Part 11

The Computability Theory
of Banach Spaces

Chapter 2
Computability Structures on a Banach Space

Introduction

In this chapter we introduce the concept, “computability structure on a Banach
space”. This concept will play a fundamental role throughout the remainder of the
book.

The notion of a computability structure arose in response to the following
question. Which processes in analysis and physics preserve computability and which
do not? We first make this question precise, and then we answer it.

How will the term “process” be understood? Among the processes of physics
we expect to include are those associated with the wave equation, the heat equation,
Laplace’s equation and many others. Among the processes of analysis we expect to
consider are Fourier series, Fourier transform and others. A moment’s thought
will convince the reader that the solution operator associated with each of these
processes is a linear operator which maps functions into functions. Hence we will
be concerned with linear operators on Banach spaces of functions. They will be
our “processes”.

How will the term “computable” be understood? Of course, since we will be
dealing with Fourier series and transforms, solutions of the wave and heat equations
etc., the appropriate notion is “computable function of a real/complex variable”.
The classical definition of this was spelled out in Chapter 0. In order to cover the
variety of processes mentioned above, we will have to extend this definition to
computability on an arbitrary Banach space. The extended definition plays a key
role in the statement, proof and applications of the three principal results of this
book. One of them, the First Main Theorem, provides corollaries which answer
the question proposed above: which “processes” do and which do not preserve
computability. The other two are the Second Main Theorem and the Eigenvector
Theorem. These two results, together with their associated theorems in Chapter 4,
determine precisely the “computability relationships” between an operator and its
eigenvalues/spectrum/eigenvectors in a general setting. As is well known, linear
operators on Hilbert space—more particularly the unbounded ones—are of con-
siderable importance in physical theory.

The concept of a “computability structure on a Banach space” will be given
axiomatically. This is a natural approach when one wants to encompass a variety
of applications.

78 2. Computability Structures on a Banach Space

What concept should be axiomatized? Note that it is not sufficient to axiomatize
the notion of a “computable point”. The reason is obvious: topological notions are
required in the solution of problems in analysis. Since a Banach space is a metric
space, the topology can be given by convergent sequences. This suggests that
an appropriate concept for axiomatization is “computable sequence of points”.
(A computable point x is a point such that the sequence x, x, x ... is computable.)
Of course, the topology can also be given by other, equivalent methods—e.g. open
sets. However the sequence approach is very natural in the study of computability.
Indeed one of the fundamental intuitions of recursive function theory is the notion
of a “computable sequence of integers”—a sequence a(0), a(l), ... obtained by
a Turing Machine computation of the recursive function a. We will see that the
concept, “computability structure on a Banach space”, which is in fact an axiomati-
zation of “computable sequence of points x,, x;, X,, ... of a Banach space”, will
provide a useful and flexible tool for solving problems.

Once the decision is made to axiomatize “computable sequence of points”, the
specific axioms follow naturally. Since a Banach space is linear, we need an axiom
for linearity (Axiom 1, below). Since a Banach space is complete, we require an
axiom for completeness (Axiom 2). Since a Banach space is normed, we need
an axiom for the norm (Axiom 3). In fact, these are the only axioms which will be
postulated. A detailed presentation of the axioms will be given in the next section.

When viewed in this light, the axioms appear to be minimal: they are just sufficient
to relate the concept of computability to the basic concepts of Banach space theory.
We will see later that under very general conditions which are satisfied in practical
situations, the axioms are not merely minimal but also maximal. Thus it is not
possible to postulate axioms which, when added to the axioms of a computability
structure, give a more intuitive concept of computability.

The following definitions are both natural and useful. They are concerned with
an effectivization of the notion of a separable Banach space. A computability
structure & on a Banach space X is effectively separable if it contains a sequence
{e,} whose linear span is dense in X. (Recall that the linear span of a set V consists
of all finite linear combinations with real/complex coefficients of the elements of V)
Such a sequence {e, } is called an effective generating set for &.

Although it is natural for applications to define a computability structure axi-
omatically, an axiomatic approach may be surprising to the expert in recursion
theory. There is something “genetic” about computability. Witness, for example,
the definition of computable function from N to N. As is well-known, early research
in this area consisted in attempting to capture the intuitive concept of computability
by an appropriate definition. Definitions of this concept were presented by Turing,
Post, Herbrand/Godel, Markov, etc. The fact that the insights of Post, Turing, etc.
led to the same class of functions was important in concluding that the “right”
definition of “computable function from N to N had been found. Recursion theory
on N is the study of the consequences of this definition.

