
3. Uncountably Categorical and No—stable
Theories

In this chapter we will study the results which laid the foundation for stabil-
ity theory, namely Morley's Categoricity Theorem and the Baldwin-Lachlan
Theorem. Some of the concepts arising in their proofs will be redeveloped
later for stable theories. We feel, however, that these proofs present an excel-
lent introduction to the key concepts encountered later, and are historically
important enough to warrant individual treatment.

In Section 1 a proof of Morley's Categoricity Theorem is given. In the third
section of the chapter totally transcendental theories, which arose in Morley's
original proof of Morley's Categoricity Theorem, will be studied more deeply.
Again, ideas will be introduced which are seen throughout stability theory.
In the fourth section these new concepts are applied to prove the Baldwin-
Lachlan Theorem. Groups definable in totally transcendental theories are
studied in the fifth section.

3.1 Morley's Categoricity Theorem

Throughout this section an arbitrary theory is assumed to be countable and
have infinite models. For emphasis this assumption may be repeated within
the statements of theorems. Recall that a theory T is said to be categorical in
K (or K—categorical), where K is an infinite cardinal, if T has a unique model
of cardinality κ;, up to isomorphism. A theory is called uncountably categorical
if it is categorical in every uncountable cardinality. In the previous chapter
theories were exhibited which are:

- categorical in every infinite cardinal;
- categorical in No but not in any uncountable cardinal;
- categorical in every uncountable cardinal, but not in No;
- not categorical in any infinite cardinal.

It was conjectured by Los that every countable complete theory satisfies one
of these four possibilities. Morley proved this conjecture with

Theorem 3.1.1 (Morley's Categoricity Theorem). If a countable com-
plete theory T is categorical in some uncountable cardinality then it is cate-
gorical in every uncountable cardinality.
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This section is devoted to a proof of this theorem. Some examples of theories
categorical in some uncountable cardinality are:

1. the theory in the empty language with only infinite models;
2. infinite Abelian groups in which all elements have order p, for p some

prime;
3. divisible torsion-free Abelian groups;
4. algebraically closed fields of a fixed characteristic;
5. the theory of a model (A, σ), where A is an infinite set and σ is a per-

mutation of A with no finite cycles;
6. the theory of the model (ω, S), where S is the successor function.

The uncountable categoricity of the theories in 2, 3 and 4 above follow
from well-known classical results. For instance, it is known that any divisi-
ble torsion-free Abelian group is a direct sum of copies of (<Q>, +). Thus, the
isomorphism type of a divisible torsion-free Abelian group G is determined
by the number of copies of the rationale used in such a decomposition. If
G has cardinality K, > No, then n copies of the rationale must appear in
a decomposition. Hence, any two uncountable divisible torsion-free Abelian
groups are isomorphic. Steinitz's Theorem says that the isomorphism type of
an algebraically closed field is determined by its characteristic and transcen-
dence degree. For uncountable algebraically closed fields the transcendence
degree is the same as the cardinality, hence the theory in 4 is uncountably
categorical. The uncountable categoricity of the theories in 1, 5 and 6 follow
quickly from quantifier-elimination. Close examination shows that in each of
the examples above the isomorphism type of a model is determined by some
cardinal invariant. Furthermore, this invariant is the dimension of some sub-
set of the model with respect to a dependence relation. We will see, in fact,
that whenever a theory is categorical in an uncountable cardinal the models
are determined by the dimension on a definable subset of the model with
respect to a particular dependence relation.

Remark 3.1.1. The assumption that T is complete in Morley's Categoricity
Theorem was only made to avoid distracting the reader from the main issues.
A classical result known as the Los-Vaught Test implies that a first-order
theory categorical in some K > \T\ is complete. See Remark 2.3.1.

Definition 3.1.1. Let λ be an infinite cardinal and T a complete theory (of
any cardinality) with an infinite model. T is said to be λ—stable if for all
M \= T and A C M of cardinality < λ, \Sι(A)\ < λ. The term ω-stable
may be used in place ofNo—stable. A model M is called X—stable ifTh(M)
is λ—stable.

A straight-forward induction on n shows that if T is λ-stable, A is a
subset of a model of T and \A\ < λ, then |5n(A)| < λ. Observe that an
No -stable theory must be countable and small. While the definition of a
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λ—stable theory could easily be rewritten for possibly incomplete theories,
the benefits of the added generality are negligible.

Lemma 3.1.1. If the countable theory T is categorical in some uncountable
cardinal, then T is Ho —stable.

Proof. Here is where Skolem functions come into play. Let T be categorical
in λ > Hi. By Lemma 2.5.2, T has a model M of cardinality λ such that for
any countable A C M, M realizes only countably many complete types over
A. Assuming that T is not Ho—stable there is a model λί of T containing
a countable set B such that 15(5)1 > Ko. Without loss of generality, λί is
countable. By a simple compactness argument λί has an elementary extension
λίr of cardinality λ realizing uncountably many complete types over B. Since
T is λ—categorical λί' must be isomorphic to λΛ. This contradiction proves
the lemma.

As stated above, on a model of an uncountably categorical theory there is
a dependence relation and a corresponding notion of dimension, which gives
rise to an isomorphism invariant. It is the HQ—stability of the uncountably
categorical theory which gives rise to this dependence relation. These depen-
dence relations are developed in the next few pages.

Definition 3.1.2. Let M be a model and φ a nonalgebraic formula (in n
variables) over M. We call ψ strongly minimal if for every λί y M and
every formula φ (in n variables) over iV, φ(λί) Π ψ(λί) or φ(λί) Π ->ψ(λί) is
finite. We call a complete theory T strongly minimal if the formula x — x is
strongly minimal.

Slightly rewording the definition in terms of definable sets, φ is strongly
minimal if for all λί >~ M every subset of φ(λί) definable in λί (over N) is
finite or cofinite.

Remark 3.1.2. Let a be a sequence from a model Λ4, φ(v, α) a formula over
α, and let b be a sequence from a model λί such that tpM(a) = tPλί(b)- Then
φ(v, a) is strongly minimal if and only if φ(v, b) is strongly minimal. (The
proof of this is left to the reader in Exercise 3.1.12.)

Example 3.1.1. (Strongly minimal theories)
(i) (The theory of infinite sets in the empty language) For L the empty

language, the theory in L saying that there are infinitely many elements is
quantifier-eliminable. Let M be an arbitrary model of T. A formula in the
single variable v over M is equivalent to a boolean combination of formulas
v = ai, for some ao,.. .,an £ M. Thus, any subset of M definable over M is
finite or cofinite. That is, T is strongly minimal.

(ii) (The theory of vector spaces over a field F) For a field F the theory
T of infinite vector spaces over F is quantifier-eliminable (in the natural
language). Let λΛ be an arbitrary model of T. A subset of M defined by a
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linear equation over F with coefficients from M consists of a single element or
is all of M. Since any subset of M definable over M is a boolean combination
of sets defined by linear equations, the formula x — x is strongly minimal.

(iii) (The theory of algebraically closed fields of a fixed characteristic) In
this case the theory T is also quantifier-eliminable. Given a model ΛΊ of T, a
subset of M definable by some equation over M is either finite or the entire
field. As in the previous example, it follows that T is strongly minimal.

The properties of strongly minimal formulas are best described using the
algebraic closure relation.

Definition 3.1.3. Let A be a subset of a model Ai. A finite tuple a from M
is said to be algebraic over A if tpM (p/A) is algebraic. The algebraic closure
of A (in M), denoted acl(A), is { α G M : a is algebraic over A}. Sequences
a and b are interalgebraic over Aifάe acl(A U {&}) and b G acl(A U {a}).

Remark 3.1.3. Let A be a subset of a model M.
(i) Notice that the model plays no active role in the definition of acl(A);

if λί >- M. then a G N is algebraic over A only when a G M and tpM (a/ A)
is algebraic. See Exercise 3.1.4.

(ii) In the exercises the reader is asked to verify that |αcZ(A)| < \A\ + |T|,
where T is the theory of Λ4.

Algebraic closure is most naturally studied in the context of closure op-
erators.

Definition 3.1.4. Let S be some set and cί a unary operator on the set of
subsets of S.

(i) cί is a closure operator if for all X,Y C S:

(a) X C cί(X),
(b) c£2(X) = c£(X), and
( c ) l c y ^ cί{X) C cί{Y).

A closure operator cί is called finitary (or of finite character,) if c£(X) =
\J{c£(Y) : Y C X and Y is finite}. (Standard terminology uses "algebraic"
where we use "finitary", but we feel this leaves too much room for confusion
with other uses of the word algebraic.) A subset X of S is called closed if
X = c£(X).

(ii) If cί is a finitary closure operator on 5, then S = (S,c£) is a prege-
ometry if it satisfies the exchange property: for all α, b G 5 and A C 5, if
a G cί(A U {b}) \ cί(A) then b G c£(A U {a}). A pregeometry is a geometry if
c£(0) = 0 and for all singletons a G 5, c£({a}) = {a}.

(iii) Let S = (5, cί) be a pregeometry and A, B C S. We say that A is
c^-independent over B if for all a G A, a £ cί(B U (A \ {a})). For X C S
we call A a basis of X over B if A is a maximal subset of cί{X U B) which
is cί—independent over B. A standard argument using the exchange property
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and the transitivity of closure shows that all bases of X over B have the same
cardinality, which is called the dimension of X over B and denoted άim(X/ B).

(iv) Let S = (S,c£) be a pregeometry, X, Y and Z c Y subsets of S. We
say X is dim —independent from Y over Z or simply independent from Y
over Z if for all finite Xo C X, άim(X0/Y) = dim(X0/Z).

Remark 3.1.4- Let 5 be a pregeometry.

(i) Notice that dimension on S is additive:

For all A, B c S, ά\m{A U B) = άim{A/B) + dim(B).

(See Exercise 3.1.8.)
(ii) When 5 ^ 0 , cί—independent is different from dim—independent.

(Given a nonempty X C S, X is dim —independent from X over X, but X
is not cί—independent from X over X.)
Lemma 3.1.2. Algebraic closure forms a finitary closure operator on the
universe of a model.

Proof Left to the reader in Exercise 3.1.7.

Elimination of quantifiers can be used to verify that algebraic closure on
an algebraically closed field or a vector space is a pregeometry. Actually, this
is typical of sets defined by strongly minimal formulas:

Lemma 3.1.3. Let Λ4 be a model of a theory of cardinality K, φ a strongly
minimal formula over A C M and D = φ{ΛΛ). Let B be a subset of M
containing A and let c£ be the restriction to D of algebraic closure over B.
(That is, forXcDandaeD.aG c£(X) if a G acl(X U B) Π D.).

(i) There is a unique nonalgebraic p G S(B) containing φ.
(ii) (D, c£) is a pregeometry.
(Hi) If {αo,..., an}, {&o, , bn} C D are c£—independent over B, then

tpM(θQ, , On/B) = tpM(b0, . . . , bn/B).

Thus, any subset of D which is c£—independent over B is an indiscernible
set over B. Furthermore, if /, J C D are infinite and c£—independent over
B, then D(I) = D(J).

Proof (i) For ψ an arbitrary formula over B only one of φ A φ and φ Λ
-ιψ is nonalgebraic (by the strong minimality of φ). Thus, φ has a unique
nonalgebraic completion over B.

(ii) By Lemma 3.1.2 it only remains to verify that cί satisfies the exchange
property. (To simplify the notation we assume ψ to be a formula in one
variable; i.e., D C M instead of M n , for some n. The proof is almost identical
in general.) First we prove:

Claim. Suppose that, for i = 0,1, α̂ , bi e D, aι £ acl(B) and bι £ acl(B U
{α<}). Then tpM(aobo/B) = tpM{aιb1/B).
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By (i), tpM(a>o/B) = tpM(a>i/B) Since the types of elements do not
change when passing between a model and an elementary extension, we are
free to replace Λ4 by an elementary extension. By Lemma 2.2.9 there is a
model λί >- Λ4 having an automorphism / such that / is the identity on
B and /(αo) = a\. Then f(b0) is an element of φ(λί) which is not in the
algebraic closure of Bu{aι}. Again by (i), tpjs/(f(bo)/Bu{aι}) = tpj^(bι/BU
{αi}). Since /(αo) = a± and automorphisms preserve types, tpj^(aobo/B) =
tpjsr(f(ao)f{bo)/B) = tpjϊitufiboyB) = tp^h/B).

Now suppose the assertion in (ii) to fail; i.e., for some C C D and α, b G
D, a E c£(C U {&}) \ c£(C) and b £ c£(C U {a}). Let B' = B U C. Let
λί be an elementary extension of λΛ in which D' = φ{λί) has cardinality
> (\Bf\ + «)+ = λ. Choose Y, D CY C Df oί cardinality λ and let X =
acl(B' UY)Π D', which has cardinality λ + K = λ (by Exercise 3.1.5). Since
ID'I > λ there is a d € Df \X. By (i), d and b realize the same complete type
over B' U {a} in ΛΛ In fact, by the claim, if c is any element of X \ acl(Bf),
tpjs/(dc/Bf) = tpu(ba/Bf). Thus, X C acl(Bf U {d}). This contradicts that
|X| = λ > \B'\ + K = \Bf U {d}\ + κ= \acl(B' U {d})|, to prove (ii).

(iii) This follows directly from the proof of the above claim and an induc-
tion on n.

Remark 3.1.5. Let M be a model of the theory of algebraically closed fields
of a fixed characteristic. A subset of M is αc/—independent if and only if it is
algebraically independent. Other notions, like basis and dimension also agree
with their standard algebraic interpretations.

If M is a model of the theory of vector spaces over a field F, then I C M
is acl—independent if and only if / is linearly independent.

Corollary 3.1.1. If T is a countable strongly minimal theory, then T is
categorical in every uncountable cardinal.

Proof. Let M and λί be models of T of cardinality K > Ho Let / and J
be bases for the closed sets M and N, respectively. Thus, M = acl(I) and
N = acl(J). Since \acl(I)\ < \I\ + No and K, is uncountable, |/| and \J\
must both be K. Since / and J are indiscernible sets and D(I) = D(J) (by
Lemma 3.1.3(iii)) any bijection / from / onto J is an elementary map. An
elementary map between two sets can be extended to an elementary map
between their algebraic closures (see Exercise 3.1.10). Thus, / extends to an
isomorphism of Λ4 onto ΛΛ

Strongly minimal formulas enter the proof of Morley's Categoricity The-
orem through

Lemma 3.1.4. Let T be an Ho—stable theory and let AA be a countable sat-
urated model ofT. Then there is a strongly minimal formula over M.

Proof. Since T is Ko-stable \S(A)\ is countable for any countable subset A
of a model of T. Hence, T does have a countable saturated model M and,
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for each n, every element of Sn{M) has Cantor-Bendixson rank. First notice
that any isolated p € S(M) is algebraic. (Let φ{v) € p isolate p. There is an
α from M satisfying φ\ i.e., {φ(ϋ),v = a} is consistent. Since φ isolates p,
v = a must be in p.) Let p be a type in SΊ (M) of least Cantor-Bendixson rank
among the nonisolated complete 1—types, and let ψ G p isolate p relative to
the nonisolated types. Hence,

p is the unique nonalgebraic element of Sι(M) containing φ. (3.1)

Claim, φ is strongly minimal.

For φ any formula over M (in one variable) one of φ Λ φ or φ Λ ^φ
is algebraic (by (3.1)). To prove that ψ is strongly minimal, however, this
condition must be true when ψ is a formula over an arbitrary elementary
extension of M. Let λί >- M and let φ be a formula over N in one variable.
Let a be the parameters in φ and φ — φ(x,b), where ψ(x,y) is over 0.
Suppose, towards a contradiction, that ψf\φ and φΛ->ψ are both nonalgebraic.
Then for each n, λί is a model of the sentences saying that there are > n
elements satisfying φ l\φ and there are > n elements satisfying φΛ-iψ. Since
M is saturated there is a c in M such that tpM(c/ά) = tp^r(jb/a), hence
Λί |= 3- n x(^(x, α) Λ φ(x, c)) and Λ1 |= 3-nx(φ(x, ά) Λ -«^(αr, c)), for each n.
Thus, both φ(x, a) A ψ(x, c) and φ(x, a) Λ -i^(x, c) are nonalgebraic. Since c
is from M this contradicts (3.1) to prove the lemma.

Examining the proof of the lemma yields:

Corollary 3.1.2. Let T be Ϊ<Q—stable and φ(v) any nonalgebraic formula
over a countable saturated model Λ4. Then, over M, there is a strongly min-
imal formula φ which implies φ.

Another property of No—stable theories used critically below is the exis-
tence of prime models, even over uncountable sets.

Lemma 3.1.5. Let T be ^—stable, M a model of T and A C M. Then
there is a model λί which is prime over A and atomic over A.

Proof. The bulk of the work is contained in

Claim. For every B C M the isolated types are dense in S{B).

(By our conventions for dealing with parameters, "the isolated types are
dense in S(B)n simply means that the isolated types are dense in Th{Mβ)')
The proof of this claim is quite similar to the proof of Lemma 2.1.1, where
it was shown that the isolated types are dense in a small countable complete
theory. Here, B is potentially uncountable. However, we will show that if the
isolated types are not dense in S(B) there is a countable Bf C B with S(Bf)
uncountable, contradicting the No—stability of T.

Suppose to the contrary that there is a formula φ over B not contained
in an isolated element of S(B). Let X be the set of finite sequences of O's and
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l's and Y the set of sequences of length ω from {0,1}. Define by recursion a
family of formulas φa, for s € X, with the properties: (a) φ% = φ, (b) φs is
not contained in an isolated complete type over B, (c) if t is an initial segment
of s then M. |= Vv(φs —• φt) and (d) if t is not an initial segment of s and
s is not an initial segment of t, then φs Λ ψt is inconsistent with Th{λΛβ)'
(This is possible since given φs there is a ^ such that φs/\ψ and <ps Λ - ^ a r e

consistent, neither of which can be contained in an isolated complete type
over B.) For / € Y let pf = { φs : 5 is an initial segment of / }. Then each
Pf is consistent and for distinct / and g in Y, pf Upg is inconsistent. Since
there are countably many φ8 's there is a countable set B' C B such that each
Pf is over B'. Consistent completions of the p/'s form 2**° many elements of
S(B'), contradicting the Ko—stability of the theory to prove the claim.

A prime model over A is constructed as follows. Let λ = \A\ + No- Define
by recursion a set { cα : α < λ } C M such that, letting Cα = { Cβ : β < α },

— for α < λ, tpM(cα/A U Cα) is isolated;
- if φ{x) is a consistent formula over A U Cα, then <p G tpM(cβ/A U C^) for

some β > α.

In detail, the construction proceeds as follows. Without loss of generality, M
has cardinality λ. Let ψα, α < λ, be a list of all consistent formulas in one
variable over M. Assume cp to be defined for each β < α, and let Γ = { 7 <
λ : i/>7 is over AuCα and is not satisfied by some element of Cα }• If Γ Φ 0
let <p be t/;7 for 7 the least element of Γ\ if Γ = 0, let <p be υ = υ. Since the
isolated types are dense in S±(A U Cα) there is some element d in M such
that M \= φ(d) and tp^djA U Cα) is isolated. Let cα = d. This completes
the definition of the set C\. It follows quickly from the Tarski-Vaught Test
that C\ is the universe of an elementary submodel λί of M..

It is easy to see that λί is an atomic model over A. Let M' be an arbitrary
model containing A such that Mf

A = MA- TO show that λί is a prime model
over A we need to prove

Claim. There are elements da in Mr, for a < λ, such that the map / which
is the identity on A and takes ca to da is an elementary.

Assume that dβ has been defined, for β < α, so that the mapping g which
fixes A pointwise and takes Cβ to dβ, for /3 < α, is elementary. Let φ(x, c) be a
formula which isolates tpM(ca/AuCa) Let d = g(c) and choose dα to be any
element of M' which satisfies φ(x,d). Since </?(£, c) isolates a complete type
over i4uC α , φ(x,d) isolates a complete type over AUDa, and the extension
of g which takes ca to da is elementary. This proves the claim.

Clearly, N' = {da : a < λ } is the universe of a model λf' < M' and / is
an isomorphism of λί onto λί' fixing A This proves that λί is a prime model
over A.

Remark 3.1.6. As with countable theories, it follows quickly from the previ-
ous lemma that any prime model over a set in an NQ—stable theory is atomic.
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It is also the case that there is a unique (up to isomorphism) prime model over
a set in an No—stable theory. Unlike the corresponding result for countable
theories, however, this is rather difficult to prove (see Corollary 5.5.1).

Most readers of this book will have heard the term "prime field". The no-
tion of a prime element of a class of structures is found throughout mathemat-
ics, especially algebra. Likewise in model theory we will occasionally speak of
the prime model relative to a nonelementary class of models. Next we develop
the notion of a prime model over a set, relative to the No—saturated models.

Notation. If p is a type over a set A and B C A we let p \ B denote
{ φ € p : φ is over B }, called the restriction of p to B.

Definition 3.1.5. Let M be a model and A C M.

(i) We say that p e Sn(A) is No—isolated over B if B C A is finite and
p is the only extension of p \ B in Sn(A), in which case we say thatp \ B
NQ—isolates p. p is NQ—isolated if it is NQ—isolated over some finite subset of
A.

(ii) A set B C M is said to be No—atomic over A if for each finite sequence
a from £ , tpM(a/A) is No—isolated.

(Hi) λΛ is No—prime over A if

- M is No—saturated, and
— for any No—saturated model λί containing A with λJΆ = ΆΊ A> there is an

elementary embedding of λΛ into λί which is the identity on A.

