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DIVERGENCE IN MEASURE OF
REARRANGED MULTIPLE ORTHOGONAL

FOURIER SERIES

Abstract

Let {ϕn(x), n = 1, 2, . . . } be an arbitrary complete orthonormal sys-
tem (ONS) on the interval I := [0, 1) that consists of a.e. bounded
functions. Then there exists a rearrangement {ϕσ1(n), n = 1, 2, . . . }
of the system {ϕn(x), n = 1, 2, . . . } that has the following property:
for arbitrary nonnegative, continuous and nondecreasing on [0,∞) func-
tion φ(u) such that uφ(u) is a convex function on [0,∞) and φ(u) =
o(lnu), u→∞, there exists a function f ∈ L(I2) such that

R
I2
|f(x, y)|

φ(|f(x, y)|) dx dy < ∞ and the sequence of the square partial sums of
the Fourier series of f with respect to the double system {ϕσ1(m)(x)ϕσ1(n)(y),
m,n ∈ N} on I2 is essentially unbounded in measure on I2.

1 Introduction.

In the theory of orthogonal series A. Olevskĭı’s fundamental method for inves-
tigating arbitrary complete ONS and bases in function spaces, based on some
special properties of the Haar system, is well known ([4]-[6]). In particular,
the following theorem holds ([4], p.60, see also [3], p. 294).

Theorem 1 (A. Olevskĭı). For any complete ONS {ϕl(x), l ∈ N} on I there
exists a Haar-type system {χ̃l(x), l = 0, 1, 2, . . . } and polynomials with respect
to the system {ϕl(x), l ∈ N} with

Qm(x) =
k(m+1)∑
l=k(m)+1

alϕl(x), for m ∈ N, 0 = k(0) < k(1) < k(2) < . . . , (1)

Mathematical Reviews subject classification: Primary: 42B08; Secondary: 40B05
Key words: The double Haar system, unconditional convergence, divergence in measure
Received by the editors December 5, 2008
Communicated by: Alexander Olevskii

501



502 Rostom Getsadze

such that

χ̃m(x) = Qm(x) + γm(x), for m ∈ N (2)

‖γm‖2L2 ≤ 32−m−1, for m ∈ N. (3)

In the present paper we use A. Olevskĭı’s method to study convergence
in measure of the Fourier series with respect to rearranged multiple complete
ONS.

We start with the following definition. Let (X,Σ, ν) be σ-finite measurable
space, E ∈ Σ and ν(E) > 0. Let also a sequence of measurable real-valued
functions {fn(x)}∞n=1 be defined and a.e. finite on E. Then we say that
the sequence {fn(x)}∞n=1 is essentially divergent in measure on E if for every
E1 ⊂ E, E1 ∈ Σ and ν(E1) > 0, the sequence is divergent in measure (that
is, does not converge in measure to an a.e. finite and measurable function) on
E1. Let µN , N ∈ N, denote Lebesgue measure in the Euclidean space RN .
If F is a Lebesgue measurable set in R2, with 0 < µ2F < ∞, then let L0(F )
denote the set of all Lebesgue measurable functions on F ⊂ R2 that are finite
a.e. on F .

A sequence {fn(x, y), n ∈ N} of functions from L0(F ) is called bounded
in measure on F if for any ε > 0 there is a constant R1 > 0 such that
µ2{(x, y) ∈ F : |fn(x, y)| ≥ R1} ≤ ε for any n ∈ N. A sequence {fn(x, y),
n ∈ N} of functions from L0(F ) is called essentially unbounded in measure on
F if for any Lebesgue measurable set E ⊂ F , µ2E > 0, the sequence is not
bounded in measure on E. It is clear that any sequence of measurable a.e.
finite functions that is essentially unbounded in measure on a measurable set
E is essentially divergent in measure on the same set.

We shall denote the set of all non-negative integers by Z0.
By a dyadic interval in I := [0, 1) we shall mean an interval of the form

∆(k)
n := [k2−n, (k + 1)2−n), with (0 ≤ k < 2n, n, k ∈ Z0). (4)

The Haar system {χl(x), l ∈ Z0} is defined as follows. Set χ0(x) := 1. For
n, k ∈ Z0 with 0 ≤ k < 2n define χl(x) on I by

χ2n+k(x) := χ(k)
n (x) :=


2
n
2 , if x ∈ ∆(2k)

n+1

−2
n
2 , if x ∈ ∆(2k+1)

n+1

0, otherwise.
(5)

Let E(k)
n (0 ≤ k < 2n, n, k ∈ Z0) be a family of measurable sets, where

E
(k)
n ⊂ I, µ1{E(k)

n } = 1
2n , E(k)

n ∩E(l)
n = ∅ if k 6= l, and E(k)

n = E
(2k)
n+1 ∪E

(2k+1)
n+1 .
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A Haar-type system {χ̃l(x), l ∈ Z0} on I is defined as follows. Set χ̃0(x) := 1.
For n, k ∈ Z0 with 0 ≤ k < 2n define χ̃l(x) on I by

χ̃2n+k(x) := χ̃(k)
n (x) :=


2
n
2 , if x ∈ E(2k)

n+1

−2
n
2 , if x ∈ E(2k+1)

n+1

0, otherwise.

