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ON SETS OF DISCRETE CONVERGENCE
POINTS OF SEQUENCES OF REAL

FUNCTIONS

Abstract

The aim of the paper is to characterize the class of sets of points
at which a sequence of real functions of a distinguish family F ⊂ RX

discretely converges.

1 Introduction

The notion of discrete convergence of sequences of real functions was intro-
duced by Császár and Laczkovich in [4]. The authors describe the families
of discrete limits of sequences of functions for certain classes of functions, for
example continuous functions. The same problem is discussed in many recent
papers of Grande (see e.g. [5]).

Our investigation of discrete convergence takes a different direction, namely
we are interested in characterizing the class of sets of points at which a se-
quence of real functions from an established family of functions discretely
converges. The first result describing sets of convergence points is due to
Hahn [6] and Sierpiński [14]. It concerns pointwise convergence of sequences
of continuous functions and states that a subset A of a Polish space X is of
type Fσδ if and only if there exists a sequence {fn : n ∈ N} ⊂ RX of continuous
functions convergent exactly at each point of A. This theorem has become the
starting point for our further considerations. The problem we deal with in [16]
and [17] is to find an analogous characterization of sets of convergence points
for sequences of functions from some other classes, such as Bα, measurable,
approximately continuous or quasi-continuous functions.

The same problem arises when we replace pointwise convergence with some
other types of convergence. In [12] the convergence of transfinite sequences of
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functions has been examined. In this paper we consider the discrete conver-
gence; i.e., we give a characterization of the class of sets of discrete convergence
points of sequences of functions, which are taken from a fixed class F ⊂ RX .
As F we consider Borel class α, Darboux functions, measurable functions,
derivatives, approximately continuous or quasi-continuous functions. In Sec-
tion 8 we also study some proper subclasses of Baire measurable functions, for
example cliquish functions. We will see that for some classes of functions we
get the same family of sets for pointwise or discrete convergence (e.g. for quasi-
continuous functions, Corollary 7.5). But for others the considered families
are different (e.g. for continuous functions, Corollary 3.4).

2 Definitions and Notation

We denote by ω and ω1 a first infinite and uncountable ordinal number, re-
spectively. We identify ordinal numbers with the sets of their predecessors;
so ω is identified with the set N = {0, 1, 2, . . . }. The letter R stands for the
set of real numbers. For a subset A of a topological space X we denote by
int (A), cl (A) and fr (A) the interior, closure and boundary of A, respectively.
Throughout the paper the following abbreviations for some classes of subsets
of a topological space X are used:

Σ0
1(X) (Π0

1(X)) — open (closed) subsets of X;

Σ0
α(X) (Π0

α(X)) — additive (multiplicative) class α of Borel subsets of X,
0 < α < ω1;

M(X) — σ-ideal of meager (first category) subsets of X;

SO(X) — semi-open subsets of X: A ∈ SO(X) iff A ⊂ cl (int A) [11];

Baire(X) — the collection of subsets with the Baire property.

For f, g : X → R let

[f = g] = {x ∈ X : f(x) = g(x)}.

Unless otherwise stated, functions considered here are real-valued functions
defined on a topological space X. Instead each F(R) ⊂ RR we write F for
short (e.g. B1 instead B1(R)). The same rule will be used for all classes of
subsets of R; for example we write Σ0

1 instead Σ0
1(R).

A functions f : X → R is called a discrete limit of a sequence {fn : n ∈
N} ⊂ RX if for any x ∈ X there is a number k ∈ N such that fn(x) = f(x)
for each n ≥ k [4]. The notion of a point of discrete convergence is defined
analogously.
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Definition 2.1. A sequence (an)n of real numbers is said to be discretely
convergent if there exists a number k ∈ N such that an = ak for each n ≥ k.
Then we say that a = ak is a discrete limit of (an)n and we denote it by

a = d− lim
n

an.

We call a sequence {fn : n ∈ N} ⊂ RX discretely convergent at x ∈ X if a
sequence of real numbers (fn(x))n is discretely convergent. A set of all such
points we denote by

Ld({fn : n ∈ N}) = {x ∈ X : d− lim
n

fn(x) exists}.

