
Real Analysis Exchange
Vol. 28(2), 2002/2003, pp. 375–379

Zbigniew Grande, Institute of Mathematics, Bydgoszcz Academy, Plac
Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. e-mail: grande@ab-byd.edu.pl

AN EXAMPLE OF A DARBOUX
FUNCTION HAVING NO FIXED POINTS

Abstract

In this article we construct an example of a bilaterally quasicontin-
uous Darboux function f : [0, 1]→ [0, 1], which has no fixed points.

Let R be the set of all reals. Denote by µ the Lebesgue measure in R and
by µe the outer Lebesgue measure in R. For a set A ⊂ R and a point x we
define the upper (lower) outer density Du(A, x) (Dl(A, x)) of the set A at the
point x as

lim sup
h→0+

µe(A ∩ [x− h, x+ h])
2h

(lim inf
h→0+

µe(A ∩ [x− h, x+ h])
2h

respectively).

A point x is said to be an outer density point (a density point) of a set
A if Dl(A, x) = 1 (if there is a Lebesgue measurable set B ⊂ A such that
Dl(B, x) = 1).

Taking the extremal limits for the expressions A∩[x−h,x]
h and [x,x+h]

h we
obtain respectively the left or the right upper (lower) densities of A at x.

The family Td of all sets A for which the implication

x ∈ A =⇒ x is a density point of A

is true, is a topology called the density topology ([2, 6]). The sets A ∈ Td

are Lebesgue measurable [2, 6]. Let Te be the Euclidean topology in R. The
continuity of applications f from (R, Td) to (R, Te) is called the approximate
continuity ([2, 6]).

Each approximately continuous function f : [0, 1] → [0, 1] is of the first
Baire class and has Darboux property ([2]). It is well known that Darboux
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Baire 1 functions from [0, 1] to [0, 1] have fixed points. So, for all approximately
continuous functions f : [0, 1]→ [0, 1] there are points x ∈ [0, 1] with f(x) = x.
This observation results also from a theorem of Brown ([1]).

Since there are approximately continuous functions which are discontin-
uous on sets of positive measure, in my article [3] I introduce some special
conditions based also on the density topology which imply the continuity al-
most everywhere of considered functions. One of them is the condition (s1).

For an arbitrary function f : R→ R denote by C(f) the set of all continuity
points of f . Moreover let D(f) = R \ C(f). A function f : R → R has the
property (s1) at a point x (f ∈ s1(x)) if for each positive real r and for each
set U ∈ Td containing x there is an open interval I such that ∅ 6= I∩U ⊂ C(f)
and |f(t) − f(x)| < r for all points t ∈ I ∩ U . A function f has the property
(s1), if f ∈ s1(x) for every point x ∈ R.

For each function f having the property (s1) the set D(f) = R \ C(f) is
nowhere dense and of Lebesgue measure 0. So, functions discontinuous on
dense sets which are approximately continuous do not satisfy the condition
(s1). The characteristic function of the interval [0, 1] has the property (s1),
but it is not approximately continuous.

A function f : [0, 1] → [0, 1] is a bilaterally quasicontinuous at a point
x ∈ (0, 1) if for each positive real r there are open intervals

I1 ⊂ (x− r, x) ∩ [0, 1] and I2 ⊂ (x, x+ r) ∩ [0, 1]

such that
f(I1) ∪ f(I2) ⊂ (f(x)− r, f(x) + r).

Analogously we define the quasicontinuity from the right at 0 and the
quasicontinuity from the left at 1. A function f : [0, 1] → R is said to be
bilaterally quasicontinuous if it is bilaterally quasicontinuous at each point
x ∈ (0, 1), quasicontinuous from the right at 0 and quasicontinuous from the
left at 1 [4, 5]. Evidently each function f : [0, 1]→ R having the property (s1)
is quasicontinuous, but it may be not bilaterally quasicontinuous (for example
such is the characteristic function of the interval [ 13 ,

1
2 ].

