
Chapter IX
Splitting, Density and Beyond

This last chapter on α-recursion theory focuses on priority arguments more difficult
than those of Chapters VII and VIII. Shore's splitting theorem relies heavily on his
method of Σ 2 blocking. His density theorem, the first instance of α-infinite injury,
requires further fine structure results, and consequently its proof is not entirely
dynamic. Its nondynamic features support consideration of recursion theory on
inadmissible structures, the concluding topic of the chapter.

1. Shore's Splitting Theorem

Let A be a regular α-recursively enumerable set, not α-recursive. The object is to
split A into two sets, Bo and Bl9 so that each is of lower α-degree than A. Thus

A = BovBl9BonB1 = 09 and A£aBt(i<2).

Superficially the strategy is the same as that followed by Sacks 1963b when α = ω.
In the ω-case the splitting theorem makes stronger use of Σ 2 replacement than the
Friedman-Muchnik theorem does. In general terms the former is a full-blown Σ 2

recursion while the latter is tame in the sense of Theorem 4.4. VIII. In specific terms
the difference arises from the urgency of splitting. At stage σ some x is enumerated
in A. That x must be put in either Bo or Bx immediately. The force of the positive
requirements is so great that numerous negative requirements are unavoidably
injured.

The negative requirements are indexed by ordinals less than α*:

Req2ε: A Φ {ε}*°,

Req2ε+1: B Φ {ε}B\

{ε} means {/~1ε} for some one-one α-recursive/from α into α*.
Req u has higher priority than req v if u < v. Thus req 0 is never injured. As in the co-
case, if A and {ε}Bi agree on an initial segment of α at stage σ, then {ε}B* is
commmited to preservation on that initial segment, if the priorities allow it. The
preservations associated with req 0 must be bounded in both time and space, since
otherwise A would be α-recursive. To compute A(z\ unfold the construction until
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{0}Bo{z) is committed to preservation. At that stage A(z) = {0}Bo(z) and the latter
equation holds forever after. So there must be a z such that A(x) = (0}βo(χ) for all
x < z, and either {0}Bo(z) is undefined, or is unequal to A(z), at the end of the
construction. Since the preservations associated with req 0 are bounded, and since
A is regular, eventually it will be safe to put every element of A that might injure
req 1 into Bo. Thus req 1 is injured only α-finitely often, and so req 1 is met. And so
on. Let/(r) be the least σ after which no new preservation commitments are made
for the sake of req r. Since/is Σ \, and not tame, it is unlikely that there will be time
to meet all requirements.

If α* < σ2cf(α) then all is well. If not, then Shore's idea is to divide α* into
σ2cf(α*) many blocks. The negative requirements are divided as follows.

g: σ2cf(α) -• α is strictly increasing, Σa

2 and unbounded.

Block 2δ: all requirements of the form A φ {ε}Bo for all εe [g(δ\ g(δ + 1)).

Block (2δ + 1): all requirements of the form A Φ {ε}Bi for all εe[g{δ\ g(δ + 1)).

Within each block there is no conflict between requirements. Hence each block
can be regarded as a single requirement. It turns out that the supremum of all
stages at which block b is active is a Σa

2 function of b. Lemma 3.3.VIII says
σ2cf(α*) = σ2cf(α), so there is enough time to meet all requirements.

1.1 Theorem (Shore 1975). Let A be oL-recursively enumerable and regular.
Then there exists ^-recursively enumerable Bo and Bx such that A = β o u Bl9

BonB1= 0 and A r£α£ f (i < 2).

Proof. Assume the terminology of the preliminary discussion of splitting imme-
diately above. Let g(σ,δ) be an α-recursive approximation of the Σ£ cofinality
function g(δ). Thus

for all δ < σ2cf(α). Note that #Γσ2cf(α) is tame Σ^. The key function in the
creation of negative requirements will be

In order to construe each block of requirements as a single requirement, let

t(σ92δ + i) = sup+ {ίf(σ,ε)|0(σ,<5) < ε < g(σ,δ + 1)}.

(sup+ is the strict supremum; thus sup+ {/?} = /? +1.) t measures the length of
initial segments to be preserved, m (below) measures the restraint on Bt needed to
preserve those segments. The definition of m(σ, 2δ + i) has an all-important mono-
tonicity clause, (la), (la) insures that increases in m are accompanied by increases in
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t. It would be senseless to impose greater and greater negative restraints on Bt

merely to preserve a fixed initial segment.
The definition of m(σ,2δ + i) has two cases.

(la) If ί(σ, 2δ + ΐ) > sup+ ί(τ, 2δ + i), then m(σ, 2δ + i) is the max of the right side
γ <σ

of (2) and sup+ {z\"zφB*σn is needed for the computation of {s}$<σ(y) for
some εe[g(σ, <5), g(σ, δ + 1)) and some y<ti(σ, ε)}.

(lb) If t(σ, 2δ + 0 < sup t(τ, 2δ + 1), then
τ<σ

(2) m(σ, 2δ + i) = sup m(τ, 2(5 + i).
τ < σ

The equality Λ<σ(y) = {ε}Bi"(y) is committed to preservation at stage σ if (la) holds
and y < ίt (σ,ε). Let x be an element of A enumerated at stage σ. Block 2δ + i is
injured at stage σ if x is put in i^ and x <m(σ,2δ + i). Let 2M,- +j be the least w such
that block w would be injured if x were put in Bj at stage σ.

Put Λ; in β χ if u0 < uί9 and put x in 5 0 if ux < u0.
Block 2^ + 1 is stable at stage τ if

(σ)σ>τ [m(σ, 2^ + 0 = m(τ, 2^ +1)]

1.2 Proposition. Fix y < σ2cf(α*). Suppose for each w < y, ί/ι̂ re is α τ SMCΛ ίftαί
fe/ocfe w is sίαft/e αί sίαgf̂  τ. Then there is a τ such that for all w <γ, block w is stable
at stage τ.

Proof Let/(w) be the least τ such that w is stable at stage τ. Then/is μ — Π\ , hence
Σa

2 as in Exercise 2.12.VII. According to Lemma 3.3.VII, σ2cf(α*) = σ2cf(α). Hence
sup/[y] < α. D

The next lemma is the combinatoric essence of the proof of Theorem 1.1.

1.3 Lemma. Fix δ and i. Suppose there is a τ such that block w is stable at stage τfor
all w < 2δ + i. Then there is a p such that block 2δ + i is stable at stage p.

Proof Let m = sup {m(τ, w)\w < 2δ + i}. Since A is regular, there is a σ0 > τ such
that (A —A<σo)nm is empty. Thus from stage σ0 on, it is impossible to injure
block w for any w < 2δ + i. Hence block 2δ + i will not be injured at, or after, stage
σ0. Assume σ0 is so large that

& g(σ,δ+l)

Let K be the set of all εe [<g(δ\ g(δ + 1)] such that:

(Ep) f f o^ p(Eq) p < β(Ey) [the equality A<<>(y) = {ε}B/P(y)
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is committed to preservation at stage p & Λ<p(y) = 0 & Λ<q(y) = 1], Since εeK,
the choice of σ0 implies for some y, {ε}Bi(y) is defined but unequal to A(y). Kis α-
finite, since K is an α-recursively enumerable set bounded by an ordinal less than
α*. Let σx > σ0 be so large that every εeK is established by the appearance of a
suitable p, q and y prior to stage σ1. Then for each εeK, there is a permanent
inequality that prevents any increase in ίf (σ, ε) after stage σ1. Thus ^(σ, ε) < ί,.^, ε)
for all σ > σί and εeK.