By contrast, the axiomatic approach to a computability structure allows for
a multitude of computability structures on a Banach space. (As mentioned earlier
this is essential for applications.) Not all of these structures can be “right”. Yet,
surprisingly enough, the axiomatic approach appears to capture the concept of
computability rather well. There are several reasons for this, which we now consider.

Introduction 79

Associated with each of the usual Banach spaces—e.g. C[0, 1], LP[0, 1], I?
(1 < p < o) etc.—there is an intrinsic notion of computability which satisfies the
axioms of a “computability structure”. This will be discussed in greater detail later
in the chapter (Sections 2, 3, 4). At this point we merely remark that the intrinsic
computability structure is unique. For the space C[0, 1], we will see that it is given
by the “computable sequence of computable functions” defined in Chapter 0. We
note further that, for each of the spaces mentioned above, intrinsic computability
can be presented in many ways. The different ways originate, in part, from the
different branches of analysis. This happens as follows. The specific branch of
analysis focuses upon a particular, well-understood sequence of functions which is
dense in the Banach space. The computability structure is obtained by taking the
effective closure of this sequence. For example, if one is concerned with Fourier
series, it is natural to choose the trigonometric polynomials with rational (complex
rational) coefficients as the sequence and take its effective closure. If, however, one is
concerned with problems in measure and integration on LP-space (1 < p < o), it is
more natural to consider a sequence composed of certain computable step functions
—i.e. those step functions with rational jump points and values. As we will see later,
each of these sequences is an example of an “effective generating set”. (This concept
was discussed above.) We will show that the effective closure of those effective
generating sets which arise naturally from basic constructs in analysis all lead to the
same computability structure—intrinsic computability. For this reason, intrinsic
computability plays a fundamental role in a wide variety of applications. This fact
is of considerable importance, not only for applications but also for understanding
the nature of computability on a Banach space.

The genetic quality of the definition of a computability structure can also be
viewed in the more general context of a separable Banach space. Recall that the
axioms of a computability structure on any Banach space—whether separable or
not—appear to be minimal. They are just sufficient to impact the concept of
computability with the basic notions of Banach space theory—linearity, limit and
norm. For an effectively separable Banach space something stronger holds. The
axioms are also maximal. More specifically it is not possible to formulate axioms
which, when added to the axioms of a computability structure, yield a more intuitive
rcharacterization of computability. This is a consequence of the following theorem
which will appear in Section S.

Stability Lemma. Let {e,} be a sequence whose linear span is dense in the Banach
space X. Let &' and &" be computability structures on X such that {e,} € & and
{e,} €S . Then " = F".

Thus we see that if a computability structure % contains an effective generating
set, then it can have no proper extension. This rigidity in the structure of & implies
the aforementioned redundancy of any further axioms. (Note also that % cannot
have any proper restriction containing the effective generating set.)

The fact that for an effectively separable Banach space, the axioms of a comput-
ability structure are both maximal and minimal seems to indicate that, at least for
those spaces, the concept of a computability structure does capture the intuitive
notion which we need—computability on a Banach space.

80 2. Computability Structures on a Banach Space

Although the Stability Lemma is very general, it does require that the two
structures & and &” share a common effective generating set {e,}. This condition
is satisfied in most practical cases. However, for the purpose of constructing counter-
examples, we may sometimes consider computability structures which do not
contain the usual effective generating sets. Such artificial computability structures
do exist, and we call them “ad hoc structures”.

It should be pointed out that ad hoc computability structures play an important
role in our research. They are not useless by-products of the axiomatic approach,
as we will see. One way in which they are used is as follows. There are some natural
techniques in analysis—particularly for obtaining counterexamples—which are
noncomputable. They lead readily to ad hoc computability structures. In some
instances it is possible to translate the ad hoc computability structure into the
intrinsic one. In the process of translation, the analytic intuition which led to
the construction is so thoroughly disguised that, for all practical purposes, it is lost.
The counterexamples would be difficult to discover without first passing through
an ad hoc structure. The proof of the Eigenvector Theorem (Theorem 6, Chapter 4)
provides an example of an ad hoc structure which is used in this way.

Before concluding this section, the following should be remarked. We have NOT
defined a computable Banach space. We began with a preexisting Banach space
and defined a computability structure on it. Furthermore, when reasoning about
Banach space theory, we employ classical logic, as physicists and analysts do. In
particular we make free use of nonconstructive methods of proof to characterize
the set of computable sequences within the larger class of all sequences. Thus our
work is firmly within the tradition of recursive function theory.

