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Abstract

Although the sequence of greedy approximants associated with the
Schauder expansion of a function, f , continuous on [0, 1], may fail to
converge, there always will be a continuous function, arbitrarily close
to f , whose Schauder expansion does have a convergent sequence of
greedy approximants. Further examination of this problem shows that
the same sort of proposition is valid for a multitude of subsystems of
the Schauder system.

1 Introduction.

One part of the rich and interesting theory that has grown around the notion
of the greedy algorithm concerns the failure, in certain cases, of the greedy
approximants of a given function to converge to the function. Examples of
this type connected with the trigonometric system have been provided by
Temlyakov [7], who has demonstrated the existence of functions in Lp[0, 1], 1 ≤
p < 2, for which a sequence of corresponding greedy approximants diverges
in measure, and by Körner [5], who has constructed a continuous function
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whose Fourier sum, when taken in decreasing order of coefficient magnitudes,
diverges unboundedly almost everywhere.

On the other hand, Grigorian [2] has shown that it is always possible to
alter the values of an integrable function, on a small set, so that the greedy
algorithm, when applied to the function thus altered, will yield a sequence of
greedy approximants, that converges to the altered function in the L1 norm.

Continuing this work, in [4], there were established similar results, for the
Walsh system, as well as for a multitude of subsystems of that noble system.

More recently Grigoryan and Sargsyan [3] have shown that a continuous
function can be modified, on a small set, in such a manner that the sequence
of greedy approximants associated with the Faber–Schauder expansion of the
function thus altered converges uniformly to the altered function.

Motivated, perhaps, by the earlier treatment of the Walsh subsystems,
these Authors have suggested that it might not be necessary to have the en-
tire Schauder system in order for their result to obtain. That this is indeed the
case follows from an appeal to ancient work of Goffman [1]. In fact, the tech-
niques developed by that estimable scholar can be employed to show that, for
a Schauder subsystem that is total in measure, each real–valued measurable
function f can be closely approximated by a continuous function g the sub-
system expansion of which has greedy approximants that converge uniformly
to g.

2 Preliminary Observations.

A Schauder basis for a Banach space X is a countable set Ψ = {ψn : n ∈ N}
of elements of X with respect to which each f in X can be represented by an
unique series

∑∞
n=1 Cn(f)ψn that converges to f in the norm of the space.

If σ is a permutation of the natural numbers for which

|Cσ(n)(f)| ≥ |Cσ(n+1)(f)| (n),

then

Gm(f) = Gm(f,Ψ, σ) =:
m∑
n=1

Cσ(n)ψσ(n)

is the mth greedy approximant of f with respect to the basis Ψ and the per-
mutation σ.

In his treatment of the Schauder–series representation of measurable real
functions, Goffman has employed a Schauder basis, Ψ, that results from a
minor alteration of the basis originally considered by Schauder and Faber. In
this system one has
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x
(1)
−1(t) = t, ∀t ∈ [0, 1];

x
(2)
−1(t) = 1− t, ∀t ∈ [0, 1];

and, for m = 0, 1, . . . , and k = 1, . . . , 2m,

x(k)
m (t) =


2m+1t− 2(k − 1), if k−1

2m ≤ t ≤ 2k−1
2m+1 ;

2k − 2m+1t, if 2k−1
2m+1 ≤ t ≤ k

2m ;
0, otherwise;

and the system is ordered lexicographically.
For the purpose of representation of measurable real functions, Price and

Zink [6] have observed that, in the following sense, the Schauder system is
exceedingly rich.

A system Φ of measurable functions, defined and a.e. real valued on a
measurable set G, is total (closed) in measure if for each measurable f defined
on G there is a sequence of Φ polynomials that converges in measure to f . Of
course, the Schauder system is total in measure on [0, 1], but so also are many
of its subsystems [6].

Remark A. Let Φ = {ϕn : n ∈ N} be a subsystem of the Schauder system,
and, for each n, let En be the support of ϕn. Then Φ is total in measure on
[0, 1] iff

µ(lim sup
n

En) = 1. (*)

The proposition promised in the introduction treats those subsystems of
Ψ that enjoy this closure property (*).

