6. Superstable Theories

In Section 5.6 we defined the notion of a basis of a type p (relative to a set)
and posed several questions on the behavior of the corresponding dimension
function (including its well-definedness). We proved in Section 5.6.3 that on
the class of weight 1 types dimension is well-defined, and nonorthogonality
is the same as domination equivalence. In Section 5.6.4 we showed that in
a superstable theory every type is domination equivalent to a finite product
of weight 1 types. For a full-featured dimension theory, though, we need
an additional property (additivity) which may fail for a weight 1 type (see
Remark 5.6.7). In the second section of this chapter we develop the theory of
a class of weight 1 types called the regular types in an arbitrary superstable
theory. A regular type in a superstable theory satisfies the additivity property
missing for weight 1 types (Proposition 6.3.2) and every weight 1 type is
domination equivalent to a regular type.

This well-behaved dimension theory is at the heart of the solution of such
problems as Morley’s Conjecture for countable first-order theories (mentioned
in the Preface). Regular types will be used to characterize the models of a
“bounded” t.t. theory in Section 7.1.1.

Before turning to regular types we develop two notions of rank which are
used in virtually every study of superstable theories.

6.1 More Ranks

Many of the properties proved for t.t. theories relied heavily on the existence
of Morley rank; i.e., the fact that every type has Morley rank < co. The family
of A—ranks served to define the forking dependence relation but, because it
is a family of ranks instead of a single rank, it is missing many of properties of
an ordinal-valued rank. Here we define two ranks which exist in superstable
theories and provide a sharper measure of the complexity of formulas and
types with respect to the forking relation.

Throughout the section we assume any mentioned theory to be

stable.

Definition 6.1.1. (i) In a stable theory we define the rank U(—) on complete
types by the following recursion. For p a complete type and o an ordinal,
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U(p) > « if for all B < « there is a forking extension q of p such that
U(q) > B. We write U(p) = o and say the U—rank of pis o if U(p) > o and
Ulp) 2 a+1. If U(p) > « for all a we write U(p) = co and say the U—rank
of p does not ezist.

(i3) For consistent formulas p(z) and o an ordinal or —1 the relation
R>(yp) is defined by the following recursion.

(1) R>*(p) = —1 if p is inconsistent;
(2) R>(¢) = if

{p € Sn(€): p €pand 1 € p for all formulas
¥ with R®(y) < a}

is nonempty and has cardinality < |€].

The relation R™®(p) = a is read the co—rank of p is a. When ¢ is con-
sistent and R*(p) # a for all ordinals o we write R®(p) = oo and say
that the co—rank of p does not exist. For p an arbitrary type, R®(p) =
inf { R®(p) : ¢ is implied by p}.

When the U —rank of every complete type exists it gives a direct measure
of forking: When p C g are complete types, U(p) = U(q) if and only if q is
a nonforking extension of p (see the exercises). Thus, when the U—rank of
every complete type exists it is natural to define U(p), for p € S(€), to be
U(p | A), where A is any set over which p does not fork (the rank is the same
over any such A). Be aware that U—rank is only defined on complete types
(a point we will expand on later).

As the reader can see, the definition of co—rank is very similar to the
definition of Morley rank, except that here the appropriate set of types is
only required to have cardinality < |€| rather than < Rg. Many of the most
basic properties of Morley rank extend to co—rank with the same proofs:

Lemma 6.1.1. Let T be a complete theory, p an n—type and a an ordinal.
(i) If p € S(€) then R*(p) = 0 if and only if p is algebraic.
(i1) R*®(p) = o if and only if {q € Sp(€) : p C gand R>®(q) = a} is
nonempty and has cardinality < |€|.
(#53) If R (p) = o there is a g € Sp(€) such that ¢ D p and R*®(q) = a.
(iv) R*(p) > a if and only if, for all B < a and all ¢ implied by p,
{q€e Sn(€): pegand R>*(q) > B} and has cardinality < |€|.
(v)
R*(y) is the least ordinal « (6.1)
such that {p € Sp(€): p € pand R®(p) > a}
has cardinality < |€|.

In Shelah’s terminology, R*(—) = R(—, L, c0).
The basic existence properties are proved in
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Lemma 6.1.2. Let T be a stable theory.
(i) Then T is superstable if and only if for every formula ¢, R*(p) < oo.
(i1) For every complete type p, U(p) < R*®(p).

Proof. The proofs of both parts rely on
Claim. For p € S(A), ¢ D p and o an ordinal, if R®(p) = o, then
g does not fork over A <= R%®(q) = a.

Without loss of generality, ¢ € S(€). Suppose R®(q) = a and let Q C
S(€) be the set of extensions on p of co—rank a. Then @ has cardinality
< |€|. Moreover, every conjugate over A of ¢ is in @, so g does not fork
over A by Lemma 5.1.13. Now suppose that ¢ does not fork over A. There
is an extension 7 of p in S(€) having co—rank «, which we just proved does
not fork over A. All nonforking extensions of p in S(€) are conjugate over A
(by Corollary 5.1.8(ii)), hence r and q are conjugate. Therefore, R*®(q) = a,
proving the claim.

(i) First suppose each formula has co—rank. By the claim, each element
of S(€) does not fork over a finite set, hence T is superstable.

Now suppose there is a formula ¢ which does not have co—rank. Then
there is a complete type p over a set A such that R*(p) = oo. The nonsuper-
stability of T' will follow from

Claim. If p € S(A) and R (p) = oo there is a forking extension ¢ of p with
R>(q) = oo.

Suppose, towards a contradiction, that there is no such ¢q. Let a =
sup{ R*(q) : ¢ is a forking extension of p}. Consider @ = {q € S(€) :
g D pand R*(q) > a+ 1}. Then @ is nonempty and contains only non-
forking extensions of p. Thus, |@| < |€|. By Lemma 6.1.1(v), R®(p) < oo, a
contradiction which proves the claim.

Proceeding with the main body of the proof, iterated use of the preceding
claim generates an infinite chain py C p; C ... C p; C ... of complete types
such that p;4+1 is a forking extension of p;, for all 3. This proves that T is not
superstable, completing the proof of (i).

(ii) We need to show that U(p) > o == R*(p) > a, for all complete
types p and ordinals a. Using the first claim this becomes an easy induction
which is relegated to the exercises.

It follows quickly from the first claim in the proof of the lemma that in a

superstable theory any formula ¢ has < 2/7! extensions in S(€) of the same
co—rank; i.e., the bound in the definition of co—rank can be taken to be 27!
instead of an arbitrary cardinal < |€]|.
Remark 6.1.1. Tt is actually the case that a stable theory T is superstable if
and only if R®(z = z) < |T'|*. This, however, is significantly harder to prove
than (i) of the lemma (see [She90, II]. Since this refined bound has few uses
we will not prove it here.
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Example 6.1.1. (A formula of co—rank 1 which does not have Morley rank)
Let T be the theory of infinitely many refining equivalence relations with only
infinite classes such that Ey has one class and E;; splits each F; class into
two classes. Then, the formula z = x has 2%° many nonalgebraic completions
in S(€), hence R*®(x = z) = 1. Every nonalgebraic consistent formula in z
has continuum many extensions in S(€), hence there is no formula of Morley
rank > 0.

Definition 6.1.2. (i) A formula of co—rank 1 is also known as a weakly
minimal formula.

(i) A set defined by a weakly minimal formula in some model is called a
weakly minimal set.

(iit) A type having a unique nonalgebraic completion over € is called a
minimal type.

(i) The set of realizations of a minimal type in some model is called a
minimal set.

Remark 6.1.2. A weakly minimal formula has < 2!7! many nonalgebraic com-
pletions over €. A complete type is minimal if and only if it is stationary and
has U—rank 1. A formula ¢ over A is weakly minimal if and only if every
nonalgebraic completion of ¢ over acl(A) is minimal.

A strongly minimal formula is both a weakly minimal formula and a
minimal type.

In some superstable theories U—rank and co—rank agree on the com-
plete types, however there are relatively simple examples where U —rank and
oo—rank differ.

Ezample 6.1.2. (Where U—rank and co—rank agree) Consider the theory Tp
of a single equivalence relation E with infinitely many infinite classes and no
finite classes. Up to conjugacy, there are three types in S; (€): those containing
z = a, for some q; the nonalgebraic types containing FE(z, a), for some a; and
those containing —E(z, a), for all a. These types have U—rank, co—rank and
Morley rank 0, 1, and 2, respectively. Similarly, these ranks agree on Sy, ().

(Where U —rank and oco—rank differ) Now we will define a theory consist-
ing of “infinitely many disjoint copies of Tp”. The language contains unary
predicates U; and binary predicates E;, for ¢ < w. The axioms for T say that
the U,’s are pairwise disjoint and E; defines a copy of Ty on the elements
satisfying U;. Certainly, T is superstable (in fact, w—stable) and quantifier
eliminable. Let ¢ € S(0) be the unique 1—type containing —~U;(z), for all
¢t < w. Then U(q) = 1 and R*(q) = 2. (Any formula in q is consistent with
some U;, hence has co—rank 2.)

There are identifiable properties of a theory which guarantee that U —rank
and co—rank agree on all complete types. Isolating fairly broad classes of the-
ories in which this is true is a difficult matter which is relegated to Section 7.2.
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For now we simply remark that Morley rank and co—rank agree in uncount-
ably categorical and Ng—categorical, Ro—stable theories, and Morley rank
and co—rank agree with U—rank on the complete types in such theories.

