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TUBE-MEASURABILITY

Abstract

We investigate measurable sets of an outer measure defined using
“tubes,” and prove that the only tube-measurable sets are the tube-null
sets and their complements.

In this note, we investigate measurable sets of an outer measure defined as
follows.

Definition. In Rn, let Ti denote an infinite tube of cross-sectional radius
ri > 0; that is, the closed ri-neighbourhood of some straight line. For a set
E ⊆ Rn, we define its tube-measure by

µ(E) := inf
{∑

i

γn−1r
n−1
i :

⋃
i

Ti ⊇ E
}
,

where γn−1 is the volume of the unit ball of Rn−1. Call E tube-null if µ(E) = 0.

A closely-related outer measure has been introduced by Carbery, Soria,
and Vargas in connection with Fourier localisation. They showed that every
tube-null set is a “set of divergence” for the localisation problem (see [2]).
They observed that the tube-measure is very badly behaved in that Borel sets
need not be measurable. Our main result is the following.

Theorem 1. The only tube-measurable sets are the tube-null sets and their
complements.
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For the proof, we will need some estimates for the tube-measure of sets.
Exact values are not known for even simple sets such as balls except in the
case where n = 2 which corresponds to the famous plank problem [1].

Lemma 2. For every set E ⊆ Rn, we have the upper bound

µ(E) ≤ min |proj(E)|,

where proj(E) denotes a projection of E onto an (n−1)-dimensional subspace,
and | · | denotes the Lebesgue outer measure in Rn−1. For bounded sets E, we
also have the lower bound

µ(E) ≥ |E|
diam(E)

,

where this time | · | denotes Lebesgue outer measure in Rn.

The plank problem tells us that for convex E ⊆ R2, we actually have
µ(E) = min |proj(E)|.1 However, the statement is not true for all convex
bodies, with the tetrahedron in R3 providing a counterexample [1].

Proof of Lemma 2. The upper bound is obvious by covering E with parallel
tubes. For the lower bound, note that for any tube T of cross-sectional radius
r, we have |E ∩ T | ≤ diam(E)γn−1r

n−1. So if
⋃∞

i=0 Ti ⊇ E, we have

|E| =
∣∣∣E ∩ ∞⋃

i=0

Ti

∣∣∣ ≤ ∞∑
i=0

|E ∩ Ti| ≤ diam(E)
∞∑

i=0

γn−1r
n−1
i ,

from which the inequality follows by taking the infimum.

Next we show that the upper bound is the exact value in the case of sets
that are Cartesian products with R.

Lemma 3. If A ⊆ Rn−1, then µ(A× R) = |A|.

Proof. The upper bound is immediate from the previous lemma. For the
lower bound, observe that for all R > 0, we have

µ(A× R) ≥ µ(A× [−R,R]) ≥ 2R|A|
2R+ diam(A)

by the previous lemma, which goes to |A| as R→∞.

1David Fremlin proved this statement for balls, and simplified our proof in his unpub-
lished paper “Tube outer measure.” Although his proof is not published, it is available from
his website [3].
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In particular, the µ-measure of a single tube is exactly its cross-sectional
area, as expected. We are now ready to prove the theorem.

Proof of the main theorem. Let E ⊆ Rn be µ-measurable and, for a
contradiction, suppose that both µ(E) > 0 and µ(Rn \E) > 0. Choose a ball
for which µ(E ∩ ball) > 0. Then for any ε > 0, we can find a family of tubes
Ti covering E ∩ ball such that

(1− ε)
∑

i

µ(Ti) < µ(E ∩ ball) ≤
∑

i

µ(E ∩ ball ∩ Ti).

Therefore there exists a tube T = Ti with

(1− ε)µ(T ) ≤ µ(E ∩ ball ∩ T ) ≤ µ(E ∩ T ).

Subdivide this T into the union of countably many non-overlapping “square
tubes” T =

⋃
Ri (where each Ri is a shifted and rotated copy of [−δi, δi]n−1×

R). Without loss of generality, we can assume that δi ∈ Q for all i. Then,
using Lemma 3,

(1− ε)µ(T ) = (1− ε)
∑

i

µ(Ri), (1)

hence
(1− ε)

∑
i

µ(Ri) ≤ µ(E ∩ T ) ≤
∑

i

µ(E ∩Ri).

Therefore we can choose a square tube R = Ri with

(1− ε)µ(R) ≤ µ(E ∩R). (2)

We can similarly do this for Rn \ E. The two square tubes we have found
may be of different widths, but since both of the widths are rational, we can
subdivide as before into the union of square tubes of some common, smaller
width δ > 0, and from each of the two collections, select a tube still satisfying
(2).

So we now have some δ > 0 (which depends on ε) and two copies of
[−δ, δ]n−1 × R that we denote by R1 and R2 such that

(1− ε)µ(R1) ≤ µ(R1 ∩ E)
(1− ε)µ(R2) ≤ µ(R2 \ E).

(3)

Choose disjoint δ-balls B1 ⊆ R1, B2 ⊆ R2. We now want to pass from balls
to very eccentric sets because for such sets the upper and lower bounds of
Lemma 2 are almost equal. So into each ball Bi (i = 1, 2), place a cuboid
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Ci of diameter 2δ with n− 1 of its edges all equal to some small η > 0 to be
chosen later. By Pythagoras’ Theorem, their measure is

|C1| = |C2| = ηn−1
√

4δ2 − (n− 1)η2.

Orient the two cuboids within the balls so that they both lie in the Cartesian
product of R with a common cube of side η. Then

ηn−1 ≥ µ(C1 ∪ C2) by Lemma 2

= µ
(
(C1 ∪ C2) ∩ E

)
+ µ

(
(C1 ∪ C2) \ E

)
by measurability of E

≥ µ(C1 ∩ E) + µ(C2 \ E) by monotonicity
= µ(C1)− µ(C1 \ E) + µ(C2)− µ(C2 ∩ E) by measurability of E.

Now by Lemma 2, we have µ(C2) = µ(C1) ≥ |C1|/diam(C1) = |C1|/2δ. Also,
by measurability of E and (3),

µ(C1 \ E) ≤ µ(R1 \ E) ≤ εµ(R1) = ε(2δ)n−1

µ(C2 ∩ E) ≤ µ(R2 ∩ E) ≤ εµ(R2) = ε(2δ)n−1.

Putting these together, we find

ηn−1 ≥ 2
( |C1|

2δ
− ε(2δ)n−1

)
,

that is,

1 ≥ 2
( |C1|

2δηn−1
− ε(2δ/η)n−1

)
. (4)

We must choose suitable values of the parameters so that this is a contradic-
tion. Note that

|C1|/2δηn−1 =
√

1− (n− 1)(η/2δ)2.

So we choose our ε and δ as follows. First, let

p <

√
3

4(n− 1)

so that √
1− (n− 1)p2 > 1/2.

Choose ε so small that√
1− (n− 1)p2 − ε/pn−1 > 1/2.

Then in the above construction, use this ε and let η = 2δp. Then (4) gives

1 ≥ 2
(√

1− (n− 1)(η/2δ)2 − ε(2δ/η)n−1
)
> 1,

a contradiction.
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