Theorem 1. Let Φ be a subsystem of the Schauder system that is total in
measure, let f be an a.e. real–valued function defined and measurable on
[0, 1], and let ε be an arbitrarily small positive real number. There exists a
continuous function g such that

µ({t : g(t) 6= f(t)}) < ε,

the Schauder expansion of g involves only elements of Φ, and the sequence of
greedy approximants of g converges uniformly to g.

Following Goffman, one makes the following observations upon which the
proof of the theorem depends.
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A point k/2m,m = 0, 1, . . . , k = 0, . . . , 2m, is termed a dyadic point, and
a dyadic interval is one whose end points are dyadic. The rank of a dyadic
point (2j+1)/2m is the number m, and the rank of a dyadic interval of length
1/2m is the number m.

Remark B. If g ∈ C[0, 1] vanishes at 0 and at 1 and at each dyadic point of
rank m or smaller, then the Schauder expansion of g

a
(1)
−1x

(1)
−1 + a

(2)
−1x

(2)
−1 + a0x

(1)
0 + · · ·

has
a
(1)
−1 = a

(2)
−1 = a

(1)
0 = · · · = a(2m)

m = 0.

Moreover, if h ∈ C[0, 1], then for each ε > 0 and m ≥ 0, there is g ∈ C[0, 1]
such that

‖g‖ ≤ ‖h‖, µ({t : g(t) 6= h(t)}) < ε,

and g vanishes at 0 and 1 and at each dyadic point of rank m or smaller.

For the first assertion one recalls that a(1)
−1 = g(1), and if the kth point in

the lexicographic ordering of the dyadic points be denoted by tk, and if the
corresponding Schauder function be denoted by xk, then the coefficient of xk
in the Schauder expansion of g is

g(tk)− (a(1)
−1x

(1)
−1 + a

(2)
−1x

(2)
−1 + · · ·+ ak−1xk−1)(tk),

so that a simple induction argument suffices.
As for the second assertion one may surround each of the interior dyadic

points involved by an open interval (tk−δk, tk+δk) and take half–open intervals
[0, δ0) and (1 − δ1, 1] for the endpoints, with the sum of the lengths of these
intervals smaller than ε; let g(t) = 0, for each of the dyadic points tk; let g
coincide with h on the complement of the union of these intervals; and let g
be linear on each of the intervals [0, δ0], [1− δ1, 1], [tk− δk, tk], and [tk, tk + δk].

Remark C. Let {I1, . . . , Ir; J1, . . . , Js} be a partition of [0, 1] into dyadic
intervals such that the Ji have the same rank m− 1 and each Ij has rank less
than m− 1. If f be a continuous function that vanishes on each Ij and at the
endpoints of each Ji, and if f be either nonnegative or nonpositive on each Ji,
then the Schauder expansion of f has the form

f = a(1)
m x(1)

m + · · ·+ a(2m)
m x(2m)

m + · · · .

Moreover, every partial sum of each subseries of the expansion has norm not
exceeding ‖f‖, vanishes on each Ij, is nonnegative on each Ji where f is
nonnegative and is nonpositive on each Ji where f is nonpositive.
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This remark is an immediate consequence of Remark B and the algorithm
by means of which the Schauder coefficients are determined.

Remark D. Corresponding to f ∈ C[0, 1], n ∈ N, and ε > 0, there are an
m > n, a partition of [0, 1], {I1, . . . , Ir; J1, . . . , Js}, and a continuous function
g such that:

(α.) µ({t : g(t) 6= f(t)}) < ε;

(β.) Each Ji has rank m, and each Ij has rank less that m;

(γ.) g is either nonnegative or nonpositive on each Ji;

(δ.) g vanishes on each Ij and the endpoints of each Ji; and

(ε.) ‖g‖ ≤ ‖f‖.

For this Goffman chooses pairwise disjoint intervals K1, . . . ,Kk contained
in {t : f(t) 6= 0}, such that µ(∪ki=1Ki) > µ({t : f(t) 6= 0}) − ε

3 , shrinks
and partitions each Ki so that it is composed of dyadic intervals, partitions
the complementary intervals so that they are dyadic and denotes these by
I1, . . . , Ir. The total shrinking involved being an amount less than ε/3. The
subintervals of the Ki are further partitioned so that they have the desired
rank, and these new intervals are J1, . . . , Js. Finally, f is altered so as to be
unchanged on each Ji, to be 0 on each Ij , and to be linear on each of the
intervals that separate the intervals of {I1, . . . , Ir} from those of {J1, . . . , Js}.

