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Abstract

We obtain an estimate for the typical Hausdorff dimension of the
intersection of a set E with homothetic copies of a set F , where E and
F are Borel subsets of Rn. We apply this to the ‘distance set problem’
for a polyhedral norm on Rn, by showing that there are subsets of full
dimension with distance set of Lebesgue measure 0.

1 Introduction.

Geometric properties of Hausdorff dimensions and measures have been studied
in great detail. For example, the dimensions of projections and products of
sets have been related to the dimensions of the sets themselves in various
ways. Definitions of Hausdorff dimensions and measures and discussions of
such results may be found in various texts, such as [4, 13].

Dimensions of intersections of sets have also been investigated in some
detail. In particular, given Borel subsets E,F of Rn, we have that, as σ
ranges over an appropriate family G of geometric transformations of Rn, such
as the group of isometries or similarities, ‘in general’

dimH(E ∩ σ(F )) ≤ max{0,dimH E + dimH F − n}

in the sense that this fails only for exceptional transformations σ, and ‘often’

dimH(E ∩ σ(F )) ≥ dimH E + dimH F − n (1)

in that this holds for a set of transformations σ ∈ G of positive measure (with
respect to the natural invariant measure on G).
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In particular (1) holds for a set of transformations σ ∈ G of positive mea-
sure in the following cases, where E and F are Borel sets:

(a) G is the group of similarities and E and F are arbitrary;
(b) G is the group of isometries, E is arbitrary and F is a smooth manifold

or rectifiable set;
(c) G is the group of isometries, and E and F are arbitrary with dimH E >

1
2 (n + 1) or dimH F > 1

2 (n + 1).

Further details and proofs of these results may be found in [6, 11] [4,
Chapter 8] [13, Chapter 13].

Note that such properties are fractal analogues of the classical ‘codimen-
sion’ formula for the dimensions of intersection of subspaces or submainfolds
of Rn in general position; of course in the classical situation the dimensions
are integers.

In all of the above cases, the transformations σ range over a group G
which includes rotations, and indeed the rotational component is crucial in the
proofs. Here we consider the group of homotheties, where there is no rotational
component. Recall that a homothety is a similarity transformation which maps
subspaces onto parallel affine spaces, equivalently one which is the composition
of a dilation and translation. Thus a typical homothety σλ,a : Rn → Rn is of
the form σλ,a(x) = λx + a where λ ∈ R+ is the scaling factor and a ∈ Rn is
the translation vector.

There is a natural invariant measure on the group of homotheties; for our
purposes it enough to be aware that this is equivalent to Lebesgue measure
on the parameterization by R+ × Rn. In particular, the set of homotheties
{σλ,a : (λ, a) ∈ E} has zero measure if and only if E ⊂ R+ × Rn has zero
(n + 1)-dimensional Lebesgue measure.

Our main result is as follows.

Theorem 1. Let E and F be Borel subsets of Rn, and let G be the group of
homotheties on Rn. Suppose that dimH E + dimH F > 2n− 1. Then

dimH(E ∩ σ(F )) ≥ dimH E + dimH F − n (2)

for a set of homotheties σ of positive measure.

A simple example will show that we cannot dispense with the condition
dimH E + dimH F > 2n− 1.

In the final section of this paper we apply this theorem to a question that
is attracting current interest, namely the ‘distance set problem’. Let ‖ ‖ be
a norm on Rn. The ‘distance set’ D(A) of a set A ⊂ Rn with respect to
this norm is the set of distances realized between its pairs of points, that is
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D(A) = {‖x− y‖ : x, y ∈ Rn}. We show that for polyhedral norms, there are
‘large’ subsets of Rn, that is sets of Hausdorff dimension n, with distance sets
that are ‘small’ in the sense of having Lebesgue measure 0.

2 Proof of the Main Theorem.

Our proof of Theorem 1 depends on the following result, due to Marstrand
[9] in R2 and Mattila [10] in Rn, on intersections of sets with planes, see also
[13, Chapter 10]. We write A + x = {a + x : a ∈ A} for the translate of a set
A ⊂ Rn by x ∈ Rn, with P⊥ for the orthogonal complement of a subspace P
of Rn, and L for 1-dimensional Lebesgue measure.

Proposition 2. Let E be a Borel subset of Rn with dimH E ≥ 1.
(a) For all (n− 1)-dimensional subspaces P of Rn

dimH(E ∩ (P + t)) ≤ dimH E − 1 for L-almost all t ∈ P⊥. (3)

(b) For almost all (n− 1)-dimensional subspaces P of Rn (with respect to
the natural invariant measure)

L{t ∈ P⊥ : dimH(E ∩ (P + t)) = dimH E − 1} > 0. (4)

Proof of Theorem 1. We use induction on n, the dimension of the am-
bient space. For n = 1 the homotheties are just the (orientation preserving)
similarities, and (2) has been established for the group of similarities in R1,
see, for example, [13, Chapter 13].

