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ON ORDER TOPOLOGIES AND
THE REAL LINE

Abstract

We find order topologies that are universal for certain topological
properties. An order topology T enjoys a given property if and only
if there is an order preserving homeomorphism of T into the universal
space for this property. We give similar results for order preserving
mappings in place of homeomorphisms.

Throughout this note, T will be a linearly ordered set. By the order topol-
ogy on T [K, 1I] we mean the topology generated by all intervals of the form
{x ∈ T : x < a} and {x ∈ T : x > a} where a ∈ T . We will call this the order
space T , or the open interval space T .

We desire to find an order space S that is separable (has a countable
dense subset) such that any order space T is separable if and only if T is
homeomorphic to a subspace of S. In fact we do not succeed, but we do the
next best thing. We find a topology T ∗ on the set T , closely associated with
the order topology and containing the order topology on T , such that the
order space T is separable if and only if T ∗ is homeomorphic to a subspace of
an appropriate separable order space S.

Let R denote the real line. Give the product R×{0, 1} the dictionary order:
(a, n) < (b, m) if and only if a < b in R or a = b and n = 0, m = 1. We call
the resulting order space R0. Note that every subspace of R0 is disconnected.
Thus R is not homeomorphic to any subspace of R0, even though R is obviously
order isomorphic to a subset of R0.

By the enhanced order space T ∗ we mean the topology on the set T gener-
ated by all intervals of the form {x ∈ T : x < a} and {x ∈ T : x > a} for any
a ∈ T , and of the form {x ∈ T : x ≤ b} where b ∈ T is an element that has no
immediate predecessor. Thus the enhanced order topology contains the order
topology on T .
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Now R∗ is commonly called the half open interval space [K, page 59] or
the Sorgenfrey line. Moreover, R∗ is separable; consider the set of rational
numbers.

The enhanced order space T ∗ is the same as the order space T if each
element of T has an immediate predecessor or an immediate successor. Thus
the spaces R∗0 and R0 are the same. Moreover, R0 is separable; consider the set
{(r, 0) : r rational}. It is easy to see that R∗ is homeomorphic to a subspace
of R0.

We will prove that T is a separable order space if and only if T ∗ is home-
omorphic to a subspace of R0 (Theorem III).

It will be easier to prove that T is second countable (has a countable basis)
if and only if T is homeomorphic to a subspace of R (Theorem II).

It will be almost trivial to prove that T is countable if and only if T is
homeomorphic to a subspace of Q, the space of rational numbers (Theorem I).

Let T be countable. Then the order space T is obviously a second countable
regular space and is metrizable by Urysohn’s metrization Theorem [K, p. 125].
Then T is homeomorphic to a subspace of Q by [S, p. 107].

Observe that an analogous argument proves that T ∗ is homeomorphic to
a subspace of Q if T is countable.

To sum up; R0 is our prototype of a separable order space, R is our proto-
type of a second countable order space, and Q is our prototype of a countable
order space.

Construction

Let E be a countable linearly ordered set. Adjoin to E points −∞ and ∞
where −∞ is less than any element and ∞ is greater than any element of E.

We will construct a mapping f of E ∪ {−∞,∞} into Q as follows.
Enumerate E = {e1, e2, e3, . . .}. Let f(−∞) = −1 and f(∞) = 1, f(e1) = 0.
We define f(en) by induction on n. Let f be an order preserving mapping of
{−∞,∞} ∪ {e1, . . . , en−1} into Q. Make f(en) =

(
f(a) + f(b)

)
/2 where en ∈

(a, b) and a and b are consecutive points of the set {−∞,∞}∪{e1, . . . , en−1}. It
follows that f preserves order on {−∞,∞}∪{e1, . . . , en−1, en}. By induction
we see that f is an order preserving mapping of E into Q.

Lemma 1. Let (c, d) be a bounded complementary interval of the closure of
f(E). Then c ∈ f(E) and d ∈ f(E).