Lemma E. If f ∈ C[0, 1], then for each ε > 0, δ > 0, and m ∈ N, there is a
Schauder polynomial

a(1)
m x(1)

m + · · ·+ a(2n)
n x(2n)

n , n > m,

such that no coeffieient exceeds ‖f‖ in absolute value,

|f(t)− (a(1)
m x(1)

m + · · ·+ a(2n)
n x(2n)

n )(t)| < ε,

on a set of measure greater than 1− δ, and for each subset B of {(i, j) : m ≤
i ≤ n, 1 ≤ j ≤ 2i},

‖
∑

(i,j)∈B

a
(j)
i x

(j)
i ‖ ≤ ‖f‖.

Here one takes g to be the approximating function described in Remark
D. By virtue of Remark C, the Schauder series for g has a partial sum that
provides the specified approximation.

A simple refinement of this result allows one further to control the size of
the coefficients involved in the approximating polynomial.
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Lemma F. If f ∈ C[0, 1], then for each ε > 0, δ > 0, η > 0, and m ∈ N, there
is a Schauder polynomial

a(1)
m x(1)

m + · · ·+ a(2n)
n x(2n)

n , n > m,

such that |a(j)
i | ≤ η, for each (i, j) ∈ S = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ 2i},

|f(t)− (a(1)
m x(1)

m + · · ·+ a(2n)
n x(2n)

n )(t)| < ε,

on a set of measure greater than 1− δ, and for each B ⊂ S,

‖
∑

(i,j)∈B

a
(j)
i x

(j)
i ‖ < η.

One chooses continuous functions f1, . . . , fr, such that each has norm less
than η/r, and f = f1 + · · ·+ fr. Applying Lemma E to f1, with ε/r, δ/r, and
m, one obtains a Schauder polynomial

a(1)
m x(1)

m + · · ·+ a(2n1 )
n1

x(2n1 )
n1

that approximates f1 to within ε/r on a set of measure greater than 1− δ/r,
with

‖
∑

(i,j)∈B

a
(j)
i x

(j)
i ‖ < η/r, ∀B ⊂ {(i, j) : 1 ≤ i ≤ n1, 1 ≤ j ≤ 2i}.

Again, one applies Lemma E to f2, with ε/r, δ/r, and n1 + 1, and continues
this process inductively.

Lemma G. If Φ = {ϕ1, ϕ2, . . . } be a subsystem of the Schauder system that
is total in measure, then every Schauder function, f can be expressed as a
series

∑∞
n=1 anϕn that converges a.e. to f , wherein 0 ≤ an ≤ 1, for every n,

and
∑
j∈B

ajϕj ≤ f , for every B ⊂ N.

The demonstration of this final piece of the Goffman program is effected by
the determination of an increasing sequence of natural numbers {k(n)}∞n=1 and
a sequence of nonnegative Φ polynomials {ϕ(n) =

∑k(n)
i=k(n−1)+1 aiϕni

}∞n=1 (k(0) =
1) such that the sequence {fn =

∑n
i=1 ϕ

(i)}∞n=1 increases monotonically a.e.
to f .

The confluence of Lemmas F and G provides the core of the proof of the
theorem.
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Lemma H. Let Φ = {ϕ1, ϕ2, . . . } be a subsystem of Ψ that is total in measure.
For each f ∈ C[0, 1], ε > 0, δ > 0, η > 0, and m ∈ N, there is a Φ polynomial

Q =
n∑

j=m+1

Cjϕj ,

such that |Cj | < η, j = m + 1, . . . , n, |f(t) − Q(t)| < ε on a set of measure
greater than 1− δ, and, for each B ⊂ {m+ 1, . . . , n}

‖
∑
j∈B
Cjϕj‖ < η.

It is helpful to relabel the Schauder functions

x
(1)
−1 = x1, x

(2)
−1 = x2, x

(1)
0 = x3, . . . ,

in order to simplify the rather complex notation that arises in the demonstra-
tion of this proposition.