Now assume inductively that (2) holds in Rn. Let E and F be Borel subsets
of Rn+1 with dimH E +dimH F > 2n+1 (so in particular, dimH E,dimH F >
n). By Proposition 2(b), we may choose an n-dimensional subspace P of
Rn+1 such that (4) holds simultaneously for E and for F (with F replacing
E in (4)). By a rotation of space if necessary, we may assume that P is the
coordinate subspace of the first n coordinates in Rn+1. Thus, writing points
in Rn+1 as (x, t) ∈ Rn × R, and writing Et for the section of E given by
Et = {(x, t′) ∈ E : t′ = t}, etc., there are Lebesgue measurable sets T,U ⊂ R
with L(T ),L(U) > 0 such that

dimH(Et) = dimH E−1 for t ∈ T and dimH(Fu) = dimH F−1 for u ∈ U. (5)

We may parameterize the homotheties on Rn+1 as follows. For λ ∈ R+, a ∈
Rn and h ∈ R, write σλ,a,h : Rn+1 → Rn+1 for the homothety given by

σλ,a,h(x, t) = λ(x, t) + (a, h) = (λx + a, λt + h) for (x, t) ∈ Rn × R.
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Suppose, for a contradiction, that (2) is false for these E,F ⊂ Rn+1. Then
for almost all (λ, a, h) ∈ R+ × Rn × R, we have that

dimH(E ∩ σλ,a,h(F )) < γ ≡ dimH E + dimH F − (n + 1).

Taking sections parallel to the coordinate subspace Rn, it follows from (3)
that, for almost all (λ, a, h),

dimH(Et ∩ σλ,a,h(F )) < γ − 1 (6)

for L-almost all t. By Fubini’s theorem, it follows that for almost all t, (6) is
true for almost all (λ, a, h). (Note that functions such as (λ, a, h) 7→ dimH(E∩
σλ,a,h(F )) are Borel measurable.)

The set σλ,a,h(F(t−h)/λ) = λF(t−h)/λ+(a, h) is the intersection of σλ,a,h(F )
with the n-plane Rn × {t}, so for almost all t, we have that for almost all
(λ, a, h),

dimH(Et ∩ σλ,a,h(F(t−h)/λ)) < γ − 1.

The coordinate transformation on R+ × Rn × R given by λ := λ, a := a, u :=
(t−h)/λ preserves sets of measure zero. Thus for almost all t ∈ R, for almost
all (λ, a, u) ∈ R+ × Rn × R

dimH(Et ∩ σλ,a,t−λu(Fu)) < γ − 1. (7)

Writing E◦
t and F ◦

t for the orthogonal projections of Et and Ft respectively
onto Rn in the decomposition Rn+1 = Rn×R, the projection of σλ,a,t−λu(Fu)
onto Rn is just σλ,a(F ◦

u ), where σλ,a : Rn → Rn is the homothety of Rn given
by σλ,a(x) = λx + a. Thus Et ∩ σλ,a,t−λu(Fu) is congruent to E◦

t ∩ σλ,a(F ◦
u ).

We conclude from (7) that for almost all t ∈ T and almost all u ∈ U ,

dimH(E◦
t ∩ σλ,a(F ◦

u )) < γ − 1 for almost all (λ, a) ∈ R+ × Rn. (8)

But for all t ∈ T and u ∈ U we have dimH E◦
t = dimH Et = dimH E − 1 and

dimH F ◦
u = dimH Fu = dimH F − 1. Applying the inductive assumption (2) to

E◦
t , F ◦

u ⊂ Rn, we conclude that for almost all t ∈ T and u ∈ U ,

dimH(E◦
t ∩ σλ,a(F ◦

u )) ≥ (dimH E − 1) + (dimH F − 1)− n = γ − 1

for a set of (λ, a) ∈ R+ × Rn of positive measure, which contradicts (8), to
complete the inductive step.

The following example shows that the condition dimH E+dimH F > 2n−1
is necessary for the intersection property (2) to hold for the group of homoth-
eties.



Dimensions of Intersections and Distance Sets 723

Example
Given r, s > 0 with r + s < 1, we may easily find Borel sets E1, F1 ⊂ R with
dimH E1 = r and dimH E2 = s such that E1 ∩ (λF1 + t) = ∅ for almost all
(λ, t) ∈ R+ × R. (For example, this will happen if we choose either E1 or F1

to have equal Hausdorff and box-counting dimensions.) Then (E1 × Rn−1) ∩
σ(F1 × Rn−1) = ∅ for almost all homotheties σ, with dimH(E1 × Rn−1) =
r + (n − 1) and dimH(F1 × Rn−1) = s + (n − 1); see [4] for details of the
intersection and product properties used here.