1. The Axioms for a Computability Structure

We begin with a technical note. Virtually everything we do applies mutatis mutandis
to either real or complex Banach spaces. The same holds for explicit function spaces
suchas C[a, b], L?[a, b], etc. We shall take this as being understood, and shall rarely
mention it in what follows.

Let X be a Banach space. The undefined term, which the following axioms will
govern, is “computable sequence {x,}”, x, € X. We denote the set of all computable
sequences by . Thus a Banach space with a computability structure is really a pair
(X, ¥). By a conventional “abuse of notation”, we shall sometimes refer merely
to X (or &), the other member of the pair being understood.

A double sequence {x,, } is called “computable” if it is mapped onto a computable
sequence by one of the standard recursive pairing functions from N x N onto N.
Similarly for triple or k-fold sequences.

An element x € X is called “computable” if the sequence {x, x, x, ...} is computable.

The following simple definition will be used not only in the axioms, but through-
out the remainder of the book. It is an obvious adaptation of the notion of effective
convergence (which was discussed in Chapter 0) to Banach spaces.

1. The Axioms for a Computability Structure 81

Definition. The double sequence {x,,} converges to the sequence {x,} as k — oo,
effectively in k and n, if there exists a recursive function e such that

1
”xnk - xn” < 2_N

for all k > e(n, N).
Now we state the axioms. The first one covers finite linear combinations.

Axiom 1 (Linear Forms). Let {x,} and {y,} be computable sequences in X, let {,; }
and {B,} be computable double sequences of real or complex numbers, and let
d: N - N be a recursive function. Then the sequence

d(n)
Sp = kZ'o (i Xk + Bucyic)

is computable in X.

Axiom 2 (Limits). Let {x,,} be a computable double sequence in X such that {x,}
converges to {x,} as k — oo, effectively in k and n. Then {x,} is a computable
sequence in X.

Axiom 3 (Norms). If {x,} is a computable sequence in X, then the norms {|x,|}
form a computable sequence of real numbers.

We assume that at least one computable sequence in X exists, whence the
sequence {0, 0,0, ...} is computable.

As corollaries we derive the following, which were given as axioms in the authors’
papers [1983b, 1987].

Propeosition. The following are consequences of the axioms.

(1) (Composition property). If {x,} is a computable sequence in X, and a: N — N is
a recursive function, then {X,} is a computable sequence in X.

(2) (Insertion property). If {x,} and {y,} are computable sequences in X, then the
sequence {Xq, Yo, X1, Y1 X2, V2, - .- } iS computable.

Proofs. For (1): Let y, = 0 for all n. Let d(n) = a(n), and let {a,, } be the computable
double sequence of reals given by:

Oy = 1 if k = a(n), 0 otherwise.

Then
d(n)
sn = Z ankxk = xa(n)'

Hence by the Linear Forms Axiom, {x,,} is computable.

82 2. Computability Structures on a Banach Space

For (2): Let {x,} and {y,} be the given sequences. Let d(n) = n, and let {a,, } and
{B.} be the computable real sequences given by:

oy = 1 if nis even and k = n/2, 0 otherwise;

B =1 ifnisodd and k = (n — 1)/2, 0 otherwise.
Then

e X if n is even
/2 >
Sp = (o Xk + Buyi) = " n

" ,,Z‘o " " Yin-1)y2 if nis odd.

Again by the Linear Forms Axiom, the interspersed sequence {x,, yo,...} is
computable. []

We conclude this section by recalling some definitions which will play a key role
in many of the results which follow.

Let {e,} be any sequence of vectors. We recall that the linear span of {e,} is the
set of all finite (real/complex) linear combinations of the e,. For example, if {e,} is
the sequence of monomials 1, x, x2, x>, ..., then the linear span of {e,} is the set
of all polynomials.

Definition. Let X be a Banach space with a computability structure . We say that
(X, &) is effectively separable if there exists a computable sequence {e,}, e, € X,
such that the linear span of {e,} is dense in X. Such a sequence {e,} is called
an effective generating set for (X, &>.

By an abuse of notation we shall sometimes refer to the Banach space X itself as
being effectively separable.

Remark. We do not assume above that {e,} is “effectively dense”—merely that it is
dense. Actually the effective density condition follows automatically. This will be
proved in the Effective Density Lemma (Theorem 1, Section 5). The effective density
condition was redundantly made part of the definition in the authors’ paper [1983b].

