

−∞
...

∫ +∞

−∞
DabcωI(ς, s)dxi1 ...dxir ,

then we can conclude that
∂φI(ς, s)

∂s
and

∂2φI(ς, s)

∂ς2
exist.

The next theorem shows the existence of the derivatives
∂φI
∂s

and
∂2φI
∂ς2

.

Theorem 4.6. Let τ ′ < s < τ , s 6= τj for every j = 1, 2, ..., p, p ≥ 1, and

x(s) = ς ∈ R. Then the partial derivatives
∂φI
∂s

(ς, s) and
∂2φI
∂ς2

(ς, s) exist for

(ς, s) ∈ Γ.

Proof. Let ε > 0 be given. By equation (24), we can choose µ > 0 such that
0 < |α| < µ, 0 < |β| < µ and 0 < |γ| < µ imply

|DαβγωI(ς, s) + UI(xr−1)ωI(ς, s)| < ωI(ς, s)ε.

Given x, N , I, choose α0, β0 and γ0 satisfying 0 < α0 < µ, 0 < β0 < µ
and 0 < γ0 < µ such that

sup
0<|α|<α0

0<|β|<β0

0<|γ|<γ0

|DαβγωI(ς, s) + UI(xr−1)ωI(ς, s)| < ωI(ς, s).

Since 0 < |α| < α0, 0 < |β| < β0, 0 < |γ| < γ0, we have

−ωI(ς, s) ≤ DαβγωI(ς, s) + UI(xr−1)ωI(ς, s) ≤ ωI(ς, s).

By the dominated convergence test (Theorem 3.2, see also [9], Theorem 9.2),
we have

lim
α, β, γ→0

∫ +∞

−∞
...

∫ +∞

−∞
DαβγωI(ς, s)dxi1 ...dxir =

= −
∫ +∞

−∞
...

∫ +∞

−∞
UI(xr−1)ωI(ς, s)dxi1 ...dxir = −UI(ς)φI(ς, s) =

(25)
=

∫ +∞

−∞
...

∫ +∞

−∞
lim

α, β, γ→0
DαβγωI(ς, s)dxi1 ...dxir .
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Then, since

lim
α, β, γ→0

∫ +∞

−∞
...

∫ +∞

−∞
DαβγωI(ς, s)dxi1 ...dxir =

∂φI(ς, s)

∂s
− 1

2

∂2φI(ς, s)

∂ς2
,

the result is proved.

Thus we conclude the following result.

Theorem 4.7. Let τ ′ < s < τ and ς ∈ R. The function

φI(ς, s) =

∫
R(τ′, s)

WI(x, N (s), I(s); ς, s)

satisfies the partial differential equation of Schrödinger type in Γ

∂

∂s
u(ς, s)− 1

2

∂2

∂ς2
u(ς, s) + UI(ς)u(ς, s) = 0,

subject to the impulse condition

u(ξk, τk)− u(ξk, τ
−
k ) = I(ξk, τk, u(ξk, τk)),

where τj = τ ′ +

j∑
i=1

ωi, j = 1, 2, . . ., {ωi : i = 1, 2, . . .} is a sequence of

random variables with ωi ∈ ]0, T [, 0 < T ≤ +∞, ωi is independent of ωj
when i 6= j for all i, j = 1, 2, . . ., x(τk) = ξk ∈ R and I(ξk, τk, u(ξk, τk)) =
φI(ξk, τk)− φI(ξk, τ

−
k ), k = 1, 2, ..., p, p ≥ 1.

4.3 Example.

Now, we illustrate the theory by explicit evaluation of φI , when each of the
impulses is a constant and the function UI(t) = β for every t ∈ R, with
β ∈ R. Consider the continuous functions Jj : R → R, j = 1, 2, . . . , given

by Jij (x(τj)) = αj , j = 1, 2, . . ., and τj = τ ′ +

j∑
i=1

ωi, j = 1, 2, . . ., {ωi : i =

1, 2, . . .} is a sequence of random variables with ωi ∈ ]0, T [, 0 < T ≤ +∞, and
ωi is independent of ωj when i 6= j for all i, j = 1, 2, . . .. Let s ∈ (τ ′, τ), ς ∈ R
and N (s) = {t1, ...., tr−1}, with t0 = τ ′ and tr = s.

If τ1 > τ , then

φI(ς, s) =
e−β(s−τ ′)√
2π(s− τ ′)

exp

(
−1

2

(ς − ξ′)2

s− τ ′

)
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is a solution of the partial differential equation of Schrödinger type

∂

∂s
u(ς, s)− 1

2

∂2

∂ς2
u(ς, s) + βu(ς, s) = 0

in R× (τ ′, τ).
But if {τp}p≥1 ∩ (τ ′, τ) 6= ∅ the solution is given as follows.
Consider the following auxiliary function % : R→ R given by

%(x(t)) =

{
x(t), if τ ′ < t < τ and t 6= τj for all j = 1, 2, ...,
x(t) + Jij (x(t)), if τ ′ < t < τ and t = τj for any j = 1, 2, ....

Then

κI(ς, s) = e−β(s−τ ′)

 r∏
j=1

exp

(
− 1

2

(xij+αj−xij−1
)2

tij−tij−1

)
√

2π(tij − tij−1
)

 exp
(
− 1

2
(%(ς)−xir )2

s−tir

)
√

2π(s− tir )
.

Then, by using Lemma 4.1, we obtain∫ +∞

−∞
...

∫ +∞

−∞
ωI(ς, s)dxi1 ...dxir =

=
e−β(s−τ ′)√
2π(s− τ ′)

exp

(
−1

2

(%(ς)− ξ′ + α1 + ...+ αr)
2

s− τ ′

)
and by Theorem 4.7, we have

φI(ς, s) =
e−β(s−τ ′)√
2π(s− τ ′)

exp


−1

2

%(ς)− ξ′ +
∑
tj≤s

αj

2

s− τ ′


is a solution of the partial differential equation of Schrödinger type in Γ

∂

∂s
u(ς, s)− 1

2

∂2

∂ς2
u(ς, s) + βu(ς, s) = 0,

subject to the impulse condition

u(ξ1, τ1)− u(ξ1, τ
−
1 ) =
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=
1√

2π(τ1 − τ ′)

[
exp

(
−1

2

(ξ1 − ξ′ + α1)
2

τ1 − τ ′

)
− exp

(
−1

2

(ξ1 − ξ′)2

τ1 − τ ′

)]
,

and

u(ξk, τk)− u(ξk, τ
−
k ) =

1√
2π(τk − τ ′)

×

×

exp

−
1

2

(
ξk − ξ′ +

k∑
i=1

αi

)2

τk − τ ′

− exp

−
1

2

(
ξk − ξ′ +

k−1∑
i=1

αi

)2

τk − τ ′



 ,
for k = 2, 3, . . . such that τ ′ < τk < τ .

5 Some Final Remarks.

The classical Black-Scholes equation, for pricing European call options, is
obtained from a stochastic differential equation using the Itô calculus. The
present paper presents a theory that will be very useful to obtain the Black-
Scholes equation with random jumps by using the Feynman-Kac formulation
based on generalized Riemann integration, [4].

Acknowledgment. The authors wish to thank the referees for their com-
ments.
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