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Abstract

In this article we prove that some results of Richter and Stephani
concerning the cluster sets of quasicontinuous and cliquish real func-
tions ([6]) are also true for the special quasicontinuities introduced by
Piotrowski and Vallin in [5].

Let (X,TX) and (Y, TY ) be topological spaces. A function g : X → R is
called:

(1) quasicontinuous (resp. cliquish) at a point x ∈ X if for every set U ∈ TX

containing x and for each positive real ε there is a nonempty set U ′ ∈ TX

contained in U such that g(U ′) ⊂ (g(x)−ε, g(x)+ε) (resp. the diameter
diam(g(U ′)) = sup{|g(t)− g(u)| : t, u ∈ U ′} < ε) ([3], [4]);

A function f : X × Y → R is said to be:
(2) quasicontinuous at (x, y) with respect to the first coordinate (alterna-

tively to the second coordinate) if for every set U×V ∈ TX×TY contain-
ing (x, y) and for each positive real ε there are nonempty sets U ′ ∈ TX

contained in U and V ′ ∈ TY contained in V such that x ∈ U ′ (alterna-
tively y ∈ V ′) and f(U ′ × V ′) ⊂ (f(x, y)− ε, f(x, y) + ε) ([5]);

(3) cliquish at (x, y) with respect to the first coordinate (alternatively to the
second coordinate) if for every set U × V ∈ TX × TY containing (x, y)
and for each positive real ε there are nonempty sets U ′ ∈ TX contained
in U and V ′ ∈ TY contained in V such that x ∈ U ′ (alternatively y ∈ V ′)
and diam(f(U ′ × V ′)) < ε ([1]);
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(4) symmetrically quasicontinuous (resp. symmetrically cliquish) at (x, y) if
it is quasicontinuous (alternatively cliquish) at (x, y) with respect to the
first and with respect to second coordinate ([5], [1]).

Recall that a set A ⊂ X is semi-open if A ⊂ cl(int(A)) and that g : X → R
is quasicontinuous at x ∈ X if and only if for each positive real ε there is a
semi-open set A 3 x with g(A) ⊂ (g(x)− ε, g(x) + ε) ([4]).

Denote by SO(X) (resp. by SO(X,Y )) the family of all semi-open sets in
X (resp. in X×Y ). Moreover, if A ⊂ X×Y , then for x ∈ X (resp. y ∈ Y ) let
Ax = {v ∈ Y : (x, v) ∈ A} (resp. Ay = {u ∈ X : (u, y) ∈ A}) be the vertical
(resp. horizontal) section of A. Let

SO1(X,Y ) = {A ⊂ X × Y : if (x, y) ∈ A, then y ∈ cl((int(A))x)}

and

SO2(X,Y ) = {A ⊂ X × Y : if (x, y) ∈ A, then x ∈ cl((int(A))y)}.

By standard arguments we obtain the following assertions.

Remark 1. A function f : X × Y → R is quasicontinuous with respect to
the first coordinate at a point (u, v) if and only if for each positive real ε there
is a set A ∈ SO1(X,Y ) containing (u, v) and such that f(A) ⊂ (f(u, v) −
ε, f(u, v) + ε).

Remark 2. A function f : X × Y → R is quasicontinuous with respect to the
second coordinate at a point (u, v) if and only if for each positive real ε there
is a set A ∈ SO2(X,Y ) containing (u, v) and such that f(A) ⊂ (f(u, v) −
ε, f(u, v) + ε).

Remark 3. A function f : X×Y → R is symmetrically quasicontinuous at a
point (u, v) if and only if for each positive real ε there is a set A ∈ SO1(X,Y )∩
SO2(X,Y ) containing (u, v) and such that f(A) ⊂ (f(u, v)− ε, f(u, v) + ε).