Proof. Assume c /∈ f(E). Choose c1 and d1 in f(E) such that c1 < c <
d ≤ d1 and d1 − c1 < 2(d − c). The interval (c1, d1) contains infinitely many
points of f(E). It follows from the construction that some e ∈ E satisfies
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f(e) = (c1 + d1)/2. Clearly (c1 + d1)/2 ∈ (c, d), contrary to hypothesis. Thus
c ∈ f(E). Similarly d ∈ f(E).

In what follows, the symbol − will denote closure in the Euclidean topology.

Lemma 2. Let c ∈ f(E)− and let u be a real number with sup f(E) ≥ u > c.
Then there is an e ∈ E with f(E) > c and{

t ∈ f(E)− : t < f(e)
}
⊂

{
t ∈ f(E)− : t < u

}
.

Proof. If f(E) ∩ (c, u) is nonvoid, just make f(e) ∈ f(E) ∩ (c, u). So we
assume f(E) ∩ (c, u) is void. Then there is a d ∈ f(E)− such that u ∈ (c, d)
and (c, d) is a finite complementary interval of f(E)−. By Lemma 1, d ∈ f(E).
Then f(e) = d suffices.

When c = sup f(E), Lemma 2 will not be needed in what follows.

Lemma 2′. Let c ∈ f(E)− and let u be a real number with inf f(E) ≤ u < c.
Then there is an e ∈ E with f(e) < c and{

t ∈ f(E)− : t > f(e)
}
⊂

{
t ∈ f(E)− : t > u

}
.

The proof is like that of Lemma 2 with the inequalities reversed, so we
omit it.

Theorem I. Let T be an order space. Then the following are equivalent.

(1) T is countable,

(2) there is an order preserving homeomorphism from T into Q,

(3) T is homeomorphic to a subspace of Q,

(4) T is order isomorphic to a subset of Q.

Proof. (1) ⇒ (2) Let f be the order preserving mapping of T into Q from
the construction (with T in place of E). The subspace topology on f(T ) in
Q contains the order topology on f(T ). Let x ∈ T and f(x) lie in a subbasic
open set of one of the forms {w ∈ f(T ) : w > a} or {w ∈ f(T ) : w < a} in
the subspace topology on f(T ). We deduce from Lemmas 2 and 2′ that this
set contains an open set in the order topology on f(T ) containing f(x). It
follows that any open set in the subspace topology on f(T ) is an open set in
the order topology on f(T ). Hence f is a homeomorphism.

Finally, the implications (1)⇐⇒ (2), (1)⇐⇒ (3), (1)⇐⇒ (4) are clear.
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Lemma 3. T is second countable if and only if T is separable and there are
at most countably many immediate predecessors (successors) in T .

Proof. Suppose T is second countable. Then T is separable. Let {Un} be a
countable basis of T . For each immediate predecessor a, there is an open set
Va ∈ {Un} such that a is the greatest element of Va. Thus if a1 is another
immediate predecessor in T , distinct from a, then Va 6= Va1 . It follows that
there are countably many immediate predecessors in T .

Now suppose that the order space T is separable and there are countably
many immediate predecessors in T . Let E be a countable subset of T that is
dense and includes all the immediate predecessors and successors in T . The
proof that the countable family of intervals {(e, e′) : e ∈ E, e′ ∈ E} is a basis
of T is routine, so we leave it.

Theorem II. Let T be an order space. Then the following are equivalent.

(1) T is second countable.

(2) there is an order preserving homeomorphism of T into R.

(3) T is homeomorphic to a subspace of R.

(4) T is order isomorphic to a subset of R.

Proof. (1)⇒ (2) Let T be second countable. By Lemma 3, there is a count-
able dense subset E of T that contains all the immediate predecessors and
successors in T and also the first and last elements of T if any. Let f be the
mapping in the construction. For each x ∈ T \ E let

Ax =
{
t ∈ E : t > x

}
and Bx =

{
t ∈ E : t < x

}
.

