Sunny Garlang Noah, 773 19th Avenue Apartment B, San Francisco, CA 94121, USA. email: ccsfmathclub@gmail.com

THE MEDIAN OF A CONTINUOUS FUNCTION

Abstract

Let Ω be a domain in \mathbb{R}^n with finite Lebesgue measure and $f \in C(\Omega) \cap L^1(\Omega)$ a real-valued function on Ω . It is shown that there exists a unique number $M \in \mathbb{R}$ at which the function $I(y) = \int_{\Omega} |f(x) - y| d\lambda^n(x)$ is minimized, where λ^n is the Lebesgue measure on \mathbb{R}^n . We can define this number as *the* median of f over Ω with respect to λ^n .

1 Introduction.

Given a random variable X and a probability measure P on a sample space Ω , one can define the mean of X as $E[X] = \int_{\Omega} x \, dP(x)$ and a median of X as a real number M such that $P(X \leq M) \geq \frac{1}{2}$ and $P(X \geq M) \geq \frac{1}{2}$. For any real-valued measurable function $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$, where Ω is a measurable set with finite Lebesgue measure, one can also define its mean as $\overline{f} = \int_{\Omega} f(x) \frac{d\lambda^n(x)}{\lambda^n(\Omega)}$, where λ^n is the Lebesgue measure on \mathbb{R}^n . We could define a median of f as a real number M such that $\lambda^n \left(f^{-1}(-\infty, M] \cap \Omega\right) \geq \frac{\lambda^n(\Omega)}{2}$ and $\lambda^n \left(f^{-1}[M, \infty) \cap \Omega\right) \geq \frac{\lambda^n(\Omega)}{2}$. Notice that a median so defined may not be unique. For example, consider $f: [-2, 2] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & -2 \le x \le -1 \\ 1 & -1 < x < 1 \\ 0 & 1 \le x \le 2 \end{cases}.$$

We see that

$$g(m) = \lambda \left(f^{-1}(-\infty, m] \cap [-2, 2] \right) = \begin{cases} 0 & m < 0\\ 2 & 0 \le m < 1\\ 4 & m \ge 1 \end{cases}$$

Key Words: median, continuous functions

Mathematical Reviews subject classification: Primary 60A10, Secondary 26D15 Received by the editors July 24, 2007

Communicated by: Stefan Schwabik

Consequently, every $m \in (0, 1)$ is a median, as whenever $m \in (0, 1)$, we have

$$\lambda \left(f^{-1}(-\infty, m] \cap [-2, 2] \right) = \lambda \left(f^{-1}[m, \infty) \cap [-2, 2] \right) = \frac{\lambda \left([-2, 2] \right)}{2} = 2.$$

Let $\operatorname{med}_{\Omega}(f)$ denote the set of all medians of f over Ω . If $f \in L^{1}(\Omega)$, it is known that $m \in \operatorname{med}_{\Omega}(f)$ if and only if

$$\int_{\Omega} |f(x) - m| \, d\lambda^n(x) = \min_{y \in \mathbb{R}} \int_{\Omega} |f(x) - y| \, d\lambda^n(x)$$

(cf. [2], [3]). If Ω is an open, connected subset of \mathbb{R}^n with finite Lebesgue measure and f is continuous on Ω , we will show that there exists a unique number M such that I(M) < I(y) for all $y \neq M$.

2 Well-Posedness.

Henceforth, we will assume that Ω is an open, connected subset of \mathbb{R}^n with finite Lebesgue measure. Suppose $f \in C(\Omega) \cap L^1(\Omega)$. We seek to minimize $I(y) = \int_{\Omega} |f(x) - y| d\lambda^n(x)$ over \mathbb{R} .

One can easily see that I(y) is continuous in y.

Theorem 2.1. If $f \in L^{1}(\Omega)$, then I(y) as defined above is a continuous function in y.

PROOF. Let $y_i \to y$. We may assume without loss of generality that $|y_i| \leq |y|+1$. Since we know that there exists a sufficiently large number N such that for all i > N, $|y_i| \leq |y|+1$ after discarding finitely many terms (if necessary), we will have the desired property. Next observe that

(1)
$$|f(x) - y_i| \le |f(x)| + |y| + 1$$

Furthermore, by virtue of the fact that $f \in L^{1}(\Omega)$ and that $\lambda^{n}(\Omega) < \infty$, we deduce that

(2)
$$\int_{\Omega} \left[|f(x)| + |y| + 1 \right] d\lambda^n \left(x \right) = C < \infty$$

where C is a fixed constant. Moreover, for (almost) every $x \in \Omega$, $|f(x) - y_i| \rightarrow |f(x) - y|$ as $i \rightarrow \infty$. It follows from the Dominated Convergence Theorem (DCT) that

$$\lim_{y_i \to y} I(y_i) = \lim_{y_i \to y} \int_{\Omega} |f(x) - y_i| \, d\lambda^n(x)$$
$$= \int_{\Omega} \lim_{y_i \to y} |f(x) - y_i| \, d\lambda^n(x) \, (\text{DCT})$$
$$= \int_{\Omega} |f(x) - y| \, d\lambda^n(x) = I(y) \,,$$

270

yielding the continuity for I(y).