Consider εe[g(δ), g{δ)]-K. Any equality of the form A<σ(y) = {ε}ξr(y)
committed to preservation at stage σ >σ1 is permanent. For such a σ and y,

It follows that the set of all such y% as ε ranges over \_g{δ), g{δ + 1)] — K, is
bounded below α. Otherwise A would be α-recursive. Let b bound all such /s.

For each σ > σx let bσ be the sup of all y such that Λ<σ(y) = {ε}*r(y) is
committed to preservation at stage σ for some εe\_g(δ\ #(<5 + l)]. bσ is a non-
decreasing function of σ bounded by b. The set of stages at which bσ increases is α-
recursively enumerable. The enumeration of an α-finite set in increasing order must
finish in α-finitely many steps. Thus b = bσ2 for some σ2>oι. Now the mono-
tonicity hypothesis of clause (la) exerts its power. After stage σ2, clause (lb) holds,
and so block 2δ + i is stable. D

End of proof of Theorem 1.1: By 1.2 and 1.3 every block is eventually stable.
Suppose A = {ε}Bi for some εe[g(δ% g(δ-{-1)). Then £f((5,ε) converges to α, and
block 2δ + 1 is never stable.

2. Further Fine Structure

The proof of Shore's splitting theorem was entirely dynamic and so holds in a
variety of Σί admissible structures that are not L-like (cf. Exercise 2.13). Shore's
density theorem, IX.5.1, is tied strongly to L(α) by some fine structure facts based
on collapsing arguments, in particular Lemma 2.2 below.

2.1 Proposition. Assume P(x, y) is Σ°^. Then there exists a partial Σ^functionfsuch
that

(x)[(Ey)P(x,y)~/(x) is defined & P(xJ(x))l

(Uniformization ofΣ\ by Σ\^)

Proof. Let P{x,y) be (Eu)(v)Q(u,v,x,y) for some A^Q. It suffices to uniformize
(v)Q{(y)0, v, x, (y)ι) by some partial Σ^ function / Thus it is safe to assume P is
11^. Say P(x, y) is {v)R{v9 x, y) for some Aa

0R. Define

PΛx,y) by P(x,y) & (z)x < y(Ev)~ K(»,x,z).
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P^x, y) defines the graph of / The predicate z < y is α-recursive since it refers to
the natural enumeration of L(α). The Σ x admissibility of L(α) implies

(z)x<,(Ev) ~ R(v, x, z)++(Evr){z)x<y(Ev)v<w ~ R{Ό, X, Z).

Thus Pi and / are Σ^. D

The Σ 2 projectum of α, denoted by σ2p(oc% is the least γ < a such that some
partial Σ 2 function maps γ onto α. The next lemma is analogous to Proposition
2.1.VII, and can be proved in a similar fashion, that is, dynamically, when α is Σ 2

admissible. Otherwise a collapsing argument is necessary. Jensen has proved
Lemma 2.2 with n in place of 2 for all n > 1 and all α without any admissibility
assumptions.

2.2 Lemma. Assume α is Σ t admissible. Ifγ< σ2p(oc) and Y ^ y is Σ 2 , ίΛew 7 ί5 α-

Proo/ As in the proof of the enumeration theorem (1.9.VII), the natural enumer-
ation of L(α) gives rise to an α-recursive enumeration of all Δo facts about elements
of L(α). Thus there is a Δ" formula Q(u, v, e, x, y) such that

L(a)¥Q(u9υ9e9x9y) iff L(α)NFβ(iι,i7,x,y).

Fe is the β-th ΔQF formula. Q is lightface Δ" because the definition of the natural
enumeration of L(oc) does not require any parameters from L(α).

It follows that (Eu)(υ)Q(u9 v, e9 x, y) is a universal, lightface Σ£ formula. By
Proposition 2.1 (Eu)(υ)Q(u, v, e, x, y) can be uniformized by a partial Σ 2 function
ft(e, x). If P(x, y) is the e-th Σ 2 formula with free variables x and y, and if

L(OL) 1= (Ey)P(α, >;) for some αeL(α),

then Λ(e, α) is defined and L(α) N P(α, /i(e, α) ).
If e is the Gόdel number of a Σ 2 formula P(x l 5 . . . , xπ), let <e> be the Gόdel

number of a Σ 2 formula Q(x) with the property that,

P(xl9 . . . , x j ^ β « x i , . . . , x n ».

Let ho(e9 xl9. . . , xn) be Λ«^>, < x l 5 . . . , xn».
z < ω is the set of all finite sequences of elements of z. Define H2(z\ the Σ 2 Skolem

hull of z, to be h[ω x z< ω ] . Then //2(z) <2 L(α) by Exercise 2.8. Hence {V = L], as
described in the proof of Lemma 2.5.VII, is true in H2(z). Define the collapse of
fί2(z) as in the proof of Lemma 2.6.VII. For each xeH2(z\

x & yeH2(z)}.

t\_H2(z)2 is transitive, and t maps H2(z) isomorphically onto ί[H2(z)].
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Y ^ y has a Σ 2 definition over L(α) with parameter peL(α). Let z = yu {p}.
Then Y^y has a Σ 2 definition over H2(z) with parameter peH2(z\ since
H2(z)<2L(oc). Now collapse the hull. ί [ F ] c r[y] is Σ 2 definable over ί[//2(z)]
with parameter ί(/?)eί[iί2(z)]. By Lemma 2.5.VII, t[H2{z)~\ = L(y0) for some
7o ^ α Thus y is Σ 2 definable over L(y0). If y0 < α, then Γ must be α-finite.

Suppose y0 =oc. Then h gives rise to a partial map of ω x z < ω onto #2(z); in
addition the map is Σ 2 over H2(z). Since y < σ2p(α), the α-cardinality of ω x z< ω

equals some p < σ2cf(α). But then there is a partial map Σ 2 from p onto L(α), an
impossibility. D

Assume A c L(α). The Σx projectum of α relative to A, denoted by σlpA(θL\ is the
least y < α such that there exists a partial map Σx over <L[Λ α], A} from y onto
L(α). In short

^ y & feΣ*{A & rng/=

In general "/eΣi" 4 " means the graph of/is defined by a Σx formula whose
existential quantifier ranges over L[v4, α], whose parameters belong to L[α, A\
and whose atomic subformulas may include " x e i " . If >1 is regular, then
L[A, α] = L(α), and "/eΣί^4" is equivalent to "f<waA".

The next theorem is a rare combination of fine structure and recursive ap-
proximation.

2.3 Theorem (Shore 1976). Let A be regular and ̂ -recursively enumerable. Ify < α^
and Y^y is Σf A, then Y is oc-finite.

Proof. Since A is regular the natural enumeration of L(α) leads to a Aa{A enumer-
ation of TA, the set of all Δo sentences true in <L(α), A}. The truth value of each
such sentence depends not on A, but only on AnL(δ) for some δ < α. Regularity
was assumed so that A n L(δ) would be an element of A. Thus TA ^ L(α); and

where Fe(<x>) is the e-th Δo formula of ZF with xe A as an additional atomic
formula, and < b > e L(α).

A universal Σΐ'A predicate can be obtained from TA. That predicate can be
uniformized by a partial Σ"'A function thanks to the regularity of A. Thus there
exists a universal partial Σ""4 function h. If P(<x>, y) is the e-th Δo formula of ZF
with x e i a s a n extra atomic formula and <x>, y as free variables, and

for some (fl)eL(α), then h(e, <α>) is defined and
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Let z = yu {/?}, where p encodes the parameters needed for the ΣJ" 4 definition of
7 g y , and the ΣJ definition of g0 below. Form H = /i[ω x z < ω ] , the Σa{A hull of z.
Then (H,A}<1 <L(α), A}. The last assertion means that every ΣJ" 4 sentence
with parameters in H is true in <L(α), ,4) iff it is true in {H9A}.