Definition 6.1.3. A map R which associates an ordinal with a complete type
p is called a notion of rank if it satisfies:

(1) R(p) = R(fp), for any f € Aut().

(2) If g D p is complete, R(q) < R(p).

(3) For each A containing the domain of p there is a ¢ € S(A) con-
taining p with R(q) = R(p).

(4) If p € S(B) there is a finite B’ C B such that R(p) = R(p | B').

(5) There is a cardinal A such that any type has at most A extensions
of the same rank over €.

Let R be a notion of rank.

— R is called connected if R(p) = a and B < a implies the existence of a
complete type q¢ D p with R(q) = S.

— R is called continuous if whenever p € S(A) and R(p) = a thereisap € p
such that R(q) < « for all g € S(A) containing .

Properties (1)—(5) are exactly what is needed of an ordinal-valued function
on types to induce a freeness relation on the universe (see Definition 3.3.1).
Morley rank, co—rank and the A—ranks are all continuous. A unique prop-
erty of U—rank is that there are superstable theories in which it is not con-
tinuous. It follows that there is no notion of rank defined via formulas (as
was oo—rank) which agrees with U—rank on complete types in every super-
stable theory. (The example given above where U—rank and oco—rank differ
is also a counter-example to the continuity of U—rank.) On the other hand,
U —rank is connected (see the exercises) while co—rank is not. (The type ¢ in
Example 6.1.2 has co—rank 2 and every forking extension has co—rank 0.)

It is tempting to extend U —rank to the incomplete types in a superstable
theory T" with the rule:

U(p) =sup{U(q): ¢Dp, g€ S(€)},

where p is an arbitrary type in T'. But there are choices for T and p for which
this supremum is not attained; i.e., there is no ¢ € S(€), ¢ D p, such that
U(q) =sup{U(q) : ¢ D p, q € S(€) }. This seriously limits the usefulness of
U —rank on incomplete types. There is one general setting, however, in which
it is appropriate to speak of the U —rank of an incomplete type. Suppose that
G is a superstable group (i.e., a stable group A —definable in a superstable
theory). Proposition 5.3.1 says that the action of G on the generics in S¢(G)
is transitive, hence all generics have the same U—rank a (see the exercises).
For p the type defining G we then define U(p) to be a (which is the supremum
of {U(q) : ¢ D p and q complete}).
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That U-—rank fails to be continuous is offset by the fact that it sat-
isfies some additivity properties reminiscent of dimension in a strongly
minimal set. If D is strongly minimal and @, b are tuples from D, then
dim(ab) = dim(a/b) +dim(b). We will see momentarily that U—rank satisfies
a corresponding identity when all the relevant ranks are finite. When some
of the types have infinite U —rank the irregularities of ordinal addition create
problems. For example, if the sequences @ and b from D are independent, then
dim(a/b) = dim(a) and dim(b/a) = dim(b), so dim(ab) = dim(a)+dim(b) and
this is also dim(b/a@)+dim(a) = dim(b)+dim(a). Rewriting this with U —rank
replacing dimension results in the identity: U(a)+U (b) = U(b)+U(a) for any
two independent tuples in a superstable theory. Since addition of infinite or-
dinals is noncommutative this may not hold. We can, however, obtain useful
inequalities if we replace ordinal addition by the natural sum (or Hessenberg
sum) on ordinals (which is commutative). The natural sum of two ordinals «
and 3, denoted a @ (3, is defined recursively by the clause:

a®dpf=sup{adf +1: f<plu{ddp+1:d <a}).
The important features of @ are:

(1) & agrees with + when the ordinals are finite.
(2) @ is commutative.
B I <B,anf <adp.

We prove

Proposition 6.1.1 (Additivity). If T is superstable, then for all a, b and
A,

U(a/AU {b}) + U(b/A) < U(ab/A) < U(a/AU {b}) ® U(b/A).

Proof. Without loss of generality, A = . We prove by induction that for
a=U(a/b)+U(b), U(ab) > a. When « is a limit ordinal this follows quickly
by induction. Suppose a = §+ 1. Then U(b) must be a successor, say 7y + 1.
By the connectedness of U—rank there is a set B such that U(b/B) = 7.
Without loss of generality, a is independent from B over b. Since § = U(a/b)
is an ordinal such that 6 +y+1 =08+ 1and 6 = U(a/BU {b}), 6 +v =
U(a/BU{b})+U(b/B) = 3. By induction, U(ab/B) > (. Since ab depends on
B over 0, U(ab) > 3+ 1, completing the proof of this part of the proposition.

Next, we prove by induction that U(ab) > a = U(a/b) @ U(b) > c.
Again, it suffices to consider the case o = 8+1. Thus, there is a set B on which
ab depends such that U(ab/B) = 3. Then b depends on B or a depends on B
over b and U(a/B U {b}) ® U(b/B) > 3 (by induction). These dependencies
imply that U(a/B U {b}) < U(a/b) or U(b/B) < U(b), respectively. In either
case, U(a/BU{b})®U(b/B) < U(a/b)®U(b). Thus, U(a/b)@U(b) > f+1,
completing the proof.



6.1 More Ranks 299

Simply because + and @ agree on finite ordinals,

Corollary 6.1.1. Suppose that T is superstable and U(b/A) and U(a/A U
{b}) are finite. Then

(i) U(ab/A) = U(a/AU{b}) + U(b/A) and

(i) U(a/A) —U(a/AU{b}) = U(b/A) — U(b/A U {a}).

The second part of the corollary can be viewed as a strong form of the
Symmetry Lemma. It says that a depends on b the same amount that b
depends on a. In the following discussion we generalize this corollary to types
of infinite U —rank.

While the above definition of @& makes it easy to prove properties of the
operation, it makes it difficult to compute particular values. The following
equivalent definition shows how to perform the operation. Given an ordinal
« there are ordinals 8; > ... > (¢ and natural numbers nq,...,ng such that
a = wPr-ni+wP? ny+.. . 4wPk-ny. This expression is unique (when each n; is
nonzero) and is called the Cantor normal form of a.. Given two ordinals a and
o, expand them as & = wP' -ny +...4+wP* -ng and o = WP -nf+.. . +wPk-nf,
where 31 > ... > B and n;, n} < w. Then

a®a =P (ny4+n) 4.+ (g +0h).

(This is the definition given in [Hau62]. The equivalence of the two definitions
is left to the reader.)

Ordinals of the form w? act as “limit points” of the operation @ in the
sense that @, @/ < w? = a® o < wP. Generalizing, we write a <
w* -my + ... +w* -my (where o1 > ... > o) if & < w*. Then, a, &' K
B = a®a < . As the notation suggests a < (3 is one way of formally
saying that « is much less than .

Lemma 6.1.3. Suppose that T is superstable and p, q are complete types
such that U(q) < U(p). Then p is orthogonal to gq.

Proof. Without loss of generality, p and ¢ are stationary. Suppose, to the
contrary, that p is nonorthogonal to q. Let A be a set on which both p and
q are based such that there are a realizing p|A and b realizing g|A which are
dependent over A. Let U(p) = 8 + w® - n, where 8 = 0 or w* < 3, and
U(q) = v < U(p) (equivalently v < w®). By Proposition 6.1.1, 8 + w* -n =
U(a/A) < U(ab/A) < U(a/AU{b})®U(b/A). Since U(a/AU{b}) < B+w*n
and v < w?*, U(a/AU{b}) ®U(b/A) = B+w*-(n—1)++ for some v/ < w®.
This contradicts the inequality and the stated value of U(a/A).

Some applications of the additivity of U—rank are most easily stated
through the following equivalence relation. For ordinals o, 8 and vy we write
0B =4 v if there are ', ¥/ < w® such that 8+ 3’ = v++'. Intuitively, ordinals
are =, if they are “= modulo w®”. The key ingredient in the proof of the
following corollary is:
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L= B+y~a B0 (6.2)

a+1

B, v <w*t

(This follows quickly from the fact that an ordinal < w®™" can be written as
w®-n + ¢, where € < w?®.) Furthermore, we can do basic arithmetic “modulo
w®” on ordinals. Given 8, v, 6, € < w**!,

Broyand 6 g e = [+ 6~q7+e,
and
B+y=ab+y = B=q0.

Corollary 6.1.2. Suppose that T is superstable and both U(a) and U(b) are
< w1l Then

(i) U(ab) =q U(a/b) + U(b) and

(i) U(a) =q U(a/b) + w* -m <= U(b) =, U(b/a) + w* - m.

Proof. (i) This follows immediately from Proposition 6.1.1 and (6.2).

(ii) It suffices to show the = direction. Suppose that U(a) ~o U(a/b) +
w®-m. Two applications of (i) and (6.2) show that U(a/b)+U (b) ~q U(b/a)+
U(a). Substituting yields,

U(a/b) + U(b) =q U(b/a) + U(a/b) + w* -m

and cancelation gives the desired equation U(b) ~q U(b/a) + w® - m.

Historical Notes. The rank R*(—) is defined in [She90, II] as R(—, L, 00)
and Lemma 6.1.2(i) is Theorem 3.14 of that chapter. Lascar’s U—rank is
defined and developed in [Las76], where Proposition 6.1.1 is proved.

Exercise 6.1.1. Let T be superstable and p C g complete types. Show that
U(p) = U(q) if and only if q is a nonforking extension of p.

Exercise 6.1.2. Prove Lemma 6.1.2(ii).