Then E = Ax ∪Bx.
If x ∈ T \E and y ∈ T \E and x < y, we claim that f(Ax) 6= f(Ay); for if

f(Ax) = f(Ay), then Ax = Ay and the interval (x, y) could contain no element
of E or of T , and hence by Lemma 1, x ∈ E, y ∈ E. Likewise f(Bx) 6= f(By).

If x ∈ T \E we claim that the distance between the sets f(Ax) and f(Bx)
is zero; for otherwise, f(Ax) would have a least element d, f(Bx) would have
a greatest element c by Lemma 1, and hence the singleton set {x} would be
open in T and x ∈ E.

If x ∈ T \ E, we claim that f(Bx) has no greatest element; for if c is
the greatest element of f(Bx), then the interval (f−1(c), x) could contain no
element of E or of T and consequently x would be an immediate successor
and x ∈ E. Likewise f(Ax) has no least element.
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We extend f to a function g from T into R as follows; If e ∈ E, put
g(e) = f(e), and if x ∈ T \E, let g(x) be the real number so that g(x) > f(e)
for e ∈ Bx and g(x) < f(e) for e ∈ Ax. It follows that g is an order preserving
mapping of T into R.

The subspace topology contains the order topology on g(T ). From Lemmas
2 and 2′ we deduce that these topologies are in fact the same on g(T ). Thus
g is an order preserving homeomorphism of T into R.

(4) ⇒ (1) Let S be a subset of R. The subspace topology on S is at least
as fine as the order topology on S. But R is second countable, so the subspace
S is second countable and separable. It follows that the order space S is
separable. Finally, S contains at most countably many immediate successors
and predecessors, because every family of mutually disjoint intervals in R is
countable. By Lemma 3, the order space S is second countable.

Now the implications (1) ⇐⇒ (2), (1) ⇐⇒ (3), (1) ⇐⇒ (4) are clear.

Before we tackle our last theorem we need an observation about the order
space R0.

Lemma 4. Let S be a subset of R0. Then the order space S is separable and
the subspace S of R0 is separable.

Proof. Put A = {a ∈ R : either (a, 0) or (a, 1) is an isolated point of S in R0}.
We claim that A is countable; for otherwise there would be an a0 ∈ A that is
both a left and a right accumulation point of A in R, and hence (a0, 0) would
be a left accumulation point of S and (a0, 1) would be a right accumulation
point of S in R0. Thus there are at most countably many isolated points of
S. Let J denote the set of isolated points in S.

For any rational numbers r1 < r2, select an element s(r1, r2) in S in the
open interval from (r1, 0) to (r2, 0) if there is one. We obtain a countable
family P ⊂ S of elements of the form s(r1, r2). Then P ∪ J is a countable
subset of S, and routine arguments prove that P ∪ J is dense in the subspace
S. Thus the subspace S is separable. But the subspace topology contains the
order topology on S. It follows that the order space S is also separable.

Theorem III. Let T be an order space. Then the following are equivalent.

(1) T is separable,

(2) there is an order preserving homeomorphism h of T ∗ into R0,

(3) T ∗ is homeomorphic to a subspace of R0,

(4) T is order isomorphic to a subset of R0,
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(5) T ∗ is separable.

Proof. (1) ⇒ (2) Let T be separable. Say E0 is a countable dense subset of
T . Let E = {x ∈ T : x ∈ E0 or x is an immediate successor or predecessor
of an element of E0}. Then E is a countable dense subset of T . Note that if
x is the immediate predecessor of y ∈ E \ E0, then either y is the immediate
successor of a member of E0 and x ∈ E0, or y is the immediate predecessor
of a member of E0 and y is an isolated point necessarily in E0 contrary to
assumption. Thus the immediate predecessor of a member of E must lie in
E. Likewise the immediate successor of a member of E must lie in E. Put
T1 = {t ∈ T : t has an immediate predecessor but no immediate successor in
T}, and T2 = T \ T1.

