
RESEARCH Real Analysis Exchange
Vol. 33(1), 2007/2008, pp. 151–158
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Abstract

Notions of density points and topologies associated with various set-
theoretic ideals connected with Hausdorff measures are introduced and
their properties investigated. Inclusions between the ideals and between
the topologies are shown.

It is well known that there are several senses (categorical, measure-theoretic,
etc.) in which a subset of the real line may be “small.” In particular, for any
s ∈ (0, 1), one can consider a natural family of small sets connected with
Hausdorff s-dimensional measure: the family of null sets for this measure.
These families depend on the chosen s and it is obvious that there are natural
inclusions between them.

It is natural to ask whether, given a fixed s, as above, one can introduce
other proper set-theoretic ideals related to the Hausdorff s-dimensional mea-
sure which will allow for a finer distinctions between various types of small
sets. In this paper we show that this is indeed possible by considering the
ideals of sets of σ-finite measure and of sets whose Hausdorff dimension is at
most equal to s. We further analyze some properties of related density and
Hashimoto-type topologies and observe that the so-defined variety of ideals
allows us to construct different kinds of sets which are “dense” in their every
point in the sense of Hausdorff measures but do not belong to the density
topology connected with Lebesgue measure.

Recall the basic notions of the properties to be used [1].
If U is a non-empty subset of Rn, the diameter of U is defined as |U | =

sup{d(x, y) : x, y ∈ U}, where d denotes the Euclidean metric in Rn. Let
δ > 0. If E ⊂

⋃
i∈I Ui and 0 < |Ui| ≤ δ for each i ∈ I, then {Ui}i∈I is said to

be a δ-cover of E.
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Let E ⊂ Rn and s ≥ 0. For δ > 0, define

Hsδ(E) = inf
∞∑
i=1

|Ui|s, (1)

where the infimum is over all countable δ-covers {Ui}i∈N of E. It is easy to
see that Hsδ is an outer measure on Rn.

Finally, the Hausdorff s-dimensional outer measure is defined by the for-
mula Hs(E) = limδ→0Hsδ(E) or, equivalently, by Hs(E) = supδ>0Hsδ(E).

For a given set E ⊂ Rn, there is a unique s ∈ [0,∞] such thatHt(E) = +∞
for all t < s and Ht(E) = 0 for all t > s. This value is called the Hausdorff
dimension of the set E. We denote it by dimE.

The definition of the Hausdorff measure may be generalized [3] by replacing
|Ui|s by h(|Ui|) in (1), where h is some function defined for all t ≥ 0 (possibly
taking the value +∞ for some t), positive for t > 0, increasing and continuous
on the right. The family of such functions will be denoted by H, and the
Hausdorff measure which is obtained using the function h by µh (so that if
fr(t) = tr for t ∈ [0,+∞), then µfr = Hr).

Now we want to restrict our considerations to the real line. Since, for
any s > 1, each subset of R has outer Hs measure equal to 0, for s = 0 we
get counting measure and for s = 1 Lebesgue measure, we assume now that
s ∈ (0, 1).

For a given s ∈ (0, 1) we can consider the following families of sets.

Ns = {A ⊂ R : Hs(A) = 0},
Ns−dim = {A ⊂ R : dimA ≤ s},
Ns−σ7 = {A ⊂ R : A is of σ-finite measure Hs}.

Each of these families is a σ-ideal. The following inclusions are easily seen:
Ns ⊂ Ns−σ ⊂ Ns−dim. The first inclusion is proper [1]. We shall show that so
is the second one. Before we do it, we need a few more facts.

First, following Rogers [3, p. 78], introduce a partial order into the family
H, by saying that g corresponds to a smaller generalized dimension than h, if
h(t)/g(t)→ 0 as t→ 0 and denoting this by g ≺ h. We also need the following
theorem.