Suppose // is bounded, that is, H e L(β) for some /? < α. Then

(H,A><1<L(β),L(β)nA).

Y is Σ x over <iί, Λ>, hence Σ x over <L(/?), L(β)nA}, hence α-finite, since
L(β)nA is α-finite.

Suppose 7 < σ2p(α). Since 7 is ΣJ A, and X is regular and Σ?, ϊt follows that 7 is
Σa

2 (cf. Exercise 2.9). Then 7 is α-finite by Lemma 2.2.
Assume H is unbounded and y > σ2p(oc) with the intention of showing H = L(α).

It suffices to show α c H since the/of 1.8.VII is lightface. Let

O(c) = μβlceL(β)] (ceL(*)).

O(c) is Σ", hence O[H~\ c jf, and so // contains arbitrarily large ordinals less than
α. Let g be a partial Σ^ function from σ2p(α) onto α. By Proposition 2.2. VIII there is
an α-recursive go(σ, x) such that

limgo(σ,x) = g(x)
σ

for all xedom g. Fix u < α. Choose x < σ2p(cc) so that #(x) = u. Then for a
sufficiently large σ in if, 0 o ( σ > x ) = M5 a n d so ueH, since σ2p(oc) < y.

The equality of // and L(α) implies there is a partial ΣJ ̂  map, namely ft, from
ω x z < ω onto L(α). An impossibility since the α-cardinality of ω x z < ω is less than

α). D

2.4 Corollary (R. Shore 1976). Suppose A is oc-recursively enumerable, regular and
incomplete. Then σlcf^α) > σlpA(oc).

Proof. Assume σlcfA{aι) < σlpA(oc) with the intention of showing A complete. Let C
be a regular, complete, α-recursively enumerable set, and {Cσ\σ< α} an α-
recursive enumeration of C. Let/: σlcf^α) -> α be an unbounded Σa{A function.
Since C is regular, for each x there is a y such that

(1) C π / ( x ) c C / w .

As a relation on x and y, (1) is a UfA subset of (σlcf^α))2, hence α-finite by
Theorem 2.3. Let g(x) be the least y that satisfies (1). It follows that g:
σlcf^α) -• σlcf^α) is α-finite. Then

H <=cC*->(Ex)[fί <=/(*) &
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for all α-finite H, and so C <<* A (Keep in mind that the regularity of A implies
every Σa{A function, in particular/, is weakly α-recursive in A.) D

2.5 Weak Σ1 Admissibility. Let β be a limit ordinal. L(β) need not be Σ x

admissible, but it is closed under pairing, and consequently the fundamentals of
recursion theory lift to L(β). β is said to be weakly Σx admissible if σlcf (β) > σlp(β).
Thus Corollary 2.4 becomes: if A is α-recursively enumerable, regular and incom-
plete, then the structure <L(α), A} is weakly Σ x admissible. Some of the solutions
to Post's problem given in Chapter VIII can be adapted to weakly Σ x admissible
structures. The main obstacle is the limited time in which to meet incomparability
requirements. There are α requirements but only σlcf^(α) stages of construction.
This difficulty is overcome by the next lemma, which is essential to the proof of
density in Section 5.

2.6 Lemma. Suppose <L[^4, α], A} is weakly Σx admissible. Then there exists a one-
one ΣΛ{A map from σlcf^(α) onto α.

Proof, c = σ 1 cf A (α) and p = σ 1 pA (α). Let / be a strictly increasing Σ a{A map from c
into α, unbounded in α. Let g be a one-one Σa{A map from α into p.

Define ft, a partial, one-one Σ \ A map from c x c onto α as follows: ft(w, v) = w if:

(a) g{w) = u\ and
(b) the existential witness needed to show "g(w) = M", and the parameters in the

Σa{A definition of g belong to L\_A,f(v)]; and
(c) (b) is false when υ is replaced by v0 < v.

To check that h is Σa{A, note that the existential witnesses needed to define f{v0) for
all v0 < v are bounded below α, since v < c. Range h = α, because α = range g~x

and domain g~ι ^ p ^ c. The domain of ft is a Aa{A subset of c x c. Extend the
domain of ft to all of c x c by setting ft(w, v) = 0 for those <u, y>'s not covered by (a),
(b), (c).

Thus ft is a Σ a{A map from c x c onto α. Let t e L[α, A] map c onto c x c, and set
ftx = ft ° ί. Define ft2(x) by recursion on x < c.

ft2(x) = ft1(m(x)).

Since x < c, the existential witnesses needed to establish m(x) are bounded below α.
Thus ft2 is a one-one, Σa

2'
Λ map from c onto α. D

Note that the Σx admissibility of L(α) was not used in the proof of Lemma 2.6.

2.7 Corollary (Shore 1976). Suppose A is a-recursively enumerable, regular and
incomplete. Then there exists a one-one, Σa{A map from σl cf^(α) onto α.

Proof By Corollary 2.4 and Lemma 2.6.
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An early version of Corollary 2.7, for α = ω£κ, occurs in the proof of DriscolΓs
(1968) density theorem for metarecursion theory.

2.8-2.12 Exercises

2.8. Let H2{z) be the Σ\ Skolem hull of z as defined in Lemma 2.2. Show H2{z) <2

L(α), that is, each ΣfF sentence with parameters in H2(z) is true in H2(z) if it is
true in L(α).

2.9. Let A be a regular, α-recursively enumerable set. Suppose Y is Σ \'A. Show Y is
yα

2.10. Let β be a weakly Σ1 admissible ordinal. Show there exists a one-one Σ{ map
from σlcf(/J) onto β.

2.11. Let /? be weakly Σi admissible. Reformulate an4 prove the combinatoric
lemma, 2.3.VII, for L(β).

2.12. Let β be weakly Σx admissible. A ^ L(β) is said to be ^-recursively enumer-
able if A is Σ{. Define "weakly ^-recursive in" as in subsection 3.2.VII with β
in place of α. Show there exist two ^-recursively enumerable sets such that
neither is weakly /^-recursive in the other.

2.13. Let A be a Σ1 admissible structure of the form {LIB, α], ε, B}. Prove Shore's
splitting theorem for A.

3. Density for ω

The following sketch of the original proof of the density of the recursively
enumerable degrees will prove helpful in the proof of density for all α given in
Sections 4 and 5.

Let A and C be recursively enumerable subsets of ω such that A <TC. The
objective is a recursively enumerable B such that A <TB <TC. A <TB is accom-
plished by planting A in the even coordinates of B. The remaining action takes
place on the odd coordinates of B. The strategy for realizing B £TA is positive in
nature; bits of C are planted in B. If the strategy fails, then C < τ A. If it succeeds,
then the bits planted in B add up to something infinite but manageable with respect
to the negative requirements.

The strategy for realizing C £ TB is negative in nature; initial segments of {e}B

are preserved. If the strategy fails, then C <TA.
Positive requirements associated with B φ {eγ }A have higher priority than

negative requirements associated with C φ {e2}
3 if et < e2. To meet positive

requirement ex, it must be shown that the obstacles raised by negative requirement
e (e < ex) drop back simultaneously, and infinitely often, to some fixed ^(e^. To
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meet negative requirement e2, it must be shown that injury set Ie2 is recursive in A.
Ie2 is the set of all elements added to B for the sake of positive requirement e
(e < e2) together with A.