By virtue of Lemma F, there is a Schauder polynomial,

P = akxk + · · ·+ a`x`,

and a measurable set E0, such that |ai| < η, i = k, . . . , `,

‖
∑
j∈B

ajxj‖ < η, ∀B ⊂ {k, . . . , `},

|f(t)− P (t)| < ε

2
, ∀t ∈ E0, and µ(E0) > 1− δ

2
.

Since Φ is total in measure, so also are each of the subsystems Φr = {ϕj ∈
Φ : j ≥ r}, r ∈ N. Thus, for each i ∈ {k, . . . , `}, one may approximate xi, as
in Lemma G, by a polynomial

Pi = b
(i)
m(i)+1 ϕm(i)+1 + · · ·+ b

(i)
n(i) ϕn(i),

where m(1) = m,m(2) = n(1), . . . ,m(`) = n(` − 1), n(`) = n, such that each
coefficient lies in [0, 1],

|xi(t)− Pi(t)| <
ε

2M(1 + |ai|)
, ∀t ∈ Ei, µ(Ei) > 1− δ

2M
,
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where M = `− k + 1, and, for each Bi ⊂ {1, . . . , n(i)−m(i)},

0 ≤
∑
s∈Bi

b
(i)
m(i)+s ϕm(i)+s(t) ≤ xi(t), ∀t.

Let

Q =
∑̀
i=k

aiPi =
∑̀
i=k

n(i)−m(i)∑
s=1

aib
(i)
m(i)+s ϕm(i)+s

=
n∑

j=m+1

Cjϕj ,

where

Cm+1 = akb
(1)
m+1, Cm+2 = akb

(1)
m+2, · · · , Cn(1) = akb

(1)
n(1),

Cn(1)+1 = ak+1b
(2)
n(1)+1, · · · , Cn(2) = ak+1b

(2)
n(2),

· · · · · ·

Cn(`−1)+1 = a`b
(`)
n(`−1)+1, · · · , Cn = a`b

(`)
n .

For each t ∈
⋂`
i=k Ei ∩ E, one has

|f(t)−Q(t)| ≤ |f(t)− P (t)|+ |P (t)−Q(t)|

<
ε

2
+
∣∣ ∑̀
i=k

ai(xi(t)− Pi(t)
∣∣

≤ ε

2
+
∑̀
i=k

|ai|
ε

2M(1 + |ai|)

< ε,

and µ

(⋂`
i=k Ei ∩ E

)
> 1− δ.

As for the last estimate, if B ⊂ {m+ 1, . . . , n}, let B =
⋃`
i=k Bi, where

Bi = {j ∈ B : m(i) + 1 ≤ j ≤ n(i)}, m(0) = m.
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Then ∑
j∈B
Cjϕj =

∑̀
i=k

∑
j∈Bi

Cjϕj .

Since
0 ≤

∑
j∈Bi

Cjϕj = ai
∑
j∈Bi

bm(i)+s ϕm(i)+s ≤ aixi, if ai ≥ 0,

and
aixi ≤ ai

∑
j∈Bi

bm(i)+sϕm(i)+s =
∑
j∈Bi

Cjϕj ≤ 0, if ai ≤ 0,

one has
‖
∑
j∈B
Cjϕj‖ < η.

3 Concluding the Proof.

By virtue of the theorem of Lusin, if f is measurable and real valued on [0, 1],
and if ε is a positive real number, then there is a function h, continuous on
the unit interval, that differs from f on a set of measure less than ε. Thus, for
the proof of the theorem, one may assume that f is continuous.

Following Goffman et al, there is an f0 =
∑n1
i=1 aiϕi ∈ Span Φ such that

‖f0‖ ≤ ‖f‖, and |(f − f0)(t)| < ε
2 , ∀t ∈ E0, with µ(E0) > 1 − ε

4 . Since
{t : |(f − f0)(t)| < ε

2} is an open set, there is a finite set of pairwise–disjoint
open intervals {V11, . . . , V1m1} such that

m1⋃
j=1

V1j ⊂ E0 and µ(
m1⋃
j=1

V1j) > µ(E0)− ε

8
.

Let {I11, . . . , I1r1} be the set of closed intervals complementary to
⋃m1
j=1 V1j ,

and let F1 =
⋃r1
j=1 I1j .