In a sense, the definition of an No—prime model over a set can be obtained
from the definition of a prime model over a set by uniformly replacing formu-
las by complete types over finite sets. Continuing the parallel development:

Lemma 3.1.6. Let T be ^-stable, M a model of T and A C M. Then
there is a model λί which is No—prime over A and No — atomic over A.

Proof Only an outline of the proof is given, leaving the details (which are
very similar to those found in Lemma 3.1.5) to the reader. The first claim in
that previous proof is replaced by the following.

Claim. Let B be a subset of M and q a complete 1—type over a finite subset
of B. Then there is p G S\(B) which extends q and is No—isolated.

In the verification that the constructed model λί is No—prime we use the
fact that if M' is No-saturated, B C M' and p e S(B) is No-isolated, then
p is realized in λί. (p is NQ—isolated by a complete type q over a finite set,
which is realized by some a e N. Then tp^f(a/B) = p.)

We now turn towards properties more specific to theories categorical in

some uncountable cardinal.
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Definition 3.1.6. Let λΛ andλί be models andT a countable complete the-
ory.

(i) We say that (ΛΊ,Λ/", φ) is a Vaughtian triple if λί is a proper elemen-
tary submodel of Λ4, φ is a nonalgebraic formula in one free variable over N
and φ{M) = φ(Λf).

(ii) The pair (M,λf) is called a Vaughtian pair if for some φ, (M,λί, φ)
is a Vaughtian triple.

(in) T is said to admit a Vaughtian pair (or triple,) if there is a Vaughtian
triple (Λ4,λf,φ), where Λ4 and λί are models of T, in which case we call

ί, φ) a Vaughtian triple for T.

Proposition 3.1.1. Let T be categorical in some uncountable power. Then
there is no Vaughtian pair consisting of models of T.

Remark 3.1.7. This proposition, which is proved in the next few lemmas,
comprises a major portion of the work in the proof of Morley's Categoricity
Theorem. Let K, be an uncountable cardinal in which T is categorical. To
prove the proposition we assume, to the contrary, that T has a Vaughtian
pair. We then prove (making heavy use of the Ho—stability of T) that there is a
Vaughtian pair (Λ4,λί) with \M\ = K and |JV| = Ho Thus some N—definable
subset of M is countable. However a relatively straightforward elementary
chain argument shows that T (in fact any countable theory) has a model M'
of cardinality K, such that every M'—definable relation in M! is uncountable.
This contradiction proves the proposition.

Lemma 3.1.7. IfT is a small theory and admits a Vaughtian pair, then T
admits a Vaughtian pair (Λd,λί) where λί and M. are countable saturated
models.

Proof. Let (λdo,λfo,φ) be a Vaughtian triple for T. Let L be the language
of T, let a be the parameters in φ and L(a) the expansion of L obtained by
adding constants for the elements of a. The proof centers on finding a theory
(in a larger language) expressing that a triple is a Vaughtian triple for T.
Specifically, we show

Claim. There is a theory V D Th(NΌ,a) in a language containing L(ά) and
a new unary relation P such that whenever Mf |= Γ7,

(a) P{M') is the universe of an elementary submodel λί of M' \ L =
M,

(b) a is from AT, and
(c) (M,λf,φ) is a Vaughtian triple.

Let P be a new unary relation symbol and U = L(ά) U {P}. Let T' be
the set of sentences in V expressing the following:

-T'Ώ Γ;
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- for ψ(υo, , vn) a formula of L,

Vυo ... vn-i( /\ P(υi) Λ 3v^(i>o, , *>n-i, v)

3v(^(τ;o,..., υn_i, v) Λ P(

— every element of a satisfies P;

- there is an element not satisfying P.

Interpreting P by 7V0 gives an expansion of (Mo, a) which is a model of T',
so the theory is consistent. To verify that T' satisfies the requirements of the
claim let M1 be any model of T'. The second item in the definition implies
that TV = P(Mf) is the universe of a model λί (in L) which is an elementary
submodel of M = Mf \ L. The last three items verify (c) of the claim.

Claim. There is a countable model M' of V in which M = M! \ L and
P(Mf) are each a countable saturated model of T.

The targeted model M' is constructed using a standard elementary chain
argument. Let M'Q be any countable model of T. Assuming M'n to be defined,
let M'n+ι be a countable elementary extension of M'n with the property:

If p is a complete type in L over a finite subset A of M'n then p
is realized in M'n+1. Furthermore, if A C P(M'n), then there is a
realization of p in P(M'n+ι).

Then M' = [ji<ω M\ satisfies the requirements of the claim.
Letting M be the restriction of M1 to L and λί the elementary submodel

of M with universe P(M') gives the required Vaughtian pair.

The next step in the proof of Proposition 3.1.1 is to show that we can
"stretch" the larger model in a Vaughtian pair of Ho—saturated models while
fixing the smaller one. Continuing this through AC steps results in a Vaughtian
pair which contradicts the ft—categoricity of T, as described immediately
after the statement of the proposition. This stretching of a Vaughtian pair
is accomplished using the nonsplitting relation on types. The importance of
the nonsplitting relation to the study of arbitrary No—stable theories justifies
this rather lengthy diversion.

Definition 3.1.7. Let M be a model, Ad B C Λf, and p e S(B).
(i) We say that p does not split over A if for all tuples ά, b from B and

formulas φ(x,v) over 0,

if tpM(ά/A) = tpM(b/A), then (φ(x, a) G p Φ=> φ(x, b) ep).

The negation of "p does not split over A" is p splits over A.
(ii) Suppose that p does not split over A, B C C C M, and q G S(C).

Then q is called a strong heir of p if q D p and q does not split over A.
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Remark 3.1.8. The reader should supply proofs for the following elementary
facts about the splitting relation. Let ΛΊ be a model, A C B C M, and
p € S(B).

(i) If p does not split over A and A C Af C B, then p does not split over
A'.

(ii) If p does not split over A and <p(x, ϋ) is a formula over A, then for all
tuples α, 5 from 5 realizing the same complete type over A,

φ(x,a) ep<=ϊφ(x,b) G p.

(In other words, the clause defining the nonsplitting relation holds for formu-
las over A as well as formulas over 0.)

(iii) p does not split over B.

Example 3.1.2. (i) Let T be the theory of a single equivalence relation E
having infinitely many infinite classes and no finite classes.

Claim. Let Λ4 be a model of T. Each complete 1—type over Λ4 does not spilt
over some element of M. Furthermore, each element of S\(M) has a strong
heir in Sι(A) for any AD M.

The theory Γ is complete and has elimination of quantifiers. If p G SΊ(M)
is algebraic there is a b G M such that x = b G p. In this case, p does not split
over 6, and for any A D M, a subset of an elementary extension of Λ4, the
unique extension of p in SΊ (A) is a strong heir of p. Now let TV be a proper
elementary extension of ΛΊ, α G N \ M and p = tpj^(a/M). Suppose that
£"(α, b) holds for some 6 in M. We claim that p does not split over b. Every
formula is equivalent in T to a boolean combination of instances of E and
equality. Since a φ M, x ^ c G p, for all c G M. Let c, d e M realize the
same complete type over b. Then, E(x, c) e p <=> M \= E(c, b) Φ=> M f=
ϋ?(d, 6) 4=> £•(#, d) G p. Using the elimination of quantifiers we conclude
that p does not split over b. (Notice that p does split over 0: for c an element
not E—equivalent to 6, tpj^{c) = tp^f(b) while E(x, b) G p and -^E(x, c) G p.)
Now let i D M be a subset of the model M!. There is a g G 5i(A) containing
p such that for all c G A, x ^ c G <?, and E(x, c) e q «=> X ' |=-i5(c> 6). The
type q is a strong heir of p.

Supposing that a G N \ M is not E—equivalent to any element of M,
a simple argument shows that p = tptf(a/M) does not split over 0. Let
M' -< M, M' D A D M and q G SΊ(A) a type such that for all c e A,
x ^ c £ q and -^E(x, c) G q. Then, q is a strong heir of p, proving the claim.

(ii) Let ΛΛ be a dense linear order without endpoints; i.e., a model of
Th(Q, <). A cut in Λ4 is a subset J of M such that, whenever a £ J and
b < a, b e J. For 5 U {α} C M, sup β = α if every 6 G J is < α and, for any
a' e M such that be J = » b < a!, a < a. For subsets £ and Cof M we say
that sup(B) = sup(C) if for all b G £ there is a c G C such that b > c and
for all c G C there is a b G £ greater than c. The relation inf (£) = inf (C) is
defined similarly.
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Let A be a cut in M such that sup (A) does not exist in M and M \ A is
nonempty. Let p be the unique element of S± (M) containing { x > a : a £
A}U{x <b : ί )EM\A} . We show that there are very strict limitations on
the subsets of M over which p does not split in

Claim. Given B C M, p does not split over B if and only if sup(J5 Π A) =
snp(A) or inf (B \A) = inf(M \ A).

First suppose that sup(£ίΊ A) = sup(A) and c, d e M have the same type
over BΓ\A. lib £ BΠA and c < b, then d < 6, so x > c £ p and x > d £ p. If
c > b for all 6 £ B Π A, then x < c and x < d are both in p. It follows quickly
from elimination of quantifiers that p does not split over BΠA. Similarly, p
does not split over B if inf (B \A) = inf(M \ A). Suppose, on the other hand,
that there are a £ A greater than every element of BΠ A and c £ M\A less
than each element of B \ A. Then, tpM(b/B) = tpM(c/B), x > b £ p and
x < c £ p, proving that p splits over B.

Among other things, we conclude that p splits over any finite subset of
M.

These definitions reflect the following view of types. Let ΛΊ be a model,
B C M, p £ S\(B) and a a realization of p in M. The formulas in p define
the relations holding on (α, b) for sequences b from B. lip does not split over
A C £, a definable relation holding on a and sequences from B is determined
by A in the following sense. For any formula φ(x,y) there is Pφ C S(A)
such that φ(x,b) belongs to p if and only if tpM(b/A) £ Pφ. We think of
the family V = { Pφ : φ a formula} as being a kind of oracle which tells
us which formulas go into p. If q £ S(C) is a strong heir of p no essentially
new relations are being defined using the elements of C; the family V still
determines which formulas enter the type. A strong heir is a "freest" possible
extension in that only the traits which are inherited from p are found in q.
(We use the term strong heir as "heir" has been reserved for a different but
closely related concept defined in [LP79] (see Definition 5.1.13). Such notions
of "free" extensions of types are the foundation of stability theory.)

Definition 3.1.8. Let M be a model, Ac M.
(i) Let p be a type over A and f an elementary map whose domain contains

A. Then f(p) denotes { φ(ϋ, /(ά)) : φ(v, a) £ p}, a set of formulas over f(A).
(ii) If b and c are sequences and there is an elementary map f such that

f is the identity on A and f(b) = c, then we say b is conjugate to c over
A. This terminology is applied to infinite sequences b and c as well as finite
sequences. Occasionally we will say, e.g., ((B and C are conjugate over A",
leaving the relevant ordering of B and C to be understood.

(Hi) When p and q are types over a model M and there is an elementary
map f whose domain contains A such that f(p) = q, we say that p and q are
conjugate over A.
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Let p, A, and / be as in (i) of the definition. Because / is elementary,
f(p) is itself a type (i.e., it is consistent) and f(p) is complete whenever p is
complete. It is easily verified that if, e.g., / is an automorphism of a model
M containing B U {a} and p = tp(a/B), then f(p) = tp(f(ά)/f{B)).

If M is a model and p G 5i(M), the automorphisms of M act on p to
produce other elements of S\(M). This action is effected by nonsplitting in
the following way.

Lemma 3.1.8. Let B C M, where Λ4 is a model, p an element of S(B)
which does not split over AcB,AcBoCB, and f an elementary map
fixing A pointwise and taking Bo, to B\ C B. Then, f(p \ BQ) = p \ B\. In
particular, if f maps B onto B, then f(p) = p.

Proof Let b be a sequence from BQ and b' = /(δ). Since / is the identity
on A, tp(b/A) = tp(br /A). Since p does not split over A, φ(x,b) G p
φ{x,V) G p for any formula φ(x,y). However,

φ{x,b) ep \ Bo ^ ^ φ(x,b') G f(p \ Bo),

from which we conclude that p \ B\ = f(p

In other words, for M a model and p G Si(M) which does not split over
A C M, if q G Sι(M) is conjugate to p over A, then q = p.

To set the stage for the next lemma, let M be a countable saturated
model of an No—stable theory and p G Sι(M). There are continuum many
automorphisms of Λί, each generating a conjugate of p in Sι(M). Assuming
that p splits over every finite subset of M we prove (in the next lemma) that
continuum many of these conjugates of p are distinct (a contradiction).

Lemma 3.1.9. Let T be ΉQ—stable, A a subset of a model ofT andp G S(A).
Then there is a finite set B C A such that p does not split over B.

Proof Assume, to the contrary, that there is no finite B C A over which p
does not split. The No—stability of T will be contradicted by constructing
continuum many types over some countable set. Let M be an No—saturated
model of T containing A, and let X be the set of all finite sequences of O's
and Γs.

Claim. For s, t G X there are: As C A finite, Bs C M, qs G S(B8), and
elementary maps fs from As onto Bs such that

(a) fs(p\As) = qs,
(b) if t is an initial segment of s then ft C fs,
(c) if t is not an initial segment of s and 5 is not an initial segment of
t, then qs U qt is inconsistent.
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To begin let A$ = B$ = /$ = 0. Assume that At, Bt and ft have been
defined for alH £ X of length k. For an arbitrary s e X of length k we show
how to define Ar, Br and fr for r = sΛ(z) = si, i = 0, 1. By assumption, p
splits over the finite set As; i.e., there are a and b from A such that tp(a/As) =
tp(b/As) and a formula y?, such that ^?(x, α ) G p and ~*φ(x, b) £ p. Let ASQ =
^4S U a and Aji = As U 6. Since ΛΊ is No—saturated there is a c in M and
elementary maps / S Q, Λ I extending / s such that fso(a>) = c and fsi(b) = c.
Let 5 s ί = 5 s U c and g s ί = fsi(p \ Asi), for i = 0, 1. Since y>(z,c) 6 gso
and ~^φ(x, c) £ qs\ all of the required conditions are satisfied, completing the
proof of the claim.

Let B = (J s Bs, Y the set of all sequences of 0's and l's of length ω, and
for s £ Y let qs = U{qt : t = 5 \ k, for some A;}. By conditions (a) and (b)
in the claim, when t is an initial segment of r G X, qt = ft(p \ At) = fr(p \
At) C fr(p \ Ar) C qr, hence qs is consistent for each s £ Y. For s £ Y let
q's be a completion of qs in S(B). There are continuum many such q's's by
(c). Since B is countable this contradicts the No—stability of T to prove the
lemma.

Corollary 3.1.3. Let T be an Ho —stable theory.
(i) T is K—stable for all K > No-
(ii) For every regular cardinal K, T has a saturated model of cardinality

K.

Proof (i) Let AQ be a subset of a model with \Ao\ = K, and let ΛΊ be
an No—saturated model of cardinality K which contains AQ. Since distinct
elements of S(Ao) extend to distinct elements of S(M), it suffices to show
that |ί>(M)| = K. Every element of S(M) does not split over some finite
subset of M. Since there are K many finite subsets of M it suffices to prove

Claim. For all finite A C. M there are only countably many elements of S(M)
which do not split over A.

Suppose to the contrary that there are distinct pi £ Sn(M), for i < ω\,
such that each pi does not split over A. Let ΛΓ be a countable saturated
elementary submodel of M containing A and let qi—pi \ N, for i <ω\. We
claim that qι Φ qj, for i Φ j < ω\. Let i, j be distinct ordinals < ω\, and
φ(x,a) a formula such that φ(x,a) £ pi and -np(x,a) £ Pj. Let q = tp(ά/A)
and c a realization of q in ΛΛ Since pi and pj both do not split over A,
φ(x,c) £ pi and ^φ{x,c) £ pj. Thus, the ^ ' s form an uncountable set of
complete types over the countable set N, contradicting the No—stability of
the theory. This completes the proof of the claim and this part of the lemma.

(ii) This follows from (i) and Lemma 2.2.6.

L e m m a 3.1.10. Let T be an Ho—stable theory and M -< λί models ofT with
M No—saturated. Then every element of S{M) has a strong heir in S(N).
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Proof. Let p E S(M) and let A be a finite subset of M over which p does
not split. Define a set of formulas Γ over N by the scheme: Given a formula
φ(x, ϋ) over 0 and tuple a from JV, φ(x, a) is in Γ if there is a sequence b from
M such that tp//(ά/A) = tpj\r(b/A) and φ(x, b) E p. This set Γ is well-defined
since p does not spilt over A. (Given φ(x, α), if there is a sequence b from M
such that g = tp/f(ά/A) — tpj\f(b/A) and φ(x,b) E p, then for any sequence c
from M realizing ς, <p(a;, c) E p.) Also, Γ D p. To see that J1 is consistent, let
{φo{x, ^o)5 > ^n(^? αn)} be a finite subset of Γ. Since M is Ko—saturated
there are ϊ>i e M with tpssfao . . . άn/A) = tptf(bo . . . bn/A). The definition of
Γ1 implies that {<^o(#,δo)? >ψn{xibn)} C p, hence Γ1 is consistent. It also
follows quickly from its definition that Γ is a complete type which does not
split over A.

Lemma 3.1.11 (Stretching a Vaughtian pair). Let T be an ^—stable
theory with a Vaughtian triple (Λ4,Af,φ), where Λ4 andλί are ΉQ—saturated
models ofT andλί is countable. Then there is a proper elementary extension
ΛΛf of M. which is ^—saturated such that (M,AΓ,φ) is a Vaughtian triple.

Proof. Let a be any element of M \ N and p = tpM (a/N). There is a finite
AcN over which p does not split (by Lemma 3.1.9) and there is a q E S(M)
which is a strong heir of p (by Lemma 3.1.10). Without loss of generality, A
contains the parameters in φ. Let b be a realization of q in some elementary
extension of M and let M! be an Ho—prime model over M U {b} (which
exists by Lemma 3.1.6). It remains to verify that (Λ4f,λί,φ) is a Vaughtian
triple. Assume to the contrary that there is a c E M' \ N satisfying φ. Since
(M,Λf,φ) is a Vaughtian triple, c E Mf \ M, hence r = tpM'(c/M U {b})
is Ko—isolated. We will contradict that (M,Λf,φ) is a Vaughtian triple by
finding a CQ E M \ N satisfying φ.

Let B,MDBDAbe& finite set such that r is No—isolated over BU{b}.
Since B is finite there is a countable saturated model λίo ^ M containing
B. Since tpM'(c/No U {&}) is also No—isolated (over B U {&}) there is an
MQ -< M which is No—prime over ΛΓ0 U {b} and contains c. Since Λ/' and
Λίo are both countable saturated models there is an isomorphism /0 of Λ/Ό
onto Λ/" which is the identity on A. Since q = tp(b/M) does not split over
A, fo(q ϊ No) = q \ N = p = tp(a/N) (by Lemma 3.1.8). Thus, /0 extends
to an elementary map /i of JV0 U {b} onto N U {a}. Since M'o is No— prime
over JVQ U W and Λί is an No—saturated model containing N U {α} there is
an elementary embedding / of Λί'o into M which extends f\. Then, f(c) is
an element of M \ N which satisfies φ. This contradicts that (M,Λf, φ) is a
Vaughtian triple, completing the proof of the lemma.

Proof of Proposition 3.1.1. Let K be an uncountable cardinal in which T is
categorical and assume the proposition to fail. By Lemma 3.1.7 there is a
Vaughtian triple (M,Λf,φ) with M and λί countable saturated models.

Claim. There is an elementary chain Ma, & < «, such that



3.1 Morley's Categoricity Theorem 65

(1) Ma is an Ko—saturated model of cardinality < K,
(2) (Ma,λί, φ) is a Vaughtian triple,

(3) iϊ β < a, Mβ ϊ M
a

This chain is defined by recursion using the previous lemma. Let Mo =
M. Suppose that Mβ has been defined for all β < a and (l)-(3) hold relative
to these models. If a is a limit ordinal let Ma = Όβ<a -Mβ- ^ α = /?+1 aPPty
Lemma 3.1.11 to the Vaughtian triple (Mβ,λί, φ) to obtain an Ho—saturated
proper elementary extension Ma such that (Ma,λί, φ) is a Vaughtian triple.
Of course, we can assume that \Ma\ = \Mβ\. Notice that (l)-(3) hold for all
a < K, proving the claim.

Let M' = {ja<κMa- Then M' is a model of cardinality K (by (1) and
(3)) and (M',λί,φ) is a Vaughtian triple. Since λί is countable, φ(M') is
countable. However, as noted in Remark 3.1.7 the /s—categoricity of T im-
plies that every relation definable over M' is uncountable. This contradiction
proves the proposition.

The proof of Morley's Categoricity Theorem is completed by showing

Theorem 3.1.2. Let T be a countable complete No—stable theory with no
Vaughtian pair. Then, T is categorical in every uncountable cardinal

The proof of the theorem is separated into the following three steps.

(a) First it is shown that there is a strongly minimal formula φ (in one
variable) over a prime model Mo of Γ.

(b) Next, given a model M >- Mo of T we prove that M is prime over
φ(M)U (the parameters in φ).

(c) Finally, we show that the theorem follows from (b).

Presently we only know that there is a strongly minimal formula over a
countable saturated model (by Lemma 3.1.4). This is improved to obtain (a)
in:

Proposition 3.1.2. Let T be a countable complete ^—stable theory with
no Vaughtian pair. Then there is a strongly minimal formula over a prime
model.