The term "infinite injury" refers to the fact that Ie2 is infinite (rather than finite).
The operation "lim inf" is also helpful, because recursive sequences generated
during the construction tend to have limit infimums rather than limits.

The planting strategy for B Φ {e}A is as follows. Let As be that part of A
enumerated by the end of stage s. Let {e}s be [e] restricted to the first 5 com-
putations. (The complexity of planting arises from the possibility that both (i) and
(ii) may be true.

(i) {e}A(ή) is undefined,
(ii) {e]f(ή) is defined for infinitely many s.

In that event there is no hope of finding an s such that

Bs(ή) Φ {e)A\n\

and then preserving the above inequality forever after.) Assume that the odd part of
B is divided, in an effective manner depending on e, into infinitely many infinite
rows. Let <e, n, i> be the i-th space in the n-th row. The idea is to plant C(n) in the
n-th row of B. C £ τ A, so if enough of C is planted in J5, then B £ τ A. On the other
hand, the planting must not go too far, because C £ τ B is also desired.

ί(e, n, s) is the proposed location for C(n) at stage s. If / (e, n, 5) = — 1, then there
is no location.

φ , n , 0 ) = - l .
Case h <f(e,n,s-l)= - 1 . If

(1) M , « [ B I " 1 M = W r 1 W l

then / (e, n, s) = s. Otherwise /(β, n, s) = — 1.
Case 2: ί{e, n,s—l) = tφ - 1 . The value t was chosen at stage t < s when (1) held
with t in place of 5. If for all x<n,Bs~1(x) = B'-^x),

(2) {e}ri(x) = {e}Γ1(x\

and the same computation is used for both sides of (2), then ί(e, n, s) = /(e, n,s— 1).
Otherwise *f (e, n, s) = — 1.

Initially there is no location for C(n). A location is defined at the first stage (1) is
true. That location remains fixed unless a relevant change in B occurs or some
change in A occurs that invalidates a computation needed for (1). In that event
there is again no location. Thus as s increases, the location may come and go. Each
time it returns, it is a bit further to the right. If B and {e}A agree on [0, n], then
eventually a permanent location develops, and conversely. If eventually there is no
stage at which B and {e]A appear to agree on [0, n], then the location eventually
disappears forever. If they appear to agree infinitely often, without agreeing in the
limit, then the location moves steadily off to infinity on the right.
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Ps

e9 the e-th set of positive requirements at stage s, consists of all sentences of the
form:

if neC, then <e, n, £(e, n,s)}e B.

Of course the above makes sense only if ̂ (e,n,s)φ — 1.

If lim ϋf (e9 n, s) exists and φ — 1, call it *f (e, n).
5

P e , the e-th set of positive requirements, consists of all sentences of the form:

(3) if neC, then (e9n,/(e,n)}eB.

Matters are arranged so that the only way <e, n, *f(e, n)> can land in B is via (3).
Suppose all but finitely much of Pe is met with the intent of showing B φ {e}A.

For a reductio ad absurdum, assume B = {e}Λ. Then ί(e, n) exists for all n and is
computable from A. But then C <TA, since

for all but finitely many n.
Let P * be the set added to B for the sake of Ps

e. Again assume all but finitely
much of Pe is met in order to determine P* . As above B φ {e]A. Let n0 be the least n
such that ί{e, ri) does not exist. For each n < n 0, there is only a finite amount of
activity on row n. If n > n0, the location either (i) eventually disappears forever, or
(ii) moves off to infinity on the right.

Consequently P * is recursive. Suppose n > n 0 . To decide if <e, n, i> is in £, run
the construction until a stage s is found such that s > i, and ί(e, n, s) is either — 1 or
greater than i. Then έ(e, n91) φ i for all t > s, and so <e, n, i> was put in B only if it
was put in before stage s.

If the recursive determination of P * is valid for all e < e2, then the injury set

Ie2 = Au{j{Pf\e<e2}

is recursive in A.
The e-th set of negative requirements: Define

Let p(e, x, s) be the sup+ of all negative facts about B*'1 used in the computation of
{e}fs \x). Define

p(e, s) = sup {p(e, x, s) \ x < r(e, s)}.

Keeping numbers less than p(e, s) out of B will preserve the value of {e]f~\z) for all
z < r(e, s).

Stage s > 0 begins with the definition of r(e, s) and p(e, s) for all e followed by the
addition of the s-th member of A to B. Then attempts to satisfy Ps

e alternate with
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revisions of r and p. Fix e. Let w* be the least element added to B for the sake of A
or P\. (ef < e). Define

ro(e, s) = μ z z < r ( e , s ) [w* < p(e9 z, s)].

po(e, s) = sup {p(e,x,s) \ x < ro(e, s)}.

Now add to B all elements not less than inflpo^, s)\e' < e] required by Ps

e.
Suppose Ie is recursive in A to show

(4) lim inf ro(e, s) < oo.
s

The negation of (4) implies C < TA. Fix n to see how C[ n is computed from A. If (4)
fails, then

(5)

At the beginning of stage ί,

since r(e,s) > ro(e,s). It follows from (5) that the computation of {e}^t~1)[n is
permanent, and that

To find t run the construction until a stage t is reached where r(e, t)>n and an
appeal to Ie makes clear that the ί-th approximation of {e}B[ n is permanent.

Similarly Ie <TA implies lim inf po(e,s) exists. λs\po(e,s) behaves as follows.
s

There is an ne and an se such that the computation of

(6) WΠ».

is permanent. In addition (6) equals C[ne and {e}B(ne) is either undefined or

unequal to C(ne). Hence lim inf po(e, s) is the sup+ of the negative facts about B
s

used in the computation of (6).
The barrier to meeting Peo is defined by

(7) sup lim inf po(e, s).
e < eo s

The drama of infinite injury is at its highest pitch when it is revealed that

(8) (E^s) (e)e < eo [po(e, s) = lim inf po(e, s)].
s

("(E^s)" means "there exist infinitely many s".)
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The most direct proof of (8) is due to Lachlan. For each s let xs be the least element
put in B at stage s. Let

D = {s\(t\>a(xt>xa)}.

The value of po(e, s) is a downward revision of the value of p(e, s) caused by the
addition of w* to B. xs < ws

e. Hence for all sufficiently large s in D, po(e, s) is a non-
decreasing function of s, and

(9) lim inf po(e, s) = lim{po(e, s)\seD}.
s

(8) is a consequence of (9). (8) implies Ieo is recursive.
B < τ C is yet to be shown. B is the disjoint recursive sum of A and P*(e > 0).

A < τ C by hypothesis. P * is recursive in C uniformly in e. There is a recursive
function z such that P * = {z(e)}c f°Γ aH e- Procedure {z(e)} is defined by recursion
on e. Fix <e, n, i>. Run the construction and keep an eye on £(e, n, s). \iί(e, ή) does
not exist, then there is a stage s > i such that £(e, n, s) > i or £(e, n, 5) = — 1. Either
way <e, n, i> gets into B only if it does before stage s. Suppose t{e, n) does exist.
Then £ {e, n) = ί (β, n, ί) for some t that can be recognized by referring to A\ at stage
t the computation from A underlying the value of £(e, n, t) was correct.

