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ON A ZERO–INFINITY LAW OF OLSEN

Abstract

Let µ be a translation-invariant metric measure on R with the fol-
lowing scaling property: for every λ ∈ (0, 1) there exists b(λ) > λ with
µ(λX) ≥ b(λ)µ(X) for all X ⊆ R. If X is a Z-invariant subset of R with
X/q ⊆ X for some q ∈ N \ {1}, then µ(X) = 0 or µ(X ∩ O) = ∞ for
every non-empty open set O. This refines an earlier result by Olsen.

The reader is supposed to be familiar with the rudiments of geometric measure
theory. We shall closely follow Mattila’s notation [4]. For us, a dimension
function is a continuous map h : [0,∞) → [0,∞) with h(r) = 0 if and only
if r = 0. The Hausdorff h-measure Hh (the packing h-measure Ph) on R is
then a metric (outer) measure. A dimension function h is said to be strongly
concave at 0 if lim infr→0+ h(λr)/h(r) > λ for all λ ∈ (0, 1). For instance, for
any s ∈ (0, 1) the map r 7→ rs is strongly concave at 0. A subset X of R is
Z-invariant if X + z = X for all z ∈ Z.

Given a subset X of R, it is important to find an open set O and a
translation-invariant metric measure µ on R such that µ(X ∩ O) ∈ (0,∞).
Addressing a question raised by Mauldin, several authors have recently shown
that for many subsets of R of interest in number theory this search is vain
[1],[3],[7].1 Similarly, a few years before, Olsen [6] proved the following zero-
infinity law: Let h be a dimension function that is strongly concave at 0. If X
is a Z-invariant subset of R with X/q ⊆ X for some q ∈ N \ {1}, then either
Hh(X) = 0 or Hh(X ∩ [0, 1]) =∞.

Aim of this note is to point out the following refinement of Olsen’s result:
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1Examples include: dense additive subgroups of R with Lebesgue measure zero; the set
of Liouville numbers; the sets of non-normal numbers in the sense of Besicovitch–Eggleston.
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Theorem 1. Let µ be a translation-invariant metric measure on R with the
following scaling property:2

for every λ ∈ (0, 1) there exists b(λ) > λ with
µ(λX) ≥ b(λ)µ(X) for all X ⊆ R. (SP)

If X is a Z-invariant subset of R with X/q ⊆ X for some q ∈ N \ {1}, then
µ(X) = 0 or µ(X ∩O) =∞ for every non-empty open set O.

A frequently occurring set to which Theorem 1 (but not the afore-cited
results in [1],[3],[7]) can be applied is that of badly ψ-approximable numbers:
given an arbitrary function ψ : N→ [0,∞), the set{

x ∈ R : there exists c > 0 with
∣∣∣∣x− p

q

∣∣∣∣ > cψ(q) for all (p, q) ∈ Z× N
}

satisfies the needed hypotheses for X.
Note that sums of measures with (SP) have (SP) in their turn; moreover,

many Hausdorff and packing h-measures satisfy (SP):

Proposition 2. If the dimension function h is strongly concave at 0, then
both Hausdorff and packing h-measures on R satisfy (SP).

The proofs, now.

Proof of Theorem 1. Let us first prove the weaker dichotomy µ(X) = 0
or µ(X ∩ [0, 1]) = ∞. Suppose µ(X ∩ [0, 1]) < ∞ (observe that this implies
µ(X ∩ [0, n]) <∞ for all n ∈ N, by the invariance assumptions on X and µ).
Define α := qb(1/q)− 1 and choose n ∈ N such that

αn > 1. (1)

By our invariance assumptions on X and µ, we have on the one hand

µ(X ∩ [0, 2n])− µ(X ∩ [0, 2n− 1]) ≤ µ(X ∩ [0, 1]); (2)

on the other, using also (SP) and that µ is metric,

µ(X ∩ [0, 2n]) ≥ µ
(
X

q
∩ [0, 2n]

)
= µ

(
X ∩ [0, 2nq]

q

)
≥ b(1/q)µ(X ∩ [0, 2nq]) ≥ b(1/q)µ

(
X ∩

q⋃
i=1

[2n(i− 1), 2ni− 1]

)
= qb(1/q)µ(X ∩ [0, 2n− 1]). (3)

2Compare with the similar scaling law analyzed in detail in [2],[5].
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By (3) and (2) we then have

αnµ(X ∩ [0, 1]) = α

n∑
i=1

µ(X ∩ [2(i− 1), 2i− 1])

= αµ

(
X ∩

n⋃
i=1

[2(i− 1), 2i− 1]

)
≤ αµ(X ∩ [0, 2n− 1])

= qb(1/q)µ(X ∩ [0, 2n− 1])− µ(X ∩ [0, 2n− 1])
≤ µ(X ∩ [0, 2n])− µ(X ∩ [0, 2n− 1]) ≤ µ(X ∩ [0, 1]);

from this, in view of (1) we obtain µ(X ∩ [0, 1]) = 0 (since the alternative
µ(X ∩ [0, 1]) =∞ is excluded by hypothesis) and therefore µ(X) = 0.

It remains to prove that, if µ(X ∩ [0, 1]) =∞, then µ(X ∩O) =∞ for any
fixed non-empty open set O. For such an O there exist z ∈ Z and n ∈ N with
[z/qn, (z + 1)/qn] ⊆ O; the conclusion now follows from the chain:

µ(X ∩O) ≥ µ
(
X

qn
∩
[
z

qn
,
z + 1
qn

])
≥ µ(X ∩ [z, z + 1])

qn
=
µ(X ∩ [0, 1])

qn
,

a further application of (SP) and the invariance of X and µ.

Proof of Proposition 2. We prove the packing h-measure case only, since
the other, very similar, is essentially contained in the first part of [6, Propo-
sition 4]. Fix λ ∈ (0, 1). By assumption, there exist ε > 0 and r ∈ (0, 1]
such that h(λδ)/h(δ) ≥ λ + ε for all δ ∈ (0, r). Fix now A ⊆ R. Since for
any countable collection (An)∞n=1 of subsets of R we have A ⊆

⋃∞
n=1An if and

only if λA ⊆
⋃∞
n=1 λAn, by definition of packing h-measure Ph it is enough to

show that Ph(λB) ≥ (λ + ε)Ph(B) for all B ⊆ R. If (In)∞n=1 is an arbitrary
δ-fine packing of B, then (λIn)∞n=1 is a λδ-fine packing of λB. Hence

Phλδ(λB) ≥
∞∑
n=1

h(d(λIn)) =
∞∑
n=1

h(λd(In))
h(d(In))

h(d(In)) ≥ (λ+ ε)
∞∑
n=1

h(d(In)).

By the arbitrariness of the δ-fine packing (In)∞n=1 of B we first have Phλδ(λB) ≥
(λ+ε)Phδ (B); then, by letting δ → 0+, we obtain Ph(λB) ≥ (λ+ε)Ph(B).
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