By shrinking the V1j , j = 1, . . . ,m, by a total amount less than ε/8, desig-
nating the new (open) intevals by U11, . . . , U1m1 , and setting U1 =

⋃m1
j=1 U1j ,

one may obtain a continuous function (f−f0)∼, linear on each of the intervals
that separate the U1j from the I1i, with

(f − f0)∼(t) =

{
(f − f0)(t), if t ∈ U1;
0, if t ∈ F1; .

such that ‖(f − f0)∼‖ < ε

2
, and

f − f0 = (f − f0)∼ on U1, µ(U1) > 1− ε

2
.
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Next, let f1 =
n2∑

j=n1+1

ajϕj satisfy the conditions

| ((f − f0)∼ − f1) (t)| < ε

4
, ∀t ∈ E1, µ(E1) > 1− ε

8
,

|aj | ≤ min{|ai| : 1 ≤ i ≤ n1, ai 6= 0}, j = n1 + 1, . . . , n2,

‖f1‖ ≤ ‖(f − f0)∼‖.

Then

((f − f0)∼ − f1) (t) = (f − f0 − f1)(t), ∀t ∈ E1 ∩ U1, and

µ(E1 ∩ U1) > 1−
(
ε

2
+
ε

8

)
.

As before, there are pairwise–disjoint open intervals V21, . . . , V2m2 , such that

m2⋃
j=1

V2j ⊂ E1, and µ

( m2⋃
j=1

V2j

)
> µ(E1)− ε

16
.

One shrinks each V2j , the total shrinkage being an amount less than ε/16; one
designates the new open intervals thus obtained by U21, . . . , U2m2 ; one sets
U2 =

⋃m2
j=1 U2j ; and one defines ((f − f0)∼ − f1)∼, a further modification of

f , to be the continuous function that agrees with (f − f0)∼ − f1 on U2, that
vanishes on each of the closed intervals that make up [0, 1] \

⋃m2
j=1 V2j and is

linear otherwise.
Then

‖((f − f0)∼ − f1)∼‖ < ε

4
,

((f − f0)∼ − f1)∼(t) = (f − f0 − f1)(t), ∀t ∈ U1 ∩ U2,

and

µ(U1 ∩ U2) > 1−
(
ε

2
+
ε

4

)
.

Proceeding thus, inductively, one constructs a sequence {fk}∞k=1 of Φ–polynomials

fk =
nk+1∑

j=nk+1

ajϕj , k = 0, 1, . . . ,
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and a corresponding sequence of open sets {Uk}∞k=1 such that

|aj | ≤ min{|ai| : ai 6= 0, 1 ≤ i ≤ nk}, j > nk;

‖fk‖ ≤
ε

2k
, ∀k;

µ

( k⋂
j=1

Uj

)
> 1−

k∑
j=1

ε

2j
;

and ∣∣∣∣(f − k∑
j=0

fj

)
(t)
∣∣∣∣ < ε

2k+1
, ∀t ∈

k⋂
j=1

Uj .

Certainly
∑∞
j=0 fk converges uniformly, on [0, 1], to a continuous function g

which differs from f on a set of measure less than ε. Moreover,
∑∞
i=1 aiϕi is

the Schauder series for g, since, for nk the greatest ni not exceeding n, one
has

‖g −
n∑
j=1

ajϕj‖ ≤ ‖g −
k∑
j=1

fj‖+ ‖
n∑

j=nk+1

ajϕj‖ < ‖g −
k∑
j=1

fj‖+
ε

2k+1
,

and, since ‖
∑n
j=nk+1 aσ(j)ϕσ(j)‖ = ‖

∑
j∈Bk

ajϕj‖, for someBk ⊂ {nk+1, . . . , nk+1},

one has

‖g −Gn(f,Φ, n)‖ ≤ ‖g −
nk∑
j=1

aσ(j)ϕσ(j)‖+ ‖
n∑

j=nk+1

aσ(j)ϕσ(j)‖

≤ ‖g −
k∑
j=1

fj‖+ ‖
∑
j∈Bk

ajϕj‖

< ‖g −
k∑
j=1

fj‖+
ε

2k+1
,

so that the sequence of greedy approximants of g also converges uniformly to
g.
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