If /(β, n) < i, then <y, n, i}φB. If /(e, n) > Ϊ, then running the construction will
settle "<e, n, i) e BT. Finally suppose /(e, ή) = i. If n φ C, then <e, n, i> φ B. Assume
neC. Then (e, n, i> is not put in B iff some permanent negative requirement keeps
it out. Such a requirement, if it exists, can be found by running the construction. Its
permanence is established by some negative facts about Av{P*,\e' < e] com-
puted from C via {z{e')} {ef < e). D

4. Preliminaries to en-Density

Suppose A and C are regular α-r.e., sets such that A <aC. The following par-
ameters will be used in the construction of an α-recursively enumerable B such that
A<aB<aC:

ci = σ2dA(*);

α? = σlpA(ot).

Define cj(x) = σ2cf^(x), that is, the Σ 2 cofinality of x in the structure

4.1 Lemma

(0 ci > α*.
(iΐ) (Ek) [fc: ci^oc is one-one, onto and Σ ? " 4 ] .
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(iii) IfZ^δ<oι%andZ is Σ*{A

9 then Z is (x-finite.
(iv) cA = cA(a*A) = cA(cA).

Proof, (i) is Corollary 2.4. (ii) is Corollary 2.7. (iii) is Theorem 2.3. (iv) is a
relativization of Lemma 3.3.VIII. The relativization succeeds with the aid of (i), (ii)
and (iii). D

4.2 Cofinality Function g. According to Lemma 4.1 (iv) there exists a Σ£ Λ function
h: cA-+cA with range unbounded in cΛ. Thus

h(x) = y <- (Eu) (v)DA(u, v, x, y)

for some A%A formula DA. u can be construed as less than cA with the aid of a Σa{A

map k from cA onto α provided by Lemma 4.1(ii).

Define
, v, x, zx).

(For simplicity, zf instead of (z)f.)
Note that DA(k(z0), v, x, z x) is UAct because it is equivalent to

Thus g: cA -+cA isΣA'a and has range unbounded in cA. g is more suitable than h
for approximation. Let

gA(x) = μzz<σ {v)v<σ DA(fc(z0),ϋ,x,zt).

Then gA isΣa{A. Consider

(1) ^(x) = z^(t;)^(k(z o ),t ; ,x,z 1 ) & (w)w<z(Ev) ~ D^kiwoU^wJ.

For each w < g(x) let /(x, w) bound x, w and all the quantifiers in the Σa{A formula

(2) (Ev)^DΛ(k(w0),v,x,w1).

Thus L[>l,α]N(2) iff L[,4 n<f(x, w), /(x,w)]N(2). Let /(x) be the sup+ of
{/(x, w) I w < ^(x)}. /(x) < α because g(x) < cA. Then

g(x) = μz(t;)0 <^ ( x ) DΛ(k(z0)9Ό9x9z1)9

Define gfσ by replacing Aby A<σ in the definition of gA. gσ is Σΐ.
Call σ A-correct iΐ A<σ = Anσ.
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4.3 Proposition, If cA > ω, then there exist arbitrarily large A-correct stages.

Proof. Choose σ0. Let σn + ί be the least σ > σn such that Anσn = A<σ. Then λn | σn

is ΣΊ'A. Let τ = lim σn. τ < α, since ω < cA. A<τ = Anτ. D
n

4.4 Lemma. Assume b < cA.

(0 (*)*<* [#<r(x) ^ ^ W ] / ^ <*" sufficiently large σ.

00 Gσϊ b = g[ bfor all sufficiently large A-correct σ.

Proof. (1) The function ί\ cA -• α of subsection 4.2 is Σ£^. Hence /[fc] is bounded
by some ίh < α. Consider x < b.

(1) g(x) = μz(v)v<, DA(k(zolv,x,Zl).

The right side of (1) is evaluated using only A n / 6 , hence g\ b is α-finite thanks to
the regularity of A. Suppose A n ίh ^ A<σo for some σ0 > ίh. Let σ > σ0. Then

because D is Δ o and

(z)z<g{x) (Ew)v<,b

Hence gσ(x) > g(x).
(ii) Suppose σ > σ0 is ^-correct. Then for x <b,

gσ(χ) = gA<σ(χ) = gAnσ(χ) = gA[χ) •

gf will be used in the next section to define blocks of requirements, It will follow
from Lemma 4.4(i) that for all sufficiently large σ, if a negative requirement lands in
block x at stage σ, then it is never discarded, g will be approximated by gσ. On the
surface g is Σ3, and in general Σ^ blocking functions are intractable in the presence
of Σ 2 inadmissibility. But g is workable because it is ΣA'a for an A such that
<L[α, A\ A} is weakly Σι admissible, and Σ 2 blocking needs only Σ t admissibility
to succeed.

5. Shore's Density Theorem

The density theorem for ω, as sketched in Section 3, appears to rely on the fact that
L(ω) satisfies Σ 3 replacement. In fact it uses only ΣA replacement, where A is an
incomplete, recursively enumerable set. Very little is known about making a Σt

admissible α do the work of Σ 3 replacement. The proof of the density theorem for α
makes α do the work of ΣA replacement for an incomplete, regular, α-recursively
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enumerable set. For such an A, <L[A, α], A} is weakly Σ x admissible, and so some
of the thinking behind the α-finite injury method is applicable. New difficulties arise
because A has to be guessed at.

5.1 Theorem (Shore 1976). Let A and C be oc-recursively enumerable sets such that
A < α C . Then there exists an ^-recursively enumerable B such that A <aB <aC.

Proof. As usual A and C are assumed to be regular. The following construction
yields a regular B. The density sketch given in Section 3 will be relied on heavily.
The principal difference between the argument below and that of Section 3 is the
use of blocking. Let g and gσ be as in Section 4. Let/ A be a one-one Σa{A map of α
into αj. Block y is [0,fA g(y)) for each y < cA. Each ε in block y is associated with a
reduction procedure {(fA)~1(ε)}, written simply as {ε}.fAg[cA] is unbounded in
α^ by Theorem 2.3. During the construction (fA)~1(ε) is approximated b y / " 1 (ε),
abbreviated as εσ. fσ is the result of replacing A by A<σ in the Σa{A definition of/.
Note Well: Let DA(a,b,z) be a Aa

0>
A formula such that

fΛ(a) = b~(Ez)DA{a9b9z).

Define fσ{a) to be μbb<σ(Ez)z<σD
A<σ(a,b,z). Iffσ(a) < σ for some ^-correct σ, then

fσ(a) =fA(a)' εσ is n o t defined at stage σ unless ε < σ a n d / " 1 ^ ) < σ. I f / " 1 ^ ) has
more than one value, then the least is used.

The even part of B is reserved for A. All the remaining action takes place on the
odd part of B. Positive requirements are elements of

{(y,nj}\y < cA & n < cA & i < α}.

They are added to B in order to insure that B φ {ε}A for all ε in block y.
Let kA: cA -• α be an onto, Σ " ' A map as in Lemma 4.1 (ii). Define kσ by replacing

A by A<σ in the Σ"{A definition of kΛ. Then

kA(x) = lim feσ(x)

for all x < cA, and /c4 is tame Σ^ (tame via the α-recursive approximation kσ).
The planting of C in B is less troublesome if C is replaced by C o provided by

Proposition 3.4.VII. The proof of 3.4 implies C o is regular if C is. C o is α-recursively
enumerable, C0=aC and

(1) ( X ) [ C 0 < w α * ~ C < α * ] .

/(y,n,σ) is the proposed location of C0(kA(ή)) in 2? at the beginning of stage σ.
/(y,n,0) = —1 (no location).

