THE MEDIAN OF A CONTINUOUS FUNCTION

Abstract

Let Ω be a domain in \mathbb{R}^{n} with finite Lebesgue measure and $f \in$ $C(\Omega) \cap L^{1}(\Omega)$ a real-valued function on Ω. It is shown that there exists a unique number $M \in \mathbb{R}$ at which the function $I(y)=\int_{\Omega}|f(x)-y| d \lambda^{n}(x)$ is minimized, where λ^{n} is the Lebesgue measure on \mathbb{R}^{n}. We can define this number as the median of f over Ω with respect to λ^{n}.

1 Introduction.

Given a random variable X and a probability measure P on a sample space Ω, one can define the mean of X as $E[X]=\int_{\Omega} x d P(x)$ and a median of X as a real number M such that $P(X \leq M) \geq \frac{1}{2}$ and $P(X \geq M) \geq \frac{1}{2}$. For any real-valued measurable function $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, where Ω is a measurable set with finite Lebesgue measure, one can also define its mean as $\bar{f}=\int_{\Omega} f(x) \frac{d \lambda^{n}(x)}{\lambda^{n}(\Omega)}$, where λ^{n} is the Lebesgue measure on \mathbb{R}^{n}. We could define a median of f as a real number M such that $\lambda^{n}\left(f^{-1}(-\infty, M] \cap \Omega\right) \geq \frac{\lambda^{n}(\Omega)}{2}$ and $\lambda^{n}\left(f^{-1}[M, \infty) \cap \Omega\right) \geq \frac{\lambda^{n}(\Omega)}{2}$. Notice that a median so defined may not be unique. For example, consider $f:[-2,2] \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{cc}
0 & -2 \leq x \leq-1 \\
1 & -1<x<1 \\
0 & 1 \leq x \leq 2
\end{array}\right.
$$

We see that

$$
g(m)=\lambda\left(f^{-1}(-\infty, m] \cap[-2,2]\right)=\left\{\begin{array}{cc}
0 & m<0 \\
2 & 0 \leq m<1 \\
4 & m \geq 1
\end{array}\right.
$$

Key Words: median, continuous functions
Mathematical Reviews subject classification: Primary 60A10, Secondary 26D15
Received by the editors July 24, 2007
Communicated by: Stefan Schwabik

Consequently, every $m \in(0,1)$ is a median, as whenever $m \in(0,1)$, we have

$$
\lambda\left(f^{-1}(-\infty, m] \cap[-2,2]\right)=\lambda\left(f^{-1}[m, \infty) \cap[-2,2]\right)=\frac{\lambda([-2,2])}{2}=2 .
$$

Let $\operatorname{med}_{\Omega}(f)$ denote the set of all medians of f over Ω. If $f \in L^{1}(\Omega)$, it is known that $m \in \operatorname{med} \Omega(f)$ if and only if

$$
\int_{\Omega}|f(x)-m| d \lambda^{n}(x)=\min _{y \in \mathbb{R}} \int_{\Omega}|f(x)-y| d \lambda^{n}(x)
$$

(cf. [2], [3]). If Ω is an open, connected subset of \mathbb{R}^{n} with finite Lebesgue measure and f is continuous on Ω, we will show that there exists a unique number M such that $I(M)<I(y)$ for all $y \neq M$.

2 Well-Posedness.

Henceforth, we will assume that Ω is an open, connected subset of \mathbb{R}^{n} with finite Lebesgue measure. Suppose $f \in C(\Omega) \cap L^{1}(\Omega)$. We seek to minimize $I(y)=\int_{\Omega}|f(x)-y| d \lambda^{n}(x)$ over \mathbb{R}.

One can easily see that $I(y)$ is continuous in y.
Theorem 2.1. If $f \in L^{1}(\Omega)$, then $I(y)$ as defined above is a continuous function in y.
Proof. Let $y_{i} \rightarrow y$. We may assume without loss of generality that $\left|y_{i}\right| \leq$ $|y|+1$. Since we know that there exists a sufficiently large number N such that for all $i>N,\left|y_{i}\right| \leq|y|+1$ after discarding finitely many terms (if necessary), we will have the desired property. Next observe that

$$
\begin{equation*}
\left|f(x)-y_{i}\right| \leq|f(x)|+|y|+1 . \tag{1}
\end{equation*}
$$