For a family of functions F(X) ⊂ RX let

Ld(F(X)) =
{

Ld({fn : n ∈ N}) : {fn : n ∈ N} ⊂ F(X)
}

.

Remark 2.2. Ld(F1(X)) ⊂ Ld(F2(X)) for any F1(X) ⊂ F2(X).

Remark 2.3. For any {fn : n ∈ N} ⊂ RX we have

Ld({fn : n ∈ N}) =
⋃
n∈N

⋂
k≥n

[fn = fk] =
⋃
n∈N

⋂
k≥n

[fk = fk+1].

Consequently, for any F(X) ⊂ RX

Ld(F(X)) ⊂
{ ⋃

n∈N

⋂
k≥n

Ak : Ak = [f = g] for some f, g ∈ F(X)
}

.

Lemma 2.4. If F(X) is an additive subgroup of RX , then

Ld(F(X)) =
{ ⋃

n∈N

⋂
k≥n

Ak : Ak = [f = g] for some f, g ∈ F(X)
}

.

Proof. The inclusion “ ⊂ ” follows by Remark 2.3. To see “ ⊃ ” take
A =

⋃
n∈N

⋂
k≥n Ak, where Ak = [fk = gk] for some fk, gk ∈ F(X). Then

hk = fk − gk ∈ F(X) and A =
⋃

n∈N
⋂

k≥n[hk = 0]. Consider a bijection
ϕ : ω → 2 × ω, ϕ = (ϕ0, ϕ1) and put pn = ϕ0(n) · hϕ1(n) for n ∈ N. Then
pn ∈ F(X) for every n ∈ N and A = Ld({pn : n ∈ N}). �

In order to describe the connections between pointwise and discrete con-
vergence let us consider also the set L({fn : n ∈ N}) of all convergence points
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of a sequence {fn : n ∈ N} ⊂ RX ; i.e., x ∈ L({fn : n ∈ N}) iff limn fn(x) exists
and it is finite. For a family of functions F(X) ⊂ RX let

L(F(X)) =
{

L({fn : n ∈ N}) : {fn : n ∈ N} ⊂ F(X)
}

.

It will be shown later that L(F) \ Ld(F) 6= ∅ for some F ⊂ RR (cf. Corol-
lary 3.4). There exist also F ⊂ RR such that Ld(F)\L(F) 6= ∅ as the following
example shows.

Example 2.5. For every n ∈ N define fn : R → R by

fn(x) =

{
1

n+2 for x ∈ {0, 1, . . . , n} ∪ {−n− 1},
1 otherwise .

Let F be a family of all such functions. Then R \N ∈ Ld(F), because R \N =
Ld({fn : n ∈ N}). But R \ N 6∈ L(F). Suppose to the contrary that there
exists {gi : i ∈ N} ⊂ F such that R \ N = L({gi : i ∈ N}).

First suppose that {gi : i ∈ N} contains a constant subsequence {gik
: k ∈

N} (i.e., for some n ∈ N and any k ∈ N we have gik
= fn). Let us consider

two possible cases.

• There is m ∈ N such that gi = fn for all i ≥ m. But then L({gi : i ∈
N}) = R.

• For every m ∈ N there exists im ≥ m such that gim
6= fn. Then

limm gim
(−n − 1) = 1 and limk gik

(−n − 1) = 1
n+2 . It follows that

−n− 1 6∈ L({gi : i ∈ N}).

Both of them contradict our assumption.
Now suppose {gi : i ∈ N} contains no constant subsequence. Therefore

limi gi(n) = 0 for all n ∈ N, which means that N ⊂ L({gi : i ∈ N}), a contra-
diction. �

3 Bα class of functions

For α < ω1 denote by Bα(X) the Borel class α of functions defined on a metric
space X; i.e., f ∈ Bα(X) iff f−1(U) ∈ Σ0

α+1(X) for every open U ⊂ R. In
particular, B0(X) denotes the family of all continuous functions.