Definition 1. (cf. [6]). Let f : X×Y → R be a function and let (u, v) ∈ X×Y
be a point. Then the set

SO1C(f ; (u, v)) = {γ ∈ R : for every ε > 0 there is a set S ∈ SO1(X,Y ) with

(u, v) ∈ cl(S), S ∪ {(u, v)} ∈ SO1(X,Y ) and |f(s, t)− γ| < ε for all (s, t) ∈ S}

is called the SO1-cluster set of the function f at the point (u, v).

Replacing in Definition 1 the set “SO1(X,Y )” by “SO2(X,Y )” (or by
“SO1(X,Y ) ∩ SO2(X,Y )”) we define the SO2-cluster set SO2C(f ; (u, v)) (or
the SOS-cluster set SOSC(f ; (u, v))) of the function f at the point (u, v).
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Moreover, we use the standard symbol C(g;u) for the cluster set of a
function g : X → R at a point u. Observe that (see [6])

C(g;u) =
⋂

U∈B(u)

cl(f(U)) = {γ ∈ R : for each ε > 0 there is a set A ⊂ X

with u ∈ cl(A) and |g(t)− γ| < ε for all t ∈ A},

where B(u) is an arbitrary basis of the neighborhood system U(u) of u.
In [6, Proposition 1] the authors observed that a function g : X → R is

quasicontinuous at a point u ∈ X if and only if g(u) ∈ SOC(g;u). Standard
arguments yield the following analogue.

Theorem 1. A function f : X × Y → R is quasicontinuous with respect
to the first coordinate at a point (u, v) ∈ X × Y if and only if f(u, v) ∈
SO1C(f ; (u, v)).

Theorem 2. A function f : X × Y → R is quasicontinuous with respect
to the second coordinate at a point (u, v) ∈ X × Y if and only if f(u, v) ∈
SO2C(f ; (u, v)).

Theorem 3. A function f : X × Y → R is symmetrically quasicontinuous at
a point (u, v) ∈ X × Y if and only if f(u, v) ∈ SOSC(f ; (u, v)).

If f : X × Y → R is a function and (u, v) ∈ X × Y is a point, then the
functions fu(t) = f(u, t), t ∈ Y , and fv(z) = f(z, v), z ∈ X, are called the
vertical and horizontal sections of f . In [6, Proposition 2] the authors prove
that if a function g : X → R is quasicontinuous, then SOC(g;x) = C(g;x) for
all points x ∈ X. An analogue of this is the following.

Theorem 4. If a function f : X × Y → R is quasicontinuous with re-
spect to the first coordinate, then for each point (u, v) ∈ X × Y the equality
SO1C(f ; (u, v)) = C(fu; v) is true.

Proof. Fix a point (u, v) ∈ X × Y and observe that the inclusion

SO1C(f ; (u, v)) ⊂ C(fu; v)

is true. For the proof of the opposite inclusion fix a real γ ∈ C(fu; v) and a
real ε > 0. There is a set A ⊂ Y with

v ∈ cl(A) and |f(u, y)− γ| < ε

2
for y ∈ A.

Since f is quasicontinuous with respect to the first coordinate at all points
(u, y), y ∈ A, for all points y ∈ A there are sets U(y) ∈ SO1(X,Y ) containing
(u, y) and such that

f(U(y)) ⊂
(
f(u, y)− ε

2
, f(u, y) +

ε

2

)
⊂ (γ − ε, γ + ε).
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Consequently, the set E =
⋃

y∈A int(U(y)) satisfies

E, E ∪ {(u, v)} ∈ SO1(X,Y ), (u, v) ∈ cl(E) and f(E) ⊂ (γ − ε, γ + ε).

So, γ ∈ SO1C(f ; (u, v)) and the proof is completed.

Using similar methods as for the previous theorem one can prove the next
two theorems.

Theorem 5. If a function f : X × Y → R is quasicontinuous with respect
to the second coordinate, then for each point (u, v) ∈ X × Y the equality
SO2C(f ; (u, v)) = C(fv;u) is true.

