Jolanta Wesołowska, Instytut Matematyki, Uniwersytet Gdański, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland. e-mail: jwes@ksinet.univ.gda.pl

ON SETS OF CONVERGENCE POINTS OF SEQUENCES OF SOME REAL FUNCTIONS

Abstract

The purpose of this paper is to study a set of convergence points of sequence of real functions from a given class. Here, continuous functions, Borel measurable functions, approximately continuous functions and derivatives are considered.

The investigation of some sets determined by sequences of functions is motivated by the well-known result due to Hahn [1] and also Sierpiński [7] stating that a subset A of a Polish space X is of type $\mathcal{F}_{\sigma\delta}$ iff there exists a sequence $\{f_n : n \in \mathbb{N}\} \subset \mathbb{R}^X$ of continuous functions such that $A = \{x \in X : (f_n(x))_n \text{ converges}\}$ (see also [2, Theorem 23.18, p. 185]). It seems interesting to find the analogous characterization of sets of convergence points for sequences of functions from other classes. The same problem and its connections with additional set-theoretic axioms has been considered for transfinite sequences of functions in [4].

In the present paper the sequences of functions of Baire class α , approximately continuous functions and derivatives are examined. All functions considered here are real functions defined on the real line \mathbb{R} . Throughout this paper the following abbreviations for some classes of subsets of \mathbb{R} will be used:

- Π_1^0 (Σ_1^0) closed (open) subsets of \mathbb{R} ;
- Π^0_{α} (Σ^0_{α}) the multiplicative (additive) class α of Borel sets, $0 < \alpha < \omega_1$;
- \mathcal{M} the σ -ideal of meager (first-category) subsets of \mathbb{R} ;
- \mathcal{T}_d the density topology (recall that \mathcal{T}_d consists of all Lebesgue measurable sets having density 1 at each of its points [5]).

Key Words: sequence of functions, sets of convergence points, Baire class α functions, approximately continuous functions.

Mathematical Reviews subject classification: Primary: 26A21; Secondary: 26A03. Received by the editors October 28, 1999

^{*}Supported by University of Gdańsk, grant BW Nr 5100-5-0258-9.

⁹³⁷

Recall some definitions of various types of functions $f : \mathbb{R} \to \mathbb{R}$ which are investigated. Each class of functions is denoted by symbol on the left.

- $\mathcal{B}_{\alpha} f$ is of Baire class α , where $\alpha < \omega_1$ iff for every open set $U \subset \mathbb{R}$ $f^{-1}(U) \in \Sigma^0_{\alpha+1}$;
- l_1 (u_1) f is lower (resp. upper) semicontinuous iff it is a pointwise limit of non-decreasing (resp. non-increasing) sequence of continuous functions;
- l_{α} (u_{α}) f is of Young lower (resp. upper) class α , where $0 < \alpha < \omega_1$ iff it is a pointwise limit of non-decreasing (resp. non-increasing) sequence $\{f_n : n \in \mathbb{N}\} \subset \bigcup_{\beta < \alpha} u_{\beta}$ (resp. $\bigcup_{\beta < \alpha} l_{\beta}$);
- $\mathcal{A} f$ is approximately continuous iff for every open set $U \subset \mathbb{R} f^{-1}(U) \in \mathcal{T}_d$.

Moreover, we denote by $b\mathcal{A}$ the class of all bounded approximately continuous functions and by Δ the class of all derivatives.

Denote by $L(\{f_n : n \in \mathbb{N}\})$ a set of all convergence points of a sequence $\{f_n : n \in \mathbb{N}\} \subset \mathbb{R}^{\mathbb{R}}$, i.e.

$$L(\{f_n \colon n \in \mathbb{N}\}) = \{x \in \mathbb{R} \colon \{f_n(x) \colon n \in \mathbb{N}\} \text{ converges}\}.$$

Remark 1.

$$L(\{f_n \colon n \in \mathbb{N}\}) = \bigcap_{m \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} \{x \in \mathbb{R} \colon |f_{n+k}(x) - f_n(x)| \le 1/m\}.$$

For a family of functions $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ define

$$\mathcal{L}(\mathcal{F}) = \{ L(\{f_n : n \in \mathbb{N}\}) : \{f_n : n \in \mathbb{N}\} \subset \mathcal{F} \}.$$

In this language the theorem obtained by Hahn and Sierpiński takes the following form.