Let {ϕn(x), n ∈ N} be an arbitrary ONS on the interval I. Fourier co-
efficients of a function f ∈ L(I) with respect to the system are denoted by
b
(ϕ)
n (f) and the partial sums by S

(ϕ)
N (f, x). Fourier coefficients of a function

h ∈ L(I2) in the system {ϕn(x)ϕm(y), n,m ∈ Z0}, (x, y) ∈ I2, are denoted by
b
(ϕ)
n,m(h) and the rectangular partial sums by S(ϕ)

N,M (h, x, y). The partial sums

S
(ϕ)
N,N (h, x, y) are called square partial sums.

Let (X, ρ) be a metric space. It is said that a double sequence {xm,n} of
elements of X converges by rectangles to an element a ∈ X if for any number
ε > 0 there exists a number Nε such that ρ(xm,n, a) < ε whenever m > Nε
and n > Nε.

It is well-known that (see, for example [3], p. 71) the Fourier-Haar series of
any function f ∈ L(I) is unconditionally convergent (that is, it converges for
every ordering of the terms) in measure on I. In integral classes of functions
wider than LLn+L(I2) there are no product bases that are unconditional with
respect to the convergence in measure by rectangles [7].

For any f ∈ LLn+L(I2) the series
∑∞
i=0

∑∞
j=0 εi,ja

(χ)
i,j (f)χi(x)χj(y) con-

verges by rectangles for any εi,j = ε
′

iε
′′

j with ε
′

i, ε
′′

j = +1 or −1 in Lp(I2) metric
for every p ∈ (0, 1) (see the Remark 1 after Theorem 1 in [7]). It is known
also that the double Fourier-Haar series of any Lebesgue integrable function
on I2 is convergent in the metric L(I2) by rectangles. In this paper we prove
first the following theorem.

Theorem 2. There exists a rearrangement {ψn(x) := χσ(n)(x), n ∈ Z0} of
the one-dimensional Haar system that has the following property: for arbitrary
nonnegative, continuous and nondecreasing on [0,∞) function φ(u) such that
uφ(u) is a convex function on [0,∞) and

φ(u) = o(lnu), u→∞, (6)

there exists a function g ∈ L(I2) such that
∫
I2
| g(x, y) | φ(| g(x, y) |) dx dy <

∞ and the sequence of the square partial sums of the Fourier series of g with
respect to the double system {χσ(m)(x)χσ(n)(y), m,n ∈ Z0} on I2 is essentially
unbounded in measure on I2 .
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Using the A.Olevskĭı’s method we generalize this theorem in the general
case, namely we prove that:

Theorem 3. Let {ϕn(x), n ∈ N} be an arbitrary complete ONS on the interval
I that consists of a.e. bounded functions. Then there exists a rearrangement
{ϕσ1(n), n ∈ N} of the system {ϕn(x), n ∈ N} that has the following property:
for arbitrary nonnegative, continuous and nondecreasing on [0,∞) function
φ(u) such that uφ(u) is a convex function on [0,∞) and φ(u) = o(lnu), u→
∞, there exists a function f ∈ L(I2) such that

∫
I2
| f(x, y) | φ(| f(x, y) |

) dx dy <∞ and the sequence of the square partial sums of the Fourier series
of f with respect to the double system {ϕσ1(m)(x)ϕσ1(n)(y), m,n ∈ N} on I2

is essentially unbounded in measure on I2.

Taking in account Tkebuchava’s [7] positive result mentioned above, one
can see easily that Theorems 2 and 3 are sharp: the condition (6) cannot be
replaced by φ(u) = O(lnu).

2 The Proof of Theorem 2.

For a number h ∈ (0, 1), Ih denotes the interval [0, 1 − h]. For each pair of
numbers (θ, η) ∈ I2

h and a number h ∈ (0, 1), introduce the function of two
variables (x, y) defined on I2 by

δθ,η,h(x, y) :=

{
h−2, if (x, y) ∈ [θ, θ + h]× [η, η + h];
0, otherwise on I2.

(7)

Let (x, y) ∈ I2 and ∆(i0)
0 ,∆(i1)

1 , . . . ,∆(il)
l , . . . be the sequence of all dyadic

intervals that contain x and let ∆(j0)
0 ,∆(j1)

1 , . . . ,∆(jl)
l , . . . be the sequence of

all dyadic intervals that contain y.
We show that if 0 ≤ k ≤ N , N is an arbitrary positive integer and

θ ∈ ∆(i2k)
2k \∆(i2k+2)

2k+2 , (8)

then

22k+1 ≥ |
N∑
p=0

22p−1∑
l=0

χ22p+l(x)χ22p+l(θ)| ≥ 22k−1. (9)

Indeed, when p > k, then (see (4), (5), (8)) θ 6∈ ∆(i2p)
2p and therefore
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χ22p+i2p(θ) = 0 and when p ≤ k, then θ ∈ ∆(i2p)
2p and therefore | χ22p+i2p(θ) |=√

22p . Thus

∣∣ N∑
p=0

22p−1∑
l=0

χ22p+l(x)χ22p+l(θ)
∣∣ =

∣∣ k∑
p=0

χ22p+i2p(x)χ22p+i2p(θ)
∣∣

≥ |χ22k+i2k(x)χ22k+i2k(θ)| −
∣∣ k−1∑
p=0

χ22p+i2p(x)χ22p+i2p(θ)
∣∣

≥ 22k −
k−1∑
p=0

22p ≥ 22k−1.

