AN EXAMPLE OF A DARBOUX FUNCTION HAVING NO FIXED POINTS

Abstract

In this article we construct an example of a bilaterally quasicontinuous Darboux function $f:[0,1] \rightarrow[0,1]$, which has no fixed points.

Let \mathbb{R} be the set of all reals. Denote by μ the Lebesgue measure in \mathbb{R} and by μ_{e} the outer Lebesgue measure in \mathbb{R}. For a set $A \subset \mathbb{R}$ and a point x we define the upper (lower) outer density $D_{u}(A, x)\left(D_{l}(A, x)\right)$ of the set A at the point x as

$$
\begin{aligned}
& \limsup _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \\
& \left(\liminf _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \text { respectively }\right) .
\end{aligned}
$$

A point x is said to be an outer density point (a density point) of a set A if $D_{l}(A, x)=1$ (if there is a Lebesgue measurable set $B \subset A$ such that $\left.D_{l}(B, x)=1\right)$.

Taking the extremal limits for the expressions $\frac{A \cap[x-h, x]}{h}$ and $\frac{[x, x+h]}{h}$ we obtain respectively the left or the right upper (lower) densities of A at x.

The family T_{d} of all sets A for which the implication

$$
x \in A \Longrightarrow x \text { is a density point of } A
$$

is true, is a topology called the density topology $([2,6])$. The sets $A \in T_{d}$ are Lebesgue measurable $[2,6]$. Let T_{e} be the Euclidean topology in \mathbb{R}. The continuity of applications f from $\left(\mathbb{R}, T_{d}\right)$ to $\left(\mathbb{R}, T_{e}\right)$ is called the approximate continuity ($[2,6]$).

Each approximately continuous function $f:[0,1] \rightarrow[0,1]$ is of the first Baire class and has Darboux property ([2]). It is well known that Darboux

[^0]Baire 1 functions from $[0,1]$ to $[0,1]$ have fixed points. So, for all approximately continuous functions $f:[0,1] \rightarrow[0,1]$ there are points $x \in[0,1]$ with $f(x)=x$. This observation results also from a theorem of Brown ([1]).

Since there are approximately continuous functions which are discontinuous on sets of positive measure, in my article [3] I introduce some special conditions based also on the density topology which imply the continuity almost everywhere of considered functions. One of them is the condition $\left(s_{1}\right)$.

For an arbitrary function $f: \mathbb{R} \rightarrow \mathbb{R}$ denote by $C(f)$ the set of all continuity points of f. Moreover let $D(f)=\mathbb{R} \backslash C(f)$. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property $\left(s_{1}\right)$ at a point $x\left(f \in s_{1}(x)\right)$ if for each positive real r and for each set $U \in T_{d}$ containing x there is an open interval I such that $\emptyset \neq I \cap U \subset C(f)$ and $|f(t)-f(x)|<r$ for all points $t \in I \cap U$. A function f has the property $\left(s_{1}\right)$, if $f \in s_{1}(x)$ for every point $x \in \mathbb{R}$.

For each function f having the property $\left(s_{1}\right)$ the set $D(f)=\mathbb{R} \backslash C(f)$ is nowhere dense and of Lebesgue measure 0 . So, functions discontinuous on dense sets which are approximately continuous do not satisfy the condition $\left(s_{1}\right)$. The characteristic function of the interval $[0,1]$ has the property $\left(s_{1}\right)$, but it is not approximately continuous.

A function $f:[0,1] \rightarrow[0,1]$ is a bilaterally quasicontinuous at a point $x \in(0,1)$ if for each positive real r there are open intervals

$$
I_{1} \subset(x-r, x) \cap[0,1] \text { and } I_{2} \subset(x, x+r) \cap[0,1]
$$

such that

$$
f\left(I_{1}\right) \cup f\left(I_{2}\right) \subset(f(x)-r, f(x)+r)
$$

Analogously we define the quasicontinuity from the right at 0 and the quasicontinuity from the left at 1 . A function $f:[0,1] \rightarrow \mathbb{R}$ is said to be bilaterally quasicontinuous if it is bilaterally quasicontinuous at each point $x \in(0,1)$, quasicontinuous from the right at 0 and quasicontinuous from the left at $1[4,5]$. Evidently each function $f:[0,1] \rightarrow \mathbb{R}$ having the property $\left(s_{1}\right)$ is quasicontinuous, but it may be not bilaterally quasicontinuous (for example such is the characteristic function of the interval $\left[\frac{1}{3}, \frac{1}{2}\right]$.