Theorem 1. For the family C of continuous functions $\mathcal{L}(C) = \Pi_3^0$.

To obtain its generalization onto the case of functions of Baire class α we will use some well-known facts.

Theorem 2. [8, Theorem 19, p. 30] Let $\alpha < \omega_1$ and $f \colon \mathbb{R} \to [-\infty, +\infty]$. Then

- $f \in l_{\alpha}$ iff $f^{-1}((a, \infty)) \in \Sigma^{0}_{\alpha}$ for each $a \in \mathbb{R}$;
- $f \in u_{\alpha}$ iff $f^{-1}((-\infty, a)) \in \Sigma^{0}_{\alpha}$ for each $a \in \mathbb{R}$.

Remark 2. For $\alpha < \omega_1$, $\mathcal{B}_{\alpha} = l_{\alpha+1} \cap u_{\alpha+1}$.

Theorem 3. For $\alpha < \omega_1$, $\mathcal{L}(\mathcal{B}_{\alpha}) = \prod_{\alpha+3}^0$.

PROOF. Fix $\alpha < \omega_1$. The inclusion " \subset " follows from Remark 1 and the definition of \mathcal{B}_{α} functions. So it remains to show that if $A \in \Pi^0_{\alpha+3}$, then $A = L(\{f_n : n \in \mathbb{N}\})$ for some sequence $\{f_n : n \in \mathbb{N}\} \subset \mathcal{B}_{\alpha}$. This follows by the same method as in [2, Theorem 23.18, p. 185]. Since $A \in \Pi^0_{\alpha+3}$, we have $A = \bigcap_{m \in \mathbb{N}} A_m$, where $A_m \in \Sigma^0_{\alpha+2}$. First, suppose that

- (1) for every $m \in \mathbb{N}$ and $A_m \in \Sigma^0_{\alpha+2}$ there is a sequence $\{f_n : n \in \mathbb{N}\} \subset \mathcal{B}_{\alpha}$ such that
 - $|f_n^m(x)| \leq 1/m$ for $n \in \mathbb{N}$ and $x \in \mathbb{R}$,
 - $A_m = L(\{f_n^m : n \in \mathbb{N}\}) = \{x \in \mathbb{R} : \lim_n f_n^m(x) = 0\}.$

Then rewrite $\bigcup_{m\in\mathbb{N}} \{f_n^m : n\in\mathbb{N}\}\$ as a single sequence $\{f_i : i\in\mathbb{N}\}\$. Of course, $\lim_i f_i(x) = 0$ for all $x \in A$. To see this fix $x \in A$, $\varepsilon > 0$ and take $k \in \mathbb{N}$ such that $1/k < \varepsilon$. Then there is a positive integer $i_0 = i_0(\varepsilon)$ such that $|f_n^m(x)| < \varepsilon$ for $n > i_0$ and $m \le k$. But for $m > k |f_n^m(x)| \le 1/m < 1/k < \varepsilon$, so $|f_i(x)| < \varepsilon$ for $i > i_0$. On the other hand, if $x \notin A$, then $x \notin A_{m_0}$ for some $m_0 \in \mathbb{N}$ and consequently $\{f_n^{m_0}(x) : n \in \mathbb{N}\}$ diverges, so $\{f_i(x) : i \in \mathbb{N}\}$ diverges too.

What is left is to show (1). Fix $m \in \mathbb{N}$ and $A_m \in \Sigma_{\alpha+2}^0$. Then $A_m = \bigcup_{n \in \mathbb{N}} F_n^m$, where $F_n^m \in \Pi_{\alpha+1}^0$ and $F_n^m \subseteq F_{n+1}^m$ for $n \in \mathbb{N}$. Consider the following real function $g \colon \mathbb{R} \to [1, +\infty]$:

$$g(x) = \begin{cases} 1 & \text{if } x \in F_1^m \\ n & \text{if } x \in F_n^m \setminus F_{n-1}^m \text{ for } n \ge 2 \\ +\infty & \text{if } x \in \mathbb{R} \setminus A_m. \end{cases}$$