On the other hand,

∣∣ N∑
p=0

22p−1∑
l=0

χ22p+l(x)χ22p+l(θ)
∣∣ =

∣∣ k∑
p=0

χ22p+i2p(x)χ22p+i2p(θ)
∣∣

≤
k∑
p=0

22p ≤ 22k+1.

Consequently the estimate (9) is proved.
We introduce ordered sets. Let

Dj := {2j , 2j + 1, . . . , 2j+1 − 1}, j ∈ Z0 (10)

be the jth block where the natural order is preserved. We introduce ordered
packets of blocks according to the following list

Bi := {D20i−20, D20i−18, . . . , D20i−2}, i ∈ N. (11)

Now we define the rearrangement σ of Z0 according to the following list

0, B1, D1, B2, D3, B3, D5, . . . , Bi, D2i−1, . . . . (12)

Let n be an arbitrary positive integer. Introduce numbers

pn := 1 +
n∑
i=1

(card(Bi) + card(D2i−1)), n ∈ N, (13)

where card(F ) denotes the number of elements of a finite set F .
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Set

ψj(x) := χσ(j)(x), j ∈ Z0. (14)

Now we have (see (4), (5), (10)-(14)) for all (x, θ) ∈ I2 and n ∈ N,

∣∣ pn∑
j=0

ψj(x)ψj(θ)
∣∣ ≥ ∣∣ 10n−1∑

p=0

22p−1∑
l=0

χ22p+l(x)χ22p+l(θ)
∣∣− 1

−
∣∣ n−1∑
p=0

22p+1−1∑
m=0

χ22p+1+m(x)χ22p+1+m(θ)
∣∣ (15)

≥
∣∣ 10n−1∑
p=0

22p−1∑
l=0

χ22p+l(x)χ22p+l(θ)
∣∣− 1− 22n.

Introduce the set An := An(x, y) to be

⋃
49Nn
100 ≤k≤

50Nn
100

((∆(i2k)
2k \∆

(i2k+2)
2k+2 )× (∆(j2Nn−2k)

2Nn−2k \∆(j2Nn−2k+2)
2Nn−2k+2 )), (16)

where Nn := 10n− 1. (17)

We have from (4)

µ2An ≥
∑

49Nn
100 ≤k≤

50Nn
100

2−2k−222Nn+2k−2 ≥ 10n− 1
100

1
220n+2

. (18)

Let (θ, η) ∈ An. Then there exists a positive integer k, 49Nn
100 ≤ k ≤

50Nn
100 , such

that (see (9), (16)) 22 50Nn
100 +1 ≥ 22k+1 ≥ |

∑Nn
p=0

∑22p−1
l=0 χ22p+l(x)χ22p+l(θ)| ≥

22k−1 and 22 51Nn
100 +1 ≥ 22Nn−2k+1 ≥ |

∑Nn
p=0

∑22p−1
l=0 χ22p+l(y)χ22p+l(η)| ≥



Divergence of Rearranged Orthogonal Fourier Series 507

22Nn−2k−1. Then, in light of (15) and (17), we conclude that for n > 2,

∣∣ pn∑
j=0

ψj(x)ψj(θ)
∣∣∣∣ pn∑
j=0

ψj(y)ψj(η)
∣∣

≥
∣∣ 10n−1∑
p=0

22p−1∑
l=0

χ22p+l(x)χ22p+l(θ)
∣∣∣∣ 10n−1∑

p=0

22p−1∑
l=0

χ22p+l(y)χ22p+l(η)
∣∣

− 22n+1
∣∣ 10n−1∑
p=0

22p−1∑
l=0

χ22p+l(x)χ22p+l(θ)
∣∣ (19)

− 22n+1
∣∣ 10n−1∑
p=0

22p−1∑
l=0

χ22p+l(y)χ22p+l(η)
∣∣+ 24n+2

≥ 1
4

220n−2 − 217n+2 ≥ 220n−2

8
.

Thus (see (18)) for all (x, y) ∈ I2, we have

µ2{(θ, η) ∈ I2 : inequality (19) holds} ≥ 10n− 1
220n+2100

. (20)

Introduce the functions for n ∈ N and (x, y, θ, η) ∈ I4

Kn(x, y, θ, η) :=
pn∑
i=0

ψi(x)ψi(θ)
pn∑
j=0

ψj(y)ψj(η). (21)

Introduce the set

Θn :=
220n⋃
i=1

220n⋃
j=1

[
i− 1
220n

,
i

220n
− 1

2100n
)× [

j − 1
220n

,
j

220n
− 1

2100n
). (22)

It is clear that

µ2Θn ≥ 1− 2
280n

. (23)

Let a set E ⊂ I2, µ2E > 0, be arbitrary. We introduce numbers

hn := 2−200n, (24)

ξn := ξn(E) =
9
10

(10n− 1)µ2E

2400
. (25)
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From (10)-(13) it follows that

max
0≤j≤pn

σ(j) ≤ 220n−1. (26)

Now let (x, y, θ, η) ∈ I2 ×Θn. Then we have (see (4), (5), (7), (22))

pn∑
i=0

pn∑
j=0

aψi,j((δθ,η,hn))ψi(x)ψj(y) =
pn∑
i=0

ψi(x)ψi(θ)
pn∑
j=0

ψj(y)ψj(η). (27)

It is clear that (see (20), (21), (23))