Some examples of Darboux functions $f:[0,1] \rightarrow[0,1]$ without the fixed point property are well known. In this article we prove the following assertion.

Theorem 1. There is a bilaterally quasicontinuous Darboux function f : $[0,1] \rightarrow[0,1]$ satisfying condition $\left(s_{1}\right)$ which has no fixed points.
Proof. Let $C \subset[0,1]$ be the ternary Cantor set. As well known it is a nonempty compact perfect set of measure zero. Let

$$
I_{1,1}=\left(\frac{1}{3}, \frac{2}{3}\right), \quad I_{2,1}=\left(\frac{1}{3^{2}}, \frac{2}{3^{2}}\right), \quad I_{2,2}=\left(\frac{7}{3^{2}}, \frac{8}{3^{2}}\right), \ldots
$$

$$
\ldots, I_{n, 1}=\left(\frac{1}{3^{n}}, \frac{2}{3^{n}}\right), \ldots, I_{n, 2^{n-1}}=\left(\frac{3^{n}-2}{3^{n}}, \frac{3^{n}-1}{3^{n}}\right), \ldots
$$

be the sequence of all components of the set $[0,1] \backslash C$. For $n \geq 1$ we put

$$
U_{n}=\bigcup_{i=1}^{2^{n-1}} I_{n, i}, \quad V_{n}=[0,1] \backslash U_{n}, \text { and let } K_{n, 1}, \ldots, K_{n, 2^{n}}
$$

be the components of the set V_{n}. For each interval $I_{n+1, i}, i \leq 2^{n}$, there is exactly one closed interval $K_{n, j}=K_{n}\left(I_{n+1, i}\right), j \leq 2^{n}$, such that $K_{n, j} \supset I_{n+1, i}$. Evidently,

$$
\frac{d\left(I_{n+1, i}\right)}{d\left(K_{n}\left(I_{n+1, i}\right)\right)}=\frac{1}{3}
$$

where $d\left(I_{n+1, i}\right)$ denotes the length of the interval $I_{n+1, i}$. For each pair $(n+1, i)$ we find a closed interval $J_{n+1, i} \subset I_{n+1, i}$ having the same center as $I_{n+1, i}$ and such that

$$
\begin{equation*}
\frac{d\left(J_{n+1, i}\right)}{d\left(K_{n}\left(I_{n+1, i}\right)\right.}>\frac{1}{4} \tag{1}
\end{equation*}
$$

Moreover for the interval $I_{1,1}$ we define $K_{1}\left(I_{1,1}\right)=[0,1]$ and find a closed interval $J_{1,1} \subset I_{1,1}$ with the center $\frac{1}{2}$ and such that $d\left(J_{1,1}\right)>\frac{1}{4}$.

Let $N_{1}, N_{2}, \ldots, N_{m}, \ldots$ be a sequence of pairwise disjoints infinite subsets of positive integers such that for the set \mathbb{N} of all positive integers we have $\mathbb{N}=\bigcup_{n=1}^{\infty} N_{n}$, and let $\left(w_{n}\right)$ be an enumeration of all rationals belonging to $[0,1]$ such that $w_{n} \neq w_{m}$ for $n \neq m$. For $n=1,2, \ldots$ put

$$
P_{n}=\bigcup_{i \in N_{n}} \bigcup_{k \leq 2^{i-1}} J_{i, k} \text { and } Q_{n}=\bigcup_{i \in N_{n}} \bigcup_{k \leq 2^{i-1}} I_{i, k}
$$

For each point $x \in C$ and for each index k there is a closed interval $K_{k, i(x)} \ni x$. So by (1) for each point $x \in A$ and for each positive integer n we obtain

$$
\begin{equation*}
D_{u}\left(P_{n}, x\right) \geq \frac{1}{8} \tag{2}
\end{equation*}
$$