The proposition will be proved using

Lemma 3.1.12. Suppose that T is No—stable, has no Vaughtian pair and
φ(x,ϋ) is a formula. Then there is a natural number n such that for all
models M of T and all a from M, φ(M,ά) is infinite or of cardinality at
most n.

Proof. For notational simplicity we assume φ(x,ϋ) = φ(x,ϋ)m, i.e., x has
length 1. Suppose, to the contrary, that there is no such n for φ(x,v). If
ψ is an algebraic formula over a model λί and Λ/7 >- λί, then φ{λfr) C N.
Thus,
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(*) For all n < ω there is a model λί and a sequence a from N such that
\φ(N, ά)\>n and for all λί' >- λί, φ{λί'', α) C AT.

We will define a theory T' such that a model of T' represents a pair of models
which is a Vaughtian pair for T. The consistency of V will follow from (*).
This contradiction to Proposition 3.1.1 will prove the lemma.

Let L be the language of T and V = L U {P, c i , . . . , c^}, where P is a
unary predicate symbol and c\,..., Ck are new constant symbols (k = the
length of v). Let V D T be a theory in 1/ such that for any M' \= T',

- P(M') is the universe of a proper elementary submodel (with respect to

L)oΐM' \L, a n d c C P ( M ' ) ,
- for each n, \φ(λ4',c)\ > n and

- φ(M',c)cP(M').

(The formulation of the actual sentences in V comprising T' is left to the
reader.) By (*) and compactness, T' is consistent. Let λΛ' be a model of T",
λΛ = .Λ/f' ί L, λί = the proper elementary submodel of λΛ with universe
P(λd') and 5 the interpretation of c. The second and third items say that
φ(M,b) is infinite and contained in N Φ M. This contradicts that T does
not have a Vaughtian pair, completing the proof of the lemma.

Proof of Proposition 3.1.2. The argument is like the proof of Lemma 3.1.4
but we work over a prime model instead of an Ko—saturated model. Let
Λ4 be a prime model of T. Let φ(v) be a formula which has a unique non-
algebraic extension in S(M) and let A C M be the set of parameters in
φ. The strong minimality of φ is proved as follows. Let λί be an elemen-
tary extension of M and φ(υ,b) a formula over AT, where ψ(υ,x) is over
0. Assume, towards a contradiction, that both σ(v,b) = φ(v) Λ ψ(υ,b) and
τ(υ,b) = φ(v) Λ ̂ ψ(υ,b) are nonalgebraic. By Lemma 3.1.12 there is an in-
teger n such that for all elementary extensions λΛ' of λΛ and c from M',
if σ(M',c) and r(Λ/ί/,c) both have cardinality > n, then σ(x,c) and τ(x,c)
are nonalgebraic. Since Λf |= 3-nvσ(v,b) Λ Ξ3-nt>τ(?;,6), there is a J from
M such that M |= J3-ni;σ(ϊ;,<ί)_Λ 3-nvτ(ί;,J). By the choice of n, both
σ(v, J) = ^ί'1') Λ ̂ (^5 d) a n ( l τ(^j ^) — ̂ (^) Λ -*ψ{v, d) are nonalgebraic. Since
y? has a unique nonalgebraic completion over M we have obtained a contra-
diction which proves the proposition.

The following example shows that in Proposition 3.1.2 we cannot elimi-
nate the hypothesis that the theory does not have a Vaughtian pair.

Example 3.1.3. Let E be a binary relation and T the theory expressing
that (a) E is an equivalence relation and (b) for all n < ω, there is an
jE-class containing exactly n elements. T is quantifier-eliminable, complete,
and Ko-stable. By the Omitting Types Theorem there is a model M of T
(namely the prime model) such that each E-class in M is finite. By compact-
ness there is an λί >- M containing infinitely many infinite classes. It is easy
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to verify from the elimination of quantifiers that when the class of a e N
is infinite, E(x, a) is a strongly minimal formula. Of course, when a G M,
E(x,a) is not strongly minimal, and neither is -^E(x,a) (since E(x,b), for
b e N \ M, defines an infinite and coinfinite subset of -Έ(λί,a)). There
are other possibilities for strongly minimal formulas over M, however they
all basically reduce to E(x, a) or ^E(x, a) by the elimination of quantifiers.
That is, there is no strongly minimal formula over the prime model of T.

Note: There are models λί and Λ/7, with λί' a proper elementary extension
of λί, such that for some a e N, E(λίf, a) is an infinite subset of N. Thus, Γ
has a Vaughtian pair.

Item (b) in the outline of the proof of Theorem 3.1.2 is handled in

Corollary 3.1.4. Let T be a countable complete ^—stable theory with no
Vaughtian pair, Λ4 a model ofT and φ a strongly minimal formula over some

finite set A C M. Then,
(i) λΛ is prime over φ(λ4) U A and minimal over φ(M) U A, and
(ii) if M is uncountable, άim(φ(M)/A) = \M\.

Proof, (i) Simply by the No—stability of the theory there is λί ~< λΛ which
is a prime model over φ(λΛ) U A (see Lemma 3.1.5). Since T does not have
a Vaughtian pair and φ(λί) — φ(M), M cannot be a proper elementary
extension of ΛΛ Thus M is a prime model over φ(M) U A, which is also
minimal over this set by the same reasoning.

(ii) Let K = \M\ be uncountable and / a basis for φ{M) over A. Then
\φ(M)\ < \acl(I U A)\ < \I\ + No (since φ{M) C acl(I U A) and A is finite).
Suppose, towards a contradiction, that \I\ < K. Then |</?(AΌ| < «, in which
case there is a proper elementary submodel λί of M containing φ(M) U A.
This is impossible because T does not have a Vaughtian pair, proving the
corollary.

Proof of Theorem 3.1.2. Let Λi and λί be two models of T of the same
uncountable cardinality K. By Lemma 3.1.2 there is a formula φ(υ,x) over
0 and an a from M such that tpM{o) is isolated and φ(y,a) is strongly
minimal. Since tpMip) is isolated there is a sequence b from N such that
tp/f(b) = tpM(ΰ) Then, φ(v,b) is also strongly minimal (by Remark 3.1.2).
Let 7 be a basis for φ(Λ4,ά) over a and J a basis for φ(λf,b) over b. By
(ii) of the previous corollary, I and J both have cardinality K. Let / be a
mapping which takes α to b and is a bijection from / onto J. If we could
assume that both a and b are empty, so that I and J are from the same
strongly minimal set, then Lemma 3.1.3 would imply that / is an elementary
map (see the proof of Corollary 3.1.1). In general, a slight adaptation of
Lemma 3.1.3, whose proof is left to the reader in Exercise 3.1.13, shows that
/ is elementary. Since φ(M,a) and φ{λί,b) are contained in the algebraic
closures of / U a and J U 5, respectively, / extends to an elementary map
from φ(M,a) onto φ(λί,b) (see Exercise 3.1.10). By Corollary 3.1.4(i), M is
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prime over φ(M,ά) U α, so / extends to an elementary embedding g of M
into λί which maps a to b and φ(M,a) onto φ(J\f,b). Since λί is a minimal
model over y?(Λ/", 6) U 6, # maps M onto ΛΛ Thus, g is an isomorphism from
M onto Λ/" proving the theorem.

Proof of Theorem 3.1.1 (Morley's Categoricity Theorem). Combining
Theorems 3.1.1 and 3.1.2 shows that a countable theory Γ categorical in
some uncountable power is categorical in every uncountable cardinality.

Corollary 3.1.5. ForT a countable complete theory the following are equiv-
alent

(i) T is uncountably categorical.
(ii) T is No—stable and does not have a Vaughtian pair.
(Hi) For every regular K > Ko, every model ofT of cardinality K is satu-

rated.

(The restriction to regular K in (iii) will be removed in Lemma 3.4.10.)
The proof of Morley's Categoricity Theorem yields the following informa-

tion about an uncountably categorical theory T. Over any model ΛΛ of T
there is a strongly minimal formula φ. Remember that φ(Λ4) is a pregeom-
etry under algebraic closure. Letting A be the set of parameters in φ, M is
prime over φ(M)UA. In this way M is represented by a pregeometry. When
M is uncountable assign to M a cardinal number I(M) = the dimension
of φ(M), for φ any strongly minimal formula over M. Given any two un-
countable models M and Λ/Όf T, M = λί if and only if 1(M) = I(λf). The
number T{M) is called a cardinal isomorphism invariant, or simply a cardinal
invariant, for M.. (When T is the theory of infinite vector spaces over a field F
the dimension of M \= T is a cardinal invariant for M. When T is the theory
of algebraically closed fields of a fixed characteristic and Λ4 f= T the tran-
scendence degree of Λ4 is a cardinal invariant of ΛΛ.) Such an assignment of
cardinal invariants is known as a structure theorem. (See page 326 for further
discussion.) An important feature of the proof of Theorem 3.1.2 is that this
cardinal invariant is independent of the choice of strongly minimal formula:
if φ(v) and φ'(y) are strongly minimal formulas (over the finite sets A C M
and A! c Λf, respectively), then άim(φ(M)/A) = \M\ = dim(φ'(M)/A').
What we have not yet proved is that there are also cardinal invariants for
the countable models of Γ. This is basically the Baldwin-Lachlan Theorem
which is proved in Section 3.4 using the more powerful machinery developed
in Section 3.3.

Historical Notes. Morley's Categoricity Theorem was proved by Morley
in [Mor65]. His proof involved Morley rank and other tools developed in
Section 3.3. The term "λ-stable" was introduced by Rowbottom in [Row64].
Strongly minimal formulas were defined by Marsh [Marββ], and developed
further by Baldwin and Lachlan [BL71]. It was in this later paper where
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Theorem 3.1.2 and its key component, Proposition 3.1.2, were proved. The
concept of splitting was developed in the early papers of Shelah (see, e.g.,
[She69]).

Exercise 3.1.1. Let T be a theory which is categorical in some K > \T\.
Prove that T is complete.

Exercise 3.1.2. Show that if T is λ-stable and \A\ < λ, then |5n(A)| < λ.

Exercise 3.1.3. Let Γ be a countable uncountably categorical theory and
M an uncountable model of Γ. Show that M is Ho—saturated.

Exercise 3.1.4. Prove: If M is a model, Λί -< M and α e N is algebraic
over A c M , then a £ M and tpM(a>/A) is algebraic.

Exercise 3.1.5. Let A be a subset of a model M in a theory of cardinality
«. Prove that |αd(A)| < \A\ + /c.

Exercise 3.1.6. Prove: If the type of a = (αi, . . . ,α n ) over A (in some
model) is algebraic, then α i , . . . , an £ acl(A).

Exercise 3.1.7. Prove Lemma 3.1.2.

Exercise 3.1.8. Let S be a pregeometry. Show that for all A, B C 5,

dim(A U B) = dim(A/B) + dim(B).

Exercise 3.1.9. Let T be an Ho—stable theory in the language L and let To
be the restriction of T to a sublanguage of L. Show that To is Ko—stable.

Exercise 3.1.10. Let M and Λί be models, i C M, 5 C iV and / an
elementary mapping from A onto B. Prove that / can be extended to an
elementary mapping from acl(A) onto acl(B).

Exercise 3.1.11. Find an example of a model ΛΊ and formula φ(x) such
that every subset of φ(M) definable over M is finite or cofinite, but φ is
not strongly minimal. (Thus, in the definition of strongly minimal we cannot
avoid checking elementary extensions of ΛΛ. HINT: There is an example in
this section.)

Exercise 3.1.12. Prove Remark 3.1.2.

Exercise 3.1.13. Let M be a model, α and b sequences from M realizing the
same complete type and φ(x, a) strongly minimal. By Remark 3.1.2, φ(x, b) is
also strongly minimal. Let / and J be bases for φ(Λi^ a) over a and φ(Λ4, b)
over 6, respectively. Show that if |/| = \J\ and / is an elementary mapping
from α onto b then / can be extended to an elementary mapping from / U o
onto J U b.
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Exercise 3.1.14. Suppose that T is a countable theory which is categorical
in Ni, but not categorical in No- Prove that the prime model of T is minimal.

Exercise 3.1.15. Let M be a model, A C M, φ(x) a strongly minimal
formula over A and p € S(M) the unique nonalgebraic extension of φ. Prove
that p does not split over A.

Exercise 3.1.16. Suppose that M is a model, λί >- M,a £ N\M and A is a
subset of M over which tpjs/(a/M) does not split. Show that for all sequences
6, c from M, tpuφ/A) = tpx(c/A) => tpuφ/A U {a}) = tpM(c/A U {a}).

Exercise 3.1.17. Let T be No— stable, M a countable saturated model of T
and let CB{—) denote Cantor-Bendixson rank as computed in S\(M). Prove
that for all sequences α, b from M with tp(a) = tp(b) and formulas φ(x,y),

Exercise 3.1.18. Give a detailed proof of Lemma 3.1.3(iii).

Exercise 3.1.19. Give a detailed proof of Lemma 3.1.6.

Exercise 3.1.20. Let T be an uncountably categorical theory and M a
countable model of T. Show that TH(MM)I the theory of M with constants
added for the elements of M, is also uncountably categorical.

Exercise 3.1.21. Let T be any complete countable theory and K, an un-
countable cardinal. Prove that there is a model M of T of cardinality K such
that for any formula φ over ΛΊ, φ(Λ4) is finite or of cardinality κ>.

3.2 A Universal Domain

Before proceeding with our study of totally transcendental theories we intro-
duce some conventions to simplify the notation when dealing with the models
of a fixed complete theory.

In Section 2.2 we introduced saturated models and proved some of their
basic properties. One of the more useful properties of a saturated model Λ4
is its universality; i.e., if λί is a model elementarily equivalent to M and
\N\ < \M\ — K then λί is isomorphic to an elementary submodel of M.
Thus, any property invariant under isomorphism and possessed by a model
of the theory of cardinality < K holds in some elementary submodel of M.

Suppose that a theory T has saturated models of arbitrarily large cardi-
nality. Many theorems in model theory assert that a property holds for all
models of a theory. If we fix a saturated model M f= T of cardinality K, and
prove the theorem relative to the elementary submodels of M, we seem to
have limited ourselves to the models of cardinality < K. However, with few
exceptions it is possible to give a proof which does not depend on a particu-
lar κ;, in the following sense. Let τ denote a theorem concerning the models



3.2 A Universal Domain 71

of T and for M a model of T, let r \ M denote the relativization of τ to
the elementary submodels of M. For M' another saturated model of T, the
proof of r \ Mf can be obtained from a proof of τ \ M simply by replacing
a reference to M to Mt'. Thus, to prove τ (which is equivalent to "r \ Mf

holds for all saturated models of Γ") it suffices to prove τ \ M. For these
reasons we adopt the following conventions without changing the validity of
any theorems.

We assume that any theory under discussion has saturated models of ar-
bitrarily large cardinality. (As noted in Section 2.1 this will be true assuming
that there are arbitrarily large strongly inaccessible cardinals. The reader
who is uncomfortable with such an assumption can reword any of the subse-
quent proofs to see that they do not depend on any additional set-theoretic
assumptions.)

Definition 3.2.1. Given a complete theory T we let (£ denote a saturated
model of T of arbitrarily large cardinality. £ is called the universal domain of
T or simply the universe of T. (Such a model is called the "monster model"
ofT in some sources.)

From her eon, we will say uλ4 is a model of T" only when M. is an ele-
mentary submodel of T and \M\ < |(£|. (The restriction on the cardinality
of λΛ is discussed below.) Narrowing our attention to elementary submodels
of £ eliminates the need to specify an ambient model whenever we speak of
the type of an element. If a is an element (of (£) and M. is a model (which
is, by flat, an elementary submodel of (£) containing α, then Λ4 \= φ{ά) if
and only if £ |= φ(a). Thus, we may as well drop the reference to the model
altogether and write |= φ{o) instead of £ \= φ(a). Also, simply being told
that the set M is the universe of a model completely determines the model.
Since the term "model" is only applied to an elementary submodel of <£, the
interpretation on M of the elements of the language is uniquely determined.
The full list of our conventions follows.

- € denotes a model of the relevant complete theory which is saturated and
of arbitrarily large cardinality.

- The term "A is a set" is interpreted as: A C £ and |A| < |C|. Similarly, "α
is an element" means a Ed.

- By the term "formula" we always mean a formula over <Γ. Similarly, a
"type" is a type over (£.

- For ά a tuple and φ(v) a formula we write f= φ(a) for € |= φ(a), and say
"α satisfies φ(v)". If A is a set tp(a/A) denotes tp<r(ά/A).

- We say "M is a model" if M is a set (hence of cardinality < |C|) and M is
the universe of an elementary submodel of £. (Note: for M a model and φ
a formula M f= φ(a) if and only if a a tuple from M and |= φ(ά).) Models
are denoted by M, JV, M', etc.

The main reason for restricting to sets of cardinality < |£| is so that types
over sets can be realized. (If A c ί , \A\ < |£| and p G S(A), then p is realized
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in <£, which may not be true if \A\ = |C|.) A closely related benefit if the
restriction is:

- Every elementary map extends to an element of Aut(C).

(Let / be an elementary map from A onto B. Then, by assumption, A and
B are subsets of (£ with \A\ = |J5| < |C|. By the homogeneity of <£, / is the
restriction to A of an automorphism of <£.)

Definition 3.2.2. Given a complete theory with universal domain €, X is a
definable set if X = φ(<t) for some formula φ.

Remark 3.2.1. (i) Comparing Definition 3.2.2 with the definition of "defin-
able in Λin in Definition 1.1.1 we see that X is a definable set exactly when
it is a definable set in <£.

In most sources the term "definable set" means any set of the form φ(M),
where M is a model and φ is a formula over M. For the subject matter of this
book it is most natural to reserve the unqualified term for sets of the form
φ(€), and to say explicitly "definable set in M" when working in a particular
model M.

(ii) For φ a nonalgebraic formula the saturation of € forces φ(€) to have
the same cardinality as (£, thus strict adherence to our terminology prohibits
φ{€) from being called a set. However, "definable set" is the established term
for an object of the form φ(<£) and since its usage should cause no confusion
we will stick with it.

Notation. Given a universal domain <£, formula φ and X = φ(£), we call
X a strongly minimal set if φ is strongly minimal.

By convention an element of S((£) is not called a type since its domain is
not a set. However, these "ideal types" or "limit types" do provide us with
a convenient way to discuss all possible extensions of a type. For example,
a formula φ(x) over A is strongly minimal if for all sets B D A there is a
unique nonalgebraic p G S(B) which contains φ. A quicker way to say this is:
φ is strongly minimal if there is a unique nonalgebraic p G S(€) containing
φ. Elements of 5(C) will only be used to streamline notation in this manner.

As an exercise to familiarize the reader with this notation we recommend
rewriting several definitions, lemmas and proofs from the previous section
under the assumption that we are working in a universal domain.

3.3 Totally Transcendental Theories

The totally transcendental theories were defined and used by Morley in his
proof of Morley's Categoricity Theorem (Theorem 3.1.1). Instead of total
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transcendentality our proof used No -stability, which we will show is equiv-
alent to total transcendentality for countable theories. Here, totally tran-
scendental theories are investigated without any categoricity or cardinality
assumptions and results are proved which go far beyond those obtained in
Section 3.1 for Ho—stable theories. Besides shedding light on a rich class
of theories this section introduces many of the central concepts of stability
theory. These results will be applied in the next two sections to prove the
Baldwin-Lachlan Theorem for uncountably categorical theories (mentioned
at the end of Section 3.1), and to begin the study of t.t. groups (i.e., those
totally transcendental theories which are the theory of a group).

Our proof of Morley's Categoricity Theorem depended heavily on the
following properties of a strongly minimal set (i.e., a set defined by a strongly
minimal formula) in an uncountably categorical theory. Let T be uncountably
categorical and let φ(v) be a strongly minimal formula which, for simplicity,
we assume to be over 0. Let M be a model of T and D = φ{M).

(1) c£(—) = the restriction of algebraic closure to D, defines a pregeometry
on D.

(2) Let / be a basis for φ(M), N f= T and J a basis of φ(N). Then any
elementary map from J into / extends to an elementary map of φ(N)
into φ(M).

(3) M is prime over φ(M).

In this way the pregeometry on a strongly minimal set represents a model of
T. In an arbitrary No—stable theory T there is a strongly minimal formula φ
(over <£), but

— there may not be a strongly minimal formula over the prime model, and
- even when φ is over M property (3) may fail for M.

Thus, we must look beyond strongly minimal formulas to find a dependence
relation which influences the whole model. We will find a relation on all sub-
sets of the universe (of an Ko—stable theory) which meets the following con-
ditions. The term "free" is used instead of "independent" to avoid confusion
with later specific interpretations of the term.

Definition 3.3.1. A ternary relation T on subsets of the universe is called
a freeness relation if it satisfies the following conditions. (T{A, B; C) is read
A is free from B over C.)

(1) (finite character and monotonicity) A is free from B over C if and
only if for all finite Ao C A and Bo c B, AQ is free from Bo over C.

(2) For any a and B there is a Bo C B of cardinality < \T\ such that
a is free from B over BQ.

(3) (transitivity of independence) If A C B C C then a is free from C
over A if and only if a is free from C over B and a is free from B
over A.
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(4) (symmetry) If A is free from B over C, then B is free from A over
C.

(5) // A is free from B over C and f G Aut(<t) then f(A) is free from
f(B) over f(C).

(6) There is a cardinal λ such that for B D A and p G S(A), the set
of types {tp(ά/B) : a is free from B over A and tp(ά/B) D p} is
nonempty and of cardinality < λ.

(7) (reflexivity) Ifbtfz acl(A) then b is not free from A U {b} over A.