µ2{(θ, η) ∈ Θn : |Kn(x, y, θ, η)| ≥ 1
8

220n−2} ≥ 9
10

10n− 1
220n+2100

(28)

for (x, y) ∈ I2. We shall show that for an arbitrary given set E ⊂ I2, µ2E > 0,
and for each integer n > r0 (r0 is a positive constant depending on E) there
exist (all depending on the set E) a positive integer q(n) and the following finite
sequences: a sequence of disjoint measurable sets {B(n)

i }
q(n)
i=1 , B(n)

i ⊂ E, i =
1, 2, . . . , q(n); a sequence of pairs of numbers {(θ(n)

i , η
(n)
i )}q(n)

i=1 , (θ(n)
i , η

(n)
i ) ∈

Θn, i = 1, 2, . . . , q(n), such that (see (24), (25))

|Sψpn,pn(δ
θ
(n)
i ,η

(n)
i ,hn

, x, y)| ≥ 220n−2

8
, ∀(x, y) ∈ B(n)

i , i = 1, 2, . . . , q(n) (29)

µ2{∪q(n)
i=1 B

(n)
i } ≥

µ2E

6
> 0, (30)

µ2{B(n)
i } ≥

ξn
220n

, ∀i = 1, 2, . . . , q(n). (31)

Set

A
(n)
1 := {(x, y, θ, η) ∈ E ×Θn : |Kn(x, y, θ, η)| ≥ 1

8
220n−2} (32)

We have for all (x, y) ∈ E (see (28)),
∫

Θn
χ
A

(n)
1

(x, y, θ, η) dθ dη ≥ 9
10

10n−1
220n+2100 ,

where χ
A

(n)
1

(x, y, θ, η) is the characteristic function of the set A(n)
1 . Using

Fubini’s theorem we conclude that there exists a pair of numbers (θ(n)
1 , η

(n)
1 ) ∈

Θn such that µ2{(x, y) ∈ E : (x, y, θ(n)
1 , η

(n)
1 ) ∈ A(n)

1 } ≥ 9
10
µ2E

6
10n−1

220n+2100 .
Now we let B(n)

1 := {(x, y) ∈ E : (x, y, θ(n)
1 , η

(n)
1 ) ∈ A

(n)
1 }. From (21),

(25), (31), (29), (27), and (32), we see that the first step in the construction is
complete. We now assume that the p-th step of the construction is complete.
If it happens that µ2{∪pi=1B

(n)
i } ≥

µ2E
6 > 0, then the construction is complete.
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Suppose, on the contrary, that µ2{∪pi=1B
(n)
i } <

µ2E
6 . Define A(n)

p+1 to be

{(x, y, θ, η) ∈ (E \ ∪pi=1B
(n)
i )×Θn : |Kn(x, y, θ, η)| ≥ 220n−2

8
}. (33)

Using Fubini’s theorem we conclude that there exists a pair of numbers (θ(n)
p+1,

η
(n)
p+1) ∈ Θn such that µ2{(x, y) ∈ E \ ∪pi=1B

(n)
i : (x, y, θ(n)

p+1, η
(n)
p+1) ∈ A(n)

p+1} ≥
9
10
µ2E

6
10n−1

220n+2100 . Now we set B(n)
p+1 :={(x, y) ∈ E \∪pi=1B

(n)
i : (x, y, θ(n)

p+1, η
(n)
p+1)

∈ A(n)
p+1}. From (21), (25), (31), (29), (27), and (33), we see that the (p+ 1)st

step in the construction is complete.
It follows now from the construction (see (25), (31)) that after the pth step

we have µ2(∪pi=1B
(n)
i ) =

∑p
i=1 µ2B

(n)
i ≥ 9p

10
µ2E

6
10n−1

220n+2100 and consequently,
this inequality cannot hold for sufficiently large numbers p. We can conclude
now that the construction terminates at some finite step q(n).

Define (see (7)) f (n)
i (x, y) to be

δ
θ
(n)
i ,η

(n)
i ,hn

(x, y) =

{
h−2
n , (x, y) ∈ [θ(n)

i , θ
(n)
i + hn]× [η(n)

i , η
(n)
i + hn];

0, otherwise.
(34)

Introduce the functions

Φ(t)
n (x, y) := Φ(t)

n (E;x, y) =
q(n)∑
i=1

ξn
220n

f
(n)
i (x, y)ri(t), (x, y, t) ∈ I3 (35)

for n > r0, where {ri(t), i ∈ N} is the Rademacher system. Consider the set

Hn =
q(n)⋃
i=1

B
(n)
i . (36)

Let (x, y) be any point from Hn. Then (see (29), (34)) for some positive integer
i0 = i0(x, y), 1 ≤ i0 ≤ q(n), we have

|Sψpn,pn(f (n)
i0
, x, y)| ≥ 1

8
220n−2. (37)

Clearly (see (35), (34)), Φ(t)
n (x, y) ∈ L(I2) for each fixed t ∈ [0, 1). Further it

follows from (35) that for any t ∈ [0, 1)

Sψpn,pn(Φ(t)
n , x, y) = ri0(t)

ξn
220n

Sψpn,pn(f (n)
i0
, x, y) (38)

+
∑
i 6=i0

ri(t)Sψpn,pn(f (n)
i , x, y)