Lemma 3.1. Let (X, d) be an arbitrary metric space with a metric d. For any
ordinal number α < ω1 and for any set A ∈ Π0

α+1(X) there exists a function
h ∈ Bα(X) such that A = [h = 0].
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Proof. First, consider α = 0. Then a closed set A ⊂ X takes a form
A = [h = 0] for a continuous function h : X → R, which is given by a formula
h(x) = dist (x,A) = inf{d(y, a) : a ∈ A}. For α ≥ 1 consider a set X \
A ∈ Σ0

α+1(X). It is easy to see that X \ A =
⋃

n∈N An for some sequence
{An : n ∈ N} ⊂ Π0

α+1(X)∩Σ0
α+1(X). Moreover, we can assume Ak ∩Am = ∅

for k 6= m. Putting

h(x) =

{
1

n+1 if x ∈ An and n ∈ N
0 if x ∈ A

we get the required function.

Theorem 3.2. Let X be an arbitrary metric space. For any ordinal number
α < ω1, we have Ld(Bα(X)) = Σ0

α+2(X). In particular, for the class B0(X)
of continuous functions we have Ld(B0(X)) = Σ0

2(X).

Proof. Fix α < ω1. For any f, g ∈ Bα(X) we have [f = g] ∈ Π0
α+1.

Therefore and by Lemma 2.4,

Ld(Bα(X)) =
{ ⋃

n∈N

⋂
k≥n

[fk = gk] : fk, gk ∈ Bα(X)
}

⊂
{ ⋃

n∈N

⋂
k≥n

Ak : Ak ∈ Π0
α+1(X)

}
= Σ0

α+2(X).

To get an equality fix A =
⋃

n∈N
⋂

k≥n Ak where Ak ∈ Π0
α+1(X). By Lemma 3.1,

for every k ∈ N there is a function hk ∈ Bα(X) such that Ak = [hk = 0]. In a
consequence, A =

⋃
n∈N

⋂
k≥n[hk = 0] ∈ Ld(Bα(X)). �

It turns out that the assumption on X to be metric is essential.

Example 3.3. There exists a topological space X such that a family B0(X)
of continuous functions does not satisfy an assertion of Theorem 3.2. To prove
this, consider a space X of real numbers with a topology T of cocountable
subsets of R; i.e.,

T = {A ⊂ R : R \A is countable} ∪ {∅}.

Then B0(X) consists of all constants; so Ld(B0(X)) = {∅, R}, while Σ0
2(X)

contains all countable subsets of R.

It it known that for an uncountable Polish space X the different Borel
classes of subsets of X are not equal to each other (see [8, Theorem 22.4]).
It was shown in [17] that L(Bα) = Π0

α+3 and it is easy to see, that also
L(Bα(X)) = Π0

α+3(X) for any metric space X. By Theorem 3.2 we get the
following.
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Corollary 3.4. For any uncountable Polish space X we have

L(Bα(X)) \ Ld(Bα(X)) 6= ∅.

4 Approximately Continuous Functions

We say that f : R → R is approximately continuous iff for every open U ⊂ R a
set f−1(U) is open in the density topology Td. (Recall that Td consists of all
Lebesgue measurable subsets of R having density 1 at each of its points; see
e.g. [3].) Let A denote the class of all such functions.

Theorem 4.1. Ld(A) = Σ0
3.

Proof. It is known that A ⊂ B1 ([3, Theorem 5.5, p. 21]); so if A = [f = g]
for some f, g ∈ A, then A ∈ Π0

2 and R\A ∈ Td. Moreover, a family A satisfies
all assumptions of Lemma 2.4, so we have

Ld(A) =
{ ⋃

n∈N

⋂
k≥n

Ak; Ak = [f = g] for some f, g ∈ A
}

⊂
{ ⋃

n∈N

⋂
k≥n

Ak : Ak ∈ Π0
2 and R \Ak ∈ Td

}
⊂ Σ0

3.

First we will show that the last inclusion can be replaced with an equality.
Fix A ∈ Σ0

3. Then A =
⋃

n∈N Gn, where Gn ∈ Π0
2. Since every Π0

2 set is a
countable union of Π0

2 sets, closed in the density topology (cf. [10, Lemma 5]),
we have A =

⋃
n∈N Bn, where Bn ∈ Π0

2 and R \Bn ∈ Td. Put Ak =
⋃

n≤k Bn.
Then Ak ∈ Π0

2, R \ Ak ∈ Td and A =
⋃

n∈N
⋂

k≥n Ak. Now, it is enough to
notice that every set Ak ∈ Π0

2 such that R\Ak ∈ Td takes a form Ak = [hk = 0]
for some approximately continuous function hk : R → [0, 1] (Zahorski [18,
Lemma 11]). �

Denote by bA the class of all bounded approximately continuous functions
and by ∆ the class of derivatives.