Exercise 6.1.3. Suppose that T is superstable and a € acl(A U {b}). Then
R*(a/A) < R™(ab/A) = R*(b/A) and U(a/A) < U(ab/A) = U(b/A).

Exercise 6.1.4. Suppose that T is superstable, ¢ is formula over A and
R>(yp) > k, where k < w. Prove that there is a p € S(A) containing ¢ with
U(p) > k. (HINT: Use induction.)

Exercise 6.1.5. Prove the connectedness of U —rank.

Exercise 6.1.6. Show that when T is stable and a and b are interalgebraic
over A, U(a/A) = U(b/A).

Exercise 6.1.7. Show that in a superstable group G all generic types have
the same U —rank.
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Exercise 6.1.8. Let T be a superstable theory and E a definable equivalence
relation in T. Let a be an element and b the name for the E—class of a.
Supposing that U(a) = 5 and U(a/b) = 2, compute U (b).

Exercise 6.1.9. Give an example of a superstable theory containing a com-
plete type of U—rank w.

6.2 Geometrical Matters: A Dichotomy Theorem

Throughout Chapter 4 we saw how detailed information about the prege-
ometries in an uncountably categorical theory effected the overall structure
of the theory. For example, when an uncountably categorical theory contains
a locally modular strongly minimal set, the theory is 1—based. Here we prove
(Theorem 6.2.1), saying that many superstable theories contain minimal sets
which are locally modular. Basic consequences of this theorem will be stated
without proof. '

Let D be a minimal set, A —definable over a set A in a stable universal
domain €. Let cf(—) be acl(— U A) N D. As with strongly minimal sets,
(D, cf) is a homogeneous pregeometry. As usual, when P is a property of a
pregeometry and p is a minimal type we say that p has property P when p(€)
has property P.

Theorem 6.2.1 (Dichotomy Theorem). Let T be superstable and D a
minimal set which is not locally modular. Then D is strongly minimal.

This will be proved with several component results. First we reduce the
problem to considering only minimal sets which are weakly minimal; i.e.,
minimal sets of co—rank 1.

Lemma 6.2.1. Let T be superstable and D a minimal set which is nontrivial.
Then D is weakly minimal.

Proof. Without loss of generality, D = p(€) for a stationary type p € S(0).
Since D is nontrivial we can also assume that there is {a,b,c} C D which is
pairwise independent but dependent. Let ¢(z,y, z) € tp(abc) be such that,
for all o/, ¥, c,

E p(a,b,c) = d €acl(t/,d) and b € acl(d’,).

Let a = R*°(p) and 6 € p a formula of co—rank a. Let ¥(z) be the formula
dpy(3z(p(z,y, 2))) (see the notation on page 224). Then 3(z) € p (since

= ¥(a))-

Claim. 1 is weakly minimal.
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It suffices to show that for any a’ € ¥(€), U(a’) < 1. (If R®(y) > 2, there
is a ¢ € S(P) containing v such that U(g) > 2 by Exercise 6.1.4.) Choose
a’ satisfying 1. By the definition of 9 there are b’ and ¢’ such that ¥’ € D,
¥ L, and = o(a,¥,c) A6(). Since b € acl(a’,c'), « = R®(V/a') <
R>®(c'/a’) < R*®(c/) < a. Thus, ¢ is independent from a’ over @. Since
a € act',c),U(d'/d) <UW' /') < 1. Thus, U(a’) < 1, proving the claim
and the lemma.

Definition 6.2.1. Let D be a minimal set, )\ —definable over ) in a super-
stable theory. A plane curve in D is a minimal subset of D?.

We call D linear if whenever p(€) is a plane curve in D and c is interal-
gebraic with Cb(p), U(c) < 1.

Remark 6.2.1. Let D be a minimal set in a superstable theory, A —definable
over ), and D’ a strongly minimal set over {) in a t.t. theory. Plane curves in
D behave very much like plane curves in D’. The principle difference is that
the canonical parameter of a plane curve in D’ is an element of (D’)¢? and
the canonical base of plane curve in D is an infinite subset of D®?. However, if
X = p(€) is a plane curve in D and C = Cb(p), there is a ¢ € Cb(p) such that
¢ is interalgebraic with C. The resemblance between the two types of plane
curves is even stronger. There is a ¢ € Cb(p) such that, letting ¢ = tp(a/c) for
a € X, any b € D? realizing q is in X. (This is left for the reader to prove.)
It follows that Cb(p) = dcl(c). Thus, we will call ¢ a canonical base of X and
identify X with the element c.

Lemma 6.2.2. Let D be a minimal set in a superstable theory, )\ —definable
over §. The following are equivalent.

(1) D is locally modular,
(2) D/A is locally modular, for some set A,
(3) D is linear.

Proof. This is proved just like the corresponding result for strongly minimal
sets, Lemma 4.2.4.

Proof of Theorem 6.2.1. Let D be a minimal set, /A —definable over §, which is
not locally modular. By the preceding lemma there is a plane curve X C D?
such that for ¢ a canonical base of X, U(c) > 1. By the connectedness of
U-rank there is a set A such that U(c/A) = 2. Working over A, X is a
plane curve in D/A with canonical base ¢, so we may as well assume that
U(c/0) = 2.

An element of X has the form a = (ag,a;) € D?, where ag € acl(c,a;)
and a; L ¢. We will prove that r = tp(a/c) has Morley rank 1. It follows
that ¢tp(a;/c) has Morley rank 1, hence D has Morley rank 1 (since a; L ¢),
proving the theorem. The formula in tp(a/c) of Morley rank 1 is found with
a compactness argument applied to the following theory. Below a formula
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Y(z,y) is called “provably algebraic in y” if for any b, v (x,b) is algebraic;
ie., F Yy3<"zy(z,y), for some n. Given a realization d of tp(c), let r4 denote
the conjugate of r over d.

The lemmas proved earlier about families of plane curves in strongly min-
imal sets are true for minimal sets after dim(—) is replaced by U(—). (This
uses that U—rank satisfies the identities in Corollary 6.1.1.) Since r defines a
plane curve whose canonical base is c, for any d # c realizing tp(c), r(z)Ury(z)
is algebraic. By compactness, there are formulas o(z,y) ¥(z,yz) such that

— ¢(z,yz) is provably algebraic in yz,
— for any d realizing tp(c), if d # ¢, o(z, c) A o(z, d) implies 9(z, cd).

Since D is weakly minimal, X is weakly minimal and we can choose ¢ so that

o(z,c) is weakly minimal and for all
a €o(€c), ' L cand R®(a) <2. (6.3)
Combining this with the generalization of Lemma 4.2.6 yields

for any a’ € o(€,c) \ acl(c), U(a’) = R*®(a') = 2 and
Ue/a')=U(c)—1=1. (6.4)

With these pieces in place we can prove

Claim. o(z,c) has Morley rank 1.

We need to show that the formula o(z,c) has finitely many nonalgebraic
completions in S(acl(c)). Let d be a realization of stp(c) which is independent
from c over 0. Since o(z,c) Ao(z,d) implies ¥(z, cd) and ¥(z, cd) is algebraic
it suffices to show

(*) any nonalgebraic element of S(acl(c)) containing o(z,c¢) is realized in
o(€,c)No(C,d).

Let o’ € o(€,c) \ acl(c). By (6.4), U(a’) = 2 and U(c/a’) = 1. Choose d’
realizing stp(c/a’) which is independent from c over a’. We show that d’
is independent from c with the following U—rank calculation. U(d'ca’) =
U(d'c/a’) + U(a') = U(d'/ed’) + U(c/a’) + U(a') = 1+ 1+ 2 = 4. Also,
U(d'ca') =U(a'/d'c)+U(d'c) =U(a’/d'c)+U(d /c)+U(c) = 0+U(d'/c)+2.
We conclude that U(d'/c) = 2, hence d’ is independent from c. Since d’
and d have the same strong type over () and both are independent from c,
stp(d'/c) = stp(d/c). Let f be an automorphism of € which fixes acl(c) and
maps d’ to d. Then f(a’) is a realization of stp(a’/c) in (€, c)No(€,d). This
proves (x), hence the claim and the theorem.

In Theorem 4.3.1 we showed that an uncountably categorical theory T
has a locally modular strongly minimal set if and only if T is 1—based. This
extends the simplicity of the pregeometry on a strongly minimal set to the
simplicity of the entire universal domain with respect to forking dependence.

The following generalizes Theorem 4.3.1.
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Theorem 6.2.2. Let T be a superstable theory such that for each complete
type p

- U(p) < w, and
— ifU(p) = 1, p is locally modular.

Then T is 1—based.

We will not prove this theorem here. All of the key ideas are found in the
proof of Theorem 4.3.1. The proof used the fact that the universal domain
of an uncountably categorical theory is asm-constructible. We simply need a
concept corresponding to “almost strongly minimal set” which is appropriate
for minimal sets. The “semi-minimal sets” fill the gap. (See [Bue86] or [Pil].
There is also an exposition of this material in [Bue93].)

The theme underlying Theorem 6.2.1 is that geometrical and topological
complexity cannot coexist. (A minimal set over acl(A) which is not strongly
minimal is a relatively complicated point in the Stone space topology on
S(acl(A)).) The application which best displays Theorem 6.2.1 and Theo-
rem 6.2.2 is the following corollary. We need to borrow a definition and results
from later sections. A stable theory T is unidimensional if all nonalgebraic
stationary types are nonorthogonal (Definition 7.1.1). In a unidimensional
theory T every complete type has finite U—rank (by Corollary 7.2.1) and
there is no strongly minimal set unless T is uncountably categorical. (See
Examples 7.1.1 and 7.1.2.) Combining these facts with the Theorems 6.2.1
and 6.2.2 proves

Corollary 6.2.1. Let T be a superstable unidimensional theory which is not
uncountably categorical. Then T is 1—based.