ξn
220n

.
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The following easily verifiable fact is well known (see for example [1], p.10): Let∑m
i=1 ωiri(t) be an arbitrary polynomial with real coefficients in the Rademacher

system and i0 a fixed integer, 1 ≤ i0 ≤ m. Then µ1{t ∈ [0, 1) : ωi0ri0(t)∑
i6=i0 ωiri(t) ≥ 0} ≥ 1

2 .
Introduce the set

Q := {(x, y, t) ∈ Hn × [0, 1) : |Sψpn,pn(Φ(t)
n , x, y)| ≥ 1

32
ξn}. (39)

According to (37)-(39) we conclude that for all (x, y) ∈ Hn we have the in-
equality

∫ 1

0
χQ(x, y, t) dt ≥ 1

2 , where χQ(x, y, t) is the characteristic function
of Q. Consequently (see (30), (36), (39)), there exists a number t0 ∈ [0, 1)
such that µ2{(x, y) ∈ Hn :| Sψpn,pn(Φ(t0)

n , x, y) |≥ 1
32ξn} ≥

µ2E
12 . We observe

that (see (31), (30), (34), and (35))

∫ 1

0

∫ 1

0

|Φ(t0)
n (x, y)| dx dy ≤

q(n)∑
i=1

ξn
220n

≤
q(n)∑
i=1

µ2{B(n)
i } ≤ 1. (40)

Introduce the notations

Gn(x, y) := Gn(E;x, y) := Φ(t0)
n (x, y), (x, y) ∈ I2 (41)

ψ(u) := uφ(u), u ∈ [0,∞). (42)

Taking account of an assumption on ψ we see that if a number C ∈ [0, 1), then
for any x > 0,

ψ(Cx) ≤ Cψ(x), x > 0. (43)

We note that (see (34), (25), and (6)) there exists a sequence of positive
integers {εn := εn(E) n > r0} such that limn→∞ εn = 0 and for all integers
n > r0,

max
1≤i≤q(n)

∫
I2
|f (n)
i (x, y)|φ(|f (n)

i (x, y)|) dx dy ≤ εnξn. (44)

The function ψ in (42) is a non-decreasing convex function. From (43), (41),
and (35) we have

∫ 1

0

∫ 1

0

ψ(|Gn(x, y)|) dx dy ≤
∫ 1

0

∫ 1

0

ξn
220n

q(n)∑
i=1

ψ(|f (n)
i (x, y)|) dx dy (45)

≤ ξnεn.
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Let Sn denote a finite one-dimensional sequence of all intervals ∆(i,j)
k :=

∆(i)
k ×∆(j)

k , where i, j,= 0, 1, 2, . . . , 2k− 1, k = 0, 1, 2, . . . , n. According to the
following scheme S0, S1, S2, . . . , Sk, . . . , we obtain a sequence of sets

E1, E2, . . . , Ek, . . . , (46)

that has the following properties:

i. For each positive integer k there exists a triple of non negative integers
(n, i, j), where 0 ≤ i, j ≤ 2n − 1, such that Ek = ∆(i,j)

n and
ii. For each triple of non negative integers (n, i, j), where i, j = 0, 1, 2, . . . , 2n−

1, there exists an increasing sequence of positive integers {lp = lp(n, i, j)}∞p=1

such that for every p ∈ N,

Elp = ∆(i,j)
n . (47)

Now for the sequence of sets in (46) we will construct by induction an
increasing sequence of positive integers {nj}∞j=1, sequence of positive numbers
{δj}∞j=2 such that for all j ∈ N we have

a1

ν1
≤ 1

2
and εn1(E1) ≤ 1

4
, (48)

aj+1

νj+1
≤ 1

2
aj
νj
, (49)

εnj+1(Ej+1) ≤ 1
4
εnj (Ej), (50)

nj+1 > nj , (51)

µ2{(x, y) ∈ Ej : |Sψpnj ,pnj (Ψj , x, y)| ≥ 1
32
νj} ≥

µ2Ej
12

> 0, (52)

2
aj+1

νj+1
240njp2

nj <
aj
96

and (53)

µ2{(x, y) ∈ I2 : |Sψpnj+1 ,pnj+1
(αj , x, y)| ≥ δj+1} ≤

1
36
µ2Ej+1, (54)

where αj(x.y) :=
j∑
i=1

ai
νi

Ψi(x, y) (55)

and
aj+1

96
> max(j + 1, δj+1), (56)
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where

aj := min(
1√

εnj (Ej)
,
√
ξnj(Ej)), (57)

νj := ξnj (Ej), and (58)
Ψj(x, y) := Gnj (Ej ;x, y). (59)

The constructions of the integer n1 and the number δ2 are contained by the
description of the general (k + 1)st step of the induction. Let the numbers
{nj}kj=1, {δj}kj=2 be already defined so that they satisfy (48)-(59). Accord-
ing to the inequalities of Chebyshev and Parseval we obtain for all positive
numbers δ and for all positive integers n, µ2{(x, y) ∈ I2 : |Sψn,n(αk, x, y)| ≥

δ} ≤
‖αk‖2L2(I2)

δ2 and consequently one can choose a positive number δk+1 such
that for all positive integers n we have (see (57), (59), (34), (35), and (41)),
µ2{(x, y) ∈ I2 : |Sψn,n(αk, x, y)| ≥ δk+1} ≤ 1

36µ2Ek+1. Now we can obtain an
integer nk+1 large enough so that the relations (48)-(51) and (53)-(56) are sat-
isfied for j = k and the relations (52) and (57)-(59) are satisfied for j = k+ 1.
The construction of sequences {nj}∞j=1, {δj}∞j=2 is now completed.