No formal abstract properties of freeness relations will be proved. The
conditions (l)-(7) will only be used as a basic minimal list of properties that
any usable notion of freeness must satisfy. As a first example of a freeness
relation, let D b e a strongly minimal set (in the universe of some theory) and
define, for sets A, B, C,

JΓ0(A, B C) <=> for all finite Al C A, dim(A'/B U C) = dim(A'/C).

Previously proved properties of strongly minimal sets show that T§ is a free-
ness relation. The axioms for an abstract dependence relation given by van
der Waerden in [VdW49] include the transitivity of dependence: If a depends
on X and each x £ X depends on Y, then a depends on Y. However, van der
Waerden's notion is formulated as: "the point a depends on the set X...".
Virtually any dependence relation applying to all subsets of the universe fails
to satisfy transitivity. Indeed transitivity fails for the freeness relation T§
defined above. (Let α, 6, c and d be four independent nonzero elements of a
vector space. Let A = {α, 6}, B = {6, c} and C = {c, d}. Then A depends on
B over 0 and B depends on C over 0, but A is independent from C over 0.)

Item (5) in the definition says that freeness is determined by types; i.e.,
if tp(ά/B UC) = tp(b/B U C), then a is free from B over C if and only if b
is free from B over C. Thus, it makes sense to define a freeness relation as a
relation on types, which is done below with Morley rank.

Some of the properties of Ho—stable theories proved in Section 3.1 (for
example, the existence of prime models) used the fact that for A any count-
able set every element of S(A) has Cantor-Bendixson rank. Morley rank is
basically Cantor-Bendixson rank computed over universe, instead of over a
fixed set. Remember that the term "formula" means "formula over £".

Definition 3.3.2. Let T be a complete theory. The relation MR(φ) = α, for
φ a formula in n vaήables and a an ordinal or —1, is defined by the following
recursion.

(1) MR(φ) = —1 if φ is inconsistent;
(2) MR(φ) = aif

{p G Sn(€) : φ € p and -\ψ G p for all formulas

φ with MR(ψ) < a }

is nonempty and finite.
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For p any n—type, MR(p) is defined to be

mi{MR(φ) : φ a formula implied by p}.

(Thus, forp G 5(C), MR(p) is inf{MR(φ) : φβp}.) When MR(p) = a we
say that the Morley rank of p is a. If there is no a with MR(p) = a we write
MR(p) = oo and say that the Morley rank of p does not exist.

Extend the scope of < so that - 1 < a < oo for all ordinals a. Then,
MR(p) > a is a quick way to express that MR{p) φ β for all β < a. Using
these conventions (2) in the definition can be restated as: MR{φ) — a if
{p G Sn(<£) : φ G p and MR(p) > a } is finite and nonempty.

The only reason Morley rank is not simply Cantor-Bendixson rank in
S(<£) is because CB-rank is computed for types over a fixed set A, which by
convention must have cardinality < \€\. This difference is strictly due to a
notational convention. All properties of CB-rank proved in Section 2.2 hold
for Morley rank with virtually identical proofs. The statements of the most
critical properties will be repeated for ease of reference.

It follows immediately from the definition that for p and q types with
q \= p, MR(p) > MR(q). We leave it as an exercise to the reader to show
that conjugate types have the same Morley rank.

Remark 3.3.1. Let £ be the universal domain of a complete theory. Given
a type p and formula φ such that p \= φ there is a finite po C p such that
/\po |= ψ , hence MR{φ) > MR(/\po). Thus, if p is closed under finite
conjunctions there is a formula φ G p such that MR(φ) = MR{p).

The following is an almost literal restatement of Lemma 2.2.3.

Lemma 3.3.1. Let T be a complete theory, p an n—type and a an ordinal.
(i) IfpE S((£) then MR(p) = 0 if and only if p is algebraic.
(ii) MR(p) = a if and only if there is a formula φ implied by p such that

{q G Sn(€) : φ G q and MR(q) = a} is finite and nonempty, and this set
is equal to {q G Sn(<t) : p C q and MR(q) = a }.

(in) If MR{p) = a there is a q G 5n(£) such that qD p and MR(q) = a.
(iv) If p G S(€) and MR(p) = a there is a φ G p such that p is the only

element of{qe Sn(€) : φ G q and MR(q) >a}.
(υ) MR(p) > a if and only if, for all β < a and all φ implied by p,

{q G Sn(£) : φ G q and MR(q) > β} is infinite.
(vi)

MR(φ) is the least ordinal a such that (3.2)

{ q G Sn(€) : φ G q and MR{q) > a } is finite.

Proof. A complete type over a model is isolated if and only if it is algebraic.
Thus, (i) is really a restatement of Lemma 2.2.3(i). A proof of each remaining
part can be obtained from the proof of the corresponding part in Lemma 2.2.3
simply by changing the notation.
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Definition 3.3.3. Let p be an n—type in a complete theory and suppose
MR(p) = a < oo. By (ii) of the previous lemma {q G Sn(<£) : p C q
and MR(q) = a} is finite. The Morley degree of p, denoted deg(p), is de-
fined to be \{q G Sn(<£) : p C q and MR(q) — a}\. Ifdeg(p) = 1 we say that
p is stationary.

When p = tp(ά/B) we may write MR(a/B) for MR(p).

Notation. Given a universal domain £ and definable set X = φ{£), we may
write MR(X) for MR(φ) and deg(X) for άeg(φ).

Definition 3.3.4. A complete theory T is called totally transcendental (t.t.)
if every p G S(<£) has Morley rank.

Notice that a complete theory T is t.t. if and only if for every n and
ΰ = ( υ 1 } . . . ,vn), MR(v = v) < oo. (See Remark 3.3.2.)

Definition 3.3.5. Let € be the universal domain of a t.t. theory. For A, B, C
subsets of € we say A is Morley rank independent from B over C and write
A X B if for all finite tuples a from A, MR(ά/B UC) = MR(a/C)\ writing

c
A Ĵ , B for the negation of Morley rank independence (called Morley rank

c
dependence,). We write A ^L B and A X B for A \, B and A J/ B, re-

0 0

spectively. If p is a complete type over B D C and q = p \ C we call p a free
extension of q if MR(p) = MR(q). When p is a free extension of p \ C we
may say p is free over C.

Let T be t.t. Most of the properties of a freeness relation are easily ver-
ified for Morley rank independence. That the relation has finite character,
is transitive, and is preserved under automorphisms is clear from the basic
properties of Morley rank. For p £ S(A) there is a finite B C A such that p
is a free extension of p \ B. If p e S(A) and B D A then there is at least one
and only finitely many q G S(B) which are free extensions of p. Reflexivity
follows from the fact that MR(ά/B) = 0 if and only if α G acl(B). The sym-
metry property (Definition 3.3.1(4)) however, will take a significant amount
of work to prove.

In this section the term "Morley rank independent" (Morley rank depen-
dent) is shortened to "independent" (dependent).

In Section 2.2 we gave examples of theories formulated using equivalence
relations such that, for M any model of the theory, every element of S(M)
has CB-rank. Letting M = £ in each example and rewording the justifications
shows that each of the theories is t.t.

Here are some basic facts about Morley rank and independence in a t.t.
theory.
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Lemma 3.3.2. Let T be totally transcendental.
(i) For ά! a subsequence of the sequence a, MR(a!/B) < MR(a/B).
(ii) For all ά, b and A, a G acl(A U {6}) = * MR(άb/A) = MR(b/A).
(iii) For all a and A, a X acl(A).

A

(iv) For all a and sets B there is a finite Bo C B such that a is independent
from B over Bo.

(v) (Pairs Lemma) For all α, b and B D A,

B ±άb 4=> B d, a and B ±b.
A AUb A

Proof. Part (i) is left to the exercises, and (iv) follows immediately from the
definition of Morley rank independence.

(ii) Without loss of generality, A = 0. By (i) it suffices to show that
MR(pb) < MR(b) = β. Below, tp(b) is viewed as a type in the vari-
ables y and tp(άb) as a type in xy. For v a sequence of variables, let
φϋ = {φ(v) : MR(ψ(ϋ)) < /?}. Let θ(xy) be any formula in tp(άb)
such that MR(3xθ(x,y)) = β and, for any d, θ(x,d) is algebraic. Then,
{q{xy) £ S(€) : θ(xy) e q and -*ψ(xy) e q for all φ G ΨχV} C
{q(xy) € £(£) : θ(xy) e q and -τψ(y) G q for all φ G Φv } = Q. Since
MR{3xθ(x,y)) = β, R = {r(y) G 5(C) : r is the restriction to y of some
element of Q } is finite. Since θ(x, d) is algebraic for any J, r(y) U {θ(x^)} has
finitely many completions in £(£), for any r € R. Hence, Q is finite, from
which we conclude that MR(μb) < MR(θ(xy)) < β.

(iii) Suppose, to the contrary, that φ(ϋ,y) is a formula over A and
φ(v,e) G tp(ά/acl(A)) has Morley rank β < MR(ά/A). We may assume
that 3ϋφ(v,y) isolates tp(e/A). Let p be a free extension of tp(ά/A) in
5(£). Since 3ϋφ(ϋ,y) G p isolates an algebraic type over A, φ(v,e') G p
for some e!. Since ^(i^e') is conjugate to φ(v,e) it also has Morley rank
β < MR(ά/A) = MR(p). This contradiction proves (iii).

(v) (=Φ-) Suppose that B is independent from α6 over A, and let c C B.
Since Mi?(c/AUαδ) = MR(c/A), MR(c/A\Jb) = MR{c/A) and Mi?(c/ΛU

(<=) This direction follows immediately from the transitivity of indepen-
dence.

Remark 3.3.2. Let € be the universal domain of a complete theory and
let φ{x,y) be a formula over 0. If MR(3xφ(x,y)) < oo and for each α,
MR(φ(x, ά)) < oo, then MR(φ(x, y)) < oo. In fact a bound on MR(φ(x, y))
can be computed in terms of MR(3xφ(x,y)) and a bound on MR(φ(x,ά)),
as ά ranges over tuples from (£.

This fact is due to Erimbetov [Eri75]. Proofs can also be found in [Lac80]
and [She90, V.7.8]. This lemma is occasionally helpful in showing that a
particular theory is t.t. To show that a complete theory T is t.t., instead of
showing that every p G S(C) has Morley rank, it is enough to show that each
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p G 5i(C) has Morley rank. Equivalently, T is t.t. if and only if
MR(υ = v) < oo.

Morley rank and Cantor-Bendixson rank are further connected by

Lemma 3.3.3. Let T be a complete theory, M an No—saturated model ofT
and let CB(-) denote Cantor-Bendixson rank computed in Sn(M). Then,
for all n—types p over M,

(i) MR(p) = CB(p);
(ii) if MR(p) < oo and p is complete, then p is stationary.
(in) Hence, if every element of S(M) has CB-rank, T is totally transcen-

dental.

Proof (i) It suffices to consider the case when p is a formula φ. That CB(φ) >
MR(φ) is a straight-forward exercise left to the reader. To show the reverse
inequality we prove (by induction on a) that CB{φ) > a =>• MR{φ) > a.
Assuming that MR(φ) ^ a yields the inconsistency of {</?}ϋ{ ~τψ : MR(ψ) <
a}. Thus, there are formulas ψι,...,ψn such that

(= \fv(φ{v) —> \J ψί(v)) and MR(ψi) < α, for i = l , . . . , n .

l<i<n

By Exercise 3.3.5, ψ = Vi<i<n Ψ* n a s Morley rank < α. Letting A be a finite
set containing the parameters in φ, the No—saturation of M yields a formula
φf over M conjugate over A to ψ. By induction, CB(ψ') = MR(ψ') < a.
Since φ implies ψ', CB(φ) < α; i.e., CB(φ) ^ a.

(ii) Since MR(p) = CB(p) = a < oo there is a formula φ € p such that
{q e S(M) : φ G q and MR(q) > a } = {p} (by Lemma 2.2.3(iv)). Supposing
that deg(p) > 1 produces two contradictory formulas ψι and Ψ2 over £ such
that MR(φ Λ ψi) = α, for % = 1, 2. Arguing as in (i) yields contradictory
formulas ψ[ and ψ'2 over M such that MR(φ Λ ̂ ) = α, for z = 1, 2. This
contradicts that p is the unique completion of φ over M having Morley rank
α.

(iii) T is t.t. since, letting v = (υi,... ,vn), MR(v = v) = CB(v = v) =
: p G 5n(M) }, for each n< ω.

Let φ be a strongly minimal formula (over 0) in a t.t. theory and D =
φ(<£). Remember that D and cl(—), the restriction of acl(-) to JD, form a
pregeometry and the resulting dependence relation defines a freeness relation
(called dim —independence above). Since £ is t.t., Morley rank defines another
freeness relation on D.

The next lemma connects dim —independence and Morley rank indepen-
dence in a strongly minimal D. (Note: In the lemma the ambient theory is
not required to be totally transcendental.)

Lemma 3.3.4. Let φ be a strongly minimal formula over A* (in some com-
plete theory) and D — φ(€). If a is a tuple from D and A is any set con-
taining A*, then MR(a/A) = dim(α/A). Thus, for all subsets X, Y and
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Z CY of D, X is Money rank independent from Y over Z if and only if X
is dim —independent from Y over Z.

Furthermore, if a Π acl(A*) = 0, a is acl—independent over A if and
only if a is Money rank independent from A and *4* and a is Money rank
independent over A.

Proof. Without loss of generality, 4̂* = 0. The lemma is proved by induction
on n = dim(ά/A). Let p = tp(ά/A). By Lemma 3.3.l(i), MR(p) = 0 if
and only if a € acl(A), hence the result is true when n = 0. Without loss,
a = (αi, . . . , on, α n + i , . . . , ak) where, dim({αi,..., an}/A) = n > 0. We first
show that MR(p) > n. Let B = {b\ : i < ω} C D be a set which is
acl—independent over A. Since tp(b\/A) = tp(aι/A), for all i, there is a tuple
bι realizing p such that b\ is the first entry in 6\ We can furthermore assume
that bι is acl—independent from AuB over Au{b\}, hence, dimffi/AuB) =
dim(67^ U {b[}) = n - 1 (by additivity, Remark 3.1.4) and ί p ^ / ^ . U 5 ) ^
tp{V/A U β) when i ^ j . By induction MRψ /A Ufl) = n - 1 , hence
{tp(bι/A U B) : i < ω } forms an infinite set of extensions of p, each having
Morley rank n — 1. Thus MR(p) > n.

To prove that MR(p) < n it suffices to show that p does not have infinitely
many contradictory extensions of Morley rank > n. Assume, to the contrary,
that there is a set B D A and, for each i < ω, there is a bι realizing p such
that for all i<j<ω,_ MRQf/B) > n and tpQf/B) φ tp(V/B). By the first
paragraph, n < άim(bι/B) < άim(ά/A) = n, hence dim(&z/i?) = n (for i <
ω). Then, letting dτ = (b\,..., 6JJ, the fact that tp(bι/AUd1) is algebraic forces
{&i,..., bι

n} to be αcZ—independent over B. Since an αd—independent subset
of a strongly minimal set is indiscernible (by Lemma 3.1.3(iii)), tp(di/B) =
tp(dj/B) for all i and j . Hence, for each i < ω there is an fc e Aut(£) fixing
B pointwise and taking dι to d°. Let a! = (αi,. . . , an) and let φ(x, a!) be an
algebraic formula satisfied by α. Then, |= φ(bι,dι), hence |= φ(fi(bi),d°), for
all i. Since φ{x^d°) is an algebraic formula there are distinct i and j such
that fi(b%) = fj(W). This implies (since the f^s are automorphisms fixing B)
that tp(bl/B) = tpQp /B). This contradiction completes the first part of the
proof.

The furthermore clause in the lemma follows from the definitions and the
first part of the lemma.

Notation. For A, 5, C subsets of a strongly minimal set D we can use A
is independent from B over C for "A is Morley rank independent from B
over C" or "A is dim—independent from B over C". The acl—independence
relation on D will be termed "algebraically independent".

In Lemma 2.2.4 the existence of Cantor-Bendixson rank was connected
to the number of complete types in the theory. A similar connection exists
for Morley rank.
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Proposition 3.3.1. Let T be a complete theory. IfT is t.t. then for all sets
A \S(A)\ < \A\ + |T|; i.e., T is λ-stable for all infinite cardinals λ > |Γ | . //
T is countable, then T is ^—stable if and only ifT is totally transcendental.

Proof. Let A be an arbitrary subset of (£. For any formula φ over A let
Uφ = {p £ S(A) : φ G p and MR(p) = MR(φ) }. Every element of S(A)
is in some Uφ and each Uφ is finite, hence |5(A)| is equal to the number of
formulas over A, which is \A\ + \T\.

If Γ is countable and No~stable then T has a countable saturated model
M and every element of S(M) has CB-rank by Lemma 2.2.4. By Lemma 3.3.3,
T is t.t., completing the proof.

Warning: There is an uncountable theory T which is \T\— stable but not t.t.

We saw in previous sections the usefulness of indiscernible sequences in the
construction of uncountable models with special properties. Indiscernible sets
also played an important role in our proof of Morley's Categoricity Theorem,
e.g., if M is a model of an uncountably categorical theory and φ is a strongly
minimal formula (over say 0) then a basis for φ(M) is an indiscernible set
over which the model is prime. Indiscernible sets will also play a vital role
in the analysis of Morley rank independence in a t.t. theory. Preliminarily,
we show that every infinite indiscernible sequence is actually an indiscernible
set. This is an instance of a basic theme in stability theory: the presence of
an order gives rise to many types over sets.

Lemma 3.3.5. Let T be a complete theory which is λ—stable for some λ >
|T|, A a set and (/, <) an infinite indiscernible sequence over A. Then

(i) I is an indiscernible set over A.
(ii) For any formula φ{x, y) over A there is an n < ω such that for all α,

|{6 G I : h φ(ά,b)}\ < n or \{b G / : \= - ¥>(α,6)}| < n.

Proof, (i) Suppose, to the contrary, that there is a formula φ(vι,..., vn) over
A satisfied by increasing n—tuples from /, but not satisfied by some n—tuple
of distinct elements from /. Let Pn denote the group of permutations of
{1, . . . , n}. Let P + be the set of elements σ of Pn such that for a\ < . . . < an

from /, |= φ(άσι,... , α σ n ) . By assumption, P + ψ Pn. Every element of Pn

can be written as a product of transpositions of the form (fc, k + 1) (which
denotes the permutation fixing every i £ {k, k + 1} and switching k and
k + 1 ) . Thus, there are σ G P + , r G Pn \P£ and k such that r = (jb, k +1) σ.
Letting ψ(ϋi,..., vn) be the formula φ(ϋσι,..., vσn) we have

\= ψ(άι,..., άn) and |= - ^ ( α i , . . . , α f c_i, α fc+i, αfc, α f c + 2 , . . . , α n ) ,

for άι < . . . < an from /.

Let (Y, <) be a dense linear order without endpoints of cardinality > λ con-
taining a dense subset X of cardinality λ. (First let μ be the least cardinal



3.3 Totally Transcendental Theories 81

such that 2μ > λ. Let XQ be the set of sequences of O's and Γs of length
< μ, ordered lexicographically by <. Then (-Xo»<) is a dense linear order
with 2μ cuts. Let (Y, <) be an order of cardinality > λ in which Xo is dense
and let X be any subset of Y of cardinality λ which contains Xo.) By Corol-
lary 2.4.1 we may assume (Y,<) to be an indiscernible sequence of tuples
with D(Y) = D(I). Let y, y' GY with y <y'. Then, there are x{ G X, for
1 < i < n and i φ k, such that

xι < ... < xfc_i < y < xk+1 < y' < xk+2 < ... < xn.

Consequently,

u - - ,xn) and {= -*ψ(xu ... ,xk-i,y',Xk+i, - ,xn)-

Thus, distinct elements of Y realize distinct types over X. Since \X\ = λ and
\Y\ > λ this contradicts the λ—stability of T, proving (i).

Turning to (ii), by (i) we may assume I to be an indiscernible set. Sup-
pose (ii) to fail for φ(x,y). Then for all n there are 7o, h C /, each of
cardinality > n, such that {φ(x, b) : b G Jo} U {~^φ{x, b) : b G I\}
is consistent. By compactness and the indiscernibility of /, for To, h any
two disjoint subsets of /, {φ(x,b) : b £ h } U {^φ(x,b) : 6 € I\ } is
consistent. Again, by Corollary 2.4.1, there is an indiscernible set J with
D(J) = D(I) and \J\ = λ. Thus, for any disjoint pair of subsets Jo, J\
of J, {φ(x, b) : b G Jo} U {~i^(x, ϊ>) : b G J\ } is consistent. Thus,
\S(J)\ = 2'JI = 2λ. This contradiction of the λ-stability of T, proves the
lemma.

Let φ be a strongly minimal formula (over some set A). Assuming that a,β
has been defined for β < a let aa be a realization of the unique nonalgebraic
extension of φ over { aβ : β < a} U A. Then, for any α, { ap : /? < α }
is an indiscernible set over A. The following concept is a generalization of
this construction to an arbitrary stationary type. If I is an ordered set and
C — { Ci : i G /} is a set indexed by I, then for i G /, C* denotes { Cj : j < i}.

Definition 3.3.6. Let T be a totally transcendental theory, p G S(C) a sta-
tionary type and B D C. We call A = {άβ : β < α} a Morley sequence over
B in p if for all β < α, tp(άβ/B U -4̂ ) is the unique free extension of p in
S(BuAβ).

As with bases of strongly minimal sets such sequences are indiscernible:

Lemma 3.3.6. Let T be a totally transcendental theory, p G S(C) a station-
ary type, B D C and A = {άβ : β < a} a Morley sequence over B in p.
Then A is an indiscernible set over B.