3 Distance Sets.

In this section we apply Theorem 1 to a problem on distance sets. Let ‖ ‖
be a norm on n-dimensional Euclidean space Rn. The distance set D(A) of
A ⊂ Rn is the set of distances realized between points of A, that is D(A) =
{‖x − y‖ : x, y ∈ A}. We first give the following corollary which shows that
a set A can have full Hausdorff dimension, yet whose projections onto many
1-dimensional subspaces have ‘small’ distance sets.

Corollary 3. Let θ1, . . . , θk be a finite collection of vectors in Rn. There exists
a Borel set A ⊂ Rn with dimH A = n such that its orthogonal projections
onto the lines in the directions θ1, . . . , θk all have distance sets with Lebesgue
measure 0, equivalently

L{x · θi − y · θi : x, y ∈ A} = 0 (i = 1, 2, . . . , k).

Proof. Let F ⊂ R be a Borel set with dimH F = 1 but with L{|u−v| : u, v ∈
R} = 0. (There are various possible constructions of such F , for example the
porous sets formed as the intersections of rapidly increasing numbers of spaced
intervals of rapidly decreasing lengths can have this property, see [13, Section
4.12]). Let E = F × [0, 1]n−1 ⊂ Rn, so that dimH E = n, see [4, Chapter 7],
and for each i let Ei be a congruent copy of E under a rotation that maps the
first coordinate axis to the line through the origin in direction θi. Thus for
each i, dimH Ei = n, and L{(x− y) · θi : x, y ∈ Ei} = 0.

Applying Theorem 1 to the sets E1, E2 . . . Ek in turn, we may find ho-
motheties σ1, σ2, . . . , σk of Rn (where we might as well take σ1 to be the
identity) such that dimH(σ1(E1) ∩ σ2(E2) ∩ . . . ∩ σk(Ek)) = n, so the set
A = σ1(E1) ∩ . . . ∩ σk(Ek) has the desired properties, noting that for all i,

{(x−y)·θi : x, y ∈ A} ⊂ {(x−y)·θi : x, y ∈ σi(Ei)} = {λi(x−y)·θi : x, y ∈ Ei},

where σi(x) = λix + ai.
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We apply this corollary to the much studied ‘distance set problem’. It
has been known for some time [3] that, with distances defined by the usual
Euclidean norm, L(D(A)) > 0 if A ⊂ Rn is a Borel set with dimH A >
(n + 1)/2, and more recently [1, 2, 14] that this conclusion holds if dimH A >
n(n + 2)/2(n + 1). It seems widely believed that, with D(A) defined in terms
of the usual norm, L(D(A)) > 0 if dimH A > n/2, but a proof of this still
seems some way off.

The same question has been considered recently where distance is defined
by non-Euclidean norms on Rn. (Note that the definition of Hausdorff di-
mension of a subset of a finite dimensional normed space is independent of
the norm.) Isoevich and Laba [5] showed that if the norm is such that the
unit ball {x ∈ Rn : ‖x‖ ≤ 1} is a (symmetric) strictly convex set with non-
vanishing curvature, then L(D(A)) > 0 if dimH A ≥ (n + 1)/2. On the other
hand, Konyagin and Laba [8] worked with regular arrangements of points to
show that for a norm on R2, if the unit ball with respect to the norm is a
symmetric convex polygon then ‘typically’ (i.e., for almost all polygons in the
sense of Lebesgue measure on the directions of the sides) there exists a set
A ⊂ Rn with dimH A = 2 and L(D(A)) = 0. They also showed [8] that this is
the case if the sides of the polygon have algebraic slopes with respect to some
coordinate system.

It follows from Corollary 3 that this ‘bad’ situation extends to norms on
R2 defined by all (symmetric) polygons, and indeed to norms on Rn defined
by polytopes for n ≥ 2.

Corollary 4. Let ‖ ‖ be a norm on Rn (n ≥ 2), such that the unit ball with
respect to the norm, B = {x ∈ Rn : ‖x‖ ≤ 1}, is a symmetric polytope (with
finitely many faces). Then there exists a compact set A ⊂ Rn with dimH A = n
such that L(D(A)) = 0, where the distances are defined by the norm ‖ ‖.

Proof. We may find vectors θ1, . . . , θk such that the unit ball is given by

B =
k⋂

i=1

{x : |x · θi| ≤ 1},

so for all x ∈ Rn

‖x‖ = max
i=1,...,k

|x · θi|.

Taking A to be the set of Hausdorff dimension n constructed in Corollary 3,
we see that

{‖x− y‖ : x, y ∈ A} ⊂
k⋃

i=1

{|(x− y) · θi| : x, y ∈ A},
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so

L(D(A)) = L{‖x− y‖ : x, y ∈ A} ≤
k∑

i=1

L{|(x− y) · θi| : x, y ∈ A} = 0.

Since every Borel subset of Rn contains a compact subset of the same Hausdorff
dimension, we may reduce A to a compact set of dimension n with the required
properties.
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