Introduce the functions defined on I2 by

g(x, y) :=
∞∑
i=1

ai
νi

Ψi(x, y), (60)

βk(x, y) :=
∞∑

i=k+1

ai
νi

Ψi(x, y). (61)

It is obvious that (see (48), (49), (40), (41), (59), (60) and (61)) for any k ∈ N,∫ 1

0

∫ 1

0

|βk(x, y)| dx dy ≤
∞∑

i=k+1

ai
νi
≤ 2

ak+1

νk+1
and (62)

∫ 1

0

∫ 1

0

|g(x, y)| dx dy ≤
∞∑
i=1

ai
νi
< 1.

Now let E0 ⊂ I2 be an arbitrary Lebesgue measurable set, µ2E0 > 0. It
is clear that there exist a triple of non negative integers (n0, i0, j0), where
0 ≤ i0, j0 ≤ 2n − 1, and an increasing sequence of positive integers {kq}∞q=1

such that (see (47))

µ2{E0 ∩∆(i0,j0)
n0

} ≥ 215
216

µ2∆(i0,j0)
n0

and (63)

Ekq = ∆(i0,j0)
n0

(64)
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for all q ∈ N. From (55), (60), and (61) we have for all q = 2, 3, . . . , g(x, y) =
αkq−1(x, y) +

akq
νkq

Ψkq (x, y) + βkq (x, y). Set for all q ∈ N

rq := pnkq . (65)

Then it is obvious that for all q ∈ N, µ2{(x, y) ∈ Ekq : |Sψrq,rq (
akq
νkq

Ψkq , x, y)| ≥
1
32akq} ≤ µ2{(x, y) ∈ Ekq : |Sψrq,rq (αkq−1, x, y)| ≥ 1

96akq} +µ2{(x, y) ∈ Ekq :
|Sψrq,rq (βkq , x, y)| ≥ 1

96akq} +µ2{(x, y) ∈ Ekq : |Sψrq,rq (g, x, y)| ≥ 1
96akq}. Using

(4), (5), (53), (26), (62), and (65) we obtain that for all (x, y) ∈ I2 and any
q ∈ N, |Sψrq,rq (βkq , x, y)| ≤ 2akq+1

νkq+1
240nkq r2

q <
akq
96 . Consequently (see (52), (54),

(56), (64), and (65)) we conclude that for any q ∈ N, µ2{(x, y) ∈ ∆(i0,j0)
n0 :

|Sψrq,rq (g, x, y)| ≥ 1
96akq} ≥

1
36µ2∆(i0,j0)

n0 and consequently (see ((63)) for any

q ∈ N, µ2{(x, y) ∈ E0 ∩ ∆(i0,j0)
n0 : |Sψrq,rq (g, x, y)| ≥ 1

96akq} ≥
5

216µ2∆(i0,j0)
n0 .

Obviously (see (51) and (56)) the sequence of the square partial sums of Fourier
series of g is not bounded in measure on E0.

From (55) and (60) we obtain that ψ(|g(x, y)|) = limk→∞ ψ(|αk(x, y)|)
a.e. We note that for a.e. (x, y) and k ∈ N (see (55), (57), (58), and (43))
ψ(|αk(x, y)|) ≤ ψ(

∑k
i=1

ai
νi
|Ψi(x, y)|) ≤

∑k
i=1

ai
νi
ψ(|Ψi(x, y)|). We see that the

sequence of functions {ψ(
∑k
i=1

ai
νi
|Ψi(x, y)|, k ∈ N} is increasing and for all

k ∈ N (see (57)-(59), (50), (41), (44), and (45)),

∫ 1

0

∫ 1

0

ψ(
k∑
i=1

ai
νi
|Ψi(x, y)|) dx dy ≤

k∑
i=1

νiεni(Ei)
ai
νi
≤

k∑
i=1

√
εni(Ei) ≤ 1.

It follows now that the limit of the sequence {ψ(
∑k
i=1

ai
νi
|Ψi(x, y)|), k ∈ N} is

integrable on I2 and this limit is a majorant of the sequence {ψ(|αk(x, y)|),
k ∈ N}. Consequently, the limit of the latter, that is the function ψ(|g(x, y)|)
is also integrable on I2. Theorem 2 is proven.

3 The Proof of Theorem 3.

We consider the rearrangement {σ(j)} and the function g from Theorem 2.
It is clear that g(x, y) =

∑∞
i=0

∑∞
j=0 b

(χ)
i,j (g)χi(x)χj(y) where b(χ)

i,j (g) are the
Fourier coefficients of a function g in the double Haar system and the series
converges in the metric L(I2) by rectangles.