Proof. The following argument is a slight generalization of the proof of
Lemma 3.1.3(iii). Define an order < on A by: άβ < άΊ if β < 7. By
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Lemma 3.3.5 it suffices to show that (A, <) is an indiscernible sequence.
To accomplish this we prove by induction on fc,

for all άβτ < . . . < άβk and άΊl < . . . < άΊk from A. < dβk and α 7 l < ... < aΊk irom A,
tp(άβl ... aβk/B) = tp(aΊl... aΊk/B).

Assuming this is true for k < n let ap1 < ... < dβn and α 7 l < ... < aΊrι be
from A. By induction there is an automorphism / of £ fixing B pointwise and
mapping άβi to άΊi, for 1 < i < n. Since / fixes B pointwise and preserves
Morley rank, MR(f(άβn)/B U {α7 l,... , α7n}) = MR(p) and f(a,βn) realizes
p, hence f{cLβn) and α7 n both realize the unique free extension of p over
BU {α 7 l,..., aΊn_1 }• We conclude that (άβ1,..., α/3n) and ( α 7 l , . . . , α7 n) have
the same type over B, proving the lemma.

As with independent subsets of a strongly minimal set, if 7 is a Morley
sequence over B D A in the stationary p G S(A), then (by Lemma 3.3.5) for
all α G /, α is independent from B U (/ \ {a}) over A.

Example S.S.I. (Two examples of Morley sequences.) Let E be a binary rela-
tion and T the theory saying that E is an equivalence relation with infinitely
many infinite classes and no finite classes. Let M \=T. The unique p G S\ (0)
is stationary. To obtain a Morley sequence in p simply take any I C M such
that a 7̂  b G / = > \= ~ -E(α, b). Now let a be any element of M and q G 5(α)
the unique nonalgebraic completion of E(x, a) (which also happens to be
stationary). Then, any J C E(M, a) \ {a} is a Morley sequence in q.

With these tools in hand we can complete the proof that Morley rank
independence satisfies all of the properties of a freeness relation:

Proposition 3.3.2 (Symmetry Lemma). For all sets A, B and C,

A^B => B±A.
c c

Proof. Assuming the symmetry property to fail, the finite character of de-
pendence yields a set C and (finite sequences) α and b such that b depends
on α over C and α is independent from b over C; i.e.,

MR(b/CUo)< MR(b/C) = a and MR(a/CU 6) = MR(a/C) = β. (3.3)

Claim. There are α, b and C satisfying (3.3) with C the universe of an
No—saturated model M.

Let M D C be an tt0—saturated model. Let V be a realization of tp(b/C)
which is independent from M over C, and choose a! such that tp(b'ά'/C) =
tp(ba/_C) and a' is independent from MUbf over C u t ' . Then, MR(b'/M) =
MR(b'/C) = α, MR(b'/MUά') < MR(V/C\Ja') < a and MR(ά'/M\Jb') =
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MR(ά'/C U V) = MR(a'/C) = β. Replacing 6 by V and a by a! proves the
claim.

By Lemma 3.3.3(ii), both p_ = tp(b/M) and q = tp(ά/M) are stationary.
Let φ{x,y) be a formula in tp(ba/M) such that MR{φ(x,a)) < a = MR(p).
The formula φ will be used to contradict Lemma 3.3.5(ii). First, let / be an
infinite Morley sequence over M in q and let V be a realization of p which
is independent from / over M. For any a' G /, φ(x, a!) has Morley rank < a
(since it is conjugate to φ(x,a)) hence |= ->φ(bι,α'). Now let J be an infinite
Morley sequence over M U V U / in q. The unique free extension of q over
M U b (considered as a type in y) is tp(ά/M U 6), hence contains φ(b,y).
Since tp(b/M) = tp(b'/M), qU {φ(xjf)} also has Morley rank /?, hence the
unique free extension of q over MUbf contains φ(b', y). Thus, for every a! G J,
|= φ(b'', α'). Checking the definitions of / and J, /U J is a Morley sequence over
M in #, hence an indiscernible set over M. Since { c G / U J : |= (̂ (δ7, c) } = J
and {c G / U J : |= ^φφ',c) } = I are both infinite we have contradicted
Lemma 3.3.5(ii), proving the lemma.

This lemma allows us to say, for instance, "A and B are independent over
C," instead of A is independent from B over C or 5 is independent from A
over C. A collection of sets (or elements) I is called independent over A or
A—independent if for each X £ I, X is independent from I\X over A. Note:
a Morley sequence over A is independent over A.

Symmetry is such a basic property of independence that the lemma will
usually be applied tacitly.

Corollary 3.3.1. Let T be t.t., p G 5(A) a stationary type, I a Morley
sequence over A in p, and b a finite sequence. Then there is a finite J C I
such that I \ J is a Morley sequence over A U J U b in p.

Proof. Let J be a finite subset of I such that MR(b/AUl) = MR(b/AU J) =
β. Let a G I\J and Γ = I\{ά}. Then MR(b/AuΓ\Jά) = MR(b/AuΓ) (since
Γ D J), so by the Symmetry Lemma, MR(ά/A UΓUb)=_ MR{a/A U /') =
MR(ά/A). Thus, / \ J is a Morley sequence over A U J U b in p.

In Section 3.1 the relation "p = tp(a/B) does not split over A C B" was
promoted as a way of expressing that α is (at least intuitively) free from B
over A. We now introduce a strengthening of the nonsplitting relation called
definability. The relation "p G S(B) does not split over A C B" is equivalent
to: for all formulas φ(x,y) there is a set Pφ C S(A) such that for any α from
B, φ(x,a) G p if and only if tp(a/A) G P^. Then p will be definable over
A if p does not split over A and for each φ, Pφ is a basic open set in the
appropriate Stone Space. Explicitly,

Definition 3.3.7. Let p be a complete type over B and A a set. We say that
p is definable over A if for every formula φ(x,y) over 0 there is a formula
ψ(y) over A such that for all sequences a from B, φ(x, a) G p <=> \= ψ(a).
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For p and φ as above, let p \ φ be the type {φ(x,b) : φ(x,b) G p } U
{ -*φ(x, ϊ>) : -*φ(x, b) G p }. When ψ has the property that for all sequences a
from B, φ(x, a) G p 4=> (= ψ(a), we say that ψ defines p \ φ.

If p G S(B) is definable there is a function d such that for each formula
φ(x, y) over 0, dφ is a formula ψ(y) which defines p \ φ. Both d and the
collection of formulas { dφ : φ a formula over 0 } are called a defining scheme
for p.

Clearly, if p is definable over A then p does not split over A.
If p G S((ί) and d is a defining scheme for p consisting of formulas over

A, then d is also a defining scheme for any complete q C p. For this reason,
many of the results stated below for elements of S(<£) can actually be applied
to any complete type.

Definition 3.3.8. For A a set and φ a formula, φ is almost over A if the
set { f(φ) : / G Aut((£) and / fixes A pointwise } contains finitely many
formulas, up to equivalence; i.e.,

{ f(φ(t)) : / G Aut(C) and / fixes A pointwise }

contains finitely many sets.

Much of the remainder of the section is devoted to the proof of the fol-
lowing theorem which ties together freeness, definability and nonsplitting.

Theorem 3.3.1. Let T be a t.t. theory, p G S(£) and A a set.
(i) The following are equivalent.

(1) p is a free extension of p \ A and p \ A is stationary.
(2) p is definable over A.
(3) p does not split over A.

(ii) The following are also equivalent.

(1) p is a free extension of p \ A.
(2) There is a defining scheme for p consisting of formulas which are

almost over A.
(3) p is definable over any model containing A.

This theorem is actually a compilation of many lemmas and propositions,
which we have collected as a focal point for the remainder of the section.
One part of the theorem, namely (3) => (2) of (i), will not be proved until
Section 4.1.1. With the additional tools developed in Section 4.1 the proof of
this implication is easier than it would be if we forced it into this section. It
is stated as part of a theorem in this section to present a coherent picture of
the relationship between freeness and definability. The most difficult part of
the theorem is (1) => (2) of (i), which is handled in
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Lemma 3.3.7 (Definability Lemma). Suppose that T is t.L, A is a set,
A C B C £, p G S(B) is a free extension of p \ A and p \ A is stationary.
Then, p is definable over A.

Part (i) of the following elementary result is used in the proof of the
lemma.

Lemma 3.3.8. (i) Let φ be a formula and A a set such that for all auto-
morphisms f of (£ fixing A pointwise, φ is equivalent to f(φ). Then φ is
equivalent to a formula over A.

(ii) Let φ{x,y) be a formula over A. If φ(x,c) is almost over A there is
a formula E over A which defines an equivalence relation with finitely many
classes and satisfies: for all d realizing tp(c/A), (= E(d,d!) <ί=> φ(£,d) =
φ{£,d>).

Proof, (i) Let p G S(A) be the type over A of some tuple α satisfying φ. If b
also realizes p there is an / G Aut(C) fixing A and taking α to b. Since φ is
equivalent to f(φ), b also satisfies φ. Thus, by compactness there is a formula
φ G p such that (= \fx(φ —> ψ). A further compactness argument, left to the
reader, shows that there is a formula φ1 over A equivalent to ψ.

(ii) Let Eo(y^yf) be the equivalence relation defined by:

Eo(y,yf) <=> Vχ(φ(χ,y)+->φ(χ,y')).

Since φ(x, y) is over A, so is Eo. Let p = tp(c/A). Since φ(x, c) is almost over
A there are finitely many, say k, EQ—classes containing a realization of p. By
compactness there is a formula φ G p such that

^ V

The equivalence relation E(y, y') = (E0(y, y')/\φ{y)f\φ{y'))V{-^Φ{y)f\^Φ{y'))
has the desired properties.

Proof of the Definability Lemma. First suppose that B is a set; i.e., |J5| < |<£|.
We may assume that B = M is a K—saturated model, where K > \A\ + |Γ|.
(Let M D B be such a K—saturated model and p1 the unique free extension
of p over M. If p' is definable over A then so is p.) Let q = p \ A. Since M is
K—saturated and q is stationary M contains an infinite Morley sequence / in
q. Let a be a realization of p and note that / U {a} is also a Morley sequence
in q (since p \ (/U A) is the unique free extension of q over lUA). Let φ(x, y)
be a formula over 0.

Claim. For any sequence b from M of length ί = lh(y), φ{x,b) G p if and
only if { c G / : |= φ{c, b) is cofinite in / }.
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By Corollary 3.3.1 there is a cofinite set Γ C I which is a Morley sequence
over A U b in q, in fact, /' U {a} is a Morley sequence over A U b in q. Thus,
for b a sequence from M of length £,

φ(x,b) G p <=> (= ̂ (α,6) 4=> ( |= φ(ά',b) for every a! G /' ).

This proves the claim.
Bringing Lemma 3.3.5(ii) into play, there is an n such that for all b G M^,

|{δ' G / : h P(δ',δ)}| < n or |{α' G / : |= " <p(α',δ)}| < n. Thus,

φ(x,b) G p 4=Φ ( there is J C / of cardinality > n such that

α'eJ^N(^)) (3.4)
<=> ( there is no J C / of cardinality > n such that

a' eJ = > h -iy>(α',δ)). (3.5)

A formula defining p relative to y?(̂ , ̂ ) is found through this equivalence. Let
J = {αo,..., o>2n\ be a subset of / of cardinality 2n + 1 and c an enumeration
of J. Let

= \J < /\ φ{ai,y) : w C2n+1, \w\=n\ .

If 5 is any sequence from M which satisfies ψ(y,c), there are certainly n
elements of / satisfying φ(x,b), hence φ(x,b) G p (by (3.4)). Conversely, if
|= -»^(6, c) there must be n elements of / satisfying -κp(x, 6), hence -<^(x, 5) G
P (by (3.5)).

To prove the lemma we must obtain a defining formula for p \ φ which is
over A, while the defining formula ψ(y, c) is over A U /.

Claim. For any J realizing tp(c/A) in M, ψ(y,d) is equivalent to ψ(y,c).

Let J in M realize tp(c/A). Then J is also an enumeration of a Morley se-
quence {Jo, j J271} in g, and there is an infinite Morley sequence J C M
in g containing {Jo? »J2n} In obtaining ^(7/, c) above we can take / to be
any infinite Morley sequence in q which is contained in M and c any subset
of / of cardinality 2n + 1. Thus, for all b from M, <p(x, b) e p <Φ=> [= ̂ (6, J).
Hence, \= Vy(V̂ (y, c) <->• ψ(y,d)), proving the claim.

Thus, all conjugates over A of ψ(y,c) which are over M are equivalent.
Since M is K—saturated, this implies that all conjugates over A of ψ(y, c) are
equivalent. By Lemma 3.3.8, ψ(y,c) is equivalent to a formula ψ'(y) over A,
proving the lemma in the case when B is a set.

Now let B C £ be arbitrary and suppose, towards a contradiction, that
there is some formula φ(x, y) such that p \ φ is not defined by a formula over
A. Then there is a p' C p whose domain is a set Bf D A such that p' f φ
is not defined by a formula over A, in contradiction to the first part of the
proof. This completes the proof of the Definability Lemma.

Theorem 3.3. l(i), (2)4=^(3) is proved in



3.3 Totally Transcendental Theories 87

Lemma 3.3.9. Let T be t.t. and p G S(<£). Then p does not split over A if
and only if p is definable over A.

Proof. If p is definable over A, then clearly p does not split over A. Now
suppose that p does not split over A. By the Definability Lemma, p is definable
over some set. Let φ(x,y) be an arbitrary formula and let φ(y) be a defining
formula of p \ φ. If / G Aut((£) fixes A pointwise, then f(p) = p since p does
not split over A. Also,

|= φ(ά) if and only if φ(x, a) G p

if and only if φ(x, f(ά)) G f(p) = p

if and only if (= ψ(f(ά))

That is , φ is preserved by the automorphisms of (£ which fix A. Thus φ is
equivalent to a formula over A, (by Lemma 3.3.8(i)), as required.

The remainder of the proof of part (i) of the main theorem is delayed
until Lemma 4.1.4.

Proof of Theorem 3.3.1 (ii). (1) => (2). First notice that if φ and φ' are
formulas which define p \ φ then φ and ψf are equivalent.

Since p is a free extension of q = p \ A,

{pf £ 5(£) : p' is conjugate to p over A}

is a finite set of types, which we enumerate as {po5 ,Pk}- (Every conjugate
of p is an extension of q in S(<£) with the same Morley rank as q.) Suppose
that φ defines p \ φ (where φ is some formula over 0).

Claim. If f,g G Aut((£) fix A pointwise and f{p) = g(p), then f(φ) is equiv-
alent to g(φ).

For / and g as hypothesized and r — f(p) = g(p), both f(φ) and g(φ) define
r \ φ. Hence, f(φ) is equivalent to g(φ).

Since there are finitely many elements of 5((£) conjugate over A to p, φ
has finitely many conjugates over A. This proves (1) => (2).

(2) = > (3). It suffices to show that a formula φ(y, c) which is almost over
A is equivalent to a formula over any model M D A. By Lemma 3.3.8(ii) there
is an ^—definable equivalence relation E with finitely many classes such that,
for all cx, |= E(c, c!) if and only if φ(€, c!) — φ(<ί, c). Since E has only finitely
many classes every class has a representative in M, in particular, there is a
sequence c! from M such that f= E(c, c!). Then ^(y, c;) is the desired formula
over M equivalent to φ(y,c).

(3) =Φ> (1). Suppose p is definable over any model containing A and, to
the contrary, there is a formula φ(x, a) G p (where φ — φ(x, y) is over 0) such
that

MR{φ(x,a)) < MR{p \ A) = a.



88 3. Uncountably Categorical and No-stable Theories

Let M D A be an No—saturated model independent from a over A. By
hypothesis, there is a formula ψ over M defining p \ φ. Since r = tp(ά/M) is
stationary there is an infinite / which is a Morley sequence in r over M. Let
b realize p \ M U / and let /' C / be a finite set such that b is independent
from JlίUJ over M U /'. Let a! G I\ /'.

Claim, o! and b are independent over A.

Simply because o! G /, a! is independent from b over M U Γ. Since / is
a Morley sequence over M and a! G / \ /', α' is independent from i 7 over
M. Furthermore, since tp(a! /M) = tp(ά/M) and α is independent from M
over A, a' is also independent from M over A. Applying the transitivity of
independence we conclude that a! is independent from M U V U b over Λ,
hence α' and b are independent over A. This proves the claim.

Since \= ψ(a!) and ̂  defines p \ φ, φ(x,af) G p. Hence, |= φ(b,a'). Thus,
MR(b/a') < MR(φ{x,a')) = MR(φ(x,a)) < a = MR(b/A), contradicting
the claim and completing the proof of Theorem 3.3.1(ii).

Most properties of Morley rank independence in a t.t. theory can be de-
rived quickly from Theorem 3.3.1. We include a few corollaries for ease of
reference.

The following corollary is left as an exercise to the reader.

Corollary 3.3.2. Let T be t.t and p G S(<£). If p is a free extension of
q = p ϊ A, then for all models M D A there is a finite B C M such that p is
definable over B and p \ B is stationary.

The following observation lets us pick the parameters in the formulas of
a defining scheme to have a very particular form.

Corollary 3.3.3. Let T be t.t. and p G S(€). Let q G S(A) be any complete
stationary type such that p is the unique free extension of q and let I be an
infinite Morley sequence in q over A. Then, p is definable over I.

Proof. This follows immediately from the proof of the Definability Lemma.

The following consequence of definability will play a minor role in the
proof of the Baldwin-Lachlan Theorem. This is occasionally called "The Open
Mapping Theorem", although it is actually a corollary of that result proved
for stable theories in Lemma 5.1.11.

Lemma 3.3.10. IfT is t.t, tp{a/A U {&}) is isolated and tp(a/A) is non-
isolated, then a J£ b.

A

Proof. Suppose, to the contrary, that α is independent from b over A. Let
φ(x, b) isolate tp(ά/A U 6), where φ(x, y) is a formula over A.

Claim. There is a formula ψ(x) over A such that whenever (= ψ(c), q =
tp(b/A) has a free extension over c containing φ(c,y).
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To see this, let p(y) G S(£) be a free extension of q and ψo(x) a formula
almost over A defining p \ φ. Let T/>O> , Φk be a list of the conjugates of V>o
over A (up to equivalence), and let ψ = ψo V ... V ψk Since ψ is invariant
under any automorphism which fixes A pointwise, ψ is equivalent to a formula
over A (by Lemma 3.3.8). Suppose f= ψ(c). Then (= ̂ (c), for some i, and
for p' a conjugate over A to p such that ψi defines pf \ φ, φ(c,y) G p'. This
proves the claim.

A contradiction will be reached by showing that ψ isolates tp(ά/A). Sup-
pose that c and c1 satisfy ψ. By the claim there are d and dl realizing q
such that |= φ(c,d) and |= φ(c\d'). Since tp(c/d) and tp(c'/df) are isolated
by φ{c,d) and φ(c',df), respectively, there is an automorphism which is the
identity on A and takes cJto c'dl'. Hence tp(c/A) = tp(c!/A). This contradic-
tion proves the lemma.

The proof of the following is left to the exercises.

Corollary 3.3.4. Suppose that T is t.L, M is a model and N is a prime
model over M U A Then beN\M = * bj£A.

M

The final topic to be covered in this section could be called "relativiza-
tion". Suppose that T is t.t., φ(x) is a formula over A and D = φ(£). In
some studies it is natural to "restrict the universe to D", defined formally as
follows.

Definition 3.3.9. Let € be the universal domain of a complete theory and
D = φ(€) an A—definable subset of €k for some k. The relativization of €
to D is the model N (in a language L*) defined as follows.

(1) The universe of N is D.
(2) For each A—definable relation X C Dn (for some n) there is a
relation symbol R in L* whose interpretation on N is X.

We may alternatively call N the relativization of Th(£) to φ or the restriction
of d to D.

When N is a relativization of £ to some definable D it is natural to ask:
What is the difference between N and the structure on D induced by all
definable relations in <£? The next proposition says that there is no difference
when T is t.t.

Proposition 3.3.3. Let T be t.t. and D a subset of <tn (for some n) which
is definable over A. Then, for any k and definable H C Dk there is a B C D
such that H is definable over A U B.

Preliminarily, we prove

Lemma 3.3.11. (i) IfT is complete and there is a defining scheme forp G
S(A) consisting of formulas almost over A, then there is a defining scheme
forp consisting of formulas over A.

(it) IfT is t.t., then every p G S(A) is definable over A.
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Proof, (i) Let ψ(y, a) be a formula almost over A which defines p \ φ (where
ψ(y, z) is over A). Since ψ(y, a) is almost over A there is a formula θ(z) over A
(by compactness) such that |= θ(b) implies ψ(y, b) is equivalent to a conjugate
over A of φ{y^a). If ψ(y, a!) is conjugate over A to ψ(y,a), then for c any
tuple from A, |= ^(c,ά) 4=> \= ψ{c,a'). Thus, <//(£) = 3z(θ(z) /\ψ(y,z))
defines p \ φ.

(ii) Let q G S(€) be a free extension of p. By Theorem 3.3.1(ii) there is a
defining scheme d for q consisting of formulas almost over A. Since d is also
a defining scheme for p, (i) implies that p is definable over A.

Remark 3.3.3. A was not assumed to be a set in this last lemma; when \A\ =
|£| the same proof works.

Proof of Proposition 3.3.3. Let H C Dk be ^(<£,α). By the previous lemma,
there is a defining scheme for tp(ά/D U A) consisting of formulas over D U A.
Thus, there is a formula θ(x) over D U i 4 such that f= ψ(b,a) if and only if
|= 0(6), for all 6 from D U A ; i.e., 0 defines ϋ". This proves the proposition.