Now for indices $n, m \geq 1$ and $k \leq 2^{n-1}$ we define functions $f_{n, k, m}, g_{n, k, m}$: $\mathrm{cl}\left(I_{n, k}\right) \rightarrow[0,1]$ (cl denotes the closure operation in the topology T_{e}) by the formulas: $f_{n, k, m}(x)=w_{m}$ for $x \in J_{n, k}, \quad f_{n, k, m}=0$ at the endpoints of $\operatorname{cl}\left(I_{n, k}\right) \cdot g_{n, k, m}$ is linear on the components of $\operatorname{cl}\left(I_{n, k} \backslash J_{n, k}\right) \cdot g_{n, k, m}(x)=w_{m}$ for $x \in J_{n, k}, \quad g_{n, k, m}=1$ at the endpoints of $\operatorname{cl}\left(I_{n, k}\right) . f_{n, k, m}$ is linear on the components of $c l\left(I_{n, k} \backslash J_{n, k}\right)$. Now we will define a function f on the set $[0,1] \backslash C$. For this, fix indices $n, i \in N_{n}$ and $k \leq 2^{i-1}$ and put $\operatorname{cl}\left(I_{i, k}\right)=\left[a_{i, k} b_{i, k}\right]$.

If $w_{n}<a_{i, k}$, then we put $f(x)=f_{i, k, n}(x)$ for $x \in \operatorname{cl}\left(I_{i, k}\right)$.

If $w_{n}>b_{i, k}$, then we put $f(x)=g_{i, k, n}(x)$ for $x \in \operatorname{cl}\left(I_{i, k}\right)$.
If $w_{n} \in \operatorname{cl}\left(I_{i, k}\right)$, then we put $f(x)=0$ for $x \in \operatorname{cl}\left(I_{i, k}\right)$.
Moreover, let $f(0)=1$ and $f(1)=0$. Now we will define the function f on the set

$$
E=(0,1) \backslash \bigcup_{n \geq 1} \bigcup_{i \in N_{n}} \bigcup_{k \leq 2^{i-1}} \operatorname{cl}\left(I_{i, k}\right) .
$$

For this enumerate in a sequence $\left(L_{n}\right)$ the set of all open intervals I with rational endpoints for which $I \cap E \neq \emptyset$. Moreover, we assume that $L_{n} \neq L_{m}$ for $n \neq m$. Now, by induction, for each positive integer n we find a nonempty perfect set

$$
H_{n} \subset\left(E \cap L_{n}\right) \backslash \bigcup_{k<n} H_{k},
$$

which is nowhere dense in H. For each set H_{n} put $c_{n}=\inf H_{n}$ and $d_{n}=$ $\sup H_{n}$. Let $z_{n} \in\left[c_{n}, d_{n}\right] \backslash H_{n}$ be a point. Then the sets $H_{n, 1}=\left[c_{n}, z_{n}\right) \cap H_{n}$ and $H_{n, 2}=\left(z_{n}, d_{n}\right] \cap H_{n}$ are nonempty and perfect and $H_{n}=H_{n, 1} \cup H_{n, 2}$.

There are functions $h_{n, 1}: H_{n, 1} \rightarrow \mathbb{R}$ and $h_{n, 2}: H_{n, 2} \rightarrow \mathbb{R}$ such that $h_{n, 1}\left(H_{n, 1}\right)=\left[z_{n}, 1\right]$ and $h_{n, 2}\left(H_{n, 2}\right)=\left[0, z_{n}\right)$. For $n=1,2, \ldots$ let $h_{n}(x)=$ $h_{n, 1}(x)$ if $x \in H_{n, 1}$ and $h_{n}(x)=h_{n, 2}(x)$ if $x \in H_{n, 2}$. Then $h_{n}: H_{n} \rightarrow[0,1]$ is such that $h_{n}\left(H_{n}\right)=[0,1]$ and $h_{n}(x) \neq x$ for each $x \in H_{n}$. Put

$$
f(x)=h_{n}(x) \text { for } x \in H_{n}, n \geq 1 \text {, and } f(x)=0 \text { for } x \in E \backslash \bigcup_{n=1}^{\infty} H_{n} .
$$