Let {χ̃l(x), l ∈ Z0} be the Haar-type system that corresponds to the given
complete ONS {ϕl(x), l ∈ Z0} in Theorem 1. Then according to the properties
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of the Haar type system ([4], pp. 60-62) we can find a function f(x, y) that
has the same distribution as g(x, y) and is such that

f(x, y) =
∞∑
i=0

∞∑
j=0

b
(χ)
i,j (g)χ̃i(x)χ̃j(y) (66)

in the metric L(I2) by rectangles.
We introduce ordered blocks of integers (see (1))

Hj := {k(σ(j)) + 1, k(σ(j)) + 2, . . . , k(σ(j) + 1)}, j ∈ Z0, (67)

where the natural order is preserved. We define the rearrangement {σ1(j),
j ∈ N} of the set of all positive integers, according to the following list of the
blocks

H0, H1, . . . ,Hj , Hj+1, . . . . (68)

Set

Φn(x) := ϕσ1(n)(x), n ∈ N, (69)

q(r) :=
r∑
p=0

card(Hp), r ∈ Z0, q(−1) := 0. (70)

G.A. Karagulyan proved that ([2], p. 47.) if h(x, y) ∈ L(I2), then all the se-
ries (see (1), (2))

∑∞
l=0

∑∞
s=0 b

(χ)
l,s (h)Ql(x)Qs(y),

∑∞
l=0

∑∞
s=0 b

(χ)
l,s (h)χ̃l(x)γs(y)

and
∑∞
l=0

∑∞
s=0 b

(χ)
l,s (h)γl(x)χ̃s(y), and

∑∞
l=0

∑∞
s=0 b

(χ)
l,s (h)γl(x)γs(y) are con-

vergent in the metric of L(I2) by rectangles, while the last three series are
convergent by rectangles a.e. on I2.

Let q(p1 − 1) < n ≤ q(p1) and q(p2 − 1) < m ≤ q(p2) with p1, p2 ∈ N.
Then we have (see (1), (2), (66)-(69))

c(Φ)
n,m(f) = b

(χ)
σ(p1),σ(p2)(g)dσ1(n)dσ1(m) +

∞∑
j=0

b
(χ)
σ(p1),j(g)dσ1(n)c

(j)
m (71)

+
∞∑
i=0

b
(χ)
i,σ(p2)(g)dσ1(m)c

(i)
n +

∞∑
i=0

∞∑
j=0

b
(χ)
i,j (g)c(i)n c(j)m ,
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where c(i)n =
∫ 1

0
γi(x)Φn(x) dx. From (1), (2), (66)-(71) we have

SΦ
q(N),q(N)(f ;x, y) =

N∑
p1=0

N∑
p2=0

q(p1)∑
(n=q(p1−1)+1)

q(p2)∑
m=q(p2−1)+1

c(Φ)
n,m(f)Φn(x)Φm(y)

=
N∑

p1=0

N∑
p2=0

b
(χ)
σ(p1),σ(p2)(g)Qσ(p1)(x)Qσ(p2)(y)

+
∞∑
j=0

N∑
p1=0

b
(χ)
σ(p1),j(g)Qσ(p1)(x)SΦ

q(N)(γj , y) (72)

+
∞∑
i=0

N∑
p2=0

b
(χ)
i,σ(p2)(g)Qσ(p2)(y)SΦ

q(N)(γi, x)

+
∞∑
i=0

∞∑
j=0

b
(χ)
i,j (g)SΦ

q(N)(γi, x)SΦ
q(N)(γj , y)

:= J (1)(N, x, y) + J (2)(N, x, y)

+ J (3)(N, x, y) + J (4)(N, x, y).

We have according to (2)

J (1)(N, x, y) =
N∑

p1=0

N∑
p2=0

b
(χ)
σ(p1),σ(p2)(g)χ̃σ(p1)(x)χ̃σ(p2)(y)

−
N∑

p1=0

N∑
p2=0

b
(χ)
σ(p1),σ(p2)(g)γσ(p1)(x)χ̃σ(p2)(y)

−
N∑

p1=0

N∑
p2=0

b
(χ)
σ(p1),σ(p2)(g)χ̃σ(p1)(x)γσ(p2)(y) (73)

+
N∑

p1=0

N∑
p2=0

b
(χ)
σ(p1),σ(p2)(g)γσ(p1)(x)γσ(p2)(y)

:= I(1)(N, x, y)− I(2)(N, x, y)− I(3)(N, x, y) + I(4)(N, x, y).

Set for l ∈ N

F
(1)
l (t) :=

∫ 1

0

g(s, t)χl(s) ds. (74)
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Then we have for each N ∈ N, I(2)(N, x, y) =
∑N
p2=0 b

(χ)
σ(p2)

(∑N
p1=0 F

(1)
σ(p1)

γσ(p1)(x)
)
χ̃σ(p2)(y). It is known that (see [4], pp. 60-62) for any Haar type

system {χ̃l(x) with l ∈ N}, there exists a Lebesgue measurable function
u(x) : I → I such that χ̃l(x) = χl(u(x)) a.e. for all l ∈ N and for every
Lebesgue measurable set G ⊂ I the set u−1(G) is Lebesgue measurable and
µ1{u−1(G)} = µ1G. Besides, for each n there exists a measure preserving map-
ping un(x) : I → I that is one-to-one a.e. and is such that χ̃l(x) = χl(un(x))
a.e. for all l = 0, 1, . . . , n.