For $a \in \mathbb{R}$ we have $\{x \in \mathbb{R} : g(x) > a\} = \mathbb{R}$ if a < 1 or $\{x \in \mathbb{R} : g(x) > a\} = \mathbb{R} \setminus F_n^m \in \Sigma_{\alpha+1}^0$ if $n \leq a < n+1$ for $n \geq 1$ and consequently $g \in l_{\alpha+1}$, by Theorem 2. It follows that there is a non-decreasing sequence $\{g_n : n \in \mathbb{N}\} \subset \mathcal{B}_{\alpha}$ pointwise convergent to g. For each $n \in \mathbb{N}$ put $\varphi_n = \min\{n, \max\{g_n, 1\}\}$. Then $1 \leq \varphi_n \leq n$ and $\varphi_{n+1} - \varphi_n \leq n$. Clearly, $\varphi_n \in \mathcal{B}_{\alpha}$ and $\lim_n \varphi_n = g$. Moreover, we can interpolate between φ_n and φ_{n+1} the functions $p_k^n = \varphi_n + \frac{k}{2n}(\varphi_{n+1} - \varphi_n)$ for k = 0, 1, ..., 2n. By renumbering we have a sequence $\{p_n : n \in \mathbb{N}\} \subset \mathcal{B}_{\alpha}$ such that $1 = p_0 \leq p_1 \leq p_2 \leq ..., p_{n+1} - p_n \leq 1/2$ and $f = \lim_n p_n$. Putting $f_n^m = \frac{1}{m}\sin(\pi p_n)$ we obtain the sequence satisfying (1).

The next result deals with the case of approximately continuous functions.

Lemma 1. (cf. [3, Lemma 5]) Every set $A \in \Pi_2^0$ is a countable union of Π_2^0 sets closed in the density topology.

PROOF. There are closed (in the usual sense) sets F_n , $n \in \mathbb{N}$ such that $F = \bigcup_{n \in \mathbb{N}} F_n \subset A$ and $A \setminus F$ has Lebesgue measure zero. Put $A_n = F_n \cup (A \setminus F)$. Then every A_n is closed in \mathcal{T}_d and $A = \bigcup_{n \in \mathbb{N}} A_n$. Moreover, $A_n = F_n \cup (A \cap (\mathbb{R} \setminus F)) \in \Pi_2^0$.

Corollary 1. Every set $A \in \Pi_4^0$ can be represented in the form $A = \bigcap_{m \in \mathbb{N}} A_m$, where for $m \in \mathbb{N}$ A_m is a countable union of Π_2^0 sets closed in the density topology.

Lemma 2. [9, Lemma 11, p. 26] For every set $A \in \mathcal{T}_d \cap \Sigma_2^0$ there is an approximately continuous function $f \colon \mathbb{R} \to \mathbb{R}$ such that $f(x) \in (0,1]$ if $x \in A$ and f(x) = 0 if $x \notin A$.

Lemma 3. [6] If $g: \mathbb{R} \to \mathbb{R}$ is a positive function such that for every $a \in \mathbb{R}$ $\{x \in \mathbb{R}: g(x) > a\} \in \mathcal{T}_d \cap \Sigma_2^0$, then g is a pointwise limit of a non-decreasing sequence of approximately continuous functions.¹

PROOF. Enumerate the set of all positive rational numbers as $\{q_k : k \in \mathbb{N}\}$. Fix $k \in \mathbb{N}$ and define $E_k = \{x \in \mathbb{R} : g(x) > q_k\}$. Then $E_k \in \mathcal{T}_d \cap \Sigma_2^0$ and by Lemma 2 there is an approximately continuous function $p_k : \mathbb{R} \to \mathbb{R}$ such that $0 < p_k \leq 1$ on E_k and $p_k = 0$ on $\mathbb{R} \setminus E_k$. For $n \in \mathbb{N}$ put $p_n^k = \min\{q_k, np_k\}$. Then $q_k \cdot \chi_{E_k}$ is a pointwise limit of non-decreasing sequence $\{p_n^k : n \in \mathbb{N}\} \subset \mathcal{A}$ and $p_n^k < g$. Let $g_n = \max_{1 < k < n} p_n^k$. It is easy to check that:

- (i) $g_n \in \mathcal{A}$,
- (ii) $g_n \leq g_{n+1} < g$,
- (iii) if g(x) > q for some positive rational q, then $\lim_{n \to \infty} g_n \ge q$.