To minimize I(y), we can restrict y to a compact subset in \mathbb{R} .

Lemma 2.2. If $f \in L^1(\Omega)$, then there exists a positive number B > 0 such that $\min_{y \in \mathbb{R}} I(y) = \min_{y \in [-B,B]} I(y)$.

PROOF. It suffices to show that there exist positive numbers B_1 and B_2 such that for all $y > B_1$, $I(y) > I(B_1)$, and for all $y < -B_2$, $I(y) > I(-B_2)$, because then we can choose B to be max $\{B_1, B_2\}$. The argument for the existence of B_1 is identical to the one for that of B_2 . Since $f \in L^1(\Omega)$, there exists B_1 sufficiently large and positive so that

(3)
$$\lambda^n \{ x \in \Omega : f < B_1 \} \ge \frac{3}{4} \lambda^n (\Omega) \,.$$

We claim that for all $y > B_1$, $I(y) > I(B_1)$. Toward this end, we consider the following two expressions:

(4)
$$I(y) = \int_{\Omega} |f - y| \ d\lambda^{n}(x) = \int_{\{f < B_{1}\} \cap \Omega} d\lambda^{n}(x) + \int_{\{B_{1} < f < y\} \cap \Omega} d\lambda^{n}(x) + \int_{\{f > y\} \cap \Omega} (f - y) \ d\lambda^{n}(x) \,.$$

(5)
$$I(B_1) = \int_{\Omega} |f - B_1| \, d\lambda^n (x) = \int_{\{f < B_1\} \cap \Omega} (B_1 - f) \, d\lambda^n (x) + \int_{\{B_1 < f < y\} \cap \Omega} (f - B_1) \, d\lambda^n (x) + \int_{\{f > y\} \cap \Omega} (f - B_1) \, d\lambda^n (x) \, .$$

Subtracting (5) from (4), we find that

(6)
$$I(y) - I(B_1) = = \int_{\{f < B_1\} \cap \Omega} (y - B_1) d\lambda^n(x) + \int_{\{B_1 < f < y\} \cap \Omega} (y + B_1 - 2f) d\lambda^n(x) + \int_{\{f > y\} \cap \Omega} (B_1 - y) d\lambda^n(x).$$

By (3) and the supposition that $y > B_1$, we have

(7)
$$\lambda^{n} \left(\{f > y\} \cap \Omega \right) \leq \frac{1}{4} \lambda^{n} \left(\Omega \right)$$

(8)
$$\lambda^{n} \left(\{ B_{1} < f < y \} \cap \Omega \right) \leq \frac{1}{4} \lambda^{n} \left(\Omega \right).$$

Applying inequalities (3), (7), and (8) to (6), one obtains

$$I(y) - I(B_1)$$

$$\geq \frac{1}{2}\lambda^n(\Omega)(y - B_1) + \int_{\{B_1 < f < y\} \cap \Omega} (y + B_1 - 2f) d\lambda^n(x)$$

$$\geq \frac{1}{2}\lambda^n(\Omega)(y - B_1) + \frac{1}{4}\lambda^n(\Omega)(y + B_1 - 2y)$$

$$= \frac{1}{4}\lambda^n(\Omega)(y - B_1) > 0,$$

by the assumption that $y > B_1$. This proves the claim. To find B_2 , we can retrace our steps. In this case, we will consider choosing B_2 sufficiently large and positive so that

$$\lambda^{n} \left\{ x \in \Omega : f > -B_{2} \right\} \ge \frac{3}{4} \lambda^{n} \left(\Omega \right).$$

Going through the same argument, one arrives at the conclusion we stated at the outset. $\hfill \Box$

Therefore, to minimize I(y) over \mathbb{R} is the same as to minimize I(y) over a compact subset [-B, B]. Since I(y) is continuous by Theorem 2.1, the Extreme Value Theorem implies that there exists $m \in [-B, B]$ such that $I(m) \leq I(y)$ for all $y \in \mathbb{R}$. Thus, we have shown the following.