According to the weak (1,1) type property of rearrangements of the one-
dimensional Haar system (see [3], p. 71), we have for any x ∈ I, µ1{y ∈ I :
|I(2)(N, x, y)| ≥ R} ≤ C

R‖
∑N
p1=0 F

(1)
σ(p1)γσ(p1)(x)‖L(I), where C is an absolute

constant.
On the other hand we have (see (74), (5), (3)) ‖

∑N
p1=0 F

(1)
σ(p1)γσ(p1)‖L(I2) ≤∑N

p1=0 ‖F
(1)
σ(p1)‖L(I)‖γσ(p1)‖L2(I) ≤

∑∞
p1=0

1
320,5σ(p1)+0,5

√
σ(p1) + 1‖g‖L(I) :=

C1 < ∞, where the constant C1 does not depend on N . Thus we obtain for
every N ∈ N and R > 0, µ2{(x, y) ∈ I2 : |I(2)(N, x, y)| ≥ R} ≤ C2

R , where the
constant C2 does not depend on N . Therefore the sequence {I(2)(N, x, y), N ∈
Z0} is bounded in measure on I2. The sequence {I(3)(N, x, y), N ∈ Z0} is
bounded in measure on I2 for similar reasons.

From (5), (3), and (73) we obtain

‖I(4)(N, x, y)‖L(I2) ≤
N∑

p1=0

N∑
p2=0

|b(χ)
σ(p1),σ(p2)(g)|‖γσ(p1)(x)‖L2(I)‖γσ(p2)(y)‖L2(I)

≤
∞∑
p1=0

∞∑
p2=0

√
σ(p1) + 1

320,5σ(p1)+0,5

√
σ(p2) + 1

320,5σ(p2)+0,5
‖g‖L(I)

:= C3 <∞.

Consequently the sequence {I(4)(N, x, y)} is bounded in measure on I2. We
note that (2) and (72) imply

J (2)(N, x, y) =
∞∑
j=0

N∑
p1=0

b
(χ)
σ(p1),j(g)χ̃σ(p1)(x)SΦ

q(N)(γj , y) (75)

−
∞∑
j=0

N∑
p1=0

b
(χ)
σ(p1),j(g)γσ(p1)(x)SΦ

q(N)(γj , y)

:= J (2,1)(N, x, y)− J (2,2)(N, x, y).
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Set for j ∈ Z0 and s ∈ I

Fj(s) :=
∫ 1

0

g(s, t)χj(t) dt. (76)

Now we will prove boundedness in measure on I2 of the sequence
{J (2,1)(N, x, y)}. We have for a.e. fixed y ∈ I:

∞∑
j=0

b
(χ)
σ(p1),j(g)SΦ

q(N)(γj , y) =
∞∑
j=0

b
(χ)
σ(p1)(Fj)S

Φ
q(N)(γj , y)

=
∞∑
j=0

b
(χ)
σ(p1)(FjS

Φ
q(N)(γj , y)).

Introduce the function defined on I2, GN (s, y) :=
∑∞
j=0 Fj(s)S

Φ
q(N)(γj , y).

The series
∑∞
j=0 |Fj(s)SΦ

q(N)(γj , y)| converges on I2 to an integrable function
according to Levy’s theorem because (see (76), (3), (5))

∞∑
j=0

∫ 1

0

∫ 1

0

|Fj(s)SΦ
q(N)(γj , y)| ds dy ≤

∞∑
j=0

‖g‖L(I2)

√
j + 1

320,5j+0,5
(77)

:= C5 <∞.

Here we used also Bessel’s inequality. Consequently, the function GN (s, y) is
integrable on I2. We note also that for a.e. fixed y ∈ I the series

∑∞
j=0 Fj(s)

SΦ
q(N)(γj , y) converges in metric L(I) as a function series in the variable s be-

cause the series
∑∞
j=0

∫ 1

0
|Fj(s)| ds|SΦ

q(N)(γj , y)| converges for a.e. y according
to Levy’s theorem (see (77)).

Now it is obvious for a.e. fixed y ∈ I that J (2,1)(N, x, y) =
∑N
p1=0 b

(χ)
σ(p1)(∑∞

j=0 FjS
Φ
q(N)(γj , y)

)
χ̃σ(p1)(x). According to the weak (1,1) type property of

rearrangements of the one-dimensional Haar system (see [3], p.771) and (77)
we have

µ2{(x, y) ∈ I2 :|J (2,1)(N, x, y)| ≥ R}

≤ C4

R
‖
∞∑
j=0

FjS
Φ
q(N)(γj , y))‖L(I2) ≤

1
R
C6,

where the constants C4 and C6 do not depend on N . Therefore, the sequence
{J (2,1)(N, x, y), N ∈ N} is bounded in measure on I2.
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Now we will prove boundedness in measure on I2 of the sequence {J (4)

(N, x, y)}. We note that (see (72), (3), (5))

‖J (4)(N, x, y)‖L(I2) ≤
∞∑
i=0

∞∑
j=0

∫ 1

0

∫ 1

0

|b(χ)
i,j (g)SΦ

q(N)(γi, x)SΦ
q(N)(γj , y)| dz dy

≤
∞∑
i=0

∞∑
j=0

1
320,5i+0,5

√
i+ 1

1
320,5j+0,5

√
j + 1‖g‖L(I2)

:= C7 <∞,

where C7 does not depend on N .
The proof of boundedness in measure on I2 of the sequence {J (2,2)(N, x, y)}

(see (75)) is similar to that of the sequence {J (4)(N, x, y)}.
Consequently, (see (75)) the sequence {J (2)(N, x, y), N ∈ Z0} is bounded

in measure on I2, as is the sequence {J (3)(N, x, y), N ∈ Z0} for similar reasons.
According to Theorem 2 and the properties of Haar-type systems it follows
that the sequence {I(1)(N, x, y)} (see (73)) is not bounded in measure on E0.
Taking account of (73), (72), and (75), we see that Theorem 3 has been proven.
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