2. The Classical Case: Computability in the Sense of
Chapter 0

It is not hard to show that the computable sequences of computable functions of
Chapter 0 satisfy the axioms of a computability structure. For let a and b be
recursive reals, and let C[a, b] be the Banach space of all continuous functions
on [a, b] with the uniform norm. Suppose further that & is the collection of all

3. Intrinsic LP-computability 83

computable sequences of computable functions as defined in Chapter 0. It is trivial
to verify that Axiom 1 (Linear Forms) holds for &. Furthermore the Limit Axiom
(Axiom 2) is Theorem 4, and the Norm Axiom (Axiom 3) is Theorem 7 of that
chapter.

It is just as easy to prove that C[a, b] is effectively separable with respect to .
For the monomials 1, x, x%, ... form a computable sequence whose linear span is
dense in C[a, b]. Thus {x"} is an effective generating set.

Another effective generating set is the collection of all piecewise linear functions
in C[a, b] with rational (complex rational) coordinates for the “corners”.

A third example applies to Fourier series. Here, for convenience, let [a, b] =
[0, 27]. In this section, where the norm is that of uniform convergence, we must
restrict attention to continuous functions f such that f(0) = f(2=n). [In Section 3
below, where we deal with L?, the condition f(0) = f(27) can, of course, be dropped.]
Now the effective generating set which applies most naturally to this situation is
the sequence of trigonometric functions:

1, cos x, sin X, cos 2x, sin 2x,

It is worth noting that by Theorem 6 of Chapter 0 the effective generating set {x"}
has a stronger property: every computable sequence {f,} is the effective limit of
a computable sequence of polynomials of the form

d(n, k) X
Pnk = Z ApyejX?,
=
where {a,;} is a computable triple sequence of rationals and d is a recursive
function. We will see in Section 5 below, that this property generalizes to arbitrary
effectively separable Banach spaces. For suppose {e,} is an effective generating set
for (X, &). Then, by the Effective Density Lemma, every computable sequence
{x,} € X is the effective limit of a computable sequence of polynomials

d(n, k)

Dnk = Z Ak j€j-
j=0

3. Intrinsic LP-computability

The definition of intrinsic LP-computability is a natural generalization of comput-
ability as defined in Chapter 0.

We begin with a brief comment on notation. Let 1 < p < oo be a computable real;
let a and b be computable reals.

We now turn to L?[a, b]. For p = oo we take the space C[a, b] with the uniform
norm. Recall that classically C[a, b] is dense in L?[a, b]. Thus the following defini-
tion suggests itself.

84 2. Computability Structures on a Banach Space

Definition. (a) A function f € L?[a, b] is LP-computable if there exists a sequence
{gi} of continuous functions which is computable (in the sense of Chapter 0) and
such that the LP-norms ||g, — f ||, converge to zero effectively as k — oo.

(b) A sequence {f,} of LP-functions is LP-computable if there exists a double
sequence {g,,}, which is computable (in the sense of Chapter 0) and such that
lgm — f,ll , converges to zero as k — oo, effectively in n and k.

Computability for L?(I9)—where I is a computable rectangle of R? (see Section
3, Chapter 0)—is defined similarly.

It is not hard to verify that the computable sequences of L[a, b] defined above
satisfy the axioms of a computability structure. Furthermore, this structure is
effectively separable. Three effective generating sets are inherited from the comput-
ability structure on C[a, b]. They are: the monomials 1, x, x2, ...; the collection of
all piecewise linear functions in C[a, b] with rational coordinates for the “corners”;
and the trigonometric polynomials. (See the preceding section.)

There is, however, a fourth effective generating set for L?[a, b], with p # oo. This
is the collection of all step functions with rational values and jump points. We
observe that step functions could not have been used in conjunction with C[a, b],
since they are not continuous. In fact, it has been part of the accepted “folk wisdom”
of this subject that a discontinuous function cannot be computable. This holds,
however, only so long as we view the computation of a function as being carried
out pointwise. Now, for LP-functions, pointwise evaluation is not well-defined, since
an LP-function is determined only almost everywhere. By contrast, for functions in
C[a, b], where we use the uniform norm, pointwise evaluation makes perfectly good
sense. Indeed uniform convergence implies pointwise convergence.

We now turn to noncompact domains. For p # oo, LP(R) is our prototype. For
p = oo our space is C,(R), the collection of all continuous functions which approach
Zero as |x| — oo.