Furthermore, by virtue of the fact that $f \in L^{1}(\Omega)$ and that $\lambda^{n}(\Omega)<\infty$, we deduce that

$$
\begin{equation*}
\int_{\Omega}[|f(x)|+|y|+1] d \lambda^{n}(x)=C<\infty, \tag{2}
\end{equation*}
$$

where C is a fixed constant. Moreover, for (almost) every $x \in \Omega,\left|f(x)-y_{i}\right| \rightarrow$ $|f(x)-y|$ as $i \rightarrow \infty$. It follows from the Dominated Convergence Theorem (DCT) that

$$
\begin{aligned}
\lim _{y_{i} \rightarrow y} I\left(y_{i}\right) & =\lim _{y_{i} \rightarrow y} \int_{\Omega}\left|f(x)-y_{i}\right| d \lambda^{n}(x) \\
& =\int_{\Omega} \lim _{y_{i} \rightarrow y}\left|f(x)-y_{i}\right| d \lambda^{n}(x)(\mathrm{DCT}) \\
& =\int_{\Omega}|f(x)-y| d \lambda^{n}(x)=I(y)
\end{aligned}
$$

yielding the continuity for $I(y)$.
To minimize $I(y)$, we can restrict y to a compact subset in \mathbb{R}.
Lemma 2.2. If $f \in L^{1}(\Omega)$, then there exists a positive number $B>0$ such that $\min _{y \in \mathbb{R}} I(y)=\min _{y \in[-B, B]} I(y)$.

Proof. It suffices to show that there exist positive numbers B_{1} and B_{2} such that for all $y>B_{1}, I(y)>I\left(B_{1}\right)$, and for all $y<-B_{2}, I(y)>I\left(-B_{2}\right)$, because then we can choose B to be $\max \left\{B_{1}, B_{2}\right\}$. The argument for the existence of B_{1} is identical to the one for that of B_{2}. Since $f \in L^{1}(\Omega)$, there exists B_{1} sufficiently large and positive so that

$$
\begin{equation*}
\lambda^{n}\left\{x \in \Omega: f<B_{1}\right\} \geq \frac{3}{4} \lambda^{n}(\Omega) \tag{3}
\end{equation*}
$$

We claim that for all $y>B_{1}, I(y)>I\left(B_{1}\right)$. Toward this end, we consider the following two expressions:

$$
\begin{gather*}
I(y)=\int_{\Omega}|f-y| d \lambda^{n}(x)= \tag{4}\\
=\int_{\left\{f<B_{1}\right\} \cap \Omega}(y-f) d \lambda^{n}(x)+\int_{\left\{B_{1}<f<y\right\} \cap \Omega}(y-f) d \lambda^{n}(x)+\int_{\{f>y\} \cap \Omega}(f-y) d \lambda^{n}(x) .
\end{gather*}
$$

$$
\begin{gather*}
I\left(B_{1}\right)=\int_{\Omega}\left|f-B_{1}\right| d \lambda^{n}(x)= \tag{5}\\
=\int_{\left\{f<B_{1}\right\} \cap \Omega}^{\left(B_{1}-f\right)} d \lambda^{n}(x)+\int_{\left\{B_{1}<f<y\right\} \cap \Omega}\left(f-B_{1}\right) d \lambda^{n}(x)+\int_{\{f>y\} \cap \Omega}\left(f-B_{1}\right) d \lambda^{n}(x) .
\end{gather*}
$$

Subtracting (5) from (4), we find that

$$
\begin{equation*}
=\int_{\left\{f<B_{1}\right\} \cap \Omega}^{\left(y-B_{1}\right)} d \lambda^{n}(x)+\int_{\left\{B_{1}<f<y\right\} \cap \Omega}\left(y+B_{1}-2 f\right) d \lambda^{n}(x)+\int_{\{f>y\} \cap \Omega}\left(B_{1}-y\right) d \lambda^{n}(x) \tag{6}
\end{equation*}
$$

By (3) and the supposition that $y>B_{1}$, we have

$$
\begin{align*}
\lambda^{n}(\{f>y\} \cap \Omega) & \leq \frac{1}{4} \lambda^{n}(\Omega) . \tag{7}\\
\lambda^{n}\left(\left\{B_{1}<f<y\right\} \cap \Omega\right) & \leq \frac{1}{4} \lambda^{n}(\Omega) . \tag{8}
\end{align*}
$$

Applying inequalities (3), (7), and (8) to (6), one obtains

$$
\begin{aligned}
& I(y)-I\left(B_{1}\right) \\
& \geq \frac{1}{2} \lambda^{n}(\Omega)\left(y-B_{1}\right)+\int_{\left\{B_{1}<f<y\right\} \cap \Omega}\left(y+B_{1}-2 f\right) d \lambda^{n}(x) \\
& \geq \frac{1}{2} \lambda^{n}(\Omega)\left(y-B_{1}\right)+\frac{1}{4} \lambda^{n}(\Omega)\left(y+B_{1}-2 y\right) \\
& =\frac{1}{4} \lambda^{n}(\Omega)\left(y-B_{1}\right)>0,
\end{aligned}
$$

by the assumption that $y>B_{1}$. This proves the claim. To find B_{2}, we can retrace our steps. In this case, we will consider choosing B_{2} sufficiently large and positive so that

$$
\lambda^{n}\left\{x \in \Omega: f>-B_{2}\right\} \geq \frac{3}{4} \lambda^{n}(\Omega)
$$

Going through the same argument, one arrives at the conclusion we stated at the outset.

Therefore, to minimize $I(y)$ over \mathbb{R} is the same as to minimize $I(y)$ over a compact subset $[-B, B]$. Since $I(y)$ is continuous by Theorem 2.1, the Extreme Value Theorem implies that there exists $m \in[-B, B]$ such that $I(m) \leq I(y)$ for all $y \in \mathbb{R}$. Thus, we have shown the following.

