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THE LEBESGUE DIFFERENTIATION
THEOREM VIA THE RISING SUN LEMMA

Abstract

A complete version of Lebesgue’s differentiation theorem, including
the image of the exceptional set, is proved in an elementary way.

1 Introduction

Lebesgue’s differentiation theorem [5] says that every monotone function is
differentiable almost everywhere. Most proofs use Vitali’s covering theorem
(see for instance the classics [4] and [7]) or a slightly complicated version of
the rising sun lemma for semicontinuous functions (see for instance the books
[3] and [9]). Proofs of other types can be found in [1] or [6]. In this paper
two simplifications are proposed. First, we use a brilliant idea of Rubel [10]
to reduce the result to the case of continuous monotone functions. This case
is then treated as in a preceding paper [2], by means of a new version of the
rising sun lemma (for continuous functions). The proof will use the following
properties of the Lebesgue outer measure m*. Properties (P3) and (P4) can
be taken as definition of the outer measure m*.

Pl) ACB = m*(A) <m*(B),

m* (Unzy An) < 3005 m* (An),

(P1)
(P2)
(P3) if U =, (cn,dy) is an open set, then m*(U) = 3, (dn — cn),
(P4)
(P5) m

-

4) m*(A) =inf{m*(U)/A CU and U is open},

P5 *([e,d]) = d — ¢ and m*({c}) =

The following lemma is a slight modification of Riesz’s rising sun lemma [8].
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Lemma 1. Let G : [a,b] — R be a continuous function and U C (a,b) some
open set. Then the set

Ug :={z €U : there exists y < x with (y,z) CU and G(y) < G(x)}
is also open. Moreover, if (¢,d) is a component of Ug, then G(c) < G(d).

PROOF. Trivially, Ug is open. Let (¢,d) be any component of Ug. We show
that G(c) < G(z) for all x € (¢,d). Let v :=min{y € [¢,z] : G(y) < G(x)},
and suppose that ¢ < y. Hence G(c) > G(z) and v € Ug. There exists z < v
with (z,7) CU and G(2) < G(v). If z < ¢, then G(z) < G(v) < G(z) < G(c)
implies that ¢ € Ug, a contradiction. And if z > ¢, then G(z) < G(vy) < G(z)
contradicts the minimality of 4. Therefore ¢ =« and G(c) < G(z). O

Proposition 2. Let F : [a,b] — R be a continuous increasing function and
let R > 0. If the set E C (a,b) is such that

D_F(z) := limsup Flz) = Fly)
Yy w r—Y

>R

for every x € E, then m*(F(E)) > Rm*(E).

PROOF. Let € > 0. By (P4) there exists an open set V such that F(E) CV
and m*(V) < m*(F(E)) +e. We put U = F~1(V) N (a,b) and consider
the function G( ) := F(z) — Rx. Then D_G(z) > 0 for every x € E, and
hence E C Ug. Let (ck,di) denote the components of Ugs. By Lemma 1
G(ci) < G(dy), which implies that R (dy — cx) < F(dy) — F(cg). Since F is
continuous, it follows that {J, (F(ck), F(di)) € F(Uy(ck.di)) = F(Ug). B
using (P3) twice and (P1) once, one obtains

Rm*(Ug) = R (di — cx) < 30 (F(dy) = Fler)) <m*(F(Ug)).

Then Rm*(E) < m*(F(U)) < m*(V) < m*(F(E)) + ¢ (by definition of U),
and the assertion follows because € > 0 is arbitrary. O

Lemma 3. Let F : [a,b] — R be an increasing function. Then the function
G : [F(a),F(b)] — R defined by G(y) := inf{z € [a,b] : F(z) > y} is in-
creasing, and G(F(z)) < x for every x € [a,b]. Moreover, G(F(z)) < x iff
F is constant on some interval [z,x]. Finally, if the function F is strictly
increasing, then G is a left inverse of F' and is continuous.

ProOOF. All the assertions are trivial. Suppose that F is strictly increasing.
To show that the function G is right continuous, let x € [a,b) and € > 0 such
that t+e <b. I F(z) <y < F(z+¢), then z < G(y) <z +e. O
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Proposition 4. Let F : [a,b] — R be a strictly increasing function and let
r > 0. If the set E C (a,b) is such that

D_F(x) := liminf Fla) = Fly) <r

y T—y
for every x € E, then m*(F(E)) < r m*(E).