From the construction follows that the function $f:[0,1] \rightarrow[0,1]$ has no fixed points. Of course, if $x \in H$, then $f(x) \neq x$. If $x \in \operatorname{cl}\left(I_{n, i}\right)$ and $\operatorname{cl}\left(I_{n, i}\right)=\left[a_{n, i}, b_{n, i}\right]$, then the following cases are possible:
(a) $w_{n}<a_{n, i}$ and $f(x) \leq w_{n}<x$ for all $x \in \operatorname{cl}\left(I_{n, i}\right)$;
(b) $w_{n}>b_{n, i}$ and $f(x) \geq w_{n}>x$ for all $x \in \operatorname{cl}\left(I_{n, i}\right)$;
(c) $w_{n} \in\left[a_{n, i}, b_{n . i}\right]$ and $f(x)=0<x$ for all $x \in \operatorname{cl}\left(I_{n, i}\right)$.

Moreover, $f(0)=1$ and $f(1)=0$. Since f is continuous on each interval, $\operatorname{cl}\left(I_{n, i}\right), n \geq 1$ and $i \leq 2^{n-1}$, and since $f(I \cap E)=[0,1]$ for each open interval I such that $I \cap E \neq \emptyset$, the function f has the Darboux property.

We will prove that the function f satisfies the condition $\left(s_{1}\right)$. If a point $x \in \operatorname{cl}\left(I_{n, i}\right)$ for a pair (n, i), then f is continuous or unilaterally continuous at x and consequently $f \in s_{1}(x)$. So we suppose that $x \in E \cup\{0,1\}$. Let $U \ni x$ be a set belonging to T_{d}. Fix a positive real η. There is an index l such that $\left|f(x)-w_{l}\right|<\eta$. Since $D_{l}(U, x)=1$ and $D_{u}\left(P_{l}, x\right) \geq \frac{1}{8}$, there is an interval $J_{l, i}$
such that $f\left(J_{l, i}\right)=\left\{w_{l}\right\}$ and $U \cap J_{l, i} \neq \emptyset$. So, $f\left(U \cap J_{l, i}\right) \subset(f(x)-\eta, f(x)+\eta)$ and $f \in s_{1}(x)$.

At the points 0 and 1 the function f is quasicontinuous, since $f \in s_{1}(0) \cap$ $s_{1}(1)$. At points $x \in[0,1] \backslash C$ the function f is continuous, so it is bilaterally quasicontinuous at these points. If x is the right endpoint of an interval $I_{n, i}$, then f is continuous at x from the left. Fix a positive real η. From the continuity of f at x from the left, it follows that there is a real $\delta>0$ such that

$$
\delta<\eta \text { and } f((x-\delta, x)) \subset(f(x)-\eta, f(x)+\eta)
$$

Let an index m be such that $\left|f(x)-w_{m}\right|<\eta$. Since the set N_{m} is infinite, there is an integer $i \in N_{m}$ such that $V_{i} \cap(x, x+\eta) \neq \emptyset$. So there is an open interval $L \subset V_{i} \cap(x, x+\eta)$ such that $f(L)=\left\{w_{m}\right\}$. Consequently,

$$
L \subset(x, x+\eta) \text { and } f(L) \subset(f(x)-\eta, f(x)+\eta)
$$

and f is bilaterally quasicontinuous at x. Similarly we can show that f is bilaterally quasicontinuous at points x, which are the left endpoints of some intervals $\operatorname{cl}\left(I_{n, i}\right)$ and at points $x \in E$.

References

[1] J. B. Brown, Almost continuous Darboux functions and Reed's pointwise convergence criteria, Fund. Math. 86 (1974), 1-17.
[2] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin 1978.
[3] Z. Grande, On some special notions of approximate quasi-continuity, Real Anal. Exch. 24 No. 1 (1998-99), 171-184.
[4] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19, (1932), 184-197.
[5] T. Neubrunn, Quasi-continuity, Real Anal. Exch. 14 No. 2 (1988-89), 259-306.
[6] F. D. Tall, The density topology, Pacific J. Math. 62 (1976), .275-284.

[^0]: Key Words: Density topology, condition $\left(s_{1}\right)$, quasicontinuity, fixed point of mapping.
 Mathematical Reviews subject classification: 26A05, 26A15
 Received by the editors August 28, 2002