Theorem 4.2. Ld(∆) = Σ0
3.

Proof. Note that in Theorem 4.1 we have actually proved that Ld(bA) = Σ0
3.

Since bA ⊂ ∆ ⊂ B1 (see [3, Theorem 5.5, p. 21]), the assertion follows by
Theorem 3.2 and Remark 2.2. �

It was shown in [17], that L(A) = L(∆) = Π0
4. By Theorems 4.1 and 4.2

we have the following.

Corollary 4.3. Ld(A) 6= L(A) and Ld(∆) 6= L(∆).
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5 Darboux Functions

We say that a function f : R → R has the Darboux property iff f(A) is
connected for every connected A ⊂ R. Denote by D the family of all such
functions. It is well known that every function f : R → R is a sum of two
Darboux functions (see e.g. [3]). The next theorem is a simple consequence of
this fact.

Theorem 5.1. A family Ld(D) consists of all subsets of R.

Proof. Fix A ⊂ R and consider a function

p(x) =

{
0 if x ∈ A

1 if x ∈ R \A

and Darboux functions g, h : R → R such that p = g − h. Define

fn = ϕ0(n) · g + (1− ϕ0(n)) · h,

where ϕ : ω → 2 × ω, ϕ = (ϕ0, ϕ1) is an arbitrary bijection. Then fn are
Darboux functions and A = Ld({fn : n ∈ N}) ∈ Ld(D). �

For 0 < α < ω1 denote byDBα the class of all Bα functions having Darboux
property. As a consequence of Theorem 3.2 we get the following.

Theorem 5.2. For any ordinal number 0 < α < ω1 we have Ld(DBα) =
Σ0

α+2.

Proof. For α = 1 the assertion follows by inclusions A ⊂ DB1 ⊂ B1 ( [3,
Theorem 5.5, p. 21]) and by Theorems 4.1, 3.2 and Remark 2.2. Now, fix α > 1
and A ∈ Σ0

α+2. By Theorem 3.2, there is a sequence {gn : n ∈ N} ⊂ Bα such
that Ld({gn : n ∈ N}) = A. To prove A ∈ Ld(DBα) we will use {gn : n ∈ N} to
construct a new sequence {fn : n ∈ N} ⊂ DBα such that A = Ld({fn : n ∈ N}).

Let {Im : m ∈ N} be an enumeration of all open intervals with rational
endpoints. By induction we can choose a sequence {Cm,n : n, m ∈ N} of
nonempty nowhere dense perfect sets satisfying the following properties:

(i) Cm,n ⊂ Im for m,n ∈ N;

(ii) Cm,n ∩ Ci,j = ∅ for (m,n) 6= (i, j).

For fixed n ∈ N let Cn =
⋃

m∈N Cm,n. For every m ∈ N choose a continuous
surjection hm

n : Cm,n → [−m; m] and define hn : Cn → R by

hn(x) = hm
n (x) for x ∈ Cm,n and m ∈ N.
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It is easy to verify that hn are of B1 class on Cn. The required sequence
{fn : n ∈ N} ⊂ DBα is defined by

fn(x) =

{
hn(x) if x ∈ Cn

gn(x) if x 6∈ Cn.

Indeed,

• fn(P ) = R for every nonempty interval P ⊂ R; so fn ∈ D,

• f−1
n (U) ∈ Σ0

α+1 for every open U ⊂ R and α ≥ 2; so fn ∈ Bα,

• for every x ∈ R there is at most one n ∈ N such that x ∈ Cn; so
fk(x) = gk(x) for every k > n. It follows that Ld({fn : n ∈ N}) =
Ld({gn : n ∈ N}) = A.

Remark 5.3. Since L(Bα) = Π0
α+3 (see [17, Theorem 3]), we can apply the

same arguments as above to obtain L(DBα) = Π0
α+3.

6 Measurable Functions

The next simple observation gives a characterization of Ld for measurable
functions, for example for Lebesgue measurable, Borel or Baire measurable
functions.