Theorem 2.3. If $f \in C(\Omega) \cap L^{1}(\Omega)$, then there exists $m \in \mathbb{R}$ such that $I(m) \leq I(y)$ for all $y \in \mathbb{R}$.

We may further restrict y to a subset $[a, b] \subset[-B, B]$ such that $f: \Omega \rightarrow$ $[a, b]$ is surjective, except possibly at a and b.

Next, we show that there exists a unique $m \in \mathbb{R}$ that minimizes $I(y)$.

Theorem 2.4. If $f \in C(\Omega) \cap L^{1}(\Omega)$, then there exists a unique $m \in \mathbb{R}$ such that $I(m)<I(y)$ for all $y \neq m \in \mathbb{R}$.

Proof. Suppose there exist two absolute minima denoted by m_{1} and m_{2} with $m_{1}<m_{2}$ and $m_{1}, m_{2} \in[a, b]$ defined as above. Thus, $I\left(m_{1}\right)=I\left(m_{2}\right)$. Now,
we have

$$
\begin{aligned}
& I\left(\frac{m_{1}+m_{2}}{2}\right)-\frac{I\left(m_{1}\right)+I\left(m_{2}\right)}{2}= \\
&= \int_{\Omega}\left|\frac{f-m_{1}}{2}+\frac{f-m_{2}}{2}\right| d \lambda^{n}(x) \\
&-\frac{1}{2}\left[\int_{\Omega}\left|f-m_{1}\right| d \lambda^{n}(x)+\int_{\Omega}\left|f-m_{2}\right| d \lambda^{n}(x)\right]= \\
&= \int_{\left\{f \leq m_{1}\right\} \cap \Omega}\left(\frac{m_{1}-f}{2}+\frac{m_{2}-f}{2}\right) d \lambda^{n}(x) \\
&+\int_{\left\{f \geq m_{2}\right\} \cap \Omega}\left(\frac{f-m_{1}}{2}+\frac{f-m_{2}}{2}\right) d \lambda^{n}(x) \\
& \left.+\int_{\left\{m_{1}<f<m_{2}\right\} \cap \Omega} \frac{f-m_{1}}{2}+\frac{f-m_{2}}{2} \right\rvert\, d \lambda^{n}(x) \\
& \quad-\frac{1}{2}\left[\int_{\left\{f \leq m_{1}\right\} \cap \Omega}\left(m_{1}-f\right) d \lambda^{n}(x)+\int_{\left\{f>m_{1}\right\} \cap \Omega}\left(f-m_{1}\right) d \lambda^{n}(x)\right] \\
&= \int_{\left\{m_{1}<f<m_{2}\right\} \cap \Omega} \left\lvert\, \frac{1}{2}\left[\int_{\left\{f \leq m_{2}\right\} \cap \Omega}\left(m_{2}-f\right) d \lambda^{n}(x)+\int_{\left\{f>m_{2}\right\} \cap \Omega}\left(f-m_{2}\right) d \lambda^{n}(x)\right]=\right. \\
& \left.-\int_{\left\{m_{1}<f<m_{2}\right\} \cap \Omega} \frac{f-m_{1}}{2}+\frac{f-m_{2}}{2} \right\rvert\, d \lambda^{n}(x) \\
& \int_{2 \lambda^{n}(x)-\int_{\left\{m_{1}<f<m_{2}\right\} \cap \Omega} \frac{m_{2}-f}{2} d \lambda^{n}(x)<0,}
\end{aligned}
$$

where the last inequality follows from the continuity of f, the triangle equality (if we call $\frac{f-m_{1}}{2}=A$ and $\frac{f-m_{2}}{2}=B$, then $|A+B| \leq|A|+|B|$. However, equality holds if and only if A and B have the same sign; as $A>0$ and $B<0$ in our situation, we arrive at the strict inequality), and the fact that $\lambda^{n}\left(\left\{m_{1}<f<m_{2}\right\} \cap \Omega\right)>0$.

This contradicts the fact that m_{1} and m_{2} are absolute minima. In summary, we conclude that there exists a unique m such that $I(m)<I(y)$ for all $y \in \mathbb{R} \backslash\{m\}$.

The above approach gives an elementary proof of the existence of a unique minimizer to the function $I(y)=\int_{\Omega}|f-y| d \lambda^{n}(x)$ for any continuous, absolutely integrable function on an open, bounded, connected subset Ω of \mathbb{R}^{n}.

3 Acknowledgment.

The author would like to express his gratitude to the referee for helpful comments and suggestions.

References

[1] Lawrence Evans and Ronald Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.
[2] Jun Shao, Mathematical Statistics, Springer-Verlag, New York, 1999.
[3] Daniel Stroock, Probability Theory: An Analytic View, Cambridge University Press, Cambridge, 1993.
[4] James Yeh, Lectures on Real Analysis, World Scientific, River Edge, 2000.