The definition of LP-computability on R is an extension of the definition of
LP-computability on [a, b]. We require that the functions g, and g,, have compact
supports which vary effectively in n and k. Without loss of generality, we can assume
that the k' function is supported on a disk of radius k. This gives

Definition. A sequence { f,} € L?(R) is computable if there exists a sequence {g,;},
computable in the sense of Chapter 0, such that

(a) the support of g, is included in [—k, k],

(b) I fn — gmll, = 0 as k — oo, effectively in n and k.

Computability for L?(R?) is defined similarly.

Note. Suppose p = 0. If f € C[a, b], then the first definition gives the computable
functions and sequences on C[a, b] as defined in Chapter 0. If f € C,(R), then the
second definition shows that f is computable if and only if f is computable as in
Section 3 of Chapter 0, and f(x) — 0 effectively as | x| — co.

Once again it is easy to see that intrinsic computability on L?(R), 1 < p < oo,
satisfies the axioms of a computability structure. Furthermore, the computability

5. The Effective Density Lemma and the Stability Lemma 85

structure is effectively separable. Note however, that the monomials do not form an
effective generating set, as x" ¢ LP(R). Similarly for trigonometric polynomials.
However if we take those continuous functions with compact support which are
piecewise linear and have rational coordinates at their “corners”, then we obtain an
effective generating set. For p # oo, the step functions with rational jump points and
values also are an effective generating set.

4. Intrinsic IP-computability

As in functional analysis, let [? (for 1 < p < o0) denote the space of all real
(or complex) sequences {c, } such that the norm (£|c,|?)"'* is finite. Of course, we as-
sume that p is a computable real. For p = oo (which corresponds to the sup
norm), our space is I, the space of all sequences {c,} which converge to zero as
k — oo.

Definition. (a) Let {c,} € I”. Then {c,} is IP-computable if {¢,} is a computable
sequence of real or complex numbers and X|c,|? converges effectively.

Let {¢,} € I§. Then {c,} is I-computable if {c, } is a computable sequence of real
or complex numbers which converges effectively to zero as k — oo.

(b) Let {x,} be a sequence of elements in [(i.e. x, = {c,.}, where each c, is a
number). Then {x, } is I>-computable if (i) {c,,} is a computable double sequence of
numbers, (ii) for each n, Z,|c,|? converges effectively in both k and n. Similarly if
{x,} is a sequence of IJ, then {x,} is [¥-computable if {c,, } is a computable sequence,
such that {c,, } converges to zero as k — oo, effectively in k and n.

It is simple to verify that the axioms of a computability structure hold for these
theories. Furthermore all of these spaces are effectively separable. As an effective
generating set, we can take the sequence of vectors e, = {0,0,0,...,0,1,0,0,...}
with a 1 in the n'® place.

5. The Effective Density Lemma and the Stability Lemma

In this section we prove two basic lemmas. The first of these, the Effective Density
Lemma, states roughly that an effective generating set is not merely dense but
“effectively dense”. This fact is quite useful. It allows us to conclude without further
proof, that certain (classical) approximation theorems have effective versions. For
example, by the (classical) Weierstrass approximation theorem, the polynomials with
rational coefficients are dense in C[0, 1]. Since these polynomials form an effective
generating set, we know by the Effective Density Lemma that the Effective Weier-

86 2. Computability Structures on a Banach Space

strass Theorem (Theorem 6 of Chapter 0) holds. The reader may recall the long and
somewhat messy proof given in that chapter.

The second lemma, the Stability Lemma, was discussed briefly in the introduction
to this chapter. As a consequence of this lemma, we have a kind of “uniqueness” for
computability structures on a Banach space. The lemma actually shows that the
specification of an effective generating set gives a computability structure (= collec-
tion of computable sequences) which has no proper extension or restriction. Thus
it is not possible to invent new axioms which, together with the axioms of a
computability structure, give rise to a more intuitive notion of computability.

The Stability Lemma is an immediate corollary of the Effective Density Lemma.

Theorem 1 (Effective Density Lemma). Suppose {e,} is an effective generating set for
X. Then the sequence {x,}, x, € X, is computable if and only if there is a computable
double sequence p,, such that

. d(n, k)
(1) pnk = Z ocnkjej"
=
where {a,,;} is a computable triple sequence of rationals/complex rationals, and d(n, k)
is a recursive function—

(ii) P — X, as k— oo, effectively in k and n.