Observe that if y ∈ T1 ∩ E and x is the immediate predecessor of y, then
x ∈ T2 ∩ E. Thus if u < v < w < z and u, v, w, z ∈ T2, then the set
(u, w)∩E contains an element e and either e ∈ T2 ∩E, or e ∈ T1 ∩E and the
immediate predecessor of e lies in T2 ∩ E. It follows that the interval [u, w)
meets T2∩E. Likewise [v, z) and (u, z) meet T2∩E. We deduce from this that
any open interval (u, w) with u ∈ T2, w ∈ T2 that meets T2 but not T2 ∩ E
has u ∈ T2 ∩ E. Moreover, any two such intervals cannot have the same left
endpoint. But T2 ∩E is countable, so there are at most countably many such
intervals. It follows that the order space T2 is separable.

Now let (s, t) be an open interval with s ∈ T2, t ∈ T2 such that the
open interval (s, t) does not meet T2. Then either (s, t) meets T and we have
s ∈ T2 ∩E by the argument in the preceding paragraph, or t is the immediate
successor of s and t must be an isolated point necessarily in T2 ∩ E. In any
case, the closed interval [s, t] meets T2 ∩ E. But E is countable so there are
at most countably many immediate successors and predecessors in the order
space T2. By Lemma 3 the order space T2 is second countable.

Let g be the order preserving homeomorphism from T2 into R defined
precisely as in the proof of (1)⇒ (2) for Theorem II. Put h(x) =

(
g(x), 0

)
∈ R0

for x ∈ T2. Observe that if y ∈ T1, then y has an immediate predecessor that
is necessarily in T2. For y ∈ T1, put h(y) =

(
g(x), 1

)
∈ R0 where x is the

immediate predecessor of y. It follows that h is an order preserving mapping
of T into R0. It remains to prove that h is a homeomorphism from T ∗ into
R0. This will be deduced from considerations of the following four situations.

(i) x ∈ T and x has an immediate successor and an immediate predecessor
in T . Then h(x) has an immediate successor and an immediate predecessor in
h(T ). It follows that the singleton set {h(x)} is open in the enhanced order
topology of h(T ) and open in the subspace topology of h(T ).

(ii) x ∈ T has an immediate predecessor y, but no immediate successor,
and x is not the greatest element in T . It follows that x ∈ T1 and y ∈ T2. It
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also follows that y has no immediate successor relative to the set T2 (observe
that any element of T1 exceeding x is the immediate successor of another
element of T2 exceeding x). We deduce that the distance (in R) between g(y)
and the set {g(t) : t ∈ T2, t > y} is zero; otherwise inf{g(t) : t ∈ T2, t > y}
would be the immediate successor of g(y) in g(T2) by Lemma 1, and y would
have an immediate successor in T2. From this it follows that the set {W ∈
h(T ) W ≤ h(x)} is not open in the subspace topology on h(T ). But from
the definition of the enhanced order topology we see that this set is not open
in the enhanced order topology on h(T ) either. On the other hand, the set
{W ∈ h(T ) : W ≥ h(x)} is open in the enhanced order topology and open in
the subspace topology on h(T ).

Let v ∈ R with v > g(y). By Lemma 2 there is a u ∈ g(T2) with u > g(y)
such that {

w ∈ T2 : g(w) < u
}
⊂

{
w ∈ T2 : g(w) < v

}
.

Hence in R0,{
W ∈ h(T ) : W < (u, 0)

}
⊂

{
W ∈ h(T ) : W < (v, 0)

}
,

where the right member is open in the subspace topology on h(T ) and the
left member is open in both the enhanced order topology and the subspace
topology on h(T ).