Many of the results in Chapter 4 have faithful generalizations to super-
stable theories in which each type has finite U—rank. There is also a “geo-
metrical theory” surrounding regular types (instead of minimal types). This
material is expounded in [Pil].

The proof of Vaught’s conjecture for superstable theories of finite rank
depended heavily on the results in this section.

Historical Notes. Theorems 6.2.1 and 6.2.2 are due to Buechler, see
[Bue85a] and [Bue86], respectively.

6.3 Regular Types

In this section we prove the facts about regular types outlined in the intro-
duction of the chapter.

We assume throughout the section that any theory mentioned
is stable.
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Definition 6.3.1. The nonalgebraic stationary type p is regular if for any
set A over which p is based, any extension of p|A which forks over A is
orthogonal to p.

It is clear that any strongly minimal type, in fact minimal type is regular.
As (iii) of the next lemma says, one of the most basic properties of a regular
type is that forking dependence is transitive on its set of realizations.

Lemma 6.3.1. (i) For p a nonalgebraic stationary type the following are
equivalent:

(1) p is regular;

(2) for some set A on which p is based, any extension of p|A which
forks over A is orthogonal to p;

(3) for some set A on which p is based,

when a, b realize p|4,b] Cand a J b, al C.
A AuC A
(i) If p € S(A) is a nonalgebraic stationary type, where |A| < k(T), and
M D A is an a—model, then p is regular if p is orthogonal to every forking
extension of p in S(M).
(#1) (Transitivity) Let p € S(A) be a regular type, {a} U{b;: i €I} C
p(€) and C a set.

If af{b;:i€l}and b; ) C (for i€I), then a ) C.
A A A

Proof. (i) The equivalence of (2) and (3) is simply a matter of rewording the
relevant definitions, while (1) = (2) is trivial.

To prove (2) = (1) suppose (2) holds with A is in the statement, and B
is a set on which p is based. Let ¢ = tp(c/C) be a stationary type which is
a forking extension of p|B and assume to the contrary that ¢4 p. Since p is
based on B any conjugate of ¢ over B also satisfies these conditions. Thus,
we can assume C U {c} to be independent from A over B. In particular, c
realizes the nonforking extension of p|B over AU B; i.e., p|(A U B). Thus,
q|(AU Q) is a forking extension of the types: p|B, p|(AU B) and p|A. By (2)
q is orthogonal to p|A, contradicting the assumption that gf p.

(ii) This is left to the reader in the exercises.

(iii) Assume to the contrary that a is independent from C over A and,
without loss of generality, C O A. By the transitivity of independence, a
depends on {b; : i € I} over C. Thus, there are J C I and j € I\ J such
that a is independent from D = CU{b; : ¢ € J } over C and a depends on b;
over D. However, the strong type of b; over D is a forking extension of p|A,
hence is orthogonal to p. Since stp(a/D) is parallel to p this contradicts the
dependence of a and b; over D to prove (iii).

As promised, dimension is well-defined on regular types:
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Proposition 6.3.1. Every regular type has weight 1.

Proof. We must show, given a regular type p based on A, pwt(p|A) = 1. For
notational simplicity, take A = 0. Suppose, towards a contradiction, that a
is a realization of p and there are sets B and C such that B Lc ol B
and a [ C. Without loss of generality, B is the universe of an a—model.
Let I C B be an infinite indiscernible set whose average type over B is
tp(a/B). Since a L B, Av(I/B) # p|B, hence {a} UI must be dependent
over (. Let J be a minimal subset of I such that {a} U J is dependent. Since
{a} U I is indiscernible (see Lemma 5.1.17), any proper subset of {a} U J is
independent, hence a Morley sequence in p. Let b € J and J' = J \ {b}. By
Lemma 6.3.1(iii),

blaandal C = bJ C.
J’ J’
This contradicts the independence of B and C to prove the proposition.
Following is the canonical example of a weight 1 type which is not regular.

Ezample 6.5.1. Let M be the direct sum of R copies of the group (Z4,+).
(This is also Example 3.5.1(iii).) We will show that the generic type of M has
weight 1, but is not regular. Since M is simply a module over Z its quantifier
eliminability down to the positive primitive formulas implies (after a little
work):

— T = Th(M) is categorical in every infinite cardinal and has Morley rank
2.

— M contains a unique strongly minimal subset definable over 0, namely
2M = the elements of order 2 in M.

— M and 2M are connected.

Let p € S(M) be the unique generic type and g € S(M) the generic type of
2M. Since q is strongly minimal it is regular. To prove that p has weight 1
it suffices (by Lemma 5.6.4(iii) and Remark 5.6.6) to show that p <1 ¢. Since
every model of this theory is an a—model we need only show that when b is a
realization of ¢ and N is the prime model over M U{b}, p is realized in N (see
Proposition 5.6.4). Let a be any element of N such that 2a = b. An analysis
of the possibilities for tp(a/M) using the pp—elimination of quantifiers leads
to the conclusion that a realizes p as desired.

Now let a and b be independent realizations of p and a’ = a + 2b. Then,
al o, bl {a,a'} and a L b. Combining this with Lemma 6.3.1(ii), shows
that p is not regular.

By Corollary 5.6.4, dimension is well-defined on a collection of realizations
of a regular type. Furthermore, nonorthogonality is the same as domination
equivalence on regular types (see Corollary 5.6.5). Combining previous facts
concerning weight 1 types and the transitivity of dependence on the realiza-
tions of a regular type results in the following critical additivity property of
dimension.
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Proposition 6.3.2 (Additivity of Dimension). Let T be stable, M C N
a—models, A C M a set of cardinality < x(T) and p € S(A) a regular type.
Then,

diin(p, N) = dim(p, M) + dim(p| M, N).

Proof. Let I be a basis for p in M and J a basis for p|M in N. It suffices to
show that I U J is a basis for p in N. If a is an arbitrary element of p(N),
{a}UJ depends on M over A. By Lemma 5.4.2, tp(ab/p(M)UA) |= tp(ab/M)
for any finite b C J. Thus, {a} U J depends on p(M) over A, in fact {a} U J
depends on I over A by Lemma 6.3.1(ii). This proves that I U J is a basis for
p in N, as required.

Corollary 6.3.1. Ifp € S(A) is regular and C D B are subsets of p(€), then
dim(C/A) = dim(C/A U B) + dim(B/A).

Proof. Left to the exercises.
The proof of the proposition contains a proof of

Corollary 6.3.2. Let M be an a—model, A C M of cardinality < w(T),
p € S(A) a regular type and I a basis for p in M. Then, given a Morley
sequence J in p which depends on M over A, J depends on I over A.

The collection of regular types provide us with a class on which dimension
in a—models is particularly well-behaved:

Proposition 6.3.3. Let T be superstable and p € S(A) a regular type, where
A is finite.

(i) If M D A is a—prime over a finite set, then p has dimension Rqg in M.

(%) If I is an infinite Morley sequence in p and M is a—prime over AUI,
then I is a basis for p in M.

(iit) For any a—model M D A, if B C M is finite and ¢ € S(B) is a
reqular type nonorthogonal to p, then dim(p, M) = dim(q, M).

(iv) For any k > A(T) there is an a—model M D A of cardinality k such
that dim(p, M) = k and dim(q, M) = Xg for any regular type q over a finite
subset which is orthogonal to p.

(v) Let My be an a—model of cardinality A > A(T) and X C S(Mp)
a set of reqular types over My such that there is a regular type ¢ € S(Mp)
orthogonal to every element of X. Then, there is an a—model M of cardinality
X\ containing My such that dim(r, M) = 0, for allr € X, and dim(q, M) = A
for any regular type q over a finite subset of M such that g L r for allrT € X.

Proof. (i) Suppose M D A is a—prime over the finite set B. Recall from
Theorem 5.5.2(iii) that when M is a—prime over a set it does not contain an
uncountable set of indiscernibles over that set. Let I be a basis for p in M.
There is a finite J C I such that I is independent from B over J U A. Then
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I'\ J is Morley sequence in p|(A U B), which hence has cardinality Xy since
M is a—prime over AU B.

(ii) This follows from the proof of Theorem 5.5.2(iii), which is relatively
easy.

(iii) Let N C M be an a—prime model over A U B. Since p and
q are nonorthogonal regular types, they are domination equivalent. By
Corollary 5.6.3, dim(p|N, M) = dim(q|N,M). From (i) we conclude that
dim(p, N) = dim(g, N) = Ry, so (ii) follows from the additivity of dimension
(Proposition 6.3.2).

(iv) Let I be a Morley sequence in p of cardinality £ and M an a—prime
model over AU I. Let g be a regular type over a finite subset B of M. Let
J C I be a countably infinite set with stp(B/A U J) a—isolated. Thus, there
is N C M an a—prime model over AUJ containing B. By Corollary 5.5.3, M
is a—prime over N U I. By (i), J is a basis for p in N and by Corollary 6.3.2,
I\ J =TI is a Morley sequence in p|N. Since M is a—prime over NUI’, every
element of M\ N depends on I’ over N (by Corollary 5.6.1). Thus, every type
over N realized in M\ N is nonorthogonal to p. In particular, g|/N is omitted in
M, so the additivity of dimension implies that dim(g, M) = dim(q, N) = Ro.