Proof. The “if” part follows immediately from the Linear Forms Axiom and the
Limit Axiom. To prove the “only if” part we argue in the following way. Let {p;}
be an effective listing of all finite linear combinations of the e, with rational (complex
rational) coefficients. By the Linear Forms Axiom, {p;} is computable in X. Thus
p: — X, is a computable double sequence, and by the Norm Axiom, {||p; — x, |} is
computable in R. But the linear span of {e,} is dense in X. So there exists an i such
that ||p; — x,|| < 27* In order to compute p,,, fix x, and generate the p; until one
satisfying ||p; — x,|| < 2% is found. Then let p,, = p;. Since the index i = i(n, k) is a
recursive function of n and k, we have, by the Composition Property (see Section 1
of this chapter) that {p,,} is computablein X. O

Corollary 1a (Effective Weierstrass Theorem). Let I? be a g-dimensional rectangle
with computable coordinates for the “corners”. Let X be the Banach space C(I%) with
the uniform norm. Then f € C(I9) is computable if and only if there is a computable
sequence of polynomials py(x,, ..., x,) with rational coeffficients which converges
uniformly to f, effectively in k.

Similarly { f,} is a computable sequence of C(I?) if and only if there is a computable
double sequence p,(x, ..., x,) with rational coefficients which converges uniformly
to f, as k — oo, effectively in k and n.

Proof. An immediate corollary of the Effective Density Lemma. The sequence of
monomials {x", x'?, ..., x"a} is an effective generating set for C(I?). [

5. The Effective Density Lemma and the Stability Lemma 87

As deeper applications in the same vein, we give effective versions of two famous
approximation theorems: the Stieltjes, Hamburger, Carleman Theorem and the
Wiener Tauberian Theorem.

For the first of these: fix a computable real number o > 0. Let G*(R) denote the
Banach space of all continuous function f on (—o0, co)such that lim f(x)e ™ =0,
endowed with the norm x> to

171l = sup | f(x)|e”™".

We put a computability structure on G*(R) by defining a sequence of continuous
functions { f,} to be computable if:

(i) the sequence { f,} is computable in the sense of Chapter 0 and

(i) lim f,(x)e ™" = 0, effectively as x — +oo and effectively in n.

x— towo

Corollary 1b (Effective Stieltjes, Hamburger, Carleman Theorem). Let « be a com-
putable real, a > 1. Let f be a continuous function on (—o0, c0) which is computable
in G*(R). Then there exists a computable sequence of polynomials which converges
effectively to f in the norm ||h| = sup |h(x)|e” .

Proof. If we ignore the question of effective convergence, this is a famous classical
theorem (cf. Shohat, Tamarkin [1943]). But the effectiveness of the convergence
follows immediately from the Effective Density Lemma.

Similarly, and with no extra effort, we obtain:

Corollary 1c (Effective Wiener Tauberian Theorem). Let g be a computable function
in LY(R) whose Fourier transform §(t) # 0 for all real t. Let f be an arbitrary
computable function in L'(R). Then there exists a computable sequence of rational
linear combinations of translates of g which converges effectively to fin L norm.

Proof. An immediate consequence of the classical (noneffective) Wiener Tauberian
Theorem, together with the Effective Density Lemma.

Theorem 2 (Stability Lemma). Let {e,} be a sequence whose linear span is dense in
the Banach space X. Let &' and &" be computability structures on X such that
{e,} €% and {e,} € S". Then &' = &".

Proof. This is an immediate consequence of the Effective Density Lemma. For
that lemma applies to any computability structure . It gives—in terms of the
sequence {e, }—a precise characterization of the collection of computable sequences
{x,}e& O

As a corollary we obtain the following proposition.

Corollary 2a. Let {e,} be a sequence whose linear span is dense in the Banach space
X. Let &, &' be computability structures on X such that {e,} € ¥ and &' = &. Then
S =9

88 2. Computability Structures on a Banach Space

6. Two Counterexamples: Separability Versus Effective
Separability and Computability on L*[0, 1]

Throughout this book, the notion of effective separability will play an important
role. Since most of the Banach spaces we deal with are obviously separable, one
might wonder whether the hypothesis of effective separability is redundant. Our first
example shows it is not redundant: we exhibit a Banach space with a computability
structure which is separable but not effectively separable.

The second example involves a Banach space, L*[0, 1], which has no natural
computability structure at all.

Recall that a Banach space X is effectively separable if it contains an effective
generating set {e, }—i.e. a computable sequence {e,} whose linear span is dense in X.