Theorem 6. If a function f : X × Y → R is symmetrically quasicontinuous
then for each point (u, v) ∈ X × Y the equality SOSC(f ; (u, v)) = C(fu; v) ∩
C(fv;u) is true.

In [6, Proposition 3] the authors show that if a function g : X → R and
a point u ∈ X are such that SOC(g;u) 6= ∅, then g is cliquish at u, and
conversely, if g is cliquish at u and locally bounded at u, then SOC(g;u) 6= ∅.
We obtain the following analogue.

Theorem 7. Let f : X × Y → R be a function and let (u, v) ∈ X × Y be
a point. If SO1C(f ; (u, v)) 6= ∅, then f is cliquish with respect to the first
coordinate at (u, v). Conversely, if f is locally bounded at (u, v) and f is
cliquish with respect to the first coordinate, then SO1C(f ; (u, v)) 6= ∅.

Proof. We apply a modification of the reasoning from [6]. Observe that if
SO1C(f ; (u, v)) 6= ∅, then f is cliquish with respect to the first coordinate
at (u, v). Assume that f is locally bounded and cliquish with respect to the
first coordinate at (u, v). There are a positive real M and a base B((u, v))
for the neighborhood system U((u, v)) such that for B ∈ B((u, v)) the images
f(B) ⊂ [−M,M ]. For each set B ∈ B((u, v)) and each real ε > 0 put

H(f ;u;B; ε) = {γ ∈ R : there exists a nonempty open set G ⊂ B
with u ∈ PrX(G) and f(G) ⊂ (γ − ε, γ + ε)},

where PrX(G) denotes the projection of G onto X. Since f is cliquish with
respect to the first coordinate at (u, v), the sets H(f ;u;B; ε) are nonempty.
They are also bounded. Observe that

SO1C(f ; (u, v)) =
⋂

B∈B((u,v)),ε>0

cl(H(f ;u;B; ε)).
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Thus, if the set SO1C(f ; (u, v)) is empty, then there is a finite intersection

n⋂
i=1

cl(H(f ;u;Bi; εi)) = ∅.

But
n⋂

i=1

cl(H(f ;u;Bi; εi)) ⊃
n⋂

i=1

H(f ;u;Bi; εi) ⊃ H

(
f ;u;

n⋂
i=1

Bi; mini≤nεi

)
6= ∅,

and this contradiction implies that SO1C(f ; (u, v)) 6= ∅.

In the same spirit as the preceding theorem one can prove also the next
two theorems.

Theorem 8. Let f : X × Y → R be a function and let (u, v) ∈ X × Y be
a point. If SO2C(f ; (u, v)) 6= ∅, then f is cliquish with respect to the second
coordinate at (u, v). Conversely, if f is locally bounded at (u, v) and f is
cliquish with respect to the second coordinate, then SO2C(f ; (u, v)) 6= ∅.

Theorem 9. Let f : X × Y → R be a function and let (u, v) ∈ X × Y be
a point. If SOSC(f ; (u, v)) 6= ∅, then f is symmetrically cliquish at (u, v).
Conversely, if f is locally bounded at (u, v) and f is symmetrically cliquish,
then SOSC(f ; (u, v)) 6= ∅.

Let f : X × Y → R be a function and let C(f) be the set of all continuity
points of f . A function hf : X×Y → R is said to be an admissible modification
of a function f if hf (x) = f(x) for all x ∈ C(f) and C(f) ⊂ C(hf ). In [6,
Theorem 3] the authors prove that if g : X → R is such that SOC(g;u) 6= ∅
for all u ∈ X, then each function h : X → R, with h(u) ∈ SOC(g;u) for
u ∈ X, is a quasicontinuous admissible modification of g such that SOC(h;u) =
SOC(g;u) for all u ∈ X. As an analogue of that result we have the following.