Theorem (Rogers [3] Cor. to Thm. 40 on p. 79). Let f, g, h be functions
in H with f ≺ g ≺ h. If a subset E of a metric space has σ-finite positive
µg-measure, then µh(E) = 0 and E has non-σ-finite µf -measure.

Now we are ready to formulate and prove the previously mentioned theo-
rem.
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Theorem 1. For any given s0 ∈ (0, 1), there exists a set E ⊂ R which has
non-σ-finite measure Hs0 , but whose Hausdorff dimension is equal to s0.

Proof. Our proof starts with the observation that, if there exists a function
g ∈ H such that fs0 ≺ g ≺ hr, where fs0(t) = ts0 and hr(t) = tr, for all
r > s0, then a set E of positive σ-finite measure µg satisfies the conditions of
our statement, since, by the theorem quoted above, we are able to conclude
that E has non-σ-finite measure Hs0 and for all r > s0, we get Hr(E) = 0.
Hence dim(E) = s0.

It remains to prove that such a function g exists, since the existence of a
set of positive finite measure µg for a given function g ∈ H was established in
[1].

Let {sn}n∈N be a decreasing sequence of numbers in (0, 1), converging to
s0. Then, with the notation fn(t) = tsn for n ∈ N ∪ {0}, we have f0 ≺ · · · ≺
fn ≺ fn−1 ≺ · · · ≺ f2 ≺ f1. Indeed, fn−1(t)/fn(t) = tsn−1−sn → 0 as t → 0,
since sn−1 − sn > 0. Similarly, we can see that f0 ≺ fn for every n ∈ N.

We now define the sequence {tn}n∈N. Since both limt→0
f1(t)
f2(t)

= 0 and

limt→0
f3(t)
f0(t)

= 0, one can find a point t1 such that f1(t1)
f2(t1)

< 1
2 and f3(t1)

f0(t1)
<

1
2 . From now on we proceed by induction. Suppose we have already cho-
sen points t1, . . . , tn with the following properties: t1 > t2 > · · · > tn,
fk(tk)
fk+1(tk) <

1
k+1 , fk+2(tk)

f0(tk) < 1
k+1 and fk+1(tk) < fk(tk−1) for k ∈ {2, . . . , n}.

Since limt→0
fn+1(t)
fn+2(t)

= 0 and limt→0
fn+3(t)
f0(t)

= 0, we can find a point tn+1

such that tn+1 < tn, fn+1(tn+1)
fn+2(tn+1)

< 1
n+2 and fn+3(tn+1)

f0(tn+1)
< 1

n+2 . Moreover,
since limt→0 fn+2(t) = 0 we can assume, by decreasing tn+1, if necessary, that
fn+2(tn+1) < fn+1(tn).

Let g be defined by

g(t) =


0 for t = 0,
fn+1(tn) for t = tn, n ∈ N,
increasing and continuous for t ∈ [tn+1, tn],

and such that fn+1(t) ≤ g(t) ≤ fn+2(t) on this interval.

It is evident that the function g belongs to H and for n ∈ N the quotient fn(t)
g(t)

is not greater that fn(t)
fn+1(t)

for t < tn, which is smaller than 1
n+1 and g(t)

f0(t)
for

t ∈ [tn+1, tn] is not greater than fn+2(t)
f0(t)

which is smaller than 1
n+1 . Therefore

f0 ≺ g ≺ fn for n ∈ N. Since for each r > s0, there exists sn such that sn < r,
it follows that f0 ≺ g ≺ fn ≺ h, which completes the proof.

From the definition of Hs it follows that for arbitrary E ⊂ R, if s < t < 1,
then Hs(E) ≥ Ht(E) ≥ λ(E). Moreover, if Ht(E) > 0, then Hs(E) = ∞
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and for each s ∈ (0, 1) there exists a set E ⊂ R with positive and finite outer
measure Hs [1]. Consequently, if 0 < s < t < 1, then Ns ⊂ Nt ⊂ N , and these
inclusions are proper. It is also evident that Ns−dim ⊂ Nt and, taking a set
E ∈ Nt \ N s+t

2
, one can see that the last inclusion is proper.