PrOOF. Following [10] we consider the function G : [F(a), F(b)] — R of
Lemma 3. Let D be the set of all left discontinuities of F'. It is well known that
D is at most denumerable. Now take a point € E'\ D. Since D_F(z) < r,
there exist 0 < ¢ < r and a sequence z,, 7« such that

w < r —eg, and hence G(Flgy(cg :?gf()xn)) r i e

By continuity, the sequence F'(z,) converges to F'(x). So one concludes that
D_G(F(z)) > 1. By Proposition 2 one obtains m*(E) > m*(E \ D) >
1 m*(F(E\D)). Since m* (F(D)) = 0, one gets r m*(E) > m*(F(E\ D)) =
m* (F(E)). =
Lemma 5. Let F,G : [a,b] — R be two increasing functions and E C (a,b).
If H(z) = F(z) + G(z), then m*(F(E)) + m*(G(E)) < m*(H(E)).

PROOF. Let ¢ > 0. By (P4) there exists an open set V such that H(E) CV
and m*(V) < m*(H(E)) + €. Let (cx,dy) denote the components of V. For
x1,%2,y1,y2 € H ek, dr) with z; < y; note that

F(y1) — F(z1) + G(y2) — G(z2) < H(max y;) — H(min ;) < dj, — ck.

Hence F(H‘l(ck,dk)) and G(H‘l(ck, dk)) are contained in two intervals I,
and Jj such that m*(Ix) + m*(Ji) < di, — cx. Since E C U, H *(cy, dy), it
follows that m* (F(E)) + m*(G(E)) < > ,.(dx — cx) <m*(H(E)) +e. O

Proposition 6. Let F : [a,b] — R be an increasing function and let r > 0. If
E C (a,b) is such that
F(z) — F(y)

D_F(z):=liminf ——= < r
Yo T—y

for every x € E, then m*(F(E)) < r m*(E).

ProoOF. We consider the function H(z) := F(x) + x. Then H(z) is strictly
increasing and D_H(x) < r 4 1 for every € E. According to the previous
results one concludes that m* (F(E)) + m*(E) < m*(H(E)) < (r+1)m*(E).

O
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Corollary 7. Let F : [a,b] — R be an increasing function and let v > 0. If
the set E C (a,b) is such that

Fy) - F
D, F(z) := liminf W) () <r
Y y—x
for every x € E, then m*(F(E)) <r m*(E).
PRrROOF. Consider the function G(z) := —F(—x). O

Proposition 8. Let F : [a,b] — R be an increasing function and let R > 0.
If the set E C (a,b) is such that

— F
D, F(z) := limsup
YN y—=

for every x € E, then m*(F(E)) > Rm*(E).

PRrROOF. Consider the function G : [F(a), F(b)] — R of Lemma 3. Let D; be
the set of all right discontinuities of F', and Dy the set of right end-points of
intervals of constancy. It is well known that the set D = D; U D5 is at most
denumerable. Now take a point # € E\ D. Since D, F(x) > R, there exist
€ > 0 and a sequence x,\.x such that

P e e S 1

by using the properties of G. By continuity, the sequence F'(x,) converges to
F(z). So one concludes that D, G(F(z)) < . By Corollary 7 one obtains

m*(E\ D) <  m*(F(E\ D)) <  m*(F(E)).
Since m*(D) = 0, one gets R m*(E) = Rm*(E \ D) < m*(F(E)). O
Theorem 9. Let F : [a,b] — R be an increasing function. Then
D_F(s) = Dy F(x) = D, F(z) = D_F(z)

for all x € (a,b) except on a set E such that m*(E) = m*(F(E)) = 0. The
set Z = {x € (a,b) : F'(x) = 0} satisfies the equality m*(F(Z)) =0 and the
set I:={x € (a,b) : F'(x) = oo} satisfies m*(I) = 0.

PROOF. This uses a classical argument. Given two rationals R > r > 0 we
consider -
E.rp:={z€(a,b) :D_F(z)<r<R<DiF(x)}.
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By Propositions 6 and 8 we get Rm*(E,g) < m*(F(E,r)) < rm*(Eg), so
m*(Eyg) = m*(F(Eyg)) = 0. Then Ey := {z € (a,b) : D_F(z) < D4 F(x)}
satisfies the equality m*(E;) = m*(F(E;)) = 0 by (P2), and the same holds
for By :={z € (a,b) /D, F(x) < D_F(x)} by considering G(z) := —F(—x).
Now let E := Ey U Ey. For z € (a,b) \ E we remark that

D_F(z) > D F(x) > D,F(x) > D_F(x) > D_F(x).

Finally, for every n € N we obtain m*(F(Z)) < + (b — a) by Proposition 6,
and m*(I) < + (F(b) — F(a)) by Proposition 8. O
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