ON LUZIN'S (N)-PROPERTY OF THE SUM OF TWO FUNCTIONS

Abstract

We prove that, for any nonconstant continuous function f, there exists a continuous N -function g such that $f+g$ is not an N -function. This answers a query by F. S. Cater.

A function $f:[0,1] \rightarrow \mathbb{R}$ is said to have Luzin's (N)-property (or to be an N -function), if for every set $M \subset[0,1]$ of Lebesgue measure zero, the set $f(M)$ has Lebesgue measure zero as well. In [2] S. Mazurkiewicz found an N -function $g:[0,1] \rightarrow \mathbb{R}$ such that $f+g$ is not an N -function for any nonconstant linear function f. In reference [1], F. S. Cater posed this question. For any nonconstant continuous N -function f, must there exist a continuous N-function g, depending on f, such that $f+g$ is not an N -function? Using Mazurkiewicz's method, we will prove that the answer is positive.

We will use the following notation.
For a continuous function $f:[0,1] \rightarrow \mathbb{R}$, we define the mapping $\Phi_{f}:$ $[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R}$ by $\Phi_{f}(x, y)=(x, y+f(x))$.

For a closed interval $A=[a, b] \times[c, d] \subset \mathbb{R}^{2}$, let $l_{A}=a, r_{A}=b, b_{A}=c$, $t_{A}=d$, and define the set $\Psi(A) \subset \mathbb{R}^{2}$ by

$$
\Psi(A)=\left\{l_{A}\right\} \times\left[b_{A}, t_{A}\right] \cup\left\{r_{A}\right\} \times\left[b_{A}, t_{A}\right] .
$$

The one dimensional Lebesgue measure of a set M will be denoted by $|M|, P_{x}$ and P_{y} we will use for the orthogonal projections on the axes.

Theorem. Let $f:[0,1] \rightarrow \mathbb{R}$ be a nonconstant continuous function. Then there is a continuous N-function $g:[0,1] \rightarrow \mathbb{R}$ and a set M of Lebesgue measure zero, such that $(f+g)(M)$ contains an interval.

[^0]Proof. Let $G \subset(0,1)$ be the maximal open set on which f is locally constant. Write $G=\bigcup_{i \in I}\left(\alpha_{i}, \beta_{i}\right)$, where I is countable and intervals $\left(\alpha_{i}, \beta_{i}\right)$ are pairwise disjoint. Put $G^{*}:=\bigcup_{i \in I}\left[\alpha_{i}, \beta_{i}\right], J:=(0,1) \backslash G$ and $J^{*}:=(0,1) \backslash G^{*}$. Then clearly J is nonempty and has no isolated points. It is not difficult to check that:
(I) J^{*} is dense in J.
(II) For each $\gamma>0$ and $x \in J^{*}$ there are $x_{l}, x_{r} \in(x-\gamma, x+\gamma) \cap J^{*}$ such that $x_{l}<x<x_{r}, f\left(x_{l}\right) \neq f(x)$ and $f\left(x_{r}\right) \neq f(x)$.
We will construct inductively a sequence $\left\{Q_{n}\right\}_{n=1}^{\infty}$ of nonempty finite systems of closed intervals in $[0,1] \times \mathbb{R}$ such that following conditions hold:
(i) If $n>1$, then $\bigcup Q_{n} \subset \bigcup Q_{n-1}$.
(ii) For any $A, B \in Q_{n}, A \neq B$ we have $P_{y}(A)=P_{y}(B)$ or $P_{y}(A) \cap P_{y}(B)=\emptyset$. $\left|P_{y}(A)\right|=\left|P_{y}(B)\right|$ (Denote this constant value by V_{n}.) and

$$
P_{x}(A) \cap P_{x}(B)=\emptyset
$$

(iii) If $n>1$, then

$$
\left|P_{y}\left(\bigcup Q_{n}\right)\right| \leq \frac{2}{3}\left|P_{y}\left(\bigcup Q_{n-1}\right)\right| \text { and }\left|P_{x}\left(\bigcup Q_{n}\right)\right| \leq \frac{1}{2}\left|P_{x}\left(\bigcup Q_{n-1}\right)\right|
$$

(iv) If $n>1$, then

$$
P_{y}\left(\Phi_{f}\left(\bigcup_{A \in Q_{n-1}} \Psi(A)\right)\right) \subset P_{y}\left(\Phi_{f}\left(\bigcup_{A \in Q_{n}} \Psi(A)\right)\right)
$$

(v) For $A \in Q_{n}$ we have $l_{A}, r_{A} \in J^{*}$ and $f\left(l_{A}\right) \neq f\left(r_{A}\right)$.