Case 1: sup+ {τ | τ < σ&f(y,n,τ) = -1} = σ. Then *f(y,n,σ) = σ if

(2) ( £ ε ) β < Λ | U y ) ίB<σ Γ fc,[n+1] = {εσ}rσ Γ K\n+\J\\ otherwise /(y,n,σ) = - 1 .
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Case 2: lim /(y,n,τ) = y for some y < σ. The value y was chosen at stage y when

(2) held with y in place of σ. If

B<y\ ky[n+\-]=B<σ\ kσ[n+Y] and (y-A<y)nA<σ = 0,

then ί(y,n,σ) = y; otherwise S(y,n,σ) = —1.
Initially there is no location. A location is created at stage σ if B appears to

equal {ε}A on fe[n + 1]. It is lost (i.e., = — 1) if σ turns out to be ^-incorrect or if
B<σ[kσ[n+1] changes.

The y-th set of positive requirements at stage σ is

If lim £(y,n,σ) exists and φ — 1, then it defines a permanent location denoted
σ

by S(y,n).
The y-th set of positive requirements is

From

(3)

now on

p y

assume

= {(y,n,ί(y,ri)>\

c\ > ω.

kA (n)eC0).

According to Proposition 4.3 there are arbitrarily large A-correct stages.
The first thing to show is (4).

(4) If Py is met for all sufficiently large n<cA, then B φ {ε}A for every ε in block y.

To check (4) fix ε in block y and assume B = {ε}A for a contradiction. Then
έ(y, ή) exists for all n < cA. λn\ £(y, ή) is weakly α-recursive in A as follows. Run the
construction until an A-correct stage σ is found that satisfies the matrix of (2). (Note
that

{ε}A

is determined by an α-finite initial segment of A because n < cA). But then C <aA
by (1). (Similar to the argument following (3) of Section 3.)

A shade more intricate than (4) is:

(5) If Py is met for all sufficiently large n < cA, then f(y,n) does not exist
for some n.

The proof of (5) takes into account the details of the approximation of blocking.
Suppose (5) fails with the intent of showing Co < wa A. As in the proof of (4) it
suffices to check that (λn\£(y,n)) <W(XA and B <waA. Choose σ0 with the aid of
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Lemma 4.4 so that

(6a) gσ(y) > g(y) for all σ > σ0, and

θσ(y)= g{y) for all Λ-correct σ > σ0.

Hence any ε that participates in (2) at an ^-correct stage after σ0 is less than/A g(y).
Put ε in J if: ε <fAg(y); and

(6b) at some A-correct stage σ after σ0, ε participates in (2) and thereby compels
the value of ί(y, n, σ) to be σ;

a n d £ < σ f fc[n+l] τ*B< τΓ fc[n + l] for some τ > σ.

If ε belongs to J, then a permanent inequality between B and {ε}κ develops at stage
τ of clause (ii), and subsequent to τ, ε cannot participate in (2). J is Σa{A, bounded
below α̂ $, hence α-finite by Lemma 4.1 (iii). Furthermore all activity associated
with the definition of J is α-finite. Consequently the associated values of k[n + 1 ]
are bounded below α. Moreover the associated values of n + 1 are bounded below

Let J be/^0(y)—J. Eventually only ε's in J participate in (2). Thus for all
sufficiently large n < cΛ, the value of έ(y,ή) is determined by some ε in J. Hence
(λn I £()>, n)) < wα A. Also B <aA, because for all sufficiently large n<cA, there is an
ε in Jsuch that {ε}AP fc^Qn -h 1] is defined, and for all such ε, the computation from
A equals B [ kA[n+ 1]. So (5) is proved.

The hypothesis of (5) has a further consequence. Let

, i > | π < c ί & i < « ) n f t

Then P* is α-recursive. Let n0 be the least n that satisfies the conclusion of (5). The
total of all activity on row n for all n < n0 is α-finite, since n0 < cA and /(y,n)
(n < n0) can be computed from A and B [ fc[n0]. If n > n0, then the location for row
n either (i) eventually disappears or (ii) moves off to oo (= α). If (i) holds for some
n>n0, then (i) holds for all ri > n, and the total of all activity on all rows from n on
is α-finite.

Consequently P* is α-recursive if the conclusion of (5) holds. Suppose n > n 0 . To
decide if <y, n, i> e JB, run the construction until some σ is found such that σ > i, and
/(>>,n,σ) is either —1 or greater than i. Then S(y,n,τ)Φi for all τ > σ, and so
<y, n, i} is put in B only if it is put in before stage σ.

A negative requirement is an ordinal denoted by p(σ,ε,x). Its purpose is to
preserve the value of

(7) {εσ} Γ

its value is the supremum+ of all negative facts about B<σ used in the computation
of (7). It is added to the y-th block of negative requirements at stage σ if certain
conditions hold. Once added to block y at stage σ it remains there forever or until
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removed at stage τ > σ. Removal is caused by injuries or changes in A. p(σ,ε,x) is
injured if some w < p(σ, ε, x) is added to B at stage τ > σ. σ is seen to be A-incorrect
at stage τ > σ if

Define

q{σ,ε) = μx[C0

<<T (*,(*)) * MΓ (U*))],

r(σ9y) = sup{q(σ,ε)\ε <fσgσ(y)}

Removal of negative requirements at the beginning of stage σ: If p is seen to be A-
incorrect at stage σ, then remove all negative requirements added at stage p. If
p(ρ,ε,x) is removed, then also remove p(p,ε,x') for all x' > x.

Addition of negative requirements at the beginning of stage σ: Suppose ε <fσgσ{y)
and x < q(σ,ε). Add p(σ,ε,x) to block y if

(8) r(σ,y) > sup+ {xr \ (Ep)p < σ (Eεr) \_p(p, ε', x') added to block y at stage p and not
yet removed]}.

Clause (8) limits the addition of negative requirements to blocks. It is necessitated
by blocking, and is similar to the monotonicity clause, (la), in the proof of Shore
splitting, Theorem 1.1.

Note: the above addition step is performed after the preceding removal step.
Construction of B. Add the σ-th member of A to B. Next comes a recursion on

y < ci that alternates between removing negative requirements from block y and
moving positive requirements from Pσ

y into B.

Fix y < ci. Let w£ be the least element of A u \J {Py \ y' < y) added to B at
stage σ. If wj is less than some negative requirement in block y9 then remove that
requirement.

If p(p, ε, x) is removed, then also remove p(ρ, ε, x') for all x' > x. The removal of
negative requirements injured by wζ makes it easier to add elements of Pσ

y to B.
Define

p(σ,y) = sup of negative requirements still in block y.

Add to B all members of Pσ

y not less than

sup{p(σ,y)\y' <y}.

End of recursion on y and stage σ of construction of B.

Behavior of Negative Requirements. Suppose p(σ,ε,x) is put in block y at the
beginning of stage σ and is never removed. Thus σ is ^[-correct and all
computations based on A<σ, and performed at stage σ, are correct. In particular
kσ\x = k\x and εσ = (/ κ )~ 1 (ε). Also p(σ,ε,x') has not been removed for any
x' < x. So
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It may happen that

for some τ > σ. In that event a permanent inequality between Co and {ε}B arises at
stage τ; and so at all subsequent stages, no new negative requirement associated
with ε is added to any block. In the absence of a permanent inequality the situation
is more complicated.

For y < cA define the y-th injury set to be

for any t: α -> α, define

lim inf t(σ) to be μβ(σ) (Eτ)τ>σ [ί(τ) < β].
σ

An induction on y shows:

(9a) lim inf p(σ,y) < cA;
σ

(9b) Iy < a A and Iy is regular.