Theorem 2.3. If $f \in C(\Omega) \cap L^1(\Omega)$, then there exists $m \in \mathbb{R}$ such that $I(m) \leq I(y)$ for all $y \in \mathbb{R}$.

We may further restrict y to a subset $[a,b] \subset [-B,B]$ such that $f: \Omega \to [a,b]$ is surjective, except possibly at a and b.

Next, we show that there exists a unique $m \in \mathbb{R}$ that minimizes I(y).

Theorem 2.4. If $f \in C(\Omega) \cap L^1(\Omega)$, then there exists a unique $m \in \mathbb{R}$ such that I(m) < I(y) for all $y \neq m \in \mathbb{R}$.

PROOF. Suppose there exist two absolute minima denoted by m_1 and m_2 with $m_1 < m_2$ and $m_1, m_2 \in [a, b]$ defined as above. Thus, $I(m_1) = I(m_2)$. Now,

we have

$$\begin{split} I\left(\frac{m_1+m_2}{2}\right) &- \frac{I\left(m_1\right)+I\left(m_2\right)}{2} = \\ &= \int_{\Omega} \left|\frac{f-m_1}{2} + \frac{f-m_2}{2}\right| \, d\lambda^n \left(x\right) \\ &- \frac{1}{2} \left[\int_{\Omega} |f-m_1| \, d\lambda^n \left(x\right) + \int_{\Omega} |f-m_2| \, d\lambda^n \left(x\right)\right] = \\ &= \int_{\{f \le m_1\} \cap \Omega} \left(\frac{m_1-f}{2} + \frac{m_2-f}{2}\right) \, d\lambda^n \left(x\right) \\ &+ \int_{\{f \ge m_2\} \cap \Omega} \left(\frac{f-m_1}{2} + \frac{f-m_2}{2}\right) \, d\lambda^n \left(x\right) \\ &+ \int_{\{m_1 < f < m_2\} \cap \Omega} \left|\frac{f-m_1}{2} + \frac{f-m_2}{2}\right| \, d\lambda^n \left(x\right) \\ &- \frac{1}{2} \left[\int_{\{f \le m_1\} \cap \Omega} \left(m_1 - f\right) \, d\lambda^n \left(x\right) + \int_{\{f > m_1\} \cap \Omega} \left(f-m_1\right) \, d\lambda^n \left(x\right)\right] \\ &- \frac{1}{2} \left[\int_{\{f \le m_2\} \cap \Omega} \left(m_2 - f\right) \, d\lambda^n \left(x\right) + \int_{\{f > m_2\} \cap \Omega} \left(f-m_2\right) \, d\lambda^n \left(x\right)\right] = \\ &= \int_{\{m_1 < f < m_2\} \cap \Omega} \left|\frac{f-m_1}{2} + \frac{f-m_2}{2}\right| \, d\lambda^n \left(x\right) \\ &- \int_{\{m_1 < f < m_2\} \cap \Omega} \frac{f-m_1}{2} \, d\lambda^n \left(x\right) - \int_{\{m_1 < f < m_2\} \cap \Omega} \frac{m_2 - f}{2} \, d\lambda^n \left(x\right) < 0, \end{split}$$

where the last inequality follows from the continuity of f, the triangle equality (if we call $\frac{f-m_1}{2} = A$ and $\frac{f-m_2}{2} = B$, then $|A + B| \leq |A| + |B|$. However, equality holds if and only if A and B have the same sign; as A > 0 and B < 0 in our situation, we arrive at the strict inequality), and the fact that $\lambda^n (\{m_1 < f < m_2\} \cap \Omega) > 0$.

This contradicts the fact that m_1 and m_2 are absolute minima. In summary, we conclude that there exists a unique m such that I(m) < I(y) for all $y \in \mathbb{R} \setminus \{m\}$.

The above approach gives an elementary proof of the existence of a unique minimizer to the function $I(y) = \int_{\Omega} |f - y| d\lambda^n(x)$ for any continuous, absolutely integrable function on an open, bounded, connected subset Ω of \mathbb{R}^n .

3 Acknowledgment.

The author would like to express his gratitude to the referee for helpful comments and suggestions.

References

- [1] Lawrence Evans and Ronald Gariepy, *Measure Theory and Fine Properties* of Functions, CRC Press, Boca Raton, 1992.
- [2] Jun Shao, Mathematical Statistics, Springer-Verlag, New York, 1999.
- [3] Daniel Stroock, *Probability Theory: An Analytic View*, Cambridge University Press, Cambridge, 1993.
- [4] James Yeh, Lectures on Real Analysis, World Scientific, River Edge, 2000.