By (II) we can choose $a, b \in J^{*}, a<b$, such that $f(a) \neq f(b)$. Then put

$$
Q_{1}=\{[a, b] \times[0,1]\}
$$

If we have defined the system Q_{n}, then Q_{n+1} will be obtained by the following construction.

Set $R=\min _{A \in Q_{n}}\left|f\left(l_{A}\right)-f\left(r_{A}\right)\right|$. Thus $R>0$ and there exists an odd l, $l>2$, such that $\frac{2}{l} V_{n}<R$. Now fix $A \in Q_{n}$ and assume that $f\left(l_{A}\right)<f\left(r_{A}\right)$. Choose $N \in \mathbb{N}$ such that

$$
\frac{f\left(r_{A}\right)-f\left(l_{A}\right)}{N}<\frac{1}{4 l} V_{n}
$$

For $j=0, \ldots, N-1$ set

$$
d_{j}=\min \left\{x \in\left[l_{A}, r_{A}\right]: f(x)=f\left(l_{A}\right)+\frac{j}{N}\left(f\left(r_{A}\right)-f\left(l_{A}\right)\right)\right\}
$$

and put $d_{N}=r_{A}$. Then we have

$$
\begin{gathered}
l_{A}=d_{0}<d_{1}<\cdots<d_{N-1}<d_{N}=r_{A} \\
d_{j} \in\left[l_{A}, r_{A}\right] \cap J \text { for all } j=0, \ldots, N
\end{gathered}
$$

and

$$
f\left(d_{j+1}\right)-f\left(d_{j}\right)=\frac{f\left(r_{A}\right)-f\left(l_{A}\right)}{N}<\frac{1}{4 l} V_{n}
$$

Put $K=\frac{l+1}{2}$ and $\delta_{1}=\frac{1}{3} \min _{j=1, \ldots, N-1}\left(d_{j+1}-d_{j}\right)$. Since f is continuous, we can find $\delta_{2}, \delta_{3}>0$ such that:

$$
\begin{aligned}
& \text { if } x \in\left(d_{j}-\delta_{2}, d_{j}+\delta_{2}\right) \cap\left[l_{A}, r_{A}\right] \text {, then }\left|f\left(d_{j}\right)-f(x)\right|<\frac{1}{4 l} V_{n} \text {, } \\
& \text { if } x \in\left(l_{A}, l_{A}+\delta_{3}\right) \cap\left[l_{A}, r_{A}\right] \text {, then }\left|f\left(l_{A}\right)-f(x)\right|<\frac{1}{2}\left(R-\frac{2}{l} V_{n}\right) \text {, } \\
& \text { if } x \in\left(r_{A}-\delta_{3}, r_{A}\right) \cap\left[l_{A}, r_{A}\right] \text {, then }\left|f\left(l_{A}\right)-f(x)\right|<\frac{1}{2}\left(R-\frac{2}{l} V_{n}\right) \text {. }
\end{aligned}
$$

Set $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$ and by (I) find points

$$
u_{i}^{j} \in\left(d_{j}-\delta, d_{j}+\delta\right) \cap\left[l_{A}, r_{A}\right] \cap J^{*}, i=1, \ldots, K, j=0, \ldots, N-1
$$

and points

$$
v_{i}^{N} \in\left(r_{A}-\delta, r_{A}\right] \cap J^{*}, i=1, \ldots, K
$$

such that $l_{A}=u_{1}^{0}$ and for each $j=0, \ldots, N-1$, we have

$$
u_{1}^{j}<u_{2}^{j}<\cdots<u_{K}^{j} \text { and } v_{1}^{N}<v_{2}^{N}<\cdots<v_{K}^{N}=r_{A} .
$$

Further choose

$$
\begin{aligned}
& v_{i}^{j} \in\left[l_{A}, r_{A}\right] \cap J^{*}, i=1, \ldots, K, j=0, \ldots, N-1, \\
& u_{i}^{N} \in\left[l_{A}, r_{A}\right] \cap J^{*}, i=1, \ldots, K,
\end{aligned}
$$

such that:

$$
u_{i}^{j}<v_{i}^{j} \text { for each } i, j,
$$

intervals $\left[u_{i}^{j}, v_{i}^{j}\right]$ are pairwise disjoint,

$$
\begin{equation*}
\sum_{i, j}\left(v_{i}^{j}-u_{i}^{j}\right) \leq \frac{1}{2}\left(r_{A}-l_{A}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
0<\left|f\left(u_{i}^{j}\right)-f\left(v_{i}^{j}\right)\right|<\frac{1}{2 l} V_{n} . \tag{3}
\end{equation*}
$$