The proof of the following is left to the reader.

Corollary 3.3.5. Suppose that T is t.t., D is a definable set in £ and To is
the theory of the relativization of € to D. Then, the Morley rank of D in T
is the same as the Morley rank of the universe in T&.

Corollary 3.3.6. Suppose that T is t.t., D is a definable set in € and Tp
is the theory of the relativization of £ to D. If T is uncountably categorical
then so is To-

Proof. See Exercise 3.3.22.

Corollary 3.3.7. Let M be a model of a t.t. theory andp G Sn(M). Let φ be
a formula over M such that any realization of p is a tuple from φ((£). Then,
p \ φ{M) implies p.

Proof. Let A be a finite set such that φ is over A and let ψ(ϋ,b) G p be such
that ψ(<ί,b) is a set of tuples from D = φ(<£). By Proposition 3.3.3 there is
a formula θ(ϋ,ά) equivalent to ψ(ϋ,b), where a C D and θ(ϋ,w) is over A.
Since M is a model there is such an a from φ(M). In other words there is a
formula in p \ φ{M) (namely θ(ϋ,ά)) which implies ψ(v,b). This proves the
corollary.

Much more can be said about the relationships between definability, in-
dependence and stationarity (see Section 5.1) but this basic foundation is
sufficient to prove the results in the next chapter and the remainder of this
one.

Historical Notes. Morley rank and the concept of a totally transcendental
theory were developed by Morley in [Mor65], where we also find the notion of
a Morley sequence. Definability of types was introduced by Shelah [She71],
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although not in the setting of a t.t. theory. Overall, the treatment of t.t.
theories given here was motivated by properties of the forking dependence
relation on stable theories as proved by Shelah; [She90] is the definitive source.

Exercise 3.3.1. Let T be the theory in the language with two binary re-
lations E\, E2 which says that the E^s define equivalence relations with
infinitely many infinite classes and no finite classes, £2 refines E\ and each
E\— class contains infinitely many £2-classes. Compute MR(x = x).

Exercise 3.3.2. Let T be the theory in the first exercise, M a model of T and
b an element such that E\{b,a) for some a G M, but b is not E2—equivalent
to any element of M. Show that there is a defining scheme d over a for
p = tp(b/M). What are dEλ and dE2Ί

Exercise 3.3.3. Prove (i) of Lemma 3.3.2.

Exercise 3.3.4. Write out the proof that Morley rank independence satisfies
properties (l)-(3) and (5)-(7) in the definition of a freeness relation.

Exercise 3.3.5. Let ΦQ{X) and ψι(x) be formulas in some complete theory.
Show that MR(ψo V φι) = max{MR(ψ0),

Exercise 3.3.6. Let X be a definable set of Morley rank α < 00 in the
universal domain of some theory. Show that deg(X) = 1 if and only if for all
definable F c l , MR(Y) < α or MR(X \Y) < α.

Exercise 3.3.7. Show that for T a countable complete theory, T is Ko—stable
if and only if MR(x = x) < 00. (See Remark 3.3.2.)

Exercise 3.3.8. Let € be the universal domain of a t.t. theory and let A
be a subset of <£. Let T = TH^A), the theory of € in the language with a
constant symbol for each element of A. Show that T is also t.t.

Exercise 3.3.9. Prove: If T is t.t., then for all sets A and B there is C C B
such that i l ^ a n d \C\ < \A\.

c

Exercise 3.3.10. Show that if T is t.t., / is independent and / I A, then
/ is A—independent.

Exercise 3.3.11. Let Γ be a complete theory, M an No—saturated model of
T and let CB(-) denote Cantor-Bendixson rank computed in Sn(M). Prove
that for all n—types p over M, MR(p) > CB(p).

Exercise 3.3.12. Let / be an infinite indiscernible set in a t.t. theory. Show
that there is a type p e S(I) such that b realizes p if and only if 7 U {b} is
indiscernible. Conclude that in a K—saturated model M any infinite set of
indiscernibles is contained in an indiscernible set J C M of cardinality K.
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Exercise 3.3.13. Suppose that T is a t.t. theory, tp(a/A) and tp(b/Aϋ{a})
are both stationary. Then tp(ba/A) is stationary.

Exercise 3.3.14. Give an example of a t.t. theory and a p E SΊ((£) which is
a free extension of p \ 0 but not definable over 0.

Exercise 3.3.15. Let T be a t.t. theory, φ(u,v) a formula and A — {α^ :
i < ω } a set such that |= φ(aι, ctj) if and only if i < j . Then A is finite. (See
Lemma 5.1.6 for a proof of this property in stable theories.)

Exercise 3.3.16. Suppose that T is t.t., p £ S(A) is a stationary type and
/ and J are Morley sequences over A in p with |/| = \J\. Then there is an
automorphism of <£ fixing A and mapping / onto J. Also, if / is an elementary
map from A onto A' and Γ is a Morley sequence in p' = f(p) with \Γ\ = |/|,
then / can be extended to an elementary map g taking I onto /'.

Exercise 3.3.17. Let T be the theory of infinite vector spaces over a field
(formulated in the usual language so that T is strongly minimal). Show that
for all tuples α and sets A, tp{a/A) is stationary.

Exercise 3.3.18. Let T be an uncountably categorical theory, M a model
of T,p, q e S(M) strongly minimal types and a a realization of p. Then there
is a realization b of q which is inter algebraic with a over M.

Exercise 3.3.19. Complete the proof of Lemma 3.3.8(i).

Exercise 3.3.20. Prove Corollary 3.3.2.

Exercise 3.3.21. Prove Corollary 3.3.4.

Exercise 3.3.22. Prove Corollary 3.3.6.

3.4 The Baldwin-Lachlan Theorem

In this section we prove that an uncountably categorical theory has 1 or No
many countable models. This is the Baldwin-Lachlan proof of a conjecture
due to Vaught. We will actually prove the following stronger result.

Theorem 3.4.1 (Baldwin-Lachlan). Let T be a countable theory which is
uncountably categorical but not HQ—categorical. Then, T has No many count-
able models. Moreover,

(i) If M is a countable model and φ(v, a) is a strongly minimal formula
with tp(ά) isolated, and b is a sequence from M with tp(b) = tp(ά), then

άim{φ{M,a)/a) = άim(φ(M,b)/b).

(ii) Every model ofT is homogeneous.
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Throughout this section

- T denotes a countable uncountably categorical theory;
- φ(v,x) is a formula and ά* is a tuple with φ(υ,a*) strongly minimal and
- q = tp(ά*) isolated;
- when N (= T and b C N realizes <?, Dim^TV) denotes dim(φ(N,b)/b).

(We do not assume here that T is not No—categorical.) By Corollary 3.1.4(i),
any model M is prime over φ(M, a) U α, where a is any realization of q in M.
In fact M is prime over J U α, for / any basis for φ(M, a) over a.

The results in the proof of Morley's Categoricity Theorem are enough to
prove the requisite upper bound:

Lemma 3.4.1. T has countably many countable models.

Proof. Let M and N be countable models. By Corollary 3.1.4(i), M and
N are isomorphic if there are a C M and b C N realizing q such that
Diniα(M) = Όimι(N). Since {Dimc(M') : M' is a countable model and c
realizes q in M ' } is countable, T has countably many countable models.

For convenience all parts of Theorem 3.4.1 are stated for theories which are
not categorical in No, however both (i) and (ii) are true for all uncountably
categorical theories. (Theorem 3.4. l(i) is true for theories which are also
No—categorical since Dim a (M) = \M\ for any model M and a € q(M). Part
(ii) is proved for all uncountably categorical theories in Lemma 3.4.10 below.)

The next lemma ties categoricity in NQ to properties of strongly minimal
sets in uncountably categorical theories.

Lemma 3.4.2. The following are equivalent:

(1) T is No—categorical.
(2) For a a realization of q, acl(A) Π (/?(<£, a) is finite for all finite sets
A D a.

(3) For all M (= T and all a realizing q in M, Diniα(M) is infinite.

Proof Assume (1), let α be a realization of q and A D a a finite set.
Since there are only finitely many formulas over A in one free variable,
acl(A)Πφ(€, a) must be finite, proving (2). Assume (2), let M f= T, α C M a
realization of q and / be a basis for φ(M, a) over a. Since φ(M, a) is infinite,
(2) forces / to be infinite. Thus (3) holds.

The proof that (3) = > (1) is virtually identical to the proof of Theo-
rem 3.1.2. For M and N countable models and α, b realizations of q in M,
TV, respectively, let / be a basis for φ(M1ά) and J a basis for φ(N,b). By
assumption, |/| = |M| = |iV| = | J | , so there is an elementary map / taking
I Uά onto J U b. Since M is prime over I Uά and N is prime over JUb, f
extends to an isomorphism of M onto N. This proves the No—categoricity of
T.

— From hereon we assume that T is not NQ—categorical.
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By the previous lemma, the prime model M of T contains a realization
ά of q in M for which Diniά(M) is finite. (In fact, since M is homogeneous,
Όimι(M) is finite for all b from M.) Let / be a (finite) basis for φ(M, a) over
α, and p G S(I U α) the unique nonalgebraic completion of φ(v, a) over this
set. Since p is not realized in M it must be nonisolated. No previously set
conditions are invalidated by incorporating / into α, hence we can assume
that the unique nonalgebraic completion of φ(υ, a) in S(a) is nonisolated.
Notice that the corresponding behavior carries over to other realizations of
g, so we can require

- for any b realizing q the nonalgebraic completion of φ(υ,b) in S(b) is non-
isolated.

The assumption that T is not No -categorical is first used to prove

L e m m a 3.4.3. If M is a countable model and there is an a from M such
that Diiiiα(M) is infinite, then M is saturated and not prime over a finite
set.

Proof. Suppose that M and a are as hypothesized and let N be a countable
saturated model. Repeating he proof of (3) => (1) in the last lemma produces
an isomorphism from M onto N. Furthermore, since T is not No—categorical,
the countable saturated model cannot be prime over a finite set.

Remark 3.4-1- If M is a countable model and there is some a C M realizing
q such that Diniα(M) is finite, then Dim^M) is finite for all b realizing q in
M.

It will be important in this section to understand the behavior of non-
isolated complete strongly minimal types. The next lemma sheds much light
on the situation. Notice that the theory is not required to be uncountably
categorical here.

L e m m a 3.4.4. Let TQ be a complete theory, B a set and θ a strongly min-
imal formula over B. Let p G S(B) be the unique nonalgebraic type in S(B)
containing θ.

(i) Then, p is isolated if and only if acl(B) Π 0(<£) is finite.
(ii) If p is nonisolated and A D B, then the unique nonalgebraic extension

of p in S(A) is nonisolated.

Proof. Since (ii) follows immediately from (i), we only need to prove the first
part. Assuming that acl(B) Π 0(<£) = X is finite, there is a formula ψ over B
such that X is ψ(<ε). Since there is a unique nonalgebraic element of S{B)
containing 0, p is isolated by 0 Λ -»^.

Conversely, suppose acl(B) Π 0(£) = X is infinite. To prove that p is
nonisolated it suffices to show that any φ 6 p is satisfied by an element of X.
Let

Σ — { σ : σ is an algebraic formula over B }.
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Since there is a unique nonalgebraic element of S(B) containing θ the set of
formulas {θ Λ -ιψ} U { -iσ : σ G Γ } i s inconsistent. By compactness there
are σ 0 , . . . , σn e Σ such that f= Vv{θ{v) A /\i<n -ισi(v) —> /0(^)) Since X is
infinite it contains an element satisfying f\i<n ->σi, hence ψ. This proves the
lemma.

We proved in Lemma 2.3.1 that a theory with finitely many but more
than one countable model has a countable model which is prime over a finite
set, not saturated, and realizes every complete n—type over 0. In the next
lemma we show that such a model also exists under the (apparently) weaker
assumption that (i) of the theorem fails.

Lemma 3.4.5. Suppose that M is a countable model of T containing real-
izations a and b of q such that Diniά(M) φ Dim^M). Then M realizes every
complete n—type over 0, for all n, and M is prime over some finite set.

Proof. For some a from M realizing q, Diniα(M) is finite. Furthermore,
Diπic(M) must be finite for any realization c of q in M by Remark 3.4.1.
Fix α realizing q in M such that i = Diniα(M) is minimal and let / be a basis
for φ(M, a). By Corollary 3.1.4(i) M is prime over I U a. The main step in
the proof is

Claim. For every n there is a c with Dinic(M) > n.
Assume, to the contrary, that there is a bound on these dimensions. Let b

be a realization of q in M such that j = Dim^M) is maximal and let J be a
basis for φ(M, b). By hypothesis, i < j. Let Jf be a subset of J of cardinality i
and N C M a prime model over J'Ub. Since there is an elementary map from
IUά onto J'Uδ, M and iV are isomorphic. Thus, there is a sequence d from N
with Dimj(iV) = j. Since T does not have any Vaughtian pairs φ(M, d) (jL AT,
in fact, Dimj(M) > Dim^(N). This contradicts the maximality assumption
on j to prove the claim.

Now let p be an arbitrary element of 5(0), c a realization of p and N
a prime model over c. Let J be a realization of q in N, in which case TV is
prime over φ(N,d)Ud. There is a finite J—independent set J C φ(N,d) such
that r = tp(c/ J U d) is isolated. By the claim there is a b in M realizing q
and a b—independent set K C φ{M,b) of cardinality \J\. Hence there is an
elementary map / taking d to b and J onto K. Since f(r) is isolated it is
realized by some c' in M. This sequence c' is a realization of p in M.

The combination of the previous lemma and the next proposition will lead
quickly to a contradiction.

Proposition 3.4.1. Let V be any uncountably categorical theory and a any
tuple. Then there is a k such that whenever {6o> j bk\ is independent, there
is some bι independent from a.

The bound fc obtained in the proposition is given the formal name "pre-
weight":
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Definition 3.4.1. Let T be t.t, A a set and p G S(A). The pre-weight of
p, denoted pwt(p), is

sup{ K : there is an a realizing p and A — independent set

I of cardinality K such that b e I => a J/ b }.
A

We may write pwt{a/A) for pwt(tp(ά/A)).

(When the supremum of a class X of cardinals does not exist we write
supX = oo and extend the order on cardinals so that K < oo for all car-
dinals K.)

We will prove

Proposition 3.4.2. IfV is uncountably categorical then every complete type
has finite pre-weight.

Remark 3.4-2. Let V be t.t. and p — tp(ά/A). If / is an A—independent set
such that each b G / depends on α over A, then / is finite. (Assuming there
is an infinite such / let J C / be a finite set such that a is independent
from / U A over J U A. Then any b G / \ J is independent from a over A\
contradiction.) That there is a finite bound to |/|, as / ranges over all such
sets, is not immediately clear.

Proposition 3.4.1 follows immediately from Proposition 3.4.2 by letting
k = pwt(tp(ά)). Pre-weight (and weight) will be studied extensively in stable
theories (after replacing Morley rank independence by forking independence)
in Sections 5.6 and 6.3. Proposition 3.4.2 is implicit in Theorem 5.6.1.

Lemma 3.4.6. Let T be a t.t. theory and p, q complete types with q a free
extension of p. Then pwt(p) <pwt(q).

Proof. Suppose that p G S(A), q G S(B), a realizes p and / is an A—indepen-
dent set such that each b G / depends on α over A. Let ol realize q. Let J
be a set such that {a} U / is conjugate to {a'} U J over A and {α'} U J is
independent from B over A. Using standard properties of independence the
reader can show that J is B—independent and each b G J depends on o! over
B. Thus, pwt(q) > I J\ = \I\. This inequality is true for any A—independent
set / such that each element of / depends on α over A, hence pwt(q) > pwt(p),
to complete the proof.

The proof of Proposition 3.4.2 requires some preliminary lemmas involving
the following notion.

Definition 3.4.2. For A, B and C sets in a t.t theory we say that A is
dominated by B over C if for all sets D,
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Notice that for all sets A and B, acl(A) is dominated by A over B.

Lemma 3.4.7. Let V be a t.t. theory, M an ̂ -saturated model ofTf and
A a set which is atomic over MuB. Then AUB is dominated by B over M.

Proof. Without loss of generality, A = a and B = b are finite. Suppose,
towards a contradiction, that there is a c such that

c X b and c J^ α U b.
M M

Then (by symmetry and the transitivity of independence) α depends on c
over M U b. Let A' C M be a finite set such that tp(a/M U 6) is isolated over
A' U 6, and α depends on c over A' U 6. We can require, furthermore, that b is
independent from M over A1 and tp(b/A') is stationary. Let (̂ (x) be a formula
over A'VJb which isolates tp(ά/MUΪ>) and observe that MR(φ) = MR(ά/MU
b) = MR{a/A' Ub) = a. Let V(^, c, 6) be a formula in tp(a/A' U 6 U c) which
implies (̂  and has Morley rank < a.

Since b is independent from c over M and tp(b/Af) is stationary, tp(b/MU
c) does not split over A; (by Theorem 3.3. l(i)). Since M is Ko~saturated it
contains a realization c! of tp(c/Af), in fact, tp(c!/A' U 6) = tp(cjA! U 6).
By the conjugacy over A of ψ(x,c,ϊ>) and ψ(x,c',b), ψ(x,c',b) is consistent,
implies <p and has Morley rank < a. Since c7 is from M this contradicts that
</? isolates a complete type over M U b of Morley rank α.

Corollary 3.4.1. Le£ M be a countable ̂ —saturated model of an uncount-
ably categorical theory, φ a strongly minimal formula over M and a a tuple
of elements. Then there is a sequence c C φ(<t) such that a U c is dominated
by c over M and αUc is dominated by a over M.

Proof. By Exercise 3.1.20, V = Th(MM), the theory of M in the language
with constant symbols for the elements of M, is also uncountably categorical.
By Corollary 3.1.4(i) there is a tuple c from φ(C) such that tp(ά/c) is isolated
in X". In fact, c can be chosen in the prime model over a (in T ;), hence
tp{c/a) in T1 is also isolated. Returning to the original theory T = Th(M),
tp(ά/M\Jc) and tp(c/MUά) are isolated. By Lemma 3.4.7, αUc is dominated
by c over M and a U c is dominated by a over M, proving the corollary.

Two more facts about pre-weight will be enough to prove the finiteness
of pre-weight in uncountably categorical theories.

Lemma 3.4.8. Let T be a t.t. theory.
(i) Let D be a strongly minimal set over a set A and c a sequence from

D. Then pwt{c/A) = άim(c/A).
(ii) If a is dominated by b over A, then pwt(ά/A) < pwt(b/A).

Proof (i) It is easy to see that pwt(c/A) > άim(c/A). That pwt(c/A) <
is proved by induction on dim(c/A) (uniformly for all A). Let / be
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a nonempty A—independent set such that any b G / is A—dependent on c.
Let b0 β I and Γ = I \ {b0}. By Lemma 3.3.4, dim(c/A U b0) < dim(c/4).
Since V is independent over A U bo and any b £ Γ depends on c over A U bo,
the inductive hypothesis implies pwt(c/A U ϊ>o) < dim(c/Λ U 6o) Thus, |/ | =
\Γ\ + 1< pwt(c/A U 60) + 1 < άim(c/A U b0) + 1 < dim(c/A). This proves (i).

(ii) Let / be an A—independent set such that each d e l dependson a
over A. Since a is dominated by b over A, each del must depend on b over
A. Thus, |/ | <pwt(b/A).

Proof of Proposition 3.4.2. Let A be a set and p e S(A) a complete type. Let
M be an Ko—saturated model containing A and q G S(M) a free extension
of p. By Lemma 3.4.6 pwt(p) < pwt(q), hence it suffices to show that pwt(q)
is finite. Let α be a realization of q, φ a strongly minimal formula over M
and c a (finite) tuple from φ(<£) such that α U c i s dominated by c over M
(see Lemma 3.4.6). By Lemma 3.4.8, pwt(q) = pwt(a/M) < pwt(c/M) =
dim(c/M), proving the proposition.

As noted above, this also proves Proposition 3.4.1.
The following lemma draws together several results of the section to prove

Theorem 3.4. l(i).

L e m m a 3.4.9. Let M be a countable model ofT. Then for all sequences a, b
from M realizing g,

= Dim 5(M).

Proof. Suppose the lemma fails for M. By Lemma 3.4.5 M is prime over
a finite sequence c and realizes every element of 5(0). Let k (= pwt(c/Φ))
be as guaranteed by Proposition 3.4.1 for c. Since T is not ^o~categorical
there is a nonisolated p e 5(0). Let {60,... ,6^} be an independent set of
realizations of p and r = tp(t>o,... ,<?&). Since r is realized in M we may
as well assume that {60,...,6fc} C M. By our choice of k there is some
i such that c l bi. However, since M is prime over c, tp(bi/c) is isolated,
contradicting Lemma 3.3.10 (since p is nonisolated). This proves the lemma.

Remark 3.4-3. This lemma is also true for an uncountably categorical theory

X" which is Ho-categorical. (If M is a countable model of V and φ'(x,a)

is a strongly minimal formula over M then for all b from M realizing tp(a),

( ^ ( ) / ) )

From Lemma 3.4.9 we quickly obtain the main assertion of the Baldwin-
Lachlan Theorem:

Corollary 3.4.2. T has No many countable models.

Proof Let a be a realization of q and for each k < ω let Ik be a subset
of φ(C, a) of dimension k. We have assumed that the unique nonalgebraic
completion of φ(x, a) in S(a) is nonisolated. For each k < ω let Mk be a
prime model over / f c Uα.
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Claim. For I φ k < ω, Mi ψ Mk.