Theorem 6.1. Let A(X) be a σ-algebra of subsets of X and MA(X) ⊂ RX

denote a family of A(X)-measurable real functions. Then Ld(MA(X)) =
A(X).

Proof. The inclusion “ ⊂ ” is follows from Remark 2.3. To prove “ ⊃ ” note
that each set A ∈ A(X) takes the form A = Ld({fn : n ∈ N}) for a sequence
{fn : n ∈ N} ⊂ MA(X) of functions defined by fn = ϕ0(n)·χA+(1−ϕ0(n))·h,
where ϕ : ω → 2 × ω, ϕ = (ϕ0, ϕ1) is an arbitrary bijection, χ

A denotes the
characteristic function of A and h : X → R is equal to 1 for every x ∈ X. �

7 Quasi-Continuous Functions

In this section we examine the class QC(X) of quasi-continuous functions
defined on a topological space X. A function f ∈ QC(X) iff for every p ∈ X
and for every open sets U ⊂ X, W ⊂ R such that p ∈ U and f(p) ∈ W there
exists a nonempty open set G ⊂ U such that f(G) ⊂ W (or, equivalently
f−1(V ) ∈ SO(X) for every open V ⊂ R, see e.g. [13, Theorem 1.1]). Denote
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also by Cliq(X) the collection of all cliquish functions; i.e., f ∈ Cliq(X) iff for
every p ∈ X, its open neighborhood U and ε > 0 there exists a nonempty
open set G ⊂ U such that |f(x)− f(x′)| < ε for every x, x′ ∈ G [15].

The following lemma is a key to a construction of quasi-continuous func-
tions.

Lemma 7.1. (cf. Borśık [1, Lemma 1]) Let X be an arbitrary metric space.
For every nowhere dense closed set F ⊂ X satisfying F ⊂ cl (G) for some
nonempty open set G ⊂ X there exists a collection {Kn,m : n ∈ N,m ≤ n} of
nonempty open sets such that:

(i) cl (Kn,m) ⊂ G \ F for all n ∈ N and m ≤ n,

(ii) cl (Kn,m) ∩ cl (Ki,j) = ∅ for (n, m) 6= (i, j),

(iii) for every x 6∈ F there exists an open neighborhood V of x such that the
set {(n, m) : cl (Kn,m) ∩ V 6= ∅} has at most one element,

(iv) for every x ∈ F , every open neighborhood V of x and every number
m ∈ N, there exists n ≥ m such that Kn,m ∩ V 6= ∅.

Consequently, F ⊂ cl (
⋃

n≥m Kn,m) for each m ∈ N and both F∪
⋃

n≥m cl (Kn,m)
and F ∪

⋃
n∈N,m≤n cl (Kn,m) are closed in G. �

Corollary 7.2. Let X be an arbitrary metric space. For every nowhere dense
closed set F ⊂ X satisfying F ⊂ cl (G) for some nonempty open set G ⊂ X
there exist disjoint semi-open sets S0, S1 ⊂ G \ F such that G \ F = S0 ∪ S1

and F ⊂ cl (S0) ∩ cl (S1).

Proof. By Lemma 7.1, there is a collection {Kn,m : n ∈ N,m ≤ n} of
sets satisfying (i)-(iv). It is enough to take S0 =

⋃
n∈N cl (Kn,0) and S1 =

G \ (F ∪
⋃

n∈N cl (Kn,0)).

Lemma 7.3. (cf. Borśık [2]) Let X be an arbitrary metric space. For every
cliquish function g : X → R there are quasi-continuous functions s, t : X → R
such that g = s + t. �

Theorem 7.4. Let X be an arbitrary metric space. Then Ld(QC(X)) =
Baire(X).

Proof. Since SO(X) ⊂ Baire(X), every quasi-continuous function has the
Baire property and an inclusion “⊂” is a consequence of Theorem 6.1 and
Remark 2.2.
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To prove “⊃”, fix A ∈ Baire(X). Then A = (G\P )∪Q, where G is a regular
open set (i.e. G = int (cl (G))), P,Q ∈ M(X), P ⊂ G and Q ∩ G = ∅. Let
P =

⋃
i∈N Fi for an increasing sequence {Fi : i ∈ N} of nowhere dense subsets

of G. We need to find {fn : n ∈ N} ⊂ QC(X) such that A = Ld({fn : n ∈ N}).
First consider a function s : G → R given by

s(x) =


1 if x ∈ F0

1
i if x ∈ Fi \ Fi−1 and i ≥ 1
0 otherwise .