(v) We define an elementary chain of a—models, My C M; C ... C
M, C ..., each of cardinality A so that the union M has the desired
properties. Suppose M,, has been defined and let @, = {q € S(M,) :
q is a regular type orthogonal to every r € X }. Then @, is nonempty and
|@n| < A (since T is A—stable). Let I be an M, —independent set of cardinal-
ity A so that for each q € @, I contains a Morley sequence in ¢ of cardinality
A and tp(I/My,) L r, for all r € X. Let M,4+1 be an a—prime model over
M U I. All of the desired properties are easily verified.

Remark 6.3.1. The relationships between the dimensions of nonorthogonal
regular types when these dimensions are finite is a complicated matter. Con-
sider, for example, a model M of an uncountably categorical theory and
complete strongly minimal (hence regular) types p, ¢ over a finite set A. If p
and q are modular, then dim(p, M) = dim(q, M). (See Corollary 4.3.5.) Using
deeper results from geometrical stability theory it is possible to show that
dim(p, M) = dim(q, M) when both p and q are locally modular and non-
modular. (This was proved by Hrushovski and Laskowski in [Las88].) The
relationship between dim(p, M) and dim(g, M) when p and g are nonorthog-
onal regular types over a finite set A C M and M is a model is related to
how the nonorthogonality of p and ¢ is witnessed. As stated in Remark 5.6.2
this is a deep problem in geometrical stability theory.

The usefulness of regular types in superstable theories depends heavily
on the following existence result.

Lemma 6.3.2 (Existence). Suppose that T is superstable, M C N are
a—models, A C M is finite and ¢ € S(A) is realized in N \ M. Then, there
is a regular type p € S(M) containing q which is realized in N.
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Proof. Let p € S(M) be an extension of q of least U —rank which is realized
in N\ M. We will show that p is regular. Let B C M be a finite set containing
A on which p is based. Assuming, to the contrary, that p is not regular there
is a finite set C, B C C C M and an r € S(C) which is a forking extension of
p|B nonorthogonal to p (see Lemma 6.3.1(ii)). We contradict the minimality
assumption on U(p) as follows. Enlarging C if necessary we can assume by
the nonorthogonality of the relevant types that there are a realizing p|C and
b realizing r which are dependent over C. Since N is an a—model realizing
p we can require that a € N realizes p and b is in N. Since a depends on
b over C and a is independent from M over C, b must be in N \ M. Since
U(r) < U(p) and 7 D g this contradicts the minimality assumption on U(p).
We conclude that p is regular.

In the proof of the lemma we also show

Corollary 6.3.3. ForT a superstable theory, M an a—model andp € S(M),
the following are equivalent.

(1) p is regular.
(2) There is an a—model N D M realizing p and a finite set A C M
such that whenever b€ N \ M realizes p | A, b realizes p.

This corollary can be useful in verifying that certain types are regu-
lar. Take, for example, the theory of an equivalence relation F with in-
finitely many infinite classes and no finite classes. Then, T is w—stable and
w—categorical, so every model is an a—model. To verify that the unique
q € S1(0) is regular let M be any model, a a realization of gq|M and N the
prime model over MU{a}. Our knowledge of the models of this theory tells us
that every element of N\ M is E—equivalent to a, hence not E—equivalent to
any element of M. That is, every element of N\ M realizes q| M. We conclude
that g is regular by the corollary.

The proof of the lemma also shows that for T a 1—sorted superstable
theory, every regular type in T¢? is nonorthogonal to a regular 1—type in the
sort of T (see the exercises).

Concerning possible extensions of Lemma 6.3.2, it is true that for any
two distinct models M C N of a superstable theory there is a regular type
over M realized in N. However, the proof of this more general result, found
in [SB89], is considerably more difficult than the one above and requires
more sophisticated machinery. We will not reproduce the proof here since
the above result together with the existence lemma for strongly regular types
in t.t. theories proved later, are sufficient to prove a high percentage of the
existing results. The hypothesis that T is superstable in the lemma is neces-
sary, though. There is an example of a countable stable theory having distinct
N; —saturated models M C N with no regular type over M realized in N.

Corollary 6.3.4. Given a weight 1 type p in a superstable theory there is a
regular type ¢ domination equivalent to p.
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Proof. Without loss of generality, p € S(M), for M some a—model. Let a be
a realization of p and N an a—prime model over M U {a}. By Lemma 6.3.2
there is a regular type g € S(M) realized in N. This forces p and ¢ to be
nonorthogonal, hence p O ¢, as needed.

Corollary 6.3.5. Let T be superstable, M C N a—models and C C N a
mazimal M —independent set such that, for each c € C, tp(c/M) is regular.
Then N is dominated by C over M.

Proof. Combine the claim in the proof of Theorem 5.6.1 with the preceding
corollary.

The following decomposition theorem allows us to deal only with regular
types in many settings. Recall from Corollary 5.6.7 that every stationary type
in a superstable theory has finite weight. This can be extended to:

Corollary 6.3.6 (Decomposition Theorem). IfT is superstable and p is
a stationary type there are regular types qi,...,qn, for n = wt(p), such that
pO @ ®...Q¢q,. In fact, if M is an a—model on which p is based, a realizes
p|M and N is a—prime over M U {a}, N is also a—prime over M U {b},
where b = {bg,...,bn} is a mazrimal M —independent sequence of elements
realizing regular types over M.

Proof. Given a stationary type p, by Theorem 5.6.1 there are weight 1 types
r1...,Tpsuch that p O 7, ® ... ® . From Corollary 6.3.4 we get, for each
1 <i < n, aregular type ¢; domination equivalent to r;. Using Remark 5.6.3,
p,T1®...0T, and 1 ® ... ® g, are domination equivalent.

The second part of the corollary follows from the claim in the proof of
Theorem 5.6.1 and Corollary 6.3.4.

Any sequence {qo,...,qn—1} of regular types such that p O Q),_, &
is called a regular decomposition of p. Part (i) of the following corollary
addresses the uniqueness of a regular decomposition. The other parts of the
corollary indicate the degree to which this decomposition theorem reduces
orthogonality and domination on all stationary types to considering only
regular types.

Corollary 6.3.7. Let T be superstable.

(1) If {go,...,qn-1} and {q0,...,q,,_1} are regular decompositions of p
and p', respectively, then p' < p if and only if there is a one-to-one map of
indices j < n' into indices i; < n such that ¢; O g;; for all j < n'. Thus,
p 3 1/)' if and only if there is a bijection j — 1i; such that qg- O g;; for all
j<n

(ii) Given stationary types p, p', v and r', if r O 7' thenp’ @1’ <p®r
implies p’ < p.

(itt) For any stationary p and p/, pLp’ if and only if there is a regular q
nonorthogonal to both p and p'.
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Proof. (i) Suppose that M C N are a—models and C is an M —independent
set of realizations of regular types over M such that N is dominated by C over
M. Let X be an equivalence class of the regular types over M with respect
to domination equivalence and Cx the elements ¢ of C' with tp(c/M) € X.

Claim. Cx is a basis for D ={d € N : tp(d/M) € X }.

Since C' is M —independent and every element of C' \ Cx realizes a type
over M orthogonal to the elements of X, tp(C/M UCx) is orthogonal to each
element of X. For d € D,

since d J Cand d] Cx,d J C,
M M MUCx
a contradiction from which we conclude that d depends on Cx over M, as
claimed.

Now suppose that p, p’, the ¢;’s and ¢}’s are as hypothesized, all are based
on the a—model M, p’ < p, a realizes p|M and N is the a—prime model
over M U {a}. Let ¢ = (co,...,cn-1) and ¢’ = (cp,...,cl/_;) be realizations
of @, ¢|M and @;_, q;|M, respectively, in N. Since N is a—prime over
MuU{c}, cis a basis for the realizations of the regular types over M in N. The
argument in the first paragraph shows that we can partition the ¢;’s and ¢}’s
into equivalence classes with respect to the nonorthogonality of their types
and the dimension of a class of ¢;’s is < the dimension of the corresponding
class of ¢;’s. This indicates how to define the one-to-one map required in the
statement.

The other direction of the biconditional is clear.

Parts (ii) and (iii) follow quickly from (i).

Applications of this decomposition in terms of regular types will be seen
in Section 7.1.

6.3.1 Rank Considerations

We assume every theory mentioned in this subsection to be super-
stable. In Lemma 6.1.3 we showed that widely different U —ranks imply the
orthogonality of the two types. It is a short step from there to

Lemma 6.3.3. If p is a stationary complete type of U—rank w* for some a
then p is regular.

Proof. Since 8 < w* = [ < w” any forking extension of p is orthogonal
to p by Lemma 6.1.3.

We prove in the next proposition that the types of U—rank w® are the
canonical regular types. Properties of dependence on these special regular
types are occasionally easier to prove.
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Proposition 6.3.4. Ifp is a stationary complete type of weight 1 and U(p) =
~ + w® - n where w* K v or v =0, then

— there is a set A on which p is based,
— an a realizing p|A, and
— ace€ac(AU{a}) withU(c/A) = w®.

A fortiori, p is nonorthogonal to a type of U—rank w®.