The induction on y is organized as follows: (9b) is true when y = 0 because / 0 = A;
(9b) implies (9a); if (9a), with y' in place of y9 holds for all / < y, then (9b) holds.

Assume (9b) to prove (9a). As in the proof of Proposition 4.3, the regularity of Iy

and assumption (3) imply the existence of arbitrarily large /^-correct σ, that is,

Iynσ = Iyσ = {z\zely & z put in B before stage σ}.

/^-correctness entails A-correctness since A ^ Iy.
Let σ0 be as in (6a). Then on all /^-correct stages σ beyond σθ9fσgσ(y) =fA g(y).

More precisely, the y-th block, [0,fσgσ(y)\ is constant on all sufficiently large A-
correct stages. Beyond σ0, if a negative requirement is added to block y at an Iy-
correct stage, then it is never removed; if it is added before some /^-correct stage τ,
and is not removed before stage τ, then it is never removed.

Put ε in K if:

e<fAg(y);
at some /^-correct σ > σ0, clause (8) holds;
and for some x < q(σ,ε) & τ > σ, C£σ (k(x)) φ C£τ(k(x)).

If ε is in K, then some permanent inequality develops between Co and {ε}B and
q(σ9ε) is permanently bounded. K is Σf because Iy <aA by (9b). K, and all activity
associated with the development of K, are α-finite, because K is bounded below αj.

Let K be K — fAg(y). Eventually only ε's in K participate in the addition of
negative requirements to block y at ^-correct stages. Any such addition is per-
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manent if it is made at an /y-correct stage or if it is not removed prior to the next 7y-
correct stage. Thus the set of negative requirements in block y, viewed only at all
sufficiently large 7y-correct σ, is a non-decreasing function of σ. If (9a) is false, then
Co <waΛ (hence C <aA) as follows. To compute CΌ(kA(n)) from A9 look for ε in K
and σ > σ0 such that

(10) n<q(σ,ε) & σ is /y-correct.

Then C0(kA(ή)) = {ε}f (kA(n)\ since εφK. The existence of ε and σ satisfying (10)
follows from the monotonicity clause, (8). To verify the last claim, focus on the
sufficiently large 7y-correct stages. On those stages p(σ9y) is nondecreasing. The
falsity of (9a) implies p(σ,y) increases unboundedly often. All such increases are
associated with ε's in K. Clause (8) implies that r(σ9y) is non-decreasing on all
sufficiently large /y-correct stages and increases unboundedly often on such stages.
Each increase in r is the result of an increase in some q(σ9ε) for some ε in K9 an
increase beyond the previous value of r.

Thus (9b) implies (9a). The next task is to draw a further consequence of (9b),
namely

(11) all sufficiently large members of Py are put in B.

Consider the behavior of p(σ9y) on all sufficiently large 7y-correct stages. As
described immediately above, p(σ9y) is nondecreasing and bounded. Thus

(12) lim inf p(σ9y) = lim {p(σ9y)) \ σ 7y-correct} < α.
σ σ

The ineluctable barrier to adding elements of Py to B is

(13) sup lim inf p(σ9y').
y ' ^y <τ

Suppose y' < y. Then every 7y,-correct stage is also 7y-correct, since 7y> e 7y. Also
(9b) implies Iy> <aA and 7y, is regular. Hence the derivation of (9a) from (9b) also
shows

(14) lim inf p(σ,yf) = lim {p(σ9y')\ <τ7y-correct} < α
σ σ

for all / < y. It follows from (14) that

lim inf p(σ9y')(y' <y)
σ

is ΣJ"1, because Iy<aA.y< cA

9 so (13) < α. Thus any member of Py larger than
(13) can be added to B at any sufficiently large 7y-correct stage.
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The last part of the induction on y is devoted to proving (9b) under the
assumption that (9a), with / in place of y, holds for all y' < y. By induction (9b),
hence (11), holds with y' in place of y for all / < y. It follows from (5) that

(15) ^(y\n) does not exist for some n (yf < y).

Let no(y') be the least n that satisfies (15). Recall the proof of the α-recursiveness of
Pp that immediately follows the proof of (5). A Gόdel number for the α-recursive
set P*. can be obtained effectively from the values of no(y') and ί(y\ ή) (n < no(y')).
Hence Iy < α A if the functions

no(y') (/ < y)

n) (y'<y&n<no(y'))

are α-finite. It suffices to show these functions are Σ | ' A because y < c2. (If h is any
Σ2

fA function on c2, then h is tame Σ2'
A, and so h [ y is ΣΛ{A, hence α-finite by the

regularity of A.) The definition of t\y\ ή) is Σ2'
A, because it says some com-

putations from A exist for an initial segment of arguments shorter than cA and the
results agree with B (cf. Ύ(x) < α" in Section 4.2). The definition of no(y') has a
clause concerning the non-existence of a computation from i , a Π ^ statement.

So ends the proof of (9a) and (9b) by induction on y. All that remains is the proof
of B < α C and the disposal of assumption (3). The recovery of B from C is
controlled by the permanent negative requirements. A simultaneous recursion on y
defines α-recursive functions ε^y) and ε2(y) such that for all y < c2:

(17a) the set of permanent negative requirements in block y is α-recursively
enumerable in C via Gόdel number εx(y);

(17b) P * < w a C via Gόdel number ε2(y).

Fix y < c^ and assume ε^y') is already defined for all / < y. Consider <y,n,z> in
order to see how {ε2(y)} works. Suppose £(y,ri) does not exist. Then running the
construction will produce a stage σ > i at which ί(y, n, σ) > i or = — 1. By then the
question, (y,n,i}eBl, will have been resolved. Suppose £(y,ή) does exist. If
/(y, ή) > i, then running the construction will resolve the matter. If /(y, ή) < 1, then
an appeal to A establishes that the computations from A in (2) are correct, and that
consequently the location will never move out to i. If £ (y, ή) = i, then an appeal to
CQ is needed. If kΛ(n) e Co, then <y, π, i> is kept out of B by a permanent negative
requirement in block y' (for some y' < y) enumerated from C via Gόdel number

Now fix y and assume ε2(y') is defined for all y' < y. To see how ε^y) works, run
the construction. A negative requirement put in block y at stage σ is permanent if σ
is /y-correct. (More precisely, a negative requirement put in block y at stage σ is
permanent if none of the computations underlying that requirement use a negative
membership fact contradicted by a positive fact about Iy.) A full account of the
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/^correctness of σ can be ascertained from C via ε2(y'){y' < y) This last claim is
delicate and has to be supported by careful examination of the description of ε2

given in the previous paragraph. Note that appeals to Co and A are made by
{εi(yΊ} o nly if n<no(yf). By (16) and remarks subsequent, no(y') (/ < y) is
bounded below cA. Consequently kA(ή) (n < no(y') & y' < y) is bounded below α.
Therefore the set of appeals to Co made by ε2(y')(yr < y) is bounded below α, hence
is α-finite by the regularity of Co. The appeals to A concern computations from A
on an initial segment of arguments bounded by sup{no(/) \y' < y}, which, as just
noted, is less than cA.

Thus the /^-correctness of σ can be ascertained from C via ε2(y') (/ < y\ since
the procedures {ε2(/)} (/ < y) will draw only on α-finitely much of C and A as
they compute Pp from C. That ends the definitions of ε1 and ε2. Something a bit
stronger than (17a) and (17b) has been proved.

(18) The set of all permanent negative requirements is α-recursively enumerable in
C. For each y < c2, the enumeration of requirements in the blocks below
block y draws only on a bounded part of C determined by y.