(iii) x ∈ T has neither an immediate successor nor an immediate pre-
decessor in T , and x is neither the greatest nor the least element of T . It
follows that x ∈ T2 and h(x) =

(
g(x), 0

)
. Now

(
g(x), 1

)
∈ R0, so the set

{W ∈ h(T ) : W ≤ h(x)} is open in the subspace topology on h(T ). By
definition, this set is also open in the enhanced order topology on h(T ).

Take any v′ ∈ R with v′ < g(x). It follows from Lemma 2′ that there exists
a u′ ∈ g(T ) such that u′ < g(x) and{

w ∈ T2 : g(w) > u′
}
⊂

{
w ∈ T2 : g(w) > v′

}
.

It follows that{
W ∈ h(T ) : W > (u′, 0)

}
⊂

{
W ∈ h(T ) : W > (v′, 0)

}
,

where the right member is open in the subspace topology on h(T ), and the
left member is open in both the subspace topology and the enhanced order
topology on h(T ).

(iv) x ∈ T has an immediate successor y ∈ T but no immediate predecessor
in T , and T has neither a greatest nor a least element. It follows that x ∈ T2

and h(x) =
(
g(x), 0

)
. Now

(
g(x), 1

)
∈ R0, so the set {W ∈ h(T ) : W ≤ h(x)}
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is open in the subspace topology on h(T ), and is also open in the enhanced
order topology on h(T ).

Take any v′ ∈ R with v′ < g(x). Just as in the argument for case (iii) we
find a u′ ∈ g(T ) such that u′ < g(x) and{

W ∈ h(T ) : W > (u′, 0)
}
⊂

{
W ∈ h(T ) : W > (v′, 0)

}
,

where the right member is open in the subspace topology on h(T ) and the
left member is open in both the subspace topology and the enhanced order
topology on h(T ).

Let x ∈ T and h(x) lie in a subbasic open set of one of the forms {W ∈
h(T ) : W > A}, {W ∈ h(T ) : W < A}, {W ∈ h(T ) : W ≤ A} in the enhanced
order topology on h(T ). Then it follows from (i), (ii), (iii), (iv) that this set
contains an open set in the subspace topology on h(T ) containing h(x). Thus
if T has no greatest or least element, every open set in the enhanced order
topology on h(T ) is also open in the subspace topology on h(T ). Analogous
arguments using (i), (ii), (iii), (iv) show that if T has no greatest or least
element, every open set in the subspace topology on h(T ) is also open in the
enhanced order topology on h(T ). We can relax the assumption that T have
no greatest or least element by adjoining to T a copy of the ordered set of
rational numbers, Q, all of whose elements exceed all the elements of T and a
copy of all Q all of whose elements are exceeded by all elements of T . Finally,
the subspace topology and the enhanced order topology coincide on h(T ), and
(1) ⇒ (2).

From (1) ⇒ (2) we deduce that (1) ⇒ (3) and (1) ⇒ (4). From Lemma 4
we deduce that (2) ⇒ (1) and (4) ⇒ (1). From Lemma 4 we also deduce that
(3) ⇒ (5). Finally, the enhanced order topology contains the order topology,
so it follows that (5) ⇒ (1).

If each element of T is an immediate successor or predecessor, then the
enhanced order topology coincides with the order topology on h(T ). For such
order spaces we deduce the following from Theorem III.

Corollary 1. Let T be an order space in which each element is an immediate
successor or predecessor. Then T is separable if and only if T is homeomorphic
to a subspace of R0.

From Theorems I, II and III we obtain:

Corollary 2. Let S0 be a (nonvoid) subset of R0, let S1 be a (nonvoid) subset
of R and let S2 be a (nonvoid) subset of Q. Then the enhanced order space S∗0
is homeomorphic to a subspace of R0, the order space S1 is homeomorphic to
a subspace of R, and the order space S2 is homeomorphic to a subspace of Q.

We leave the proofs of Corollaries 1 and 2.
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