By Lemma 3.4.4(ii), the unique nonalgebraic extension of φ{x,a) in S(Ij U
a) is nonisolated, hence not realized in Mr That is, Dirria(Mj) = j for
each j < ω. Suppose, towards a contradiction, that for some k Φ I there is
an isomorphism / from Mi onto Mk. Then, for b = /(α), Dimι(Mk) =-Z,
contradicting Lemma 3.4.9 to prove the claim and the corollary.

It remains only to prove (ii) of the Baldwin-Lachlan Theorem. We showed
in Corollary 3.1.5 that for T' an uncountably categorical countable theory
and M (= X", if \M\ is uncountable and regular then M is saturated. Included
in the next lemma is the removal of the restriction to regular cardinals in that
earlier corollary.

Lemma 3.4.10. // T' is an uncountably categorical countable theory then
every model of T' is homogeneous and every uncountable model of V is sat-
urated.

Proof. The reader should first verify:

(*) Let M D N be models, φ' a strongly minimal formula defined over A c
N, I a basis for φf(N) over A and J a basis for φ'{M) over TV. Then
/U J is a basis for φ'(M) over A, and άim(φr(M)/A) = dim(φ'(N)/A) +
dim(φ'(M)/N).

Let M be a model of Tr. Certain parts of the proof are handled differ-
ently depending on whether M is countable or uncountable, so we split the
argument into two (very similar) cases.

First suppose M to be uncountable. Let A C M, with \A\ < \M\ = rc,
and let / be an elementary map with f(A) = B C M. For No C M
a prime model over A we can assume / to be an isomorphism from No
onto a model N\ C M which is prime over B. There is an isolated type
q' £ 5(0) and a φ'{x,y) such that for any realization c of q', φ'(x,c)
is strongly minimal. Let a1 be a realization of qr in No and bl = f(a!)
Since / is an isomorphism dim((p/(A^o,α/)) = dim^^iVi,^)) = λ. Also
dhn(φ'(M,ά')/ά') = dim((^/(M,6/)Λ/) = K by Corollary 3.1.4. By (*), if
To is a basis for φf(M,a') over 7V0 and Iχ is a basis for φ'(M,br) over JV~i,
then /€ = λ + |/o| = λ + |Ji|. Since λ < ft, |/0 | = |/i|. Thus, by extending /
we can assume / to be an elementary map from NQ U IQ onto NiUli. There
is a submodel Mf of M which is prime over 7V0 U /o Since 7o is a basis for
φ'{M,a') over No, φ'(M',ar) = φ'(M,a'). Since V has no Vaughtian pairs,
M1 — M\ i.e., M is prime over No U /o Hence / can be extended to an ele-
mentary embedding of M into itself so that f(M) D φr{M,V). Again, since
T' has no Vaughtian pairs, this embedding must be onto M, proving that M
is homogeneous.

Now suppose that M is countable. The proof is virtually identical to the
uncountable case, but individual steps may be justified differently. Certainly
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M is homogeneous if X" is No-categorical, so we can assume that V is not
No -categorical. Let A be a finite subset of M and / an elementary map from
A onto B C M. Choose No, Nι, φf, α' and V exactly as above. Since No and
N\ are isomorphic ά\m(φ'(No,a')) = dim((^/(AΓ1,6

/)) = k, anάk < No by
Lemma 3.4.3. By Lemma 3.4.9 dim{φ'{M,a')/ά') = dim(<p'(M, &')/&') = μ
Again by (*), if Jo is a basis for φ'(M,a!) over No and /i is a basis for
φ'(M,V) over iVΊ, then μ = A; + |/0 | = k + |/i|. Since k is finite |/0 | = |Ji|.
From this point on the proof is just like the uncountable case. This proves
that every model of T' is homogeneous.

For M an uncountable model of T", M is Ho—saturated (see Exercise 3.1.3)
and homogeneous, hence M is saturated (by Corollary 2.2.6).

Some of the results in this section will be generalized later to arbitrary
No—stable (in fact, the more general superstable) theories. For example, a
countable superstable theory which is not No—categorical must have infinitely
many countable models. This will be proved by establishing Proposition 3.4.1
for superstable theories. We will also show (in Section 5.4) that an NQ—stable
theory has a saturated model in every cardinality, not just the regular ones.

Historical Notes. All of the main theorems here are due to Baldwin and
Lachlan [BL71], although our exposition owes a lot to Lascar [Las86].

Exercise 3.4.1. Suppose that T is an uncountably categorical theory, N C
M are models of T, and φ, ψ are strongly minimal formulas over N. Show
that dim(φ(M)/N) = dim(ψ{M)/N).

Exercise 3.4.2. Give a quick proof of the Baldwin-Lachlan Theorem assum-
ing that there is a strongly minimal formula over 0.

3.5 Introduction to ω—stable Groups

In this section we study ω—stable theories in which the universe is a group
under some definable operation. The goal is to elucidate the degree to which
the group-theoretic and stability-theoretic properties of these structures in-
fluence each other. The importance of this study lies both in the breadth of
the class of groups with an ω—stable theory and the manner in which groups
arise in a "geometrical" analysis of ω—stable theories. Results pertaining to
this second point will be discussed in Sections 4.4 and 4.5.

Definition 3.5.1. Let T be an ω—stable theory with universal domain £ such
that (<£, •) is a group for some definable binary operation . Then (<£, •) is called
an ω—stable group. Adopting more standard notation, ω—stable groups will
usually be represented by G, H, G', etc.
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Remark 3.5.1. Let T be an ω—stable theory with universal domain <£.
(i) For (<£, •) to be an ω—stable group it is not necessary for to be

in the language, being a definable operation is enough. Also, there may be
definable relations on <£ which are not definable in the group language; i.e.,
the restriction of £ to a language containing only a function symbol for .

(ii) Let X be a definable subset of £ and a definable operation on X such
that (X, •) is a group. The restriction of £ to X contains no new definable
relations, hence (X, •) is an ω—stable group in this restricted universe. Since
the definable relations on X in £ are the same as the definable relations on X
in the restriction there is no loss in calling X an ω—stable group without first
restricting to X. Prom hereon, when referring to an ω—stable group G we
always leave open the possibility that G is a definable subset of some larger
theory.

(iii) The restriction to countable theories (and the consistent use of
ω—stable over )HQ—stable) is purely a convention adopted by the authors
in the area. Virtually anything proved here is true in an uncountable t.t.
theory with the same justification.

(iv) Here, the term "ω—stable group" only applies to the universal domain
of the relevant theory. This is nonstandard. Most authors call the model G
an ω—stable group if there is a definable group operation on G and Th(G) is
ω—stable. However, we have found our terminology to be more appropriate
for the presentation of the material in this book.

Here are some basic examples.

Example 3.5.1. (i) The universal domain of the theory of vector spaces over
a fixed field is an ω—stable group.

(ii) The universal domain K of the theory of algebraically closed fields
of a fixed characteristic is an ω—stable group under +, and K \ {0} is an
ω—stable group under .

(iii) Let M be the direct sum of No many copies of the group Z4 = Z/4Z,
T — Th{M) and G the universal domain of T. The reader can show that T
is quantifier-eliminable, from which we conclude:

— 2G is a strongly minimal set. In fact, 2G is a vector space over the field
with two elements and there are no definable relations on 2G except those
defined in the vector space language.

— MR(G) = 2.
— T is totally categorical.

(iv) Consider the special case of an abelian group G in the language
containing only the group operation + and 0. Macintyre proved (in [Mac71a])

Theorem. Th(G) is ω—stable if and only ifG is of the form D®H,
where D is divisible and H is of bounded order.

Given an arbitrary ω—stable abelian group G let Go be the restriction of
G to a language containing only the group operation and the identity. By
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Exercise 3.1.9 Go is also an ω—stable group. Thus, the theorem tells us the
underlying group structure of Go and G. Namely, G is a direct sum of a
divisible group and a group of bounded order.

Perhaps the most important class of ω-stable groups is the collection of
algebraic groups over an algebraically closed field. Here is a summary of the
critical concepts.

Let K be an algebraically closed field which we take to be the universal
domain of its theory, for simplicity. Let n < ω and K[x] the ring of polyno-
mials in x = (xi,..., xn) over K. A set V C Kn is called an affine algebraic
subset of Kn if for some pι(x),... ,Pk(x) £ K[x],

V = {άeKn : Pl(ά) = 0 Λ ... Λpfc(α) = 0}.

The affine algebraic subsets of Kn form the closed sets in a topology on Kn

called the Zariski topology on Kn. This topology is Noetherian, meaning that
it has the descending chain condition on closed sets. (If Vι C Kn, i <ω, are
affine algebraic sets then the ideal generated by the polynomials defining the
Vi's is generated by finitely many such polynomials since K[x] is Noetherian.
Thus, C\i<ω Vi is the intersection of finitely many of these sets.) Certainly,
any affine algebraic set is definable. A Zariski closed set V is called irreducible
if it cannot be written as V\ U V2, where V* C V, i = 1, 2, are Zariski closed
sets. An irreducible Zariski closed subset of Kn is called an affine algebraic
variety or simply an affine variety. A set X C Kn is a constructive set if it
is a boolean combination of affine algebraic subsets of Kn. The elimination
of quantifiers for algebraically closed fields can be stated as: a subset of Kn

is definable if and only if it is constructible.
Turning to groups, the set Mn(K) of n x n matrices over K is defin-

able (Mn(K) is a subset of Kn ). The operations of addition and matrix
multiplication on Mn(K) and the determinant function (from Mn(K) into
K) are definable over K. Thus, the general linear group GLn(K) = {a G
Mn(K) : det(α) φ 0} of invertible n x n matrices over K under multipli-
cation is definable. Also definable is SLn(K), the set of elements of GLn(K)
with determinant 1. In fact, Mn(K), GLn(if) and SLn(K) are all affine al-
gebraic sets. Most commonly encountered subgroups of GLn(K), such as the
upper triangular matrices over K, are definable. What is not so obvious is
the definability of the projective linear group ~PGLn(K) = GLn(K)/Z, where
Z is the center of the general linear group. This will be verified after our
discussion of Teq in the next chapter.

A group H is an affine algebraic group if it is a subgroup of GLn(jFΓ) (for
some n) which is also an affine algebraic set. We will not take the time to
define an "algebraic group over K", stating only that every affine algebraic
group is an algebraic group and every algebraic group is definable. In fact,
using much deeper model theory it can be shown that every connected (see
below) definable group over K is definably isomorphic to an algebraic group
(due to Hrushovski [Hru90b] and, in part, to van den Dries).
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Note: MR(GLn(K)) = n 2 , so any affine algebraic group has finite Morley
rank.

The interest in ω—stable groups began with the study of the natural
examples, for example, vector spaces, algebraically closed fields and affine
algebraic groups over algebraically closed fields. In fact, much of what we
know about ω—stable groups has been obtained by generalizing results about
affine algebraic groups. Such a generalization is facilitated by replacing Zariski
topology dimension theory by Morley rank independence. One such result,
ZiΓber's Indecomposability Theorem, is proved below. In ZiΓber's Ladder
Theorems he shows that any sufficiently complicated uncountably categorical
theory contains definable groups and these groups have a significant influence
on the structure of the definable subsets (see Section 4.4). These results
have been generalized (by Hrushovski and others) to the extent that almost
any problem in stability theory involves groups on some level. For instance,
groups played a critical role in the proof of Vaught's conjecture for superstable
theories of finite rank [Bue93].

Remember: When X is a definable set of Morley rank α, deg(X) = 1
if and only if whenever Y C X is definable in M and has Morley rank α,
MR(X \Y) < a (see Exercise 3.3.6). Also, when T is t.t. and α and b are
interalgebraic over A, MR{a/A) = MR(ab/A) = MR(b/A).

Definition 3.5.2. Let G be a group, X a set and • a map from G x X into
X. The triple (G, X, •) is a group action if

(1) e*x = x, for e the identity of G and all x G l , and
(2) for all g, heG and x e X, (gh) *x = g*{h*x).

Often the • is dropped from the notation, the group action is denoted (G, X)
and g * x is written gx.

Let (G, X) be a group action.

- (G, X) is faithful if, whenever g G G \ {1}, gx Φ x for some x e X.
- Given 0 φ k < ω, (G,X) is A -transitive if for all xλ,... ,Xk,yi, ,ΊJk €

X such that xι φ Xj and yι φ yj forl<i<j<k, there is a g G G such
that gxi = yi for 1 < i < k. (G, X) is sharply &-transitive if the g in the
previous sentence is unique. Equivalently, (G, X) is A;—transitive and only
1 fixes k elements of X.

- The term transitive is used in place of l-transitive and regular replaces
sharply 1 —transitive.

- For x e X let stab(x), called the stabilizer of x, denote {g e G : gx = x}.
- The orbit of x G X is Gx = { gx : g eG}.
- If Y C X and g eG, the translation of Y by g is gY = {gy : y eY}.

Clearly, the stabilizer of a point is a subgroup of G and if H = stab(x)
and #, h G G, then gH = hH if and only if gx = hx. This defines a one-to-
one correspondence between the left cosets of H and the orbit of x. Thus,
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letting G/H denote the set of left cosets of H in G, \G/H\ = \Gx\; i.e.,
[G : 8tάb(x)] = \Gx\.

We will see that an ω—stable group G acts on the types over G and
the definability of types yields definable stabilizer subgroups. First, some
terminology about ω—stable groups acting on types.

Let G be an ω—stable group and p a 1—type over the set A. Let p~x

denote { φ(x~~1) : φ G p }. For a an element let ap = { φ(a~ι x) : φ(x) G p }
and pα = {</?(z α"1) : y>(x) € p}, both types over A U {α}. Given a € A,
ap is also a type over A and, if p = tp(b/A), ap = ίp(α 6/A). Since any 6
and α" 1 6 are interalgebraic over α the formulas φ(x) and ^(α" 1 x) have
the same Morley rank. In fact, since multiplication defines a function, φ(x)
and φ(a~λ x) also have the same Morley degree (see the exercises). Thus,
the types p and ap have the same Morley rank and degree. The types ap and
pa are called the left and right translates of p by α, respectively. The term
translation may be used in place of left translation.

Given an ω—stable group G, a G G and p G SΊ(G), ap G Si(G). In fact,
left (or right) translation defines a group action of G on Si(G). By the above
comments the action preserves Morley rank.

Definition 3.5.3. Let G be an ω—stable group and p G S\(G). The left
stabilizer of p, denoted stab(p), is the stabilizer of p under left translation;
i.e., stab{p) = {a G G : ap = p}. The right stabilizer of p is the stabilizer of
p under right translation. By default, the term "stabilizer ofp" refers to the
left stabilizer of p.

Lemma 3.5.1. Let G be an ω—stable group.
(i) Let P C Si (G) be the collection of all types of some fixed Morley rank.

The action of G on P is definable in the sense that for all p, q G P, there is
a formula Ψ over G such that

for all a eG, ap = q if and only if |= ψ(a).

There is a formula equivalent to ψ over any set A such that p and q are both
definable over A.

(ii) Given p G Si(G), stab(p) is a definable subgroup of G and

MR(stab(p)) < MR(p).

Moreover, if p is definable over A, stab(p) is definable over A.
(in) Ifp, q G SΊ(G) and q is a right translate ofp then stab(p) = stab(q).

Proof, (i) First notice that G acts on P since translation preserves Morley
rank. Let p be in P and φ G p be a formula of Morley rank α = MR(p) and
degree 1. If a G G, then φ(a~~ι x) is also a formula of Morley rank a and
degree 1 = deg(p). Let q be another element of P. Since every element of P
has Morley rank α, q is ap if and only if φ{a~ι -x) G q. Let φ'(x, y) = φ(y~λ -x)
and let φ(y) be the formula defining q \ φf. Then, for all a G G, q = ap if
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and only if \= ψ(a). From an inspection of the proof we can choose ψ to be
over any set A such that p and q are both definable over A.

(ii) As a special case of (i) notice that {α € G : ap = p} = stab(p) is
definable. Furthermore, by the proof of (i), if p is definable over the finite set
A C G then stab(p) is definable over A.

(iii) Left to the reader as a short exercise.

Notation. Given an ω—stable group G we may write ab for a b when there
is no danger of confusing ab with the pair of elements (α, b).

It is frequently handy to work with restrictions of elements of Si (G) when
showing that one type is a translate of another. The necessary tool is

Corollary 3.5.1. Let G be an ω—stable group, p, q G Sι(G) and a € G.
Suppose that p and q are definable over A. Then,

(1) q = ap if and only if
(2) there is a b realizing p \ A such that b is independent from a over
A, ab realizes q \ A and ab is independent from a over A.

Proof Interpolating a few more equivalences will make the proof easy.

Claim. (a) q = ap
(b) for all sets B D A U {α}, q \ B = ap \ B;
(c) there is a set B D A U {α}, q \ B = ap \ B.

That (a) implies (b) is clear from the definition of translation and (b) => (c)
holds trivially. Suppose (c) holds and B D Aϋ{α} is such that q \ B = ap \ B.
Let MR(p) = a and let φ e p \ A be a formula of Morley rank a and
degree 1. Since ap \ B = q \ B, a = MR{p \ B) = MR(q \ B) and
φ(a~1x) e q. Since q is definable over A, MR(q) must also be a. As in the
proof of Lemma 3.5.1(i), ap is the unique element of Sι(G) which contains
φ{a~ιx) and has Morley rank a. Thus ap = g, proving the claim.

Turning to the main assertion of the corollary, (1) implies (2) is just
a matter of unraveling the notation. Now assume that a and b meet the
conditions in (2). Let B = AU {a}. Since p and q are both definable over A
and both b and ab are independent from a over A, b realizes p \ B and ab
realizes q \ B. Since a e B, tp(a b/B) = ap \ B; i.e., ap \ B = q \ B. By the
claim ap = q, proving the corollary.

The most fundamental property of an ω—stable group is

Proposition 3.5.1. An ω—stable group G has the descending chain condi-
tion on definable subgroups. That is, if G = HQ D HI D ... D Hi D ... is a
chain of definable subgroups of G, there is an n < ω such that Hm = Hn for
all m > n.
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Proof. Let / be the collection of pairs (α, m) where a is an ordinal and 1 <
m < ω. Well-order / lexicographically; i.e., (α,m) < (/3, k) if a < β or a = β
and m < k. Associate with any formula ψ the pair (M R(ψ), deg(ψ)) G /. Let
H C K be subgroups of G denned by ̂  and <p, respectively. If H φ K there is
ana e K such that aψ defines a coset aH φ H. Since ψ and aφ have the same
Morley rank and both imply φ, (M R(ψ), deg(ψ)) < (MR(φ), deg(φ)); i.e.,
(MR(H),deg(H)) < (MR(K),deg(K)). If G = Ho D Hλ D ... D Hi D ...
is an infinite descending chain of subgroups, where ϋi+i φ Hi, for all i < ω,
then {(MR(Hi), deg(Hi)) : z < ω } is an infinite descending chain in (/,<),
which is impossible since this is a well-ordering.

Corollary 3.5.2. An ω—stable group G has a minimal definable subgroup
G° of finite index in G. G° is a normal subgroup of G and is definable over
0.

Proof Let Ή be the collection of all definable subgroups of G having finite
index in G. If Hi, H2 e H then Hi Π H2 G H. Combining this with the
previous proposition shows that p| 7ί — G° is the intersection of finitely many
elements of W, hence G° is definable. Given g £ G, g~1G°g = g'1 f)Hg =
Clig^Hg : H eH} = f)H = G°, hence G° is normal. That G° is definable
without parameters is left to the exercises.

Definition 3.5.4. Let G be an ω—stable group. The minimal definable sub-
group of finite index in G is called the connected component of G, and is
denoted G°. We call G connected ifG = G°.

Remark 3.5.2. Since G is the union of finitely many cosets of G°, MR(G°) —
MR(G). Also, G° is itself connected as an ω—stable group.

Definition 3.5.5. Let G be an ω—stable group. A I—type p over G is a
generic type if MR(p) is maximal; i.e., MR(p) = MR(G).

Warning: p is not assumed to be a complete type in the definition.
The set P of generic types in S'ι (G) is nonempty and finite. Since trans-

lation preserves Morley rank, GP = P (under the action of G on Si (G) by
translation).

Lemma 3.5.2. Let G be ω—stable and P the set of generics in Sι(G). Then
the action of G on P is transitive.

Proof Let p and q be any two elements of Sι(G) and a = MR(p) = MR(q) =
MR(G). The goal is to find a c such that cp = q. Let Go be a model of
Th(G) and note that p and q are definable over Go (since they are both free
extensions of their restrictions to 0). Let a and b be realizations of po = p f Go
and qo = q \ Go, respectively, which are independent over Go- Let φ be a
formula in qo of Morley rank a and degree 1, and let c = 6a"1. Using that c
and b are interalgebraic over G0U{α}, MR(c/Gol){a}) = MR(b/GoU{a}) =
MR(q) = a. Since the Morley rank of tp(c/Go) cannot be > α, c and a are



3.5 Introduction to ω—stable Groups 107

independent over Go. Similarly, c is independent from b over Go- Since ca — b
Corollary 3.5.1 applies to show that q — cp, as desired.

This leads to the following linking of the group-theoretic and model-
theoretic structure of an ω—stable group.

Corollary 3.5.3. Let G be an ω—stable group. Then
(i)[G:G°]=άeg{G).
(ii) p G S\{G) is generic if and only if stab(p) = G°.
(in) G is connected if and only if deg(G) = 1.