To finish the construction put

$$
A_{i}^{j}=\left[u_{i}^{j}, v_{i}^{j}\right] \times\left[b_{A}+\frac{2 i-2}{l} V_{n}, b_{A}+\frac{2 i-1}{l} V_{n}\right]
$$

and

$$
Q^{A}=\left\{A_{i}^{j}: i=1, \ldots, K, j=0, \ldots, N\right\}
$$

The second inequality in (3) implies that each set $P_{y}\left(\Phi_{f}\left(\Psi\left(A_{i}^{j}\right)\right)\right)$ is connected. For any $i=1, \ldots, K$ and any $j=0, \ldots, N-1$ we have

$$
\begin{aligned}
\left|f\left(u_{i}^{j}\right)-f\left(u_{i}^{j+1}\right)\right| \leq & \left|f\left(u_{i}^{j}\right)-f\left(d_{j}\right)\right| \\
& +\left|f\left(d_{j}\right)-f\left(d_{j+1}\right)\right|+\left|f\left(d_{j+1}\right)-f\left(u_{i}^{j+1}\right)\right| \leq \frac{3}{4 l} V_{n}
\end{aligned}
$$

so $P_{y}\left(\Phi_{f}\left(\bigcup_{j=0}^{N} \Psi\left(A_{i}^{j}\right)\right)\right)$ is connected as well. Since

$$
\begin{aligned}
& \left(f\left(v_{i}^{N}\right)+b_{A}+\frac{2 i-1}{l} V_{n}\right)-\left(f\left(v_{i+1}^{1}\right)+b_{A}+\frac{2(i+1)-2}{l} V_{n}\right) \\
= & f\left(v_{i}^{j}\right)-f\left(v_{i+1}^{1}\right)-\frac{1}{l} V_{n} \\
\geq & f\left(r_{A}\right)-\left(R-\frac{2}{l} V_{n}\right)-f\left(l_{A}\right)-\left(R-\frac{2}{l} V_{n}\right) \geq \frac{1}{l} V_{n}>0,
\end{aligned}
$$

the set $P_{y}\left(\Phi_{f}\left(\bigcup_{B \in Q^{A}} \Psi(B)\right)\right)$ is connected. Due to the fact that

$$
f\left(l_{A}\right)+b_{A} \in P_{y}\left(\Phi_{f}\left(\Psi\left(A_{1}^{0}\right)\right)\right) \text { and } f\left(r_{A}\right)+t_{A} \in P_{y}\left(\Phi_{f}\left(\Psi\left(A_{K}^{N}\right)\right)\right)
$$

we have

$$
\begin{equation*}
P_{y}\left(\Phi_{f}\left(\bigcup_{B \in Q^{A}} \Psi(B)\right)\right) \supset P_{y}\left(\Phi_{f}(\Psi(A))\right) \tag{4}
\end{equation*}
$$

In the case $f\left(l_{A}\right)>f\left(r_{A}\right)$ we use the above construction for

$$
A^{\prime}=\left[l_{A}, r_{A}\right] \times\left[-t_{A},-b_{A}\right]
$$

and the function $-f$. Denote the system constructed in this way by $Q^{A^{\prime}}$ and put

$$
Q^{A}=\left\{\left[l_{B}, r_{B}\right] \times\left[-t_{B},-b_{B}\right]: B \in Q^{A^{\prime}}\right\}
$$

Finally set $Q_{n+1}=\bigcup_{A \in Q_{n}} Q^{A}$.
The condition (i) is clear. To verify condition (ii) choose $C, D \in Q_{n+1}$. There exist $A, B \in Q_{n}$ such that $C \subset A$ and $D \subset B$. By the induction hypothesis, we have $P_{y}(A)=P_{y}(B)$ or $P_{y}(A) \cap P_{y}(B)=\emptyset$. In the second case we have

$$
P_{y}(C) \subset P_{y}(A) \text { and } P_{y}(D) \subset P_{y}(B)
$$

In the first case we have

$$
P_{y}(C)=\left[b_{C}, t_{C}\right]=\left[b_{A}+\frac{2 i-2}{l} V_{n}, b_{A}+\frac{2 i-1}{l} V_{n}\right]
$$

and

$$
P_{y}(D)=\left[b_{D}, t_{D}\right]=\left[b_{A}+\frac{2 i^{\prime}-2}{l} V_{n}, b_{A}+\frac{2 i^{\prime}-1}{l} V_{n}\right]
$$

for some $1 \leq i, i^{\prime} \leq K$. Obviously, if $i=i^{\prime}$, then $P_{y}(C)=P_{y}(D)$. In the case $i \neq i^{\prime}$ we have $P_{y}(C) \cap P_{y}(D)=\emptyset$, because of the fact that

$$
\left|b_{C}-b_{D}\right| \geq 2 \frac{V_{n}}{l} \text { and }\left|t_{C}-b_{C}\right|=\left|t_{D}-b_{D}\right|=\frac{V_{n}}{l}=V_{n+1}
$$