The proposition says, for instance, that when (in addition) U(p) is finite p
is nonorthogonal to a type of U —rank 1. Dependence on the set of realizations
of a U—rank 1 type is algebraic dependence which is particularly easy to
study. This reduction to types of U—rank 1 is often helpful when working
in the finite rank context. Before turning to the main body of the proof we
prove a general result allowing us to consider only the case vy = 0.

Lemma 6.3.4. IfU(c) =w* -ny +...+w* -ng where a; > ... > ay and
1 <1<k, thereis a ¢ € acl(c) such that U(c/c') = w* -ny + ... +w™ - my
and U(c') = w1 -mypq + ...+ w* - ng.

Proof. First consider the case | = 1 and simplify the notation by writing
U(c) =w* - n+ G, where 8 < w®.

By the connectivity of U—rank there is a d such that U(c/d) = w® - n.
Without loss of generality, d € Cb(c/d).

Claim. U(d) < w®.

Choosing {cp, - ..,cm} to be a Morley sequence in stp(c/d) on which this
strong type is based, d € acl(cy,...,cn). By repeated application of Corol-
lary 6.1.2, U(co -+ cmd) = U(co - m) Ra w* -n(m+ 1) mg U(co - - cm/d).
Since d € acl(cy,...,cm), U(d) is certainly < w®*!l. Thus, Corollary 6.1.2
says that U(d) =4 0; i.e., U(d) < w®.

Let ¢’ be an element of C = Cb(d/c) such that d is independent from c
over ¢’. Then ¢ € acl(c) and C C acl(c’). Since c is independent from d over
d,U(e/d) = Ul(e/dd) < U(c/d) = w* - n. As in the proof of the claim, ¢’
is algebraic in a Morley sequence in stp(d/c) and U(c') < w®. It is easy to
verify that 8’ < § = 6+ 6 = 6§ @ §'. Thus, the additivity of U—rank
implies U(c/c') + U(c') = U(ed') = Ule); ie., w* -n+U(c) = w*-n+ 6.
Since § < w* we conclude that U(c') = 3, as desired.

Applying the [ = 1 case repeatedly yields elements cy, ..., cx_; such that,
letting co = ¢, ciy1 € acl(c;), U(ci/ciy1) = w*+ - niyq and Ulciq1) =
w2 .m0 4+ ... 4+ w* - ng. The argument used at the end of the previous
paragraph shows that U(c/c¢;) = w®! -my +... +w® -n; whenever 1 < i < k.
Thus, the conditions of the lemma, are satisfied by taking ¢’ = ;.

Proof of Proposition 6.3.4. By Lemma 6.3.4 there is a set B on which p is
based, a realizing p|B and a’ € acl(A U {a}) with U(a’/A) = w* - n. Since
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wt(a’/A) = 1 it suffices to prove the proposition for stp(a’/A) instead of p,
so without loss of generality, U(p) = w® - n.

Choose a set A and element b such that for some a realizing p|A, a depends
on bover A, U(a/AU{b}) > w*-(n—1) and U(b/A) is minimal with respect to
these restrictions. Without losing this minimality assumption we can assume
that b € Cb(a/A U {b}) (since the canonical base is algebraic in A U {b}).
Without loss of generality, A = .

Claim. U(b) = w®.

We first show that U(b) = w®. Let ay, ..., ar be a Morley sequence in
stp(a/b) on which this strong type is based. Then U(a;/b) ~q w® - (n — 1)
for each i. If U(a;/ag) =q w* - n, then a; L ao. The data: a; realizes plao,
U(b/ag) < U(b) and U(a;/agb) ~q w*-(n—1) contradict the above minimality
assumption on U(b/A). From Corollary 6.1.2 and U(a;/ag) =q w® - (n — 1)
(for 1 <i < k) weget U(ag---arb) =U(ap- - ar) Rq w* -n+w*- (n—1)k.
Since Ulap - - - ak/b) mq w® - (n — 1)(k + 1), the relation U(b) ~, w® follows
from that same corollary.

Now suppose, towards a contradiction, that U(b) = w® + 8 for some
B > 0. By Lemma 6.3.4 there is an element ' € acl(b) with U(b/b') = w®
and U(b') = B. Since 8 < U(a), a L b'. The properties: a realizes p|V, a
depends on b over ¥, and U(a/A U {b,b'}) > w® - (n — 1), contradict the
minimality assumption on U(b/A), completing the proof of the claim.

Now we reverse the roles of a and b to find c. First notice that U(b/a) =, 0.
Choose c interalgebraic with Cb(b/a) and {by, ...,bn} a Morley sequence in
stp(b/a) in which c is algebraic. Since wt(a) = 1 and a depends on each b;,
b; L by for all ¢, hence U(b;/by) < w®. Since U(b;/c) =, 0 repeating the
argument in the previous paragraph shows that U(c) =, w®. Reasoning as
at the end of the proof of the claim yields a d € acl(c) such that a realizes
p|d, ¢ € acl(ad) and U(c/d) = w®. This proves the proposition.

In the exercises the reader is asked to show that we can take A to be
any a—model M on which p is based. It is interesting to note that we use
the weight 1 hypothesis only near the end where we prove that {bg,...,bn}
cannot be pairwise independent.

Corollary 6.3.8. Ifp is a nonalgebraic complete type of finite U—rank, then
p 1s nonorthogonal to a minimal type.

Historical Notes. Regular types were developed by Shelah in [She90, V].
Our treatment of their properties follows Makkai [Mak84] to some degree.
The results on U—rank in the subsection are by Lascar [Las84].

Exercise 6.3.1. Prove: For T a 1—sorted superstable theory, every regular
type in T°? is nonorthogonal to a regular 1—type in the sort of T.
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Exercise 6.3.2. Give an example of a regular type of Morley rank w (in
some t.t. theory).

Exercise 6.3.3. Prove Lemma 6.3.1(ii).
Exercise 6.3.4. Prove Corollary 6.3.1.
Exercise 6.3.5. Write out a direct proof of Corollary 6.3.3.

Exercise 6.3.6. For p a type in a superstable theory let ¢ be a stationary
type of least co—rank nonorthogonal to p. Show that ¢ is regular.

Exercise 6.3.7. Show that we can take A to be any a—model on which p is
based in Proposition 6.3.4.

6.4 Strongly Regular Types

The dimension theory for regular types and the class of a—models in a su-
perstable theory (see Proposition 6.3.3) does not generalize completely to the
class of all models. In this section we restrict to a t.t. theory and develop a
similar dimension theory for a subclass of regular types (the strongly regular
types) and the class of all models of the theory. While all of the results here
hold in an arbitrary t.t. theory we will simplify the notation by restricting to
countable theories; i.e., we assume throughout the section that every
theory is w—stable. The relevant types are the following:

Definition 6.4.1. Letp € S(A) be a stationary nonalgebraic type and ¢ € p.
The pair (p, ) is called strongly regular if for all sets B D A and q € S(B),
@ € q and gL p implies that ¢ = p|B. p is strongly regular if (p, ) is strongly
reqular for some i € q.

It is common to write SR instead of strongly regular. It is easy to see that
a SR type is regular. (Let ¢ € S(B) be a forking extension of p € S(A). Then
¢ € q and ¢ # p|B, hence ¢ L p.) If (p,p) is SR then (p,) is also SR for
any formula 1 € p which implies ¢. Thus, when p is SR there is a ¢ € p such
that (p, ) is SR, M R(y) = M R(p) and deg(yp) = 1. For p € S(A) stationary
and ¢ € p let Ap be a finite set such that p is based on Ag and ¢ is over Ag.
Then, (p,¢) is SR if and only if (p | Ao, ) is SR. Thus, when checking to
see if a pair is strongly regular we can always assume the type to be over a
finite set.

Compare the following equivalents with Corollary 6.3.3.

Lemma 6.4.1. For p € S(A) a stationary type and ¢ € p the following are
equivalent.

(1) (p,) is SR.
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(2) For any model M D A there is a model N D M realizing p|M such
that any a € o(N) \ M realizes p|M.

(3) There is a model M D A and a model N O M such that (x) p|M
is realized in N and any a € o(N) \ M realizes p| M.

Proof. (2) = (3) holds trivially.

(1) = (2). Let b realize p|M and N be the prime model over M U{b}. By
Corollary 3.3.4, any a € N\ M depends on b over M. Thus, a € o(N)\M =
tp(a/M)Lp|M = tp(a/M) = p|M (by the strong regularity of (p, p)).

Before turning to the remaining nontrivial implication, (3) = (1), we
prove

Claim. If (p, ) is not SR then for any a—model M D A there is ¢ € S(M)
containing ¢ such that ¢/ p and q # p|M.

Let r be a stationary type witnessing that (p, ) is not SR. Let Ay be a
finite subset of A containing the parameters in ¢ and on which p is based. We
can assume 7 to be over a finite set B D Ag. Let B’ C M realize tp(B/Ap) and
r’ be a conjugate of r over B’. Since p is based on Ag, the nonorthogonality of
r and p implies the nonorthogonality of ' and p (see Exercise 5.6.2). Again,
using that p is based on Ay, p|€ does not split over Ay, hence the specified
automorphism taking B to B’ over Ay maps p|B to p|B’. Thus, r’ is not p|B’.
Since ' contains ¢ it witnesses that (p, ¢) is not strongly regular.

(3) = (1) As we said above, we can assume A to be a finite set, which we
take to be @ (without loss of generality). Let My C Ny be models satisfying
(%) in (3) and @ € N a realization of p|My. We will use a theory in an
expanded language to show

Claim. There are a—models M and N satisfying ().