(18) is what is needed to see B < α C Suppose H is an α-finite subset of α — B.
" / / £ cB" is established by an α-finite set of facts about C as follows. First a
y0 < c2 has to be found so that

sup lim inf p(σ,y') > sup//.

By (18), y0 can be established by α-finitely much of C. Suppose (y9nJ}eH. The
question, (y,n,i)eBΊ, is dealt with as it was in the definition of ε2. If y > y0, then
some permanent negative requirements involved in the definition of y0 will serve, if
needed, as the reason that <y,n, i} φB. If y < y0, then (18) implies a bound on the
amount of C needed to establish a permanent negative requirement that keeps
(y,nj) out of B.

Assumption (3) is disposed of in the next subsection.

End of proof of density.

5.2 Assumption (3). The above account of Theorem 5.1 relied heavily on assump-
tion (3), namely cf > ω. Now suppose cf = ω. Then

ci = α5 = ci = ω,

since α*[ < cf by Lemma 4.1. Many difficulties disappear. There is no blocking. The
only complication left is the use of kΛ, the Σ a{A map from cA onto α. The density
construction given above is greatly simplified. It still works and is similar to one
given by Driscoll (1968) for α = ω^κ. Proposition 4.3 is lost. There may not be any
^-correct stages. Of course there is less need for them with blocking gone. Instead
of ^-correct stages, non-deficiency stages are used as in the ω-case. In short the
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density argument for cA = ω is close to that of classical recursion theory (cf.
Exercise 5.5).

5.3 Σa

2'
A versus Σ3. A look backward reveals that the functions developed in the

proof of density are at worst Σ^"4, hence Σ^. The knowledge they are Σa

3 would
have been of little use with only Σ x admissibility available. But since they are Σa

2'
A,

and since <L(α), A} is weakly Σ x admissible, it was possible to apply the methods of
Chapters VIII and IX for making Σx admissibility do the work of Σ 2 admissibility.
The idea of blocking was important. Blocking makes possible the full utilization of
the limited Σ 2 admissibility properties possessed by every Σ1 admissible L(α).

It is not clear how far Σ1 admissibility can be stretched, α-recursively enumerable
sets A and B are said to form a minimal pair if every set α-recursive i n both A and B
is α-recursive. The existence of a minimal pair when α = ω is a well known result of
classical recursion theory (Lachlan 1966, Yates 1966). For α > ω some positive
partial results have been obtained by Lerman & Sacks 1972, Maass 1977a and
Shore 1975. The problem remains open for most α because the classical proof, and
its α-variations, appear to need strong forms of Σ 2 replacement that do not seem
manageable by Σ 2 blocking.

It is quite possible that some of the constructions of the classical theory of
recursively enumerable sets make essential use of Σ 2 replacement. Evidence for this
view is provided by a result of Shore 1976. He showed that Lachlan's non-splitting
theorem 1975 fails when α = ωω.

5.5-5.6 Exercises

5.5. Prove Shore's density theorem when σlcf^(α) = ω.

5.6. Assume A is α-recursively enumerable and incomplete. Prove

σ2cf i(α) = σ2cf\ (α*) = σ2cf

6. β-Recursion Theory

jS-recursion theory was introduced by S. Friedman and Sacks 1977. Its purpose is
to see how far recursion theory can be developed without Σx admissibility. Some of
the technical problems that arise are similar to those discussed above when α is
Σ x admissible, but not Σ 2 admissible, and a Σ 2 construction is attempted. The
proper setting for j?-recursion theory is Jensen's J hierarchy, a reformulation of
GόdeΓs L hierarchy. For the brief sketch given here L will suffice. From now on let
β be a limit ordinal. Thus L(β) need not be Σ x admissible, but it will be closed under
the operations of pairing and union, and it will satisfy Δ0-separation.

The fundamental definitions of β-recursion are in essence the same as those of
α-recursion. Let A c L(β). A is β-recursively enumerable if A is Σ{. A is β-recursive
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if 4̂ is Δ{. The j3-finite sets are simply the sets in L(β). <wβ (weakly β-recursive in)
and <β (β-recursive in) are defined in precisely the same manner as their counter-
parts in α-recursion theory. The failure of Σ x admissibility makes possible new
distinctions among the β-recursive sets. For example it can happen that A is β-
recursive, but not jS-recursive in 0 , the empty set.

For each γ < β, the Σβ cofinality of γ, and the Σβ projection of 7, are defined as in
α-recursion theory, β*, the Σ? projection of β, is of special interest. The loss of Σ1

admissibility shifts the burden of many proofs from the dynamic approach to that
of fine structure. An example is the proof of: if A is Σ{ and A ^ δ < /?*, then A is β-
finite (cf. Exercise VΠ.2.10). Let β be the least γ such that there exists a one-one, /?-
recursive map of γ onto β. β < β iff β is not Σ x admissible. S. Friedman observed
that β = max(β*, σldβ(β)). If β is not Σ x admissible, then there is a greatest β-
cardinal; also β* < β.

An extremely useful distinction made by Maass is: call β weakly admissible if
σlcf β(β) > /?*; otherwise call β strongly inadmissible. It turns out that some, but
not all, of the ideas and results of α-recursion theory carry over to β when β is
weakly admissible. The truth of this was evident in the proof of Shore's density
theorem, which exploited the weak admissibility of <L(α), A}, a consequence of the
α-recursive enumerability and incompleteness of A. If β is weakly admissible, then
there is a one-one, β-recursive correspondence between σlcf^/J) and β, and β*
behaves in a familiar manner. It is then not surprising that the solution to Post's
problem comes over from α-recursion theory. There exist ^-recursively enumerable
sets B and C such that B £wβC and C £wβB. On the other hand the regular sets
theorem can fail. Maass 1977b gives a complete description of those β-recursively
enumerable sets that have the same degree as some regular /^-recursively enumer-
able set when β is weakly admissible.

A stronger assumption than weak admissibility is: (L(β), A} is weakly admiss-
ible for every regular ^-recursive A. Another way to put it is: σ\ciβ(β) > β* and
σ2dβ(β) > σ2pβ(β), the Σβ

2 projectum of β. If β satisfies the stronger assumption,
then the regular sets theorem holds (Maass 1977b) and the density theorem (for β-
recursively enumerable sets) holds (Homer & Sacks 1983). It is not known if density
holds for every weakly admissible β. Some complex partial results have been
obtained by Bailey 1984.

The central problem of the subject is Post's. A strong solution to Post's problem
consists of two jδ-recursively enumerable sets such that neither is weakly
/?-recursive in the other. S. Friedman 1979 has shown: if β* is regular (in the sense
that cardinals are regular) with respect to all Σ{ functions, then β has a strong
solution to Post's problem. His argument is based on an effective version of
Jensen's diamond principle. He has also found a β such that β does not have a
strong solution to Post's problem. It is still possible that every β has a weak
solution, a pair of β-recursively enumerable sets such that neither is ^-recursive in
the other.

Maass 1977 points out that the methods of /J-recursion theory are applicable to
α-recursion theory. An excellent example is his proof that: α is Σ 2 admissible iff
every Σα

2 set, in which φ' is α-recursive, is of the same α-degree as the α-jump of
some incomplete α-recursively enumerable set.
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6 l-6.2 Exercises

6.1. Suppose λ < β* and λ is a successor /J-cardinal. Show λ is regular with respect
to all Σ{ functions.

6.2. Suppose σlcf^(jS) </?*. Show there exists a one-one, α-recursive map of jS*
onto β.