Summarizing, we have the following assertion.

Theorem 2. If 0 < s < t < 1, then

N0−dim =
⋂

0<r<1

Nr ⊂ Ns ⊂ Ns−σ ⊂ Ns−dim ⊂ Nt ⊂ N ,

and all these inclusions are proper.

It is worth pointing out that all the σ-ideals mentioned above are invariant
under multiplication by numbers. This is a simple consequence of the following
property of the Hausdorff s-dimensional outer measure: Hs(α·A) = |α|sHs(A)
for α ∈ R, A ⊂ R, s ∈ (0, 1).

Using the σ-ideal Ns, E. Wagner-Bojakowska and W. Wilczyński [4] intro-
duced the notion of anHs-density point and defined an operation Φs : L → 2R.

Definition 1 ([4]). The point 0 is an Hs-density point of a set A ∈ L if,
and only if, for each subsequence {nk}k∈N of the sequence of positive integers,
there exists a subsequence {nkp}p∈N such that

χ(nkp ·A)∩[−1,1] −−−→
p→∞

χ[−1,1]

except on a set from Ns. (Here n · A = {na : a ∈ A} and χA denotes the
characteristic functions of A.) Clearly, the convergence above holds if and only
if lim supp(nkp ·A′) ∩ [−1, 1] ∈ Ns, where A′ = R \A.

A point x is said to be an Hs-density point of A ∈ L if, and only if, 0 is
an Hs-density point of the set A − x = {a − x : a ∈ A}. Two sets A and B
are called s-equivalent (A ∼ B), if A4B ∈ Ns.

For A ∈ L, 0 < s < 1 let

Φs(A) = {x ∈ R : x is an Hs-density point of A},

and let Φ(A) denote the set of all density points of A, for A ∈ L.
Replacing the σ-ideal Ns by Ns−σ (or Ns−dim), we define below an opera-

tion Φs−σ (or, respectively, Φs−dim).

Definition 2. For any A ∈ L and s ∈ (0, 1), let

Φs−σ(A) =
{
x ∈ R :∀{nk}k∈N⊂{n}n∈N∃{nkp}p∈N⊂{nk}k∈N

lim sup
p

(nkp
· (A′ − x)) ∩ [−1, 1] ∈ Ns−σ

}
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and

Φs−dim(A) =
{
x ∈ R :∀{nk}k∈N⊂{n}n∈N∃{nkp}p∈N⊂{nk}k∈N

lim sup
p

(nkp
· (A′ − x)) ∩ [−1, 1] ∈ Ns−dim

}
.

Theorem 2 now implies that for each s, t, 0 < s < t < 1, we can find
sets A,B,C,D ∈ L such that Φs(A) ( Φs−σ(A), Φs−σ(B) ( Φs−dim(B),
Φs−dim(C) ( Φt(C), and Φt(D) ( Φ(D).

Theorem 3. For each A,B ∈ L and s ∈ (0, 1),
1. if A ⊂ B, then Φs−σ(A) ⊂ Φs−σ(B);
2. if A ∼s−σ B (i.e. A4B ∈ Ns−σ), then Φs−σ(A) = Φs−σ(B);
3. Φs−σ(∅) = ∅ and Φs−σ(R) = R;
4. Φs−σ(A ∩B) = Φs−σ(A) ∩ Φs−σ(B);
5. there exists a set E ∈ L such that E \ Φs−σ(E) /∈ Ns−σ (a natural

analogue of the Lebesgue Density Theorem does not hold).

The operations Φs−dim and Φs also have properties (1)–(5). (For Φs, see
[4].)