It is easy to see that s ∈ Cliq(G). Moreover, [s = 0] = G \ P . By Lemma 7.3
there are quasi-continuous functions s0, s1 : G → R such that s = s0−s1. Take
a bijection ϕ : ω → 2× ω, ϕ = (ϕ0, ϕ1) and for each n ∈ N put

fn|G = ϕ0(n) · s0 + (1− ϕ0(n)) · s1.

Then {fn|G : n ∈ N} ⊂ QC(G) and Ld({fn|G : n ∈ N}) = G \ P .
Now, take X \G. Since G is a regular open set, X \G ∈ SO(X). It follows

that X \G = cl (int (X \G)) = int (X \G)∪ fr (G). Consider the first category
set Q ⊂ X \G. Then Q ⊂

⋃
i∈N Ni for an increasing sequence {Ni : i ∈ N} of

nowhere dense closed subsets of X \G. Fix i ∈ N. Let Ei = Ni ∪ fr (G). Then
Ei ⊂ cl (int (X \G)) and by Corollary 7.2 there are semi-open sets Si

0, S
i
1 such

that:

(i) Si
0 ∩ Si

1 = ∅,

(ii) int (X \G) \ Ei = Si
0 ∪ Si

1,

(iii) Ei ⊂ cl (Si
0) ∩ cl (Si

1).

Define gi, hi ∈ QC(X \G) by

gi(x) =

{
0 if x ∈ Si

0 ∪ (Ei ∩Q)
1 if x ∈ Si

1 ∪ (Ei \Q)

and

hi(x) =

{
1 if x ∈ Si

0

0 if x ∈ Si
1 ∪ Ei.

It is easy to check that for fn|X\G = ϕ0(n) · gϕ1(n) + (1 − ϕ0(n)) · hϕ1(n) we
have {fn|X\G : n ∈ N} ⊂ QC(X \ G) and Ld({fn|X\G : n ∈ N}) = Q. The
required sequence consists of the functions fn = fn|G ∪ fn|X\G. �

By [16, Theorem 2] we have the following.
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Corollary 7.5. Ld(QC(X)) = L(QC(X)).

Remark 7.6. There is a topological space X such that Ld(QC(X)) 6= Baire(X).
It is enough to consider a space X of real numbers with a topology of cocount-
able sets (cf. Example 3.3). Then Ld(QC(X)) = {∅, R}, while Baire(X)
contains all countable subsets of R. �

8 Some Subclasses of Baire Measurable Functions

Let MBaire(X) be the family of Baire measurable functions. (f ∈MBaire(X)
iff f−1(U) ∈ Baire(X) for every open U ⊂ R.) For f : X → R let C(f) be the
set of all continuity points of f and let D(f) = X \C(f). In the next theorem
a class of functions f : X → R with a dense and open set C(f) is examined.
This class we denote by S(X). Obviously, S(X) ⊂MBaire(X).

Theorem 8.1. For any topological space X we have Ld(S(X)) = Baire(X).

Proof. Since S(X) ⊂ MBaire(X), we have Ld(S(X)) ⊂ Baire(X), by The-
orem 6.1 and Remark 2.2. Now, fix A0 ∈ Baire(X) and let A1 = X \ A0. Of
course, A1 ∈ Baire(X).

First suppose X is a Baire space. Then for every s ∈ {0, 1} we have As =
(Gs \ Ps) ∪Qs, where Gs is a regular open set, Ps, Qs ∈M(X), Ps ⊂ Gs and
Qs∩Gs = ∅. Since X is a Baire space, X = G0∪G1∪Q0∪Q1 = cl (G0)∪cl (G1)
and G0 ∩ G1 = ∅. Moreover, Ps ⊂

⋃
n∈N F s

n, where {F s
n : n ∈ N} is an

increasing sequence of closed nowhere dense subsets of cl (Gs).
Fix n ∈ N and define {fn : n ∈ N} by

fn(x) =


0 if x ∈ (G0 \ (F 0

n ∩ P0)) ∪ (F 1
n ∩ P1)

(−1)n if x ∈ (G1 \ (F 1
n ∩ P1)) ∪ (F 0

n ∩ P0)
0 if x ∈ Q0 \G1

(−1)n if x ∈ Q1 \G0.