Some examples of Darboux functions f : [0, 1] → [0, 1] without the fixed
point property are well known. In this article we prove the following assertion.

Theorem 1. There is a bilaterally quasicontinuous Darboux function f :
[0, 1]→ [0, 1] satisfying condition (s1) which has no fixed points.

Proof. Let C ⊂ [0, 1] be the ternary Cantor set. As well known it is a
nonempty compact perfect set of measure zero. Let

I1,1 = (
1
3
,

2
3

), I2,1 = (
1
32
,

2
32

), I2,2 = (
7
32
,

8
32

), . . .
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. . . , In,1 = (
1
3n
,

2
3n

), . . . , In,2n−1 = (
3n − 2

3n
,

3n − 1
3n

), . . .

be the sequence of all components of the set [0, 1] \ C. For n ≥ 1 we put

Un =
2n−1⋃
i=1

In,i, Vn = [0, 1] \ Un, and let Kn,1, . . . ,Kn,2n

be the components of the set Vn. For each interval In+1,i, i ≤ 2n, there is
exactly one closed interval Kn,j = Kn(In+1,i), j ≤ 2n, such that Kn,j ⊃ In+1,i.
Evidently,

d(In+1,i)
d(Kn(In+1,i))

=
1
3
,

where d(In+1,i) denotes the length of the interval In+1,i. For each pair (n+1, i)
we find a closed interval Jn+1,i ⊂ In+1,i having the same center as In+1,i and
such that

d(Jn+1,i)
d(Kn(In+1,i)

>
1
4
. (1)

Moreover for the interval I1,1 we define K1(I1,1) = [0, 1] and find a closed
interval J1,1 ⊂ I1,1 with the center 1

2 and such that d(J1,1) > 1
4 .

Let N1, N2, . . . , Nm, . . . be a sequence of pairwise disjoints infinite subsets
of positive integers such that for the set N of all positive integers we have
N =

⋃∞
n=1Nn, and let (wn) be an enumeration of all rationals belonging to

[0, 1] such that wn 6= wm for n 6= m. For n = 1, 2, . . . put

Pn =
⋃

i∈Nn

⋃
k≤2i−1

Ji,k and Qn =
⋃

i∈Nn

⋃
k≤2i−1

Ii,k.

For each point x ∈ C and for each index k there is a closed interval Kk,i(x) 3 x.
So by (1) for each point x ∈ A and for each positive integer n we obtain

Du(Pn, x) ≥ 1
8
. (2)

Now for indices n,m ≥ 1 and k ≤ 2n−1 we define functions fn,k,m, gn,k,m :
cl(In,k) → [0, 1] (cl denotes the closure operation in the topology Te) by the
formulas: fn,k,m(x) = wm for x ∈ Jn,k, fn,k,m = 0 at the endpoints of
cl(In,k). gn,k,m is linear on the components of cl(In,k \ Jn,k). gn,k,m(x) = wm

for x ∈ Jn,k, gn,k,m = 1 at the endpoints of cl(In,k). fn,k,m is linear on the
components of cl(In,k\Jn,k). Now we will define a function f on the set [0, 1]\C.
For this, fix indices n, i ∈ Nn and k ≤ 2i−1 and put cl(Ii,k) = [ai,kbi,k].

If wn < ai,k, then we put f(x) = fi,k,n(x) for x ∈ cl(Ii,k).
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If wn > bi,k, then we put f(x) = gi,k,n(x) for x ∈ cl(Ii,k).
If wn ∈ cl(Ii,k), then we put f(x) = 0 for x ∈ cl(Ii,k).
Moreover, let f(0) = 1 and f(1) = 0. Now we will define the function f on

the set
E = (0, 1) \

⋃
n≥1

⋃
i∈Nn

⋃
k≤2i−1

cl(Ii,k).