Let L be the language of the relevant theory T', P a new unary predicate
and L' = LU {P} U {a}. Let ¥ be the collection of formulas ¥ (z,y) over 0
such that = (a,b) = a L b. Let T" > T be the theory in L’ expressing
the following properties of a model M’ (the detailed formulation is left to the
reader):

— P(M') is an elementary submodel of M’ with respect to the language L;

— a realizes p [ § and a ¢ P(M');

— for all b€ p(M')\ P(M'), b realizes p | 0;

— for all b € p(M’) \ P(M') and for all formulas ¢ (z,y) € ¥, = —)(b,c) for
all ce P(M').

The model obtained by interpreting P by M on N gives a model of T, proving
its consistency. By a now standard elementary chain argument there is a
model M’ of T such that M’ and P(M’) are Ro—saturated (i.e., a—saturated)
as models of T. This proves the claim.

Assuming M and N to be a—models it suffices to show (by the first claim)
that p|M is the only type in S(M) which contains ¢ and is nonorthogonal
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to p. Suppose, to the contrary, that ¢ # p|M in S(M) contains ¢ and is
nonorthogonal to p. Let B C M be a finite set on which g is based such that
p|B L q|B. Since N is an a—model there is a b € N realizing g|B depending
on a over B. Since a L M, b is not in M. Since b satisfies ¢ the hypothesis
implies that b realizes p|M. This contradicts that b realizes q|B # p|B.

Lemma 6.4.2 (Existence). For any distinct models M C N there is an
a € N such that tp(a/M) is strongly regular. We may choose a to satisfy any
formula over M which is satisfied in N\ M. Moreover, if ¢ € S(M) is an SR
type nonorthogonal to tp(a/M) then q is realized in N.

Proof. Given a formula 6 over M satisfied in N \ M, let a € N \ M be such
that M R(a/M) is minimal in { MR(b/M) : b€ N\M and [ 6(b) }. Choose
¢ € p=tp(a/M) such that M R(¢) = M R(p) and deg(y) = 1. Without loss
of generality, ¢ implies §. The minimal rank condition guarantees that every
element of N \ M satisfying ¢ has the same Morley rank as p. Since ¢ has
degree 1 every such element realizes p|M. By Lemma 6.4.1, (p, ¢) is SR.
Turning to the moreover part of the lemma suppose that ¢ € S(M) is
strongly regular and nonorthogonal to p. Choose ¥ € ¢ such that (q,7) is a
strongly regular pair. Without loss of generality, N is prime over M U {a},
hence every type over M realized in N is nonorthogonal to p. Let b be an
element independent from a over M such that there is c realizing q|(M U{b})
with a and ¢ dependent over M U {b}. Let d be an element of M over which
tp(abc/M) is based. Then a depends on cb over d and we can assume ¥ to be
a formula over d. Let 6(z,y, a) be a formula in tp(cb/ad) with the properties:

(1) 3yb(z,y,a) implies 9, and
(2) E0(c,V,a) implies a J c'b'.
d

Since b is independent from a over M and tp(a/M) is definable over d there
is a b in M such that = 3z6(z,b',a). Let ¢ € N satisfy 6(z,b,a). Item
(1) and the dependence guaranteed by (2) force ¢’ to be in ¥(N) \ M. Thus,
tp(c’/M) is nonorthogonal to tp(a/M), hence nonorthogonal to g (since these
are regular types). Since (g, %) is SR tp(¢’/M) must be g as required.

Corollary 6.4.1. Every regular type is nonorthogonal to a strongly regular
type. In fact, a stationary type of least Morley rank nonorthogonal to a given
regular type is strongly regular.

Proof. See Exercise 6.4.2.

As with Lemma 6.4.1 the scheme throughout the section is to general-
ize properties about regular types and a—models in superstable theories to
strongly regular types and models in t.t. theories. The difficult part of this
extension is

Proposition 6.4.1. If a type p is nonorthogonal to a model M, then there
is a strongly regular type over M nonorthogonal to p.
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Proof. Again the idea is to use a theory in an expanded language to reduce
our attention to a—models, then use properties proved earlier for regular
types.

Without loss of generality p is a regular type over a |M|*—saturated
model N D M. Let a realize p and N’ be an a—prime model over N U {a}.
Let ¢ € S(N) be a nonalgebraic type realized in N’ such that MR(q [ M)
is minimal among all such. Require, furthermore, that M R(q) is minimal
in {MR(r) : r € S(N)and MR(r | M) = MR(q | M)}. It follows that
q is strongly regular. (Take @ € ¢ the conjunction of two formulas, one
which determines M R(q [ M) and another which determines M R(q). By
Corollary 6.4.2 there is a SR type over N containing 1 and realized in N’.
The minimal rank assumptions on ¢ guarantee that this SR type is ¢.) The
rest of the proof is needed to show that ¢ does not fork over M.

Fix a formula 9 € ¢ so that (g,v) is SR, M R(¢) = M R(q) and deg(y) =
1. Let d € N contain the parameters in 9 (in which case g is based on d). Since
p is nonorthogonal to M and p O q (these are nonorthogonal regular types) ¢
is nonorthogonal to M. Since N is |M|* —saturated there is a d’ € N realizing
tp(d/M) and independent from d over M. By Proposition 5.6.2 the type ¢’
over d’' conjugate to g|d over M is nonorthogonal to ¢, hence domination
equivalent. This yields (using Proposition 5.6.1):

— finite Morley sequences I C N in g|d and I’ C N’ in ¢/, and
— elements b realizing ¢ and b’ realizing ¢/|N in N’ such that b depends on
b over IUI' U{d,d'}.

Since JU{d} is M —independent from I’ U{d'} and conjugate over M we may
as well absorb these Morley sequences into the original domains and assume
that b and b’ are dependent over dd’'. Let e € M be an element on which
tp(dd’' /M) is based. Without loss of generality there is a formula ¥y € g =
q | e with Morley rank MR(q | M). Note: the original assumptions about ¢
imply that any element of N’ \ N satisfying 1o also satisfies go|M = ¢ | M.

To use previously proved facts about regular types we need to work within
the class of a—models.

Claim. There are a—models My, Np and N such that

(1) My C No C Ng;
(2) e € My, d, d' € Ny and b, b’ € NJ;
3 dl d

M

(4) b realizes q|No and ¥’ realizes ¢'| No;
(5) for any b* € N} \ Ny satisfying 1o, tp(b*/Mo) = go| Mp.

As in the proof of the second claim in Lemma 6.4.1 we proceed by express-
ing the desired properties with a first-order theory in an expanded language
with predicates P and @ representing the two models My and Np. In that
earlier proof we showed how to express, e.g., b realizes q|Q(/N*) (where N*
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is an arbitrary model of the expanded theory). Notice that the condition “d
and d' are P(N*)—independent” can be obtained by requiring dd’ to realize
stp(dd’/e)|P(N*). The reader is asked to fill in the details from these hints
in the exercises.

Now fix a—models My C Ny C N{ as in the claim. The elements b and
b’ witness the nonorthogonality of q|Np and ¢’'|Ng. These types are based
on d and d', respectively, and {d,d'} is independent over e. Since My is an
a—model and tp(d/Mp) is based on e, an element d” € My realizing tp(d’'/e)
also realizes stp(d’/ed). Thus, the conjugate ¢ of q|d over d” is a strongly
regular type nonorthogonal to ¢. Since ¢ and ¢’ are domination equivalent,
there is b € Ny realizing ¢"|Nj. Certainly, b” satisfies 1)p. We assumed that
q forks over M; i.e., has Morley rank < MR(3p). Thus, MR(b"/My) <
MR(b'/d"e) < MR(ip), contradicting the last condition listed in the claim.
This contradiction proves that q does not fork over M, and finally completes
the proof of the proposition.

Most matters involving orthogonality of types in superstable theories re-
duce to properties of regular types through:

for all distinct a—models M C N with wt(N/M) finite there is I,
an M —independent set of realizations of regular types over M such
that NV is a—prime over M U I.

The literal generalization of this result to models and SR types is:

for all distinct models M C N with wt(N/M) finite there is I, an
M —independent set of realizations of strongly regular types over M
such that NN is prime over M U I.

However, the result in the a—model context was proved by first showing N is
dominated by I over M, then noting that domination and a—atomicity (with
respect to a finite set) are equivalent over a—models. The next lemma states
the only general connection between domination and ordinary atomicity, so
we must be content with the subsequent proposition.

Lemma 6.4.3. If A is atomic over BU M, where M is a model, then AU B
is dominated by B over M.

Proof. This is a mild generalization of Lemma 3.4.7. Without loss of gen-
erality, A = a and B = b are finite. Suppose, to the contrary, there is a ¢
independent from b over M which depends on ab over M; i.e., ¢ depends on
a over M U {b}. Let d € M be an element over which tp(abc/M) is based.
Let ¥(z,y) be a formula in tp(ac/bd) such that

— Jyy(z,y) isolates tp(a/M U {b}) and
— whenever a’ realizes tp(a/bd) and = ¥(a’,c’), @’ and ¢’ are dependent over
bd.
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Since b and c are M —independent and ¢p(b/M) is based on d thereisa c’ € M
such that 3zi(z,c’). Let o satisfy i (x,c’). Then o’ realizes tp(a/M U {b}),
hence, tp(a’/M U {b}) does not fork over bd, contradicting the dependence of
a’ and ¢’ over bd.