Fix x ∈ A0 = (G0 \ P0) ∪Q0. Then x ∈ Ld{fn : n ∈ N}, because

• if x ∈ Q0 \G1, then fn(x) = 0 for every n ∈ N; so d− limn fn(x) = 0,

• if x ∈ Q0 ∩ G1 = Q0 ∩ P1 ⊂ Q0 ∩
⋃

n∈N F 1
n , then there is k ∈ N such

that x ∈ P1 ∩ F 1
n for every n > k; so fn(x) = 0, which means that

d− limn fn(x) = 0,

• if x ∈ (G0\P0)∩
⋃

n∈N F 0
n , then there is k ∈ N such that x ∈ G0\(F 0

n∩P0)
for every n > k, so fn(x) = 0, which means that d− limn fn(x) = 0,
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• if x ∈ G0 \
⋃

n∈N F 0
n , then fn(x) = 0 for every n ∈ N; so d− limn fn(x) =

0.

Hence, A0 ⊂ Ld{fn : n ∈ N}. In the same manner we can see that {fn : n ∈ N}
is not discretely convergent at any x ∈ A1. It follows that A0 = Ld{fn : n ∈
N}. Moreover, since X = cl (G0)∪ cl (G1) and fn is constant on the open sets
G0\F 0

n and G1\F 1
n , we have D(fn) ⊂ F 0

n∪F 1
n∪fr (G0)∪fr (G1) for any n ∈ N;

so it is nowhere dense. Consequently, C(fn) is a dense subset of X. Since fn

has a finite range, C(fn) is open; so fn ∈ S(X). Therefore, A ∈ Ld(S(X)).
Now, consider an arbitrary topological space X. Let X1 be the union of

all first category open subsets of X. Then X2 = X \ cl (X1) is an open Baire
subspace of X and both A0 ∩X2 and A1 ∩X2 have the Baire property in X2

(see e.g. [7]) so we can find (as before) a sequence {fn|X2 : n ∈ N} ⊂ RX2

of functions with finite ranges such that A0 ∩X2 = Ld({fn|X2 : n ∈ N}) and
D(fn|X2) is closed and nowhere dense in X2 for any n ∈ N.

Take X1. By the Banach Category Theorem ([7, Theorem 1.6]), X1 is
an open set of the first category in X; so X1 ⊂

⋃
n∈N Fn ⊂ cl (X1), where

Fn is an increasing sequence of nowhere dense sets closed in X. Fix n ∈ N.
Let En = Fn ∪ fr (X1). Then En is a nowhere dense closed subset of X and
cl (X1) =

⋃
n∈N En. Define fn|cl (X1)

: cl (X1) → R by

fn|cl (X1)
(x) =

{
0 if x ∈ En ∩A0

(−1)n otherwise.

Note that fn|cl (X1)
is constant on the open set X1 \ En ⊂ C(fn|cl (X1)

),
dense in cl (X1). Moreover, A0 ∩ cl (X1) = Ld({fn|cl (X1)

: n ∈ N}). Put
fn = fn|cl (X1)

∪ fn|X2 . Then C(fn) is open for any n ∈ N and D(fn) is a
subset of D(fn|X2)∪En∪ fr (X1), which is nowhere dense in X. Consequently,
{fn : n ∈ N} has all of the required properties. �

As a consequence of Theorem 8.1 and Remark 2.2 we get a characterization
of Ld(F(X)) for any class F(X) ⊂ RX between S(X) and MBaire(X), such as
pointwise discontinuous functions (see [9], p. 74), simply continuous functions
(cf. [13]), or cliquish functions. In this case we get the same collection of sets
for discrete or pointwise convergence (cf. [16, Remark 2 ]).

Corollary 8.2. For any F(X) ⊂ RX such that S(X) ⊂ F(X) ⊂MBaire(X)
we have Ld(F(X)) = L(F(X)) = Baire(X).
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