Example 1. There exists a Hilbert space H with a computability structure & such
that:

(1) The space H is separable.
(2) The computable elements of H are dense in H.
(3) The pair (H, &) is not effectively separable.

We mention that condition (2) above eliminates trivial and inconsequential
examples such as the following: Take a closed subspace H, of H, and define
“computability” only for sequences {x, } in H,. Conditions (2) and (3) together mean
that there is something “seriously wrong” with the computability structure <.

Proof. Now we develop the example. For H we take the Hilbert space L2[0, 2x]. Itis
the computability structure & which is nonstandard. In brief, we shall use a definition
of “computability” which—compared to the standard definition—is too stringent.

We define a sequence of functions {f,} in L?[0, 2x] to be “ultra-computable” if
and only if {f,} is a sequence of trigonometric polynomials of uniformly bounded
degrees (and, of course, with computable coefficients). More precisely, we say that
{ £} is “ultra-computable” if, for some integer N (which may depend on the sequence

{£.}):
)= S cme™,

where {c,,,} is a computable double sequence of complex numbers.
Ultra-computability satisfies all of the axioms for a computability structure on a
Banach space. The Linear Forms Axiom is obvious, since any linear combination of
trigonometric polynomials of degree <N is again a trigonometric polynomial of
degree <N. The Norm Axiom is also obvious, since “ultra-computability” implies
“ordinary L*-computability”, for which we know that the Norm Axiom holds.
The Limit Axiom is a little harder. We must show that if { f,, } is ultra-computable
and converges effectively in L2-norm to {f,} as k - oo, then { f,} is ultra-comput-
able. Now by definition, if { f,,} is ultra-computable, then the functions f,, are all

6. Two Counterexamples: Separability Versus Effective Separability 89

trigonometric polynomials of degree < N. This is because a double sequence { f,, }
is computable if and only if the single sequence {h;} given by h;, ,, = f,, is comput-
able —where j is a standard pairing function from N x N onto N. It is now easy
to see that the limit sequence { f, } is also a sequence of trigonometric polynomials of
degree <N. For a function g € L?[0, 27] is a trigonometric polynomial of degree
< N if and only if the inner products

(g,€") =0

for all p with |p| > N. Now by Schwarz’ inequality (i.e. (g, h)| < ||g| lIA]]) we deduce:
If the condition (g, e'?*) = 0 holds for g = f,;, then since f,, — f, in L?-norm, the
condition (g, e'P*) = 0 also holds for the limits g = f,. Hence the f, are trigonometric
polynomials of degree < N, as desired.

It is trivial to verify that the sequence of coefficients {c,,,} of { f,} is computable.

Of course the space L2[0, 2n] is separable. It is easy to see that, in terms of
ultra-computability, this space is not effectively separable. That is, there is no
ultra-computable effective generating set {e,}. Indeed any ultra-computable se-
quence {e,} must, by definition, consist only of trigonometric polynomials of degree
<N. Then the closed linear span of {e,} will still consist only of trigonometric
polynomials of degree <N, and cannot give all of L2[0, 2x].

Finally, the ultra-computable elements form a dense subset of LZ2[0, 2],
since every trigonometric polynomial with complex-rational coefficients is ultra-
computable. []

Remarks. The preceding paragraph harks back to Chapter 0, Section 2, where we
already saw a clear distinction between “pointwise computability” (i.e. computability
of the individual elements of a sequence) and “sequential computability” (which
is a global statement involving the sequence as a whole). The notion of ultra-
computability used above gave a wide class of single computable elements: namely
all trigonometric polynomials with computable coefficients. But the definition of
sequential computability, requiring a fixed degree N (or less) for all of the elements
of the sequence, was ultra-severe. We could not have an effective generating set
which was ultra-computable, because the restriction to a fixed bound on the degrees
made it impossible to span all of L2[0, 2x].

We turn now to L [0, 1], the space of all bounded measurable functions on [0, 1].
This space is not separable at all. We shall show that it has no “natural” comput-
ability structure. To do this, we define condition (C) as follows:

(C): If {a,} and {b,} are computable sequences of reals with a, < b,, then the
sequence of characteristic functions y;, , ;is computable.

As noted in Section 3, condition (C) holds in L?[0, 1] where 1 < p < oo and p is
computable. However it must fail for L*[0, 1], as the following example shows.

Example 2. There is no computability structure on L*[0, 1] which satisfies condi-
tion (C).