Proposition 6.4.2. For models M C N, M # N, there is I, an M —indepen-
dent set of realizations of strongly regular types over M such that N is dom-
inated by M U T over M.

Proof. Let I be a maximal M —independent subset of N consisting of realiza-
tions of SR types over M. Let M’ C N be a maximal set dominated by I over
M. Note that M’ is a model. (The prime model M” C N over M’ is domi-
nated by M’ over M by Lemma 6.4.3. By the transitivity of domination, M"
is dominated by I over M, hence M"” = M’.) Supposing, towards a contradic-
tion, that M’ # N let a € N realize a strongly regular type over M’. Assum-
ing first that tp(a/M’) is orthogonal to M, M’ U{a} is dominated by M’ over
M, contradicting the maximality of M’. Thus, tp(a/M’) is nonorthogonal to
M. By Proposition 6.4.1 there is a strongly regular p € S(M) nonorthogonal
to tp(a/M’). By Corollary 6.4.2 there is a b € N realizing p|M’. This element
b contradicts the maximality of I, completing the proof.

Throughout Section 5.6 we studied orthogonality and domination relative
to the class of a—models. Using the proven facts about SR types we can
extend some of these results to the class of all models of a t.t. theory. As a
first installment:

Lemma 6.4.4. If M is a model and p, g € S(M) are nonorthogonal types,
then p jL q.

Proof. Let a realize p and N be a prime model over M U {a}. By Proposi-
tion 6.4.2 there is an M —independent sequence (bo,...,b,) = b in N such
that p; = tp(b;/M) is SR and N is dominated by b over M. Let c be a re-
alization of ¢, N’ a prime model over M U {c} and (dy,...,dmn) = d € N’
an M—independent sequence dominating N’ over M with ¢; = tp(d;/M)
strongly regular. Since p and g are nonorthogonal some p; must be nonorthog-
onal to some gj, say poL go. By Corollary 6.4.2 qq is realized by some dj in N.
Replacing N’ by some conjugate over M we can assume that dg € N. Since
N is dominated by a over M and N’ is dominated by c over M, a and c are
dependent over M. We conclude that p L q as desired.

The domination relation on types was motivated by the question:

For M an a—model, when does realizing p € S(M) in some a—model
N C M force g € S(M) to be realized in N.

In this generalization from a—models to models the natural definition is:
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Definition 6.4.2. For M a model and p, ¢ € S(M) we write p <grk q if p
is realized in any model N D M which realizes q. If p <pk q and ¢ <pk p
we write p Ogrk q and says that p and q are RK-equivalent.

The relation <gpy abbreviates the term Rudin-Keisler ordering which is
an ordering on ultraproducts. (We will not go into the rationale behind this
definition here. See [Las86).) Parsing the definition, in a t.t. theory

p<priK @ <= p is realized in the prime model over M U {b},
‘ where b realizes ¢
<=  there are a realizing p and b realizing q
with tp(a/M U {b}) isolated.

While we did not include the model M in the notation, <gg is only defined
on S(M) for a fixed model M. For instance, <pg is not invariant under
parallelism. (When p, ¢ € S(M) and N D M it is possible that p is not
<grk q while p|N <gpg q|N.) The reason < is better behaved than <gpg is
because domination is equivalent to a—isolation over an a—model, but not
equivalent to isolation (in general).

Certainly, p <grx q implies pL q. In fact

Remark 6.4.1. Given a model M and p, ¢ € S(M), p <rk ¢ implies p < q.
(See Exercise 6.4.5.)

For example, <grk is not a parallelism invariant; the relation is firmly
attached to the model M. An exception is found when dealing with SR types.

Lemma 6.4.5. Let M be a model.
(i) If p € S(M) is an SR type nonorthogonal to q € S(M), then p <grxk q.
(ii) Nonorthogonal SR types are RK-equivalent.
(ii3) An element of S(M) is minimal in the <gg order if and only if it
is RK-equivalent to a strongly regular type.

Proof. To prove the first part of the lemma choose b realizing ¢ and N a
prime model over M U {b}. The nonorthogonality of p and g forces p to be
nonorthogonal to some regular type r nonorthogonal to q. In fact, we can take
T to be an SR type over M realized in N. By Corollary 6.4.2, p is realized in
N.

(ii) This follows immediately from (i).

Part (iii) of the lemma follows quickly from

Claim. An SR type p € S(M) is <grg —minimal.

Let a realize p (an arbitrary SR type) and N be prime over M U {a}. Let
r € S(M) be a <pkx —minimal type realized in N. Then, r is nonorthogonal
to p, hence p <ggk r (by the first part of the lemma). By the minimality of
T, p is RK —equivalent to 7, so p is also <px —minimal.
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This leads to an interesting minimality condition, whose proof is left to
Exercise 6.4.4:

Remark 6.4.2. Suppose that M is a model, tp(a/M) is SR and N is prime
over M U {a}. Then any model N’ # M, M C N’ C N, is isomorphic to N
over M.

As the following example shows RK —equivalence and domination equiv-
alence can differ even in rather simple w—stable theories.

Ezample 6.4.1. The language consists of a binary relation symbol E and
a unary function symbol S. The axioms for the theory say that E is an
equivalence relation with infinitely many infinite classes and no finite classes,
S defines a bijection on the universe with no cycles and YvE(v, s(v)). This
theory is complete, quantifier-eliminable and w—stable. Let M be any model,
a an element not F—equivalent to any element of M and b such that for all
n, b # S™(a) and a # S™(b). Let p = tp(a/M) and q = tp(ab/M). It is easy
to see that p OJ q and p and ¢ are not RK —equivalent.

Turning our attention to the dimensions of SR types in models, the fol-
lowing are proved like the corresponding results about regular types and
a—models. The details are left to the reader.

Proposition 6.4.3 (Additivity of Dimension). Let M C N be models,
A C M a finite set and p € S(A) a strongly regular type. Then,

dim(p, N) = dim(p, M) + dim(p|M, N).

(The property of SR types which corresponds to Lemma 5.4.2 is Lemma 5.1.9.
When (p, ) is SR (as in the statement of the proposition) and I is a basis
for p in M the strong regularity of the pair implies that tp(@(M)/AUI) L p.
The proposition is proved by inserting these changes in the earlier proof.)

Corollary 6.4.2. Let M be a model, A C M finite, p € S(A) a strongly
reqular type and I a basis for p in M. Given J a Morley sequence in p
depending on M over A, J depends on I over A.

Combining these results, the proof of Proposition 6.3.3 and the fact that
nonorthogonal SR types are RK —equivalent yields

Proposition 6.4.4. Letp € S(A) be a strongly regular type where A is finite.

(i) If M D> A is prime over a finite set, p has dimension < Ry in M.
Furthermore, if I is an infinite Morley sequence in p and M is prime over
AUI, I is a basis for p in M.

(i1) For any model M D A, if B C M is finite and g € S(B) is a SR type
nonorthogonal to p, then dim(p, M) + Rg = dim(q, M) + Rg.

(i1) For any k > |T| there is a model M D A of cardinality xk such that
dim(p, M) = k and for any strongly regqular type q over a finite subset of M,
gL p = dim(q, M) < No.
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(iv) Let My be a model of cardinality A and X a set of strongly regular
types over My. Then, there is a model M of cardinality A containing Mo such
that dim(q, M) = 0, for all ¢ € X, and dim(r, M) = X for all strongly regular
types r over a finite subset of M such that r L q for all ¢ € X.

(The first part of (i) is obvious since the prime model over a finite set in an
w—stable theory is countable. The result is, however, true more generally in
any t.t. theory.)

We close with another lemma which expresses the intuition that the SR
types in an w—stable theory forms a basis for all of the complete types. The
proof is assigned as Exercise 6.4.7.

Lemma 6.4.6. Let T be w—stable and M a countable model of T. Suppose
that for any SR type p over a finite subset of M, dim(p, M) is infinite. Prove
that M is saturated.

Historical Notes. Strongly regular types were defined by Shelah in Defini-
tion 3.6 of [She90, V], although he does not require the type to be stationary.
Lemma 6.4.1 is found in Theorem 3.18 of that chapter, as is Corollary 6.4.2.
The results 6.4.1 through 6.4.5 are by Lascar [Las82], as is the Rudin-Keisler
order. Proposition 6.4.3 is stated by Bouscaren and Lascar explicitly in [BL83,
4.2]. Analogues of Proposition 6.4.4 can be found in [Mak84], where Makkai
attributes them to handwritten notes by Shelah on his proof of Vaught’s
conjecture for w—stable theories.

Exercise 6.4.1. Prove that a stationary type of least Morley rank which is
nonorthogonal to a given type p is strongly regular.

Exercise 6.4.2. Prove Corollary 6.4.1.
Exercise 6.4.3. Prove the claim in the proof of Proposition 6.4.1.

Exercise 6.4.4. Prove: Suppose that M is a model, tp(a/M) is SR and N is
prime over M U {a}. Then any model N’ # M, M C N’ C N, is isomorphic
to N over M.

Exercise 6.4.5. Prove Remark 6.4.1.

Exercise 6.4.6. Suppose that p = tp(a/M) and N is a prime model over
M U {a}. Let C = {cg,...,cn} C N be a maximal M —independent set of
realizations of SR types over M and let g; = tp(c;/M), for i < n. Show that
P8 q®...® qn. (Hence, the g;’s are a regular decomposition of p.)

Exercise 6.4.7. Prove Lemma 6.4.6.