It follows that $\lim_{n \to \infty} g_n = g$ and $\{g_n : n \in \mathbb{N}\}$ is a required sequence.

Remark 3. Lemma 3 holds also for $g: \mathbb{R} \to [0, +\infty]$

Now, we are able to prove the following.

Theorem 4. $\mathcal{L}(\mathcal{A}) = \Pi_4^0$

 $^{^1 {\}rm This}$ fact was announced during the conference Summer School on Real Functions Theory in Liptovský Ján (Slovakia) in 1998.

ON SETS OF CONVERGENCE POINTS

PROOF. It is well-known that $\mathcal{A} \subset \mathcal{B}_1$ (see, e. g. [3]), so the inclusion " \subset " follows from Theorem 3. Now, fix $A \in \Pi_4^0$. We claim that $A = L(\{f_n : n \in \mathbb{N}\})$ for some sequence $\{f_n : n \in \mathbb{N}\}$ of approximately continuous functions. To show this we apply the method similar to that in the proof of Theorem 3. By Corollary 1 $A = \bigcap_{m \in \mathbb{N}} A_m$, where for $m \in \mathbb{N}$ $A_m = \bigcup_{n \in \mathbb{N}} F_n^m$, $F_n^m \in \Pi_2^0$, $F_1^m \subseteq F_2^m \subseteq \dots$ and $\mathbb{R} \setminus F_n^m \in \mathcal{T}_d$. Fix $m \in \mathbb{N}$. Then $g : \mathbb{R} \to [1, +\infty]$ given by the formula

$$g(x) = \begin{cases} 1 & \text{if } x \in F_1^m \\ n & \text{if } x \in F_n^m \setminus F_{n-1}^m \text{ for } n \ge 2 \\ +\infty & \text{if } x \in \mathbb{R} \setminus A_m \end{cases}$$

satisfies the assumptions of Lemma 3. Consequently, there is a non-decreasing sequence $\{g_n : n \in \mathbb{N}\} \subset \mathcal{A}$ pointwise convergent to g. The same construction as before gives us a sequence $\{f_n^m : n \in \mathbb{N}\} \subset \mathcal{A}$ such that $|f_n^m(x)| \leq 1/m$ for $n \in \mathbb{N}, x \in \mathbb{R}$ and $A_m = L(\{f_n^m : n \in \mathbb{N}\}) = \{x \in \mathbb{R} : \lim_n f_n^m(x) = 0\}$. Finally, it is enough to rewrite $\bigcup_{m \in \mathbb{N}} \{f_n^m : n \in \mathbb{N}\}$ as a single sequence $\{f_i : i \in \mathbb{N}\}$ to obtain the one we claimed.

The last result is a consequence of Theorems 3 and 4.

Theorem 5. $\mathcal{L}(\Delta) = \Pi_4^0$

PROOF. Note that the construction in Theorem 4 uses bounded approximately continuous functions, so we have actually proved that $\mathcal{L}(b\mathcal{A}) = \Pi_4^0$. Since $b\mathcal{A} \subset \Delta \subset \mathcal{B}_1$ (see e. g. [3]), the proof is complete.

Acknowledgments. The author wishes to express her thanks to the referee for pointing out the consequences of Theorem 4 for derivatives.

References

- H. Hahn, Uber die Menge der Konvergenzpunkte einer Funktionfolge, Archiv. der Math. und Physik 28(1919), 34–45.
- [2] A. S. Kechris, *Classical Descriptive Set Theory*, Springer, New York 1995.
- [3] M. Laczkovich, G. Petruska, A theorem on approximately continuous functions, Acta Math. Acad. Sci. Hungar. 24(1973), 383–387.
- [4] T. Natkaniec, J. Wesołowska, On the convergence of ω_1 sequences of real functions, to appear in Acta Math. Hungar. **91(4)**(2001).
- [5] J. C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971.

- [6] F. Prus-Wiśniowski, G. Szkibiel, A note on SAC property, to appear in Tatra Mount. Math. Public.
- [7] W. Sierpiński, Sur l'ensemble des points de convergence d'une suite de fonctions continues, Fund. Math. 2(1921), 41-49.
- [8] W. Sierpiński, Funkcje przedstawialne analitycznie, Warszawa, 1925.
- [9] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69(1950), 1–54.