90 2. Computability Structures on a Banach Space

Proof. Let d: N - N be a 1 — 1 recursive function enumerating a recursively enu-
merable nonrecursive set D. Let a, = 0 for all n. Let

(1
2 ifn¢D,

b={1 1
" ~ — i = 21’
2+2m ifn=d(m),m

L1 if n = d(0).

This description of b,, as given, is not effective. However, {b,} is a computable
sequence of reals. For we can approximate b,—effectively—to within an error of
27N by computing d(m) for 0 < m < N.If one of these values d(m) = n, then we know
b, exactly: b, = (1/2) + (1/2™) (or b, = 1 if m = 0). If d(m) # n for 0 < m < N, then
the value 1/2 approximates b, to within an error <27V,

Suppose that there were a computability structure on L*[0, 1] which satisfied
(C). Then {y,, s} Would be computable. Similarly we would have that yy, i
is computable. Thus, by the Linear Forms Axiom, {);, 5+ X12,1;} Would be
computable.

The L*® norms of this sequence are:

2 ifneD,
1 ifné¢D.

By the Norm Axiom this sequence should be computable. Clearly it is not. [

7. Ad Hoc Computability Structures

In Sections 2, 3 and 4 we defined the “natural” computability structures on C[a, b],
L? and [*. These structures are called intrinsic. Moreover, in Section 5 we showed
that an arbitrary computability structure (i.e. any structure satisfying the axioms)
must coincide with the intrinsic structure, provided only that the two structures
possess a computable dense sequence in common.

The above-mentioned results lead to the following questions.

1) Do non-intrinsic computability structures exist?

2) Do non-intrinsic computability structures—if they exist—serve any useful
purpose?

3) What is the relation between the intrinsic and non-intrinsic computability
structures?

This section is conerned with the answer to 1). In later chapters we shall answer
2) and 3). The answers are respectively: 1) Yes, non-intrinsic structures do exist;

7. Ad Hoc Computability Structures 91

2) they are useful for the creation of counterexamples (Chapter 4, Sections 5 and
6); 3) the non-intrinsic structures are isomorphic to the intrinsic one for Hilbert
space, but not for Banach spaces in general (Chapter 4, Sections 6 and 7).

We now turn to the first question. We give two simple examples of ad hoc
computability structures. We note in passing that both of these structures are
effectively separable.

Example 3. (An ad hoc computability structure for C[0, 17).

Let C[0, 1] be the class of continuous complex-valued functions on [0, 1]. Let
%, be the intrinsic computability structure defined in Section 2. Then there exists
an ad hoc computability structure % on C[0, 1] such that &, and %, have only
one sequence in common—the sequence {0, 0,0, ...}.

Proof. Let ¢ be a noncomputable complex number such that |c| = 1. (The exis-
tence of such a number follows from cardinality arguments, since there are un-
countably many numbers on the unit circle.) The computability structure &, is
defined as follows. The sequence { f;} is computable in % if there exists a computable
sequence { f,} of % such that

It is trivial to show that the sequences { f;} satisfy the axioms of a computability
structure. We now show that %, n ¥, = {0,0,0,...,}.

Suppose there exists a function g° # 0 which is an element of a sequence in
- Then g°(&) # 0 for some computable real £. Now since g¢(x) = cg(x) for some
g € S, we have g°(¢) = cg(&). Since both g and g° are members of %, g(&)
and g¢°(¢) are both computable complex numbers. Hence ¢ is computable, a
contradiction. [

The previous example involved complex-valued functions. It is possible to obtain
ad hoc structures for real Banach spaces. The following example shows how
translation of the domain can lead to such structures.

Example 4. (An ad hoc computability structure for Cy(R).)

Let C,(R) be the space of all continuous real-valued functions on R which
approach 0 as |x| — o0. Let % be the intrinsic computability structure for Cy(R)
which is described in Section 3. Then there exists a computability structure &, for
C4(R) so that &, # .

Proof. Let o be a noncomputable real. Define #, as follows. The sequence { f,*} is
computable in ¥ if there exists a computable sequence { f,} of &, such that

S (x) = fulx +).

It is obvious that the sequences { f,} satisfy the axioms of a computability structure.
Furthermore &, contains the sequence {g,}, where

92 2. Computability Structures on a Banach Space
gu(x) = e *™* foralln,
which is notin &%. [
In chapters 4 and 5 we shall study the computability of eigenvalues and eigen-
vectors. We will find that, in general, the eigenvalues are computable, but the

eigenvectors are not. The proof of the result for eigenvectors leans heavily on
an ad hoc computability structure.

