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ON SETS OF CONVERGENCE POINTS OF
SEQUENCES OF SOME REAL FUNCTIONS

Abstract

The purpose of this paper is to study a set of convergence points of
sequence of real functions from a given class. Here, continuous func-
tions, Borel measurable functions, approximately continuous functions
and derivatives are considered.

The investigation of some sets determined by sequences of functions is
motivated by the well-known result due to Hahn [1] and also Sierpiński [7]
stating that a subset A of a Polish space X is of type Fσδ iff there exists a
sequence {fn : n ∈ N} ⊂ RX of continuous functions such that A = {x ∈
X : (fn(x))n converges} (see also [2, Theorem 23.18, p. 185]). It seems inter-
esting to find the analogous characterization of sets of convergence points for
sequences of functions from other classes. The same problem and its connec-
tions with additional set-theoretic axioms has been considered for transfinite
sequences of functions in [4].

In the present paper the sequences of functions of Baire class α, approxi-
mately continuous functions and derivatives are examined. All functions con-
sidered here are real functions defined on the real line R. Throughout this
paper the following abbreviations for some classes of subsets of R will be used:

Π0
1 (Σ0

1) — closed (open) subsets of R;

Π0
α (Σ0

α) — the multiplicative (additive) class α of Borel sets, 0 < α < ω1;

M — the σ-ideal of meager (first-category) subsets of R;

Td — the density topology (recall that Td consists of all Lebesgue measurable
sets having density 1 at each of its points [5]).
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Recall some definitions of various types of functions f : R → R which are
investigated. Each class of functions is denoted by symbol on the left.

Bα — f is of Baire class α, where α < ω1 iff for every open set U ⊂ R
f−1(U) ∈ Σ0

α+1;

l1 ( u1) — f is lower (resp. upper) semicontinuous iff it is a pointwise limit of
non-decreasing (resp. non-increasing) sequence of continuous functions;

lα ( uα) — f is of Young lower (resp. upper) class α, where 0 < α < ω1 iff
it is a pointwise limit of non-decreasing (resp. non-increasing) sequence
{fn : n ∈ N} ⊂

⋃
β<α uβ (resp.

⋃
β<α lβ);

A — f is approximately continuous iff for every open set U ⊂ R f−1(U) ∈ Td.

Moreover, we denote by bA the class of all bounded approximately continuous
functions and by ∆ the class of all derivatives.

Denote by L({fn : n ∈ N}) a set of all convergence points of a sequence
{fn : n ∈ N} ⊂ RR, i.e.

L({fn : n ∈ N}) = {x ∈ R : {fn(x) : n ∈ N} converges}.

Remark 1.

L({fn : n ∈ N}) =
⋂
m∈N

⋃
n∈N

⋂
k∈N
{x ∈ R : |fn+k(x)− fn(x)| ≤ 1/m}.

For a family of functions F ⊂ RR define

L(F) = {L({fn : n ∈ N}) : {fn : n ∈ N} ⊂ F}.

In this language the theorem obtained by Hahn and Sierpiński takes the fol-
lowing form.

Theorem 1. For the family C of continuous functions L(C) = Π0
3.

To obtain its generalization onto the case of functions of Baire class α we
will use some well-known facts.

Theorem 2. [8, Theorem 19, p. 30]
Let α < ω1 and f : R→ [−∞,+∞]. Then

• f ∈ lα iff f−1((a,∞)) ∈ Σ0
α for each a ∈ R;

• f ∈ uα iff f−1((−∞, a)) ∈ Σ0
α for each a ∈ R.
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Remark 2. For α < ω1, Bα = lα+1 ∩ uα+1.

Theorem 3. For α < ω1, L(Bα) = Π0
α+3.

Proof. Fix α < ω1. The inclusion “ ⊂ ” follows from Remark 1 and the
definition of Bα functions. So it remains to show that if A ∈ Π0

α+3, then
A = L({fn : n ∈ N}) for some sequence {fn : n ∈ N} ⊂ Bα. This follows by
the same method as in [2, Theorem 23.18, p. 185]. Since A ∈ Π0

α+3, we have
A =

⋂
m∈N Am, where Am ∈ Σ0

α+2. First, suppose that

(1) for every m ∈ N and Am ∈ Σ0
α+2 there is a sequence {fn : n ∈ N} ⊂ Bα

such that

• |fmn (x)| ≤ 1/m for n ∈ N and x ∈ R,

• Am = L({fmn : n ∈ N}) = {x ∈ R : limn f
m
n (x) = 0}.

Then rewrite
⋃
m∈N{fmn : n ∈ N} as a single sequence {fi : i ∈ N}. Of course,

limi fi(x) = 0 for all x ∈ A. To see this fix x ∈ A, ε > 0 and take k ∈ N such
that 1/k < ε. Then there is a positive integer i0 = i0(ε) such that |fmn (x)| < ε
for n > i0 and m ≤ k. But for m > k |fmn (x)| ≤ 1/m < 1/k < ε, so |fi(x)| < ε
for i > i0. On the other hand, if x 6∈ A, then x 6∈ Am0 for some m0 ∈ N and
consequently {fm0

n (x) : n ∈ N} diverges, so {fi(x) : i ∈ N} diverges too.
What is left is to show (1). Fix m ∈ N and Am ∈ Σ0

α+2. Then Am =⋃
n∈N F

m
n , where Fmn ∈ Π0

α+1 and Fmn ⊆ Fmn+1 for n ∈ N. Consider the
following real function g : R→ [1,+∞]:

g(x) =


1 if x ∈ Fm1
n if x ∈ Fmn \ Fmn−1 for n ≥ 2
+∞ if x ∈ R \Am.