Theorem 10. Let f : X×Y → R be a function such that SO1C(f ; (u, v)) 6= ∅
for each point (u, v) ∈ X × Y . Then each function hf : X × Y → R with
hf (u, v) ∈ SO1C(f ; (u, v)) is an admissible modification of f quasicontinuous
with respect to the first coordinate such that SO1C(hf ; (u, v)) = SO1C(f ; (u, v))
for all (u, v) ∈ X × Y .

Proof. Since

SO1C(f ; (u, v)) ⊂ SOC(f ; (u, v)) for all (u, v) ∈ X × Y,

[6, Theorem 3] shows that hf is an admissible modification of f . For the proof
of the remaining part of our theorem we repeat also the reasoning from the
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proof of [6, Theorem 3]. For the proof of the coincidence of SO1C(hf ; (u, v))
and SO1C(f ; (u, v)) fix a point (u, v) and γ ∈ SO1C(hf ; (u, v)). Let ε > 0 be
a real and let U be an open neighborhood of (u, v). There is a point t ∈ Y
such that (u, t) ∈ U and |hf (u, t) − γ| < ε

2 . Since hf (u, t) ∈ SO1C(f ; (u, t))
and (u, t) ∈ U , there is an open set G ⊂ U such that

u ∈ PrX(G) and |f(w, z)− hf (u, t)| < ε

2
for (w, z) ∈ G.

So, f(G) ⊂ (γ−ε, γ+ε) and consequently, SO1C(hf ; (u, v)) ⊂ SO1C(f ; (u, v)).
Now, let γ ∈ SO1C(f ; (u, v)). For proving γ ∈ SO1C(hf ; (u, v)) fix an open

set V 3 (u, v) and a real η > 0. There is an open set H ⊂ V such that u ∈
PrX(H)and f(H) ⊂ (γ−η, γ+η). The inclusion f(H) ⊂ [γ−η, γ+η] implies
that hf (H) ⊂ [γ−η, γ+η]. Consequently, SO1C(f ; (u, v)) ⊂ SO1C(hf ; (u, v)).
This completes the proof of the equality SO1C(f ; (u, v)) = SO1C(hf ; (u, v)).
Since

hf (u, v) ∈ SO1C(f ; (u, v)) = SO1C(hf ; (u, v)),

at all points (u, v), by Theorem 1 we obtain that hf is quasicontinuous with
respect to the first coordinate.

Now, we can use similar methods to show the following two theorems.

Theorem 11. Let f : X×Y → R be a function such that SO2C(f ; (u, v)) 6= ∅
for each point (u, v) ∈ X × Y . Then each function hf : X × Y → R
with hf (u, v) ∈ SO2C(f ; (u, v)) is an admissible modification of f quasicon-
tinuous with respect to the second coordinate such that SO2C(hf ; (u, v)) =
SO2C(f ; (u, v)) for all (u, v) ∈ X × Y .

Theorem 12. Let f : X×Y → R be a function such that SOSC(f ; (u, v)) 6= ∅
for each point (u, v) ∈ X × Y . Then each function hf : X × Y → R with
hf (u, v) ∈ SOSC(f ; (u, v)) is an admissible modification of f symmetrically
quasicontinuous such that SOSC(hf ; (u, v)) = SOSC(f, (u, v)) for all (u, v) ∈
X × Y .

In [6, Theorem 4] the authors show that for each admissible modification
hg : X → R of a cliquish function g : X → R on a Baire space X the equality
SOC(g;u) = SOC(hg;u) is true at all points u ∈ X. An analogue of that
theorem is the following.