Proof. For (1)–(4) the proofs are obvious. In (5) it is enough to take a set
E with positive and finite outer measure Ht for t > s. Then λ(E) = 0 and
Φ(E) = ∅. Consequently, Φs(E) = Φs−σ(E) = Φs−dim(E) = ∅, and E does
not belong to Nt, nor to Ns−dim, Ns−σ or Ns.

In [4] the following topology Ts was introduced: Ts = {A ∈ L : A ⊂
Φs(A)} for s ∈ (0, 1). This topology is stronger than the Euclidean topology
O and weaker than the density topology T . It is also shown in [4] that

1) if 0 < s < t < 1 then Ts ( Tt,
2)

⋃
0<s<t Ts ( Tt, and

3)
⋃

0<s<1 Ts ( T .

Definition 3. For any s ∈ (0, 1) let Ts−σ = {A ∈ L : A ⊂ Φs−σ(A)} and
Ts−dim = {A ∈ L : A ⊂ Φs−dim(A)}.

Theorem 4. Let 0 < s < t < 1. The families Ts−σ and Ts−dim are topologies
on the real line and Ts ( Ts−σ ( Ts−dim ( Tt.

Proof. The fact that these families are topologies is easily seen and also the
inclusions are obvious. We only need to show the latter are proper. We begin
by proving Ts−σ \ Ts 6= ∅.

From Theorem 5.4 of [1], it follows that there exists a compact set F ⊂ [ 34 , 1]
such that 0 < Hs < +∞. So, F ∈ Ns−σ \ Ns. Let A =

⋃∞
n=1

1
2n−1 · F and
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B = R \ A. We claim that B ∈ Ts−σ \ Ts. Indeed, each point of the set B,
except 0, is an inner point of this set in the Euclidean topology. It remains to
show that 0 ∈ Φs−σ(B). Let {nk}k∈N be an arbitrary increasing sequence of
natural numbers. Then

lim sup
k

(nk ·B′) ∩ [−1, 1] = (
∞⋂
k=1

∞⋃
m=k

(nm ·A)) ∩ [−1, 1] ⊂
∞⋃
k=1

(nk ·A) ∩ [−1, 1].

Since F ∈ Ns−σ, and this σ-ideal is closed under multiplication by numbers,
A ∈ Ns−σ and, of course,

⋃∞
k=1(nk ·A) ∩ [−1, 1] also belongs to Ns−σ.

Now the task is to show 0 /∈ Φs(B). For this, it is enough to find an in-
creasing sequence {nk}k∈N of natural numbers such that for each subsequence
{nkp}p∈N the set lim supp(nkp · B′) ∩ [−1, 1] is not from the σ-ideal Ns. Let
nk = 2k for k ∈ N. Then, for each k ∈ N, (2k · A) ∩ [−1, 1] = A ∩ [−1, 1] and
for any subsequence {nkp

}p∈N ⊂ {nk}k∈N we have

lim sup
p

(nkp
·B′) ∩ [−1, 1] = lim sup

p
(nkp

·A) ∩ [−1, 1] = A ∩ [−1, 1] /∈ Ns,

since F ⊂ A ∩ [−1, 1].
The same proof remains valid for the next pairs of topologies, since all of

them were defined in the same way, the ideals which were used are invariant
under multiplication by numbers, and inclusions between them are proper
(Theorem 1).

Some properties of the topologies Ts, Ts−σ and Ts−dim for any s ∈ (0, 1)
are listed below:

1. The topologies Ts, Ts−σ, Ts−dim are stronger then the Euclidean topol-
ogy, so each of them is Hausdorff.

2. Each countable set belongs to Ns, so it is a closed set in each topology
Ts, Ts−σ and Ts−dim. Therefore, these spaces are not separable and every
compact subspace of (R, Ts), (R, Ts−σ) or (R, Ts−dim) is finite.