The last part of (ii) follows from the induction hypothesis and the fact that

$$
P_{x}(C) \subset P_{x}(A) \text { and } P_{x}(D) \subset P_{x}(B) \text { if } A \neq B
$$

If $A=B$, it follows from (1). The first part of (iii) holds, since

$$
\left|P_{y}\left(\bigcup Q_{n+1}\right)\right|=\left|\bigcup_{A \in Q_{n+1}} P_{y}(A)\right|=\frac{l+1}{2 l}\left|\bigcup_{A \in Q_{n}} P_{y}(A)\right| \leq \frac{2}{3}\left|P_{y}\left(\bigcup_{A \in Q_{n}} A\right)\right|
$$

The second part of (iii) follows from (ii) and (2). Finally (iv) follows from (4) and (v) from (3).

Define $L_{n}=\bigcup Q_{n}$. Using (ii) we have that $L=\bigcap_{n=1}^{\infty} L_{n}$ is nonempty compact. Moreover, due to the fact that $V_{n} \rightarrow 0$, we see that L is a graph of a continuous function h defined on $P_{x}(L)$. Now extend h linearly on the components of $[0,1] \backslash P_{x}(L)$ to a continuous function g defined on $[0,1]$. From (iii) we have $\left|P_{x}(L)\right|=\left|P_{y}(L)\right|=0$. By this and the fact, that linear functions have Luzin's property (N), we have for any set $M \subset[0,1]$ of Lebesgue measure zero

$$
\begin{aligned}
|f(M)| & \leq\left|f\left(M \cap P_{x}(L)\right)\right|+\left|f\left(M \backslash P_{x}(L)\right)\right| \\
& \leq\left|P_{y}(L)\right|+\left|f\left(M \backslash P_{x}(L)\right)\right|=0,
\end{aligned}
$$

so g is an N -function as well. On the other hand, due to the compactness of the sets L_{n} and by (iv) we have

$$
(f+g)(L) \supset P_{y}\left(\Phi_{f}\left(\bigcup_{A \in Q_{1}} \Psi(A)\right)\right)
$$

To complete the proof it is sufficient to observe that the set on the right side contains interval $\left[f\left(l_{A}\right), f\left(l_{A}\right)+1\right.$], where A is the interval in Q_{1}.

Remark. a) Note that if we start the construction with a system $Q_{1}=$ $\{[a, b] \times[0, \tau]\}$ for some $\tau>0$, we can construct g such that $|g| \leq \tau$ on $[a, b]$.
b) Let \mathcal{F} be a system of nonconstant continuous functions on $[0,1]$. We can ask, whether there exists a continuous N -function h such that $f+h$ is not an N -function for any $f \in \mathcal{F}$.

Suppose that there are $c, C>0$ such that for any $f, g \in \mathcal{F}$ and any $x, y \in[0,1]$ satisfying $g(x) \neq g(y)$ we have

$$
c \leq \frac{f(x)-f(y)}{g(x)-g(y)} \leq C
$$

By changing some details in the construction described above, we can obtain that in this case the answer is positive. (This condition implies that the set J^{*} is identical for all functions in \mathcal{F}, the numbers l and N from the construction can be chosen uniformly for all functions in \mathcal{F}, depending only on c and C respectively.) Moreover, using a), it is not difficult to show that the answer is also positive, if $\mathcal{F}=\bigcup_{i=1}^{\infty} \mathcal{F}_{i}$ and each \mathcal{F}_{i} has the above property on the interval $\left[\frac{1}{2 i+1}, \frac{1}{2 i}\right], i \in \mathbb{N}$. In particular, if \mathcal{F} is the system of all nonconstant linear functions, this gives the original Mazurkiewicz's result.

Acknowledgement. I would like to thank Prof. Luděk Zajmček for helpful discussions on the topic and many useful remarks.

References

[1] F. S. Cater, N-Functions: A query, Real Anal. Exchange, 30 (2004-2005), 411.
[2] S. Mazurkiewicz, Sur les fonctions qui satisfont a la condition (N), Fund. Math., 16 (1930), 348-352.

[^0]: Key Words: Lusin's (N)-Property
 Mathematical Reviews subject classification: 26A99
 Received by the editors April 12, 2006
 Communicated by: B. S. Thomson

