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ANOTHER APPLICATION OF ROLLES’S
THEOREM

Abstract

We find an analogue of Rolle’s Theorem in (real variable) calculus
for continuous complex valued functions defined on convex subsets of
the complex plane.

In this note U is a convex subset of the complex plane C and f is a
continuous complex valued function defined on U . If u ∈ U and v ∈ C,
|v| = 1, and if f is defined on the set

{
u + tv : t ∈ (−δ, δ)

}
for some positive

number δ, then by the derivative of f at u in the direction v we mean the limit

lim
t→0, t real

f(u + tv)− f(u)
tv

.

This derivative is denoted f ′v(u).

In this note we require that if u1 ∈ U , u2 ∈ U , v =
u1 − u2

|u1 − u2|
, then f ′v(u)

exists at all points u ∈ U for which u = u2 + tv for some positive number t.
Continuous functions on C abound that are nowhere analytic, but nonethe-

less have derivatives in all directions. Witness for example

f1(a + ib) = a− ib, and f2(a + ib) = 2a + 3ib (a, b real).

It appears unlikely that Rolle’s Theorem [2, p. 95] could be of much use for
complex valued functions. Consider for example, the function g(z) = ez on
the segment joining points 0 and 2πi. Observe that g(2πi) − g(0) = 0, but
g′(z) = ez vanishes nowhere. Nonetheless we have for f and U as given here:

Theorem 1. Let u1, u2 ∈ U , u1 6= u2, and f(u1) = f(u2). Then

diameter X√
2

≥ dist(0, X),

where X =
{
f ′v(u) : u ∈ U and v are such that f ′v(u) is defined

}
.
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Proof. Let u and v be complex numbers and let d be a positive number such
that |v| = 1, u ∈ U , u + dv ∈ U and f(u) = f(u + dv). On the real interval
0 ≤ t ≤ d define the complex valued function

g(t) =
f(u + tv)

v
,

and let g1 and g2 be the real valued functions such that g = g1 + ig2.
Now g, g1 and g2 are differentiable on 0 < t < d because f(u + tv) has

derivatives in the direction of v for 0 < t < d. Likewise g, g1 and g2 are
continuous on 0 ≤ t ≤ d. Moreover,

g(0) = g(d), g1(0) = g1(d) and g2(0) = g2(d)

because f(u) = f(u + dv).
By Rolle’s Theorem there are real numbers t1 and t2 such that 0 < t1 < d,

0 < t2 < d and g′1(t1) = g′2(t2) = 0. Thus

g′(t1) = ig′2(t1), g′(t2) = g′1(t2)

and ∣∣∣g′(t1)− g′(t2)
∣∣∣ =

[
g′1(t2)

2 + g′2(t1)
2
] 1

2
. (1)

But g′(t) = f ′v(u + tv), so

diameter X ≥
∣∣g′(t1)− g′(t2)

∣∣. (2)

Say g′2(t1)
2 ≥ g′1(t2)

2 for definiteness. Then[
g′2(t1)

2 + g′1(t2)
2
] 1

2 ≥
∣∣g′1(t2)∣∣ · √2 =

∣∣g′(t2)∣∣ · √2 =
∣∣f ′v(u + t2v)

∣∣ · √2

and [
g′2(t1)

2 + g′1(t2)
2
] 1

2 ≥
∣∣f ′v(u + t2v)

∣∣ · √2. (3)

We combine (1), (2) and (3) to obtain

diameter X ≥
∣∣f ′v(u + t2v)

∣∣ · √2.

Clearly if F is analytic on an open set, then F has derivatives in all possible
directions on this set. We can give another proof that F is locally one-to-one
around any point w where F ′(w) 6= 0 [1, Chapter II, Theorem 5.1]. Use the
continuity of F ′ at w to find a disc V centered at w such that

diameter F ′(V ) <
|F ′(w)|

3
.
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It follows from Theorem 1 that F is one-to-one on V . Note that power series
expansions of F were not needed here.

For functions F let (∆F )(u1, u2) denote the difference quotient

F (u1)− F (u2)
u1 − u2

.

Now if F is a differentiable real valued function on a convex subset V of the
real line, then all values assumed by ∆F lie in the set F ′(V ). This is clear
from the Mean Value Theorem. But it need not to hold for f satisfying our
hypotheses. We now see that at least the values assumed by ∆f are not so
“far” from the set X in Theorem 1.

Theorem 2. Let f , U and X be as in Theorem 1. If

∆f =
f(u1)− f(u2)

u1 − u2

for u1 and u2 in U , then

dist(∆f,X) ≤ diameter X√
2

.

Proof. Let y be a complex number such that the distance from y to X

exceeds
diameter X√

2
. For complex numbers s, put g(s) = f(s)− sy and define

W =
{

g′v(u) : u ∈ U and v are such that g′v(u) is defined
}

.

Then g′v(u) = f ′v(u)− y and it follows that the distance from 0 to W exceeds

diameter W√
2

=
diameter X√

2
.

By Theorem 1, g is a one-to-one function on U . Thus if u1 ∈ U , u2 ∈ U ,
u1 6= u2, then

f(u2)− u2y = g(u2) 6= g(u1) = f(u1)− u1y

and therefore
f(u1)− f(u2)

u1 − u2
6= y.

It follows that y is not in the range of ∆f , and therefore the distance from

any value in the range of ∆f to X cannot exceed
diameter X√

2
.
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