Theorem 13. Suppose that (Y, TY ) is a Baire space and that a function f :
X × Y → R is cliquish with respect to the first coordinate. Then for each
admissible modification hf of f the equality SO1C(f ; (u, v)) = SO1C(hf ; (u, v))
is true at all points (u, v) ∈ X × Y .
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Proof. We apply a modification of the proof of [6, Theorem 4]. Fix a point
(u, v) and assume that SO1C(hf ; (u, v)) 6= ∅. Let γ ∈ SO1C(hf ; (u, v)), let
U 3 (u, v) be an open set and let ε be a positive real. There is an open set
G ⊂ U such that u ∈ PrX(G)and hf (G) ⊂

(
γ − ε

2 , γ + ε
2

)
. Since f is cliquish

with respect to the first coordinate, the section (C(f))u is dense in Y ([2]).
Therefore we can find a point (u, z) ∈ C(f) ∩ G. Consequently, there is an
open set H ⊂ G containing (u, z) such that

f(H) ⊂
(
f(u, z)− ε

2
, f(u, z) +

ε

2

)
.

Observe that f(H) ⊂ (γ − ε, γ + ε). This yields γ ∈ SO1C(f ; (u, v)). So,

SO1C(hf ; (u, v)) ⊂ SO1C(f ; (u, v)).

Now let γ ∈ SO1C(f ; (u, v)). Given η > 0 and an open neighborhood
V of (u, v), we can apply the same steps as before. Since C(f) ⊂ C(hf )
and hf |C(f) = f |C(f), there is an open set D ⊂ V such that u ∈ PrX(D)
and hf (D) ⊂ (γ − η, γ + η). This means γ ∈ SO1C(f ; (u, v)) and proves
SO1C(f ; (u, v)) ⊂ SO1C(hf ; (u, v)) and SO1C(f ; (u, v)) = SO1C(hf ; (u, v)).

By the same methods one can also show the next two theorems.

Theorem 14. Suppose that (X,TX) is a Baire space and that a function
f : X×Y → R is cliquish with respect to the second coordinate. Then for each
admissible modification hf of f the equality SO2C(f ; (u, v)) = SO2C(hf ; (u, v))
is true at all points (u, v) ∈ X × Y .

Theorem 15. Suppose that (X,TX) and (Y, TY ) are Baire spaces and that a
function f : X × Y → R is symmetrically cliquish. Then for each admissible
modification hf of f the equality SOSC(f ; (u, v)) = SOSC(hf ; (u, v)) is true
at all points (u, v) ∈ X × Y .

A function g : X → R is called a semi-open step function (or an SO-step
function) if there exists a partition P = {Pi : i ∈ I} of X into subsets Pi ∈
SO(X) such that g is constant on the sets Pi. In [6] the authors observe that
each semi-open step function is quasicontinuous and that each quasicontinuous
function h : X → R is the uniform limit of a sequence of semi-open step
functions hn : X → R, n = 1, 2, . . ..

Similarly, we say that a function f : X × Y → R is an SO1-step function
(alternatively SO2-step function) [symmetrically semi-open step function] if
there exists a partition P = {Pi : i ∈ I} of X×Y into subsets Pi ∈ SO1(X,Y )
(alternatively Pi ∈ SO2(X,Y )) [Pi ∈ SO1(X,Y ) ∩ SO2(X,Y )] such that f
is constant on the sets Pi. Evidently each SO1-step function (alternatively
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SO2-step function) [symmetrically semi-open step function] is quasicontinuous
with respect to the first coordinate (alternatively to the second coordinate)
[symmetrically quasicontinuous].

The following problems are open.
Problem 1. Let f : X × Y → R be a quasicontinuous with respect to the
first coordinate function. Does there exist a sequence of SO1-step functions
fn : X × Y → R, n = 1, 2, . . ., which uniformly converges to f?
Problem 2. Let f : X × Y → R be a quasicontinuous with respect to the
second coordinate function. Does there exist a sequence of SO2-step functions
fn : X × Y → R, n = 1, 2, . . ., which uniformly converges to f?
Problem 3. Let f : X×Y → R be a symmetrically quasicontinuous function.
Does there exist a sequence of symmetrically semi-open step functions fn :
X × Y → R, n = 1, 2, . . ., which uniformly converges to f?
Acknowledgment. I would like to thank the Referee for the correction of
Definition 1 and suggestions concerning the notation.
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