3. None of Ts, Ts−σ or Ts−dim forms a Lindelöf space. Indeed, for every
s ∈ (0, 1), there exists an uncountable set C belonging toNs (It is enough
to take the Cantor set with Hausdorff dimension greater then s [5, Cor.
29.23].), so that {(R \C)∪{x}}x∈C is a Ts-open cover of R without any
subcover of power less than the continuum. The same example allows
us to prove the property for Ts−σ and Ts−dim.

4. None of the spaces (R, Ts), (R, Ts−σ), (R, Ts−dim) is first countable. In-
deed, take x ∈ R and let {En}n∈N be a sequence of Ts-open neighbor-
hoods of x. For each n ∈ N choose xn ∈ En \{x} and put E = E1 \{xn :
n ∈ N}. Then E is a Ts-open neighborhood of x which does not include
any En. For other topologies we can proceed similarly.
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5. The family of Ts, (Ts−σ or Ts−dim)-connected sets coincides with the
family of sets connected in the natural topology.

Using σ-ideals we can consider also Hashimoto type topologies [2].

Definition 4. For any s ∈ (0, 1) let

T ∗s = {G \N : G ∈ O ∧N ∈ Ns},
T ∗s−σ = {G \N : G ∈ O ∧N ∈ Ns−σ},
T ∗s−dim = {G \N : G ∈ O ∧N ∈ Ns−dim}.

Obviously, these families are topologies and, by Theorem 2, we have the
following proper inclusions

T ∗s ( T ∗s−σ ( T ∗s−dim ( T ∗t , (2)

for any s, t ∈ (0, 1), s < t.

Remark 1. Of course each Hashimoto type topology is contained in the den-
sity type topology defined by using the same σ-ideal; for example T ∗s ⊂ Ts,
since if A ∈ T ∗s , then A = G \ N , where G ∈ O and N ∈ Ns, so A ⊂ G ⊂
φs(G) = φs(A) since O ⊂ Ts and A ∼s G. Therefore A ∈ Ts. The situation is
analogous for other σ-ideals.

Theorem 4, (2) and the last remark yield the following scheme

T ∗s ( T ∗s−σ ( T ∗s−dim ( T ∗t
∩ ∩ ∩ ∩
Ts ( Ts−σ ( Ts−dim ( Tt

for any s, t ∈ (0, 1), s < t.
To see that the inclusions T ∗s ⊂ Ts, T ∗s−σ ⊂ Ts−σ, T ∗s−dim ⊂ Ts−dim are

proper, it is enough to show that Ts is not contained in T ∗t . Let B denote
an interval set B =

⋃∞
n=1[an, bn] such that an+1 < bn+1 < an for any n ∈ N,

the sequence {bn} tends to zero, limn→∞
bn−an

an
= 0 and limn→∞

an−bn+1
an

= 1.
Then 0 ∈ Φs(R \B) and A = R \B ∈ Ts, but for any interval (a, b) containing
zero, there exists an interval [an, bn] ⊂ (a, b) of positive Lebesgue measure,
so it is does not belong to Nt. Therefore A /∈ T ∗t . Moreover, it shows also
that none of topologies Ts, Ts−σ, Ts−dim and Tt is contained in any topology
of Hashimoto type.

Some pairs of considered topologies are incomparable: T ∗s−σ \ Ts 6= ∅,
T ∗s−dim \ Ts−σ 6= ∅ and T ∗t \ Ts−dim 6= ∅. To show, for example, that the first
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family is not empty we take a compact set F ⊂ [ 34 , 1] with F ∈ Ns−σ \ Ns.
Then A =

⋃∞
n=1

1
2n−1 · F ∈ Ns−σ \ Ns. The complement of the set A belongs

to T ∗s−σ and 0 /∈ Φs(R \A). (See the proof of Theorem 2.)
Summarizing, we have the following scheme:

T ∗s ( T ∗s−σ ( T ∗s−dim ( T ∗t
-∩ -∩ -∩ -∩
Ts ( Ts−σ ( Ts−dim ( Tt
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