For a ∈ R we have {x ∈ R : g(x) > a} = R if a < 1 or {x ∈ R : g(x) > a} =
R \ Fmn ∈ Σ0

α+1 if n ≤ a < n + 1 for n ≥ 1 and consequently g ∈ lα+1, by
Theorem 2. It follows that there is a non-decreasing sequence {gn : n ∈ N} ⊂
Bα pointwise convergent to g. For each n ∈ N put ϕn = min{n,max{gn, 1}}.
Then 1 ≤ ϕn ≤ n and ϕn+1 − ϕn ≤ n. Clearly, ϕn ∈ Bα and limn ϕn =
g. Moreover, we can interpolate between ϕn and ϕn+1 the functions pnk =
ϕn + k

2n (ϕn+1 − ϕn) for k = 0, 1, ..., 2n. By renumbering we have a sequence
{pn : n ∈ N} ⊂ Bα such that 1 = p0 ≤ p1 ≤ p2 ≤ ..., pn+1 − pn ≤ 1/2 and
f = limn pn. Putting fmn = 1

m sin(πpn) we obtain the sequence satisfying
(1).

The next result deals with the case of approximately continuous functions.
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Lemma 1. (cf. [3, Lemma 5]) Every set A ∈ Π0
2 is a countable union of Π0

2

sets closed in the density topology.

Proof. There are closed (in the usual sense) sets Fn, n ∈ N such that F =⋃
n∈N Fn ⊂ A and A \ F has Lebesgue measure zero. Put An = Fn ∪ (A \ F ).

Then every An is closed in Td and A =
⋃
n∈N An. Moreover, An = Fn ∪ (A ∩

(R \ F )) ∈ Π0
2.

Corollary 1. Every set A ∈ Π0
4 can be represented in the form A =

⋂
m∈N Am,

where for m ∈ N Am is a countable union of Π0
2 sets closed in the density

topology.

Lemma 2. [9, Lemma 11, p. 26] For every set A ∈ Td ∩ Σ0
2 there is an

approximately continuous function f : R → R such that f(x) ∈ (0, 1] if x ∈ A
and f(x) = 0 if x 6∈ A.

Lemma 3. [6] If g : R → R is a positive function such that for every a ∈ R
{x ∈ R : g(x) > a} ∈ Td ∩ Σ0

2, then g is a pointwise limit of a non-decreasing
sequence of approximately continuous functions.1

Proof. Enumerate the set of all positive rational numbers as {qk : k ∈ N}.
Fix k ∈ N and define Ek = {x ∈ R : g(x) > qk}. Then Ek ∈ Td ∩ Σ0

2 and by
Lemma 2 there is an approximately continuous function pk : R→ R such that
0 < pk ≤ 1 on Ek and pk = 0 on R \ Ek. For n ∈ N put pkn = min{qk, npk}.
Then qk ·χEk

is a pointwise limit of non-decreasing sequence {pkn : n ∈ N} ⊂ A
and pkn < g. Let gn = max1≤k≤np

k
n. It is easy to check that:

(i) gn ∈ A,

(ii) gn ≤ gn+1 < g,

(iii) if g(x) > q for some positive rational q, then limn gn ≥ q.

It follows that limn gn = g and {gn : n ∈ N} is a required sequence.

Remark 3. Lemma 3 holds also for g : R→ [0,+∞]

Now, we are able to prove the following.

Theorem 4. L(A) = Π0
4

1This fact was announced during the conference Summer School on Real Functions The-
ory in Liptovský Ján (Slovakia) in 1998.
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Proof. It is well-known that A ⊂ B1 (see, e. g. [3]), so the inclusion ” ⊂ ”
follows from Theorem 3. Now, fix A ∈ Π0

4. We claim that A = L({fn : n ∈ N})
for some sequence {fn : n ∈ N} of approximately continuous functions. To
show this we apply the method similar to that in the proof of Theorem 3. By
Corollary 1 A =

⋂
m∈N Am, where for m ∈ N Am =

⋃
n∈N F

m
n , Fmn ∈ Π0

2,
Fm1 ⊆ Fm2 ⊆ ... and R \ Fmn ∈ Td. Fix m ∈ N. Then g : R→ [1,+∞] given by
the formula

g(x) =


1 if x ∈ Fm1
n if x ∈ Fmn \ Fmn−1 for n ≥ 2
+∞ if x ∈ R \Am

satisfies the assumptions of Lemma 3. Consequently, there is a non-decreasing
sequence {gn : n ∈ N} ⊂ A pointwise convergent to g. The same construction
as before gives us a sequence {fmn : n ∈ N} ⊂ A such that |fmn (x)| ≤ 1/m
for n ∈ N, x ∈ R and Am = L({fmn : n ∈ N}) = {x ∈ R : limn f

m
n (x) = 0}.

Finally, it is enough to rewrite
⋃
m∈N{fmn : n ∈ N} as a single sequence {fi : i ∈

N} to obtain the one we claimed.

The last result is a consequence of Theorems 3 and 4.

Theorem 5. L(∆) = Π0
4

Proof. Note that the construction in Theorem 4 uses bounded approxi-
mately continuous functions, so we have actually proved that L(bA) = Π0

4.
Since bA ⊂ ∆ ⊂ B1 (see e. g. [3]), the proof is complete.

Acknowledgments. The author wishes to express her thanks to the referee
for pointing out the consequences of Theorem 4 for derivatives.
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