For this enumerate in a sequence (Ln) the set of all open intervals I with
rational endpoints for which I ∩ E 6= ∅. Moreover, we assume that Ln 6= Lm

for n 6= m. Now, by induction, for each positive integer n we find a nonempty
perfect set

Hn ⊂ (E ∩ Ln) \
⋃
k<n

Hk,

which is nowhere dense in H. For each set Hn put cn = inf Hn and dn =
supHn. Let zn ∈ [cn, dn] \Hn be a point. Then the sets Hn,1 = [cn, zn) ∩Hn

and Hn,2 = (zn, dn] ∩Hn are nonempty and perfect and Hn = Hn,1 ∪Hn,2.
There are functions hn,1 : Hn,1 → R and hn,2 : Hn,2 → R such that

hn,1(Hn,1) = [zn, 1] and hn,2(Hn,2) = [0, zn). For n = 1, 2, . . . let hn(x) =
hn,1(x) if x ∈ Hn,1 and hn(x) = hn,2(x) if x ∈ Hn,2. Then hn : Hn → [0, 1] is
such that hn(Hn) = [0, 1] and hn(x) 6= x for each x ∈ Hn. Put

f(x) = hn(x) for x ∈ Hn, n ≥ 1, and f(x) = 0 for x ∈ E \
∞⋃

n=1

Hn.

From the construction follows that the function f : [0, 1] → [0, 1] has
no fixed points. Of course, if x ∈ H, then f(x) 6= x. If x ∈ cl(In,i) and
cl(In,i) = [an,i, bn,i], then the following cases are possible:

(a) wn < an,i and f(x) ≤ wn < x for all x ∈ cl(In,i);

(b) wn > bn,i and f(x) ≥ wn > x for all x ∈ cl(In,i);

(c) wn ∈ [an,i, bn.i] and f(x) = 0 < x for all x ∈ cl(In,i).

Moreover, f(0) = 1 and f(1) = 0. Since f is continuous on each interval,
cl(In,i), n ≥ 1 and i ≤ 2n−1, and since f(I ∩E) = [0, 1] for each open interval
I such that I ∩ E 6= ∅, the function f has the Darboux property.

We will prove that the function f satisfies the condition (s1). If a point
x ∈ cl(In,i) for a pair (n, i), then f is continuous or unilaterally continuous at
x and consequently f ∈ s1(x). So we suppose that x ∈ E ∪ {0, 1}. Let U 3 x
be a set belonging to Td. Fix a positive real η. There is an index l such that
|f(x)−wl| < η. Since Dl(U, x) = 1 and Du(Pl, x) ≥ 1

8 , there is an interval Jl,i
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such that f(Jl,i) = {wl} and U ∩Jl,i 6= ∅. So, f(U ∩Jl,i) ⊂ (f(x)−η, f(x)+η)
and f ∈ s1(x).

At the points 0 and 1 the function f is quasicontinuous, since f ∈ s1(0) ∩
s1(1). At points x ∈ [0, 1] \ C the function f is continuous, so it is bilaterally
quasicontinuous at these points. If x is the right endpoint of an interval In,i,
then f is continuous at x from the left. Fix a positive real η. From the
continuity of f at x from the left, it follows that there is a real δ > 0 such that

δ < η and f((x− δ, x)) ⊂ (f(x)− η, f(x) + η).

Let an index m be such that |f(x) − wm| < η. Since the set Nm is infinite,
there is an integer i ∈ Nm such that Vi ∩ (x, x + η) 6= ∅. So there is an open
interval L ⊂ Vi ∩ (x, x+ η) such that f(L) = {wm}. Consequently,

L ⊂ (x, x+ η) and f(L) ⊂ (f(x)− η, f(x) + η),

and f is bilaterally quasicontinuous at x. Similarly we can show that f is
bilaterally quasicontinuous at points x, which are the left endpoints of some
intervals cl(In,i) and at points x ∈ E.
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