Proof Let P be the generic types in 5i(G), Go any model of Th(G) and
Po the generic elements of SΊ(Go). Each element of P is the unique free
extension of some element of Po? hence |PQ| = \P\ = deg(G). The reader
should verify that when tp(a/Go) and tp(b/Go) are in Po and aG° φ 6G°,
tp(a/G0) φ tp(b/G0). Thus, [G : G°] < deg(G).

Now let p be an arbitrary element of P. Since the action of G on P is
transitive one of the basic facts about group actions gives the equation:

[G : stab(p)] = \Gp\ = \P\ = deg(G).

Thus, the definable subgroup stab{p) has finite index in G. Since G° is
the minimal such group, [G : stab(p)] < [G : G°]. We conclude both that
deg(G) = [G : G°] (i.e., (i) holds) and stab{p) = G°, for any generic p. On
the other hand, if p G Si(G) and stab(p) = G° then MR(p) > MR{G°) =
MR(G) (by Lemma 3.5.1(ii)), so p is a generic type, proving (ii).

Part (iii) follows immediately from (i). This proves the corollary.

Remark 3.5.3. An ω-stable group G = G° U aλG° U ... U anG°, where
{l,αi,... ,αn} form a complete set of representatives of the cosets of G°
in G. Each a{Go has degree 1 and the same Morley rank as G.

Remark 3.5.4- The above analysis of left translation proceeds in an identi-
cal manner for right translation. In particular, given an ω—stable group G,
p G S\(G) is generic if and only if the stabilizer of p with respect to right
translation is G°.

When F is a field, F* = F \ {0}.

Corollary 3.5.4. If F is an ω—stable field, then (F, +) and (F*,-) are both
connected. Thus, F has degree 1.

Proof. By Corollary 3.5.3, (F, +) is connected if and only if (F*, ) is con-
nected if and only if deg(F) = 1. Let H be a subgroup of (F, +) of finite
index. Let / be the ideal f]{ kH : k G F* }. By Proposition 3.5.1 there are
fci,..., kn G F* such that / = k\H Π ... Π fcniJ, hence / is a nonzero ideal.
Since F is a field, I = F. Thus, H = F and (iJ, +) is connected. This proves
the corollary.
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As an application of the previous Corollary 3.5.3 we prove that an
α;—stable group has a "large" abelian subgroup.

Proposition 3.5.2. An ω—stable group G contains an infinite definable
abelian subgroup.

The proof uses the following basic group-theoretic fact.

Lemma 3.5.3. // all elements of a group G have finite order and all elements
ofG\ {1} are conjugate, then \G\ < 2.

Proof. We may assume G ψ {1}. Let <;GG\{l}beof prime order p. By
the conjugacy condition all nonidentity elements of G have order p. First
suppose p is odd. Choose h G G such that h~ιgh = g~ι. Then for all n,
(h~1)nghn = g(~^n. When n = p this yields g = g~1, a contradiction. Thus
p = 2. By a standard exercise G is abelian, hence G has 2 elements.

Remember, for g an element of a group G the centralizer of g is C(g) =
{ h : h~λgh = g }. Let gG denote the conjugacy class of g, { h~ιgh : h G G }.

Proof of Proposition 3.5.2. Suppose the proposition fails and G is a coun-
terexample of minimal Morley rank a and Morley degree d. This minimality
condition implies that every proper definable subgroup of G is finite. In par-
ticular G is connected, hence d = 1 by Corollary 3.5.3(i).

Let Z be the center of G, a proper definable subgroup. We will contradict
the finiteness of Z by applying Lemma 3.5.3 to the group G/Z. For any
g G G \ Z C(g) is a proper definable subgroup of G, hence is finite. Since
g G G(#), g must have finite order. There is a natural one-one correspondence
between the conjugacy class gG of g and the set of cosets G/C(g). Since C(g)
is finite gG must have rank α. If gG φ hG, gG Π hG = 0, so the fact that G
has degree 1 implies there is only one conjugacy class among the elements of
G \ Z. By Lemma 3.5.3 G/Z contains at most two elements, contradicting
that Z is finite. This proves the proposition.

Corollary 3.5.5. A strongly minimal group is abelian.

Definition 3.5.6. An element a of an ω—stable group G is generic over A
if tp(a/A) is generic.

It is frequently more appropriate to work with elements than types, calling
for an equivalent definition and some additional results.

Lemma 3.5.4. Let G be an ω—stable group. Then a G G is generic over A
if and only if
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Proof. First suppose a is generic over A and b E G is independent from a over
A. Then MR(G) = MR(a/A U {b}) = Miϊ(6 α/A U {6}) < MΛ(6 a/A) <
MR(G). Thus, MΛ(6 a/A U {6}) = MR{b α/A), as required.

Conversely, suppose ba is independent from b over A whenever b is inde-
pendent from a over A Let # be generic over A U {a}. As in the previous
paragraph, ga is generic over Au{a}. By assumption, #α is independent from
g over A, hence ga is generic over A U {#}. Since α is interalgebraic with ga
over A U {#}, α is also generic over A U {g}. This proves the lemma.

Remark 3.5.5. Given an α;—stable group G and generic elements a and 6,
αG° = bG° if and only if

(*) for all sets A, if a and 6 are generic over A, then tp(a/A) = tp(b/A).

(See Exercise 3.5.3.)

Translation provides information not only about Si(G), but about the
formulas over G. The following corresponds to and slightly strengthens
Lemma 3.5.2. A definable subset X of an ω—stable group is generic if it
has maximal Morley rank; i.e., X is defined by a generic formula.

Lemma 3.5.5. Let G be an ω—stable group and X C G definable. Then,
X is generic if and only if there are left translates (or right translates)
X0,...,Xk of X such that G = \Ji<kX*.

Proof. The proof is written for left translates; it is the same for right trans-
lates. Let α = MR(G). First assume G = \Ji<kXi, where Xo,...,Xk are
left translates of X. Then one of the X^s has Morley rank α, hence X has
Morley rank a.

Conversely, suppose MR(X) = a and X is definable over the finite set
A. Notice it suffices to prove the lemma with X replaced by some translate
of X. The proof will be easier after performing a few reductions. Since X =
(a\G° Π X) U ... U (akG° Π X) for some αi , . . . , α*, there is some a such that
X Π aG° has Morley rank a. Since (a~ιX)C\G° has Morley rank α, we may
as well assume that MR(X Π G°) = a. Since G is the union of finitely many
translates of G° it suffices to show that G° is the union of finitely many
translates of X Π G°. So, we can take G to be connected. By Corollary 3.5.3,
G has a unique generic type in S\{G). Since MR(X) = a this generic type
contains the formula defining X; i.e.,

whenever a £ G is generic over A, a (Ξ X.

Let { α* : i < ω } be an independent set of elements generic over A and let b
be an arbitrary element of G. There is an i < ω such that α̂  is independent
from b over A, hence α̂  is generic over A U {b}. Then α* 6 is generic over
A, hence ai > b e X, equivalently b e a~λX. Thus, G = U « ω

α Γ 1 - x ' B v

compactness, G is the union of finitely many translates of X, completing the
proof.
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Corollary 3.5.6. Let G be a connected ω—stable group and X C G a generic
definable set. Then X X = G.

Proof. Let X be A—definable and b an arbitrary element of G. In the proof of
the lemma we found an element α, generic over A, such that b G a~ιX. Since
MR(a~1/A) is also α, a~ι G X (by the connectedness of G). Thus b G X X.

As stated above, many of the results about α -stable groups are obtained
by generalizing proofs about algebraic groups. ZiΓber's Indecomposability
Theorem is one such result. Chevalley proved the following about an algebraic
group G over an algebraically closed field. Let Xi, i G /, be a family of
constructive (i.e., definable) subsets of G such that for each i G /, the identity
element e is in Xi and the Zariski closure Xi of Xi is irreducible. Then the
subgroup H of G generated by the X^s is Zariski closed, connected and
H = X£--X£ for some ή , . . . , i n G I and eό = ±1. (When X C G,
X + 1 = X and X~λ = { x~ι : x G X }.) In the general α;—stable context there
is no topology, hence nothing exactly like Zariski closure or irreducibility.
ZiΓber's substitute for irreducibility is the following.

Definition 3.5.7. Given an ω—stable group G and X C G definable, X is
indecomposable if for any definable subgroup H of G, either \X/H\ = 1 or
X/H is infinite (where X/H = {xH : x E X}).

When X is a group it is indecomposable exactly when it is connected.

Theorem 3.5.1 (Zil'ber's Indecomposability Theorem). Suppose that
G is an ω—stable group of finite Money rank and, for i G /, Xi is an inde-
composable definable subset of G containing the identity element e. Let H be
the subgroup of G generated by {JieI X%. Then H is definable, connected and
for some i i , . . . , in G /, H = Xιx . . . Xΐn>

Proof. Let χ = {Y : Y = ΠjejXj, J C / is finite }. Since each element of
Y is definable and MR(G) is finite there is an X = Xiχ ... Xik G χ which
has maximal Morley rank among the elements of χ. Let MR(X) = m. Let
ψi be the formula defining X i? φ the formula defining X and p G Sχ(G) a
type containing φ with Morley rank m. Let H be the connected component of
stab{p). By Lemma 3.5.1 and Corollary 3.5.2 H is definable, hence to complete
the proof it remains to show that Xi C H for all i G /, and H = Xiχ ... Xin,
for some zi,..., in G /. The first step is handled in

Claim. For all i G /, Xi C H.

Suppose Xi (jL H. Since e G XiΠH, \Xi/H\ > 1, hence the indecom-
posability of Xi forces Xi/H to be infinite. Since H has finite index in
H* = stab(p), Xi/H* is also infinite. Let {%• : j < ω] C Xi be such
that cijH* Φ aiH* for j φ I < ω. Elements b, c G G have the same coset
with respect to stab(p) if and only if bp = cp. Thus, { ctjp : j < ω } is an
infinite collection of types of Morley rank m. However, each of these types
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contains the formula defining JQ X, which also has Morley rank m (by the
maximality of m). This contradiction proves the claim.

Being a group H therefore contains not only X but the group generated
by the X^s. The Morley rank of H is < m = MR(p) by Lemma 3.5.1(ii).
Since X C H, MR{H) must equal ra, hence X is a generic subset of H. Since
H is connected X X = H (by Corollary 3.5.6). A fortiori, H is the group
generated by the X^s, proving the theorem.

This theorem yields the definability of some typical subgroups, for exam-
ple, commutator subgroups. The commutator of elements α, b in a group G is
the element [a, b] = a~ιb~ιab. For A and B subsets of G, [A, B] denotes the
subgroup of G generated by { [α, b] : a G A, b G B }. Notice that G' = [G, G]
is the minimal normal subgroup H of G such that G/H is abelian. A priori,
there is no reason to think that G' is definable, however it follows from the
next lemma that G' is definable when G is a connected group of finite Morley
rank.

L e m m a 3.5.6. Let G be a group of finite Morley rank, H a connected defin-
able subgroup of G and A any subset of G. Then the group [A,H] is definable
and connected. Moreover, there are finitely many elements α i , . . . , α n G A
such that x G [A,JEZ"] if and only if there are hι,...,hn G H such that
x = [αi,Λi] [αn,ftn].

Proof For a G A let Xa = {h~ιah : h G H}. Then [A,H] is the group
generated by |J{a~ιXa : a G A}. The indecomposability of a~λXa is needed
to satisfy the hypotheses of ZiΓber's Indecomposability Theorem. Since inde-
composability is invaraint under translation it suffices to show that each set
Xa is indecomposable. The first step towards this end is

Claim. Xa is indecomposable if \Xa/K\ is 1 or infinite for any definable
subgroup K of G which is normalized by H] i.e, h~1Kh = K for all h G H.

Let K be any definable subgroup of G and suppose 1 < \Xa/K\ < &o Let
KQ be the group f \ e # h~λKh and notice that KQ is normalized by H. We
proceed to show that 1 < \Xa/Ko\ < No- The group KQ is the intersection
of finitely many of the groups h~ιKh, h G H (by Proposition 3.5.1) hence
is definable. Given h G H, h~λXah = Xa, so Xa/h~1Kh is also finite. If K\
and K2 are any two subgroups such that Xa/Ki is finite (for i = 1,2) then
Xa/(Kι ΠK2) is also finite. Thus Xa/K0 is finite. Since \Xa/K\ < \Xa/K0\,
1 < \Xa/Ko\ < Ho, proving the claim.

Fix a G A and let K be any definable subgroup of G which is normalized
by H. Let Ho = {x G H : (x~1αx)iiί = aK }. Since If is normalized by H

— Ho is a subgroup of H and

- for x, y G if, x^αxif = y~λayK if and only if a iϊo = y#o

Thus, when Xa/K = [H : Ho] is finite, \Xa/K\ = 1 (by the connectedness of
H). This proves that Xa is indecomposable.
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By Zil'ber's Indecomposability Theorem [A, H] is definable, connected
and has the form specified in the last sentence of the lemma.

Remark 3.5.6. Implicit in the previous lemma is a proof that [A, H] is infinite
or {1} under the stated hypotheses.

In all of the above results G is the universal domain of its theory. Many of
the results yield information about the subgroups of an arbitrary model Go
of Th(G) with little additional work. In many instances the condition used
to define a subgroup H of G, when relativized to Go, defines H Π Go- Here
are two examples.

Corollary 3.5.7. Let G be an ω—stable group, Go a model of Th(G) and
p G Si (Go). Then HQ = {a G Go : ap = p} is a subgroup definable in
Go- In fact, for p' the unique free extension of p in S(G) and H = stab{pf),
H0 = HΠG0.

Proof This is assigned as Exercise 3.5.4.

Corollary 3.5.8. Let G be an ω—stable group and Go a model ofTh(G).
Then G° Π G o is

( | { H C Go : H is a subgroup of finite index definable in Go }.

Proof This is Exercise 3.5.5.

Remark 3.5.7. Let G be an ω—stable group, Go a model of Th(G) and H
a subgroup of Go definable in Go- Suppose H = φ(Go). Then H is called
connected if φ(G) is connected. By the previous corollary, H is connected if
and only if there is no proper subgroup K of H definable in Go and having
finite index in H.

Corollary 3.5.9. Let G be a group of finite Morley rank, Go a model of
Th(G), H a connected subgroup definable in Go and A any subset of GQ.
Then the group [A, H] is definable in Go and connected.

Proof Left to the reader in Exercise 3.5.6.

The following relative version of Zil'ber's Indecomposability Theorem is
somewhat less elementary. First we need a definition of indecomposability
that applies to sets definable in a model.

Definition 3.5.8. Let G be an ω—stable group, Go a model of Th(G) and
X a set definable in GQ. Then X is indecomposable if for any subgroup H
of G, definable in G, either \X/H\ = 1 or X/H is infinite.
Corollary 3.5.10 (Zil'ber's Indecomposability Theorem (relative)).
Let G be an ω—stable group of finite Morley rank and GQ a model ofTh(G).
For each i G / suppose Xι is an indecomposable set definable in Go which con-
tains the identity e. Let H be the subgroup of Go generated by \JieIXi. Then
H is definable in Go, connected and for some z i , . . . , in G /, H = X^-.. . Xi n .
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Proof. For i E I, let ψi be the formula defining Xi and Yι = φi(G).

Claim. For i £ /, Y{ is indecomposable.

Suppose to the contrary that K = φ(G, a) is a definable group and | Y /if | =
k, where 1 < k < ω. The formula φ(x,y) can be chosen so that, given b in
Go satisfying 3xφ(x, y), Ko = φ(Go, b) is a subgroup of Go and \Xi/Ko\ = k.
This contradicts the indecomposability of Xi to prove the claim.

By Zil'ber's Indecomposability Theorem the group HQ generated by
UZG/ ^ 1S definable, connected and for some i i , . . . , in G /, HQ = Yi1-... Yin.
Then (using that Ho is Go-definable) Ho Π Go = X%λ ... Xin = H is a
connected subgroup definable in Go and containing Xi for all i £ I. This
proves the corollary.

By Lemma 3.5.6, whenever G is a connected group of finite Morley rank
each element of the series of derived groups G = G ^ D G' D G" D
... D G ( n ) D ... is definable and connected (where G<n+1) = [G^n\G^} =
(G ( n ))'). Similarly, the series G = Go D Gλ D G2 D ... D Gn D .. . , where
G n + i = [G,Gn], consists of connected definable groups. By Proposition 3.5.1
each of these descending chains of groups terminates.

For an arbitrary group G the statement "G is simple" involves quantifi-
cation over subsets of G. While it is not possible to give a first-order set of
axioms for the class of simple groups, when G is an ω—stable group of finite
Morley rank being simple is an elementary property in the following sense.

Proposition 3.5.3. Let G be a group of finite Morley rank.
(i) If a model Go of Th{G) is nonabelian and not simple then Go has a

definable nontriυial normal subgroup.
(ii) If H is a model ofTh(G), then H is simple if and only if G is simple.

Proof (i) Assume to the contrary that Go is nonabelian, not simple and has
no definable nontrivial normal subgroup. Since (Go)° is a definable normal
subgroup Go must be connected. The center of Go, call it Z, is a normal
subgroup of Go, definable in Go- Since Go is nonabelian Z is a proper sub-
group of Go, hence Z = {1}. Let x Φ 1 be an element of a nontrivial normal
subgroup N of Go- Since x £ Z, H = [x, Go] is not {1}, while it is definable
in Go and connected by Lemma 3.5.9. Since H is contained in any normal
subgroup containing x, H C N. The minimal normal subgroup Ho containing
H is the group generated by \J{g~ιHg : g £ G}. By the relative version
of Zil'ber's Indecomposability Theorem (Corollary 3.5.10) Ho is definable.
Since {e} Φ Ho C N, Ho is a definable nontrivial normal subgroup of G, a
contradiction which proves (i).

(ii) By (i) it suffices to show that when G contains a definable nontrivial
normal subgroup, so does H. This is left as an exercise to the reader.
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3.5.1 A Group Acting on a Strongly Minimal Set

This section is a study of an ω—stable group action (G,X) in which X
is strongly minimal. This study will yield a result to be used later (Theo-
rem 3.5.2) and show the strength of the hypotheses on (G,X). Many of the
arguments are very group-theoretic and specific to this problem. However,
the theorem is important enough to warrant a reasonably complete proof.

Notation. When G and H are groups and there is a an embedding θ : H —>
Aut(G), G x H is the corresponding semidirect product of G and H. (The
particular automorphism θ is generally understood from context.)

When K is a field Kx denotes the (multiplicative) group of units of K
and K+ denotes the additive group of K.

For G a group we write G > N when TV is a normal subgroup of G.

Remark 3.5.8. In this section, when (G,X) is an ω—stable group action it is
understood that multiplication on G and the action of G on X are 0—definable
operations.

Here are three examples of an ω—stable group acting on a strongly mini-
mal set of increasing complexity (at least of increasing rank).

Example 3.5.2. Let G be a strongly minimal group. By Corollary 3.5.5 G is
abelian, so additive notation is used for G. The most natural action on the
strongly minimal set G is translation by G itself: x \—> x + α, a G G. This is
a regular action.

Now suppose G has an element of order > 2. Here is another action on G.
The map x ι—• — x produces an embedding of Z2 into Aut(G). Furthermore
(α,0) and (α, 1), as elements of G xi Z2, define bisections on G, x H x -f α
and x *—> -x + α, respectively. This gives a faithful transitive group action
of G xi Z2 on G. Note that G x Z2 is nonabelian, has Morley rank 1 and the
action is not regular.

Example 3.5.3. Let K be an algebraically closed field. Let GΆg be the group
of affine transformations on K, x 1—> a -f 6x, where a G K and b G Kx. Then
Gafj acts sharply 2—transitively on K and G = K xi Kx. When K is the
universal domain of its theory (Gafj , K) comprises a group of Morley rank
2 acting on a strongly minimal set.

Example 3.5.4- Let K be an algebraically closed field and P 1 the projective
line over K, thinking of P 1 as the set of 2 x 1 column vectors over K, factored
by the equivalence relation: x ~ y <<==> Kxx = Kxy. The group GL2(i^)
of invertible 2 x 2 matrices over K defines an action * on P 1. Note: for any
<7, h G GL 2(K), 9 * x = h * x for all x G P 1 if and only if g = λh for some
λ G Kx. Let PGL 2 ( i0 be the quotient of GL2(K) by {λ 1 : λ G Kx},
where 1 is the identity of GL 2{K). The action of PGL 2(K) on P 1 is faithful.
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Note that this action is sharply 3—transitive and (when K is the universal
domain) PGL 2 CO is a group of Morley rank 3 acting faithfully on a strongly
minimal set.

What is quite surprising is that these are essentially the only examples of
an ω—stable group action on a strongly minimal set.

Theorem 3.5.2. Let (G, X) be an ω—stable transitive faithful group action
with X strongly minimal. Then MR(G) < 3 and

(1) IfMR(G) = 1, G° acts regularly on X.
(2) // MR{G) = 2, there is a field K definable on X and the action of
G on X is definably isomorphic to the affine action of K xi Kx on K.

(3) // MR{G) = 3, there is a field K definable on X \ {a} (for some
a e X) and the action of G on X is isomorphic to the action of
PGL 2 (if) on P 1, the protective line over K.

The bulk of this subsection is devoted to the proof of this theorem. The
proof will require three additional propositions which will not be proved here.
The first two represent a nontrivial amount of work.

Proposition 3.5.4. A connected group of Morley rank 2 is solvable.

Proof. This is Theorem 6 of [Che79].

Definition 3.5.9. Given a group H acting on a set A, B C A is H—invariant
ifHB = B; i.e., for allheH.be B, hb e B.

Proposition 3.5.5. Let £ be the universal domain of a theory of finite Mor-
ley rank; G and A infinite definable abelian groups. Suppose there is a de-
finable faithful action of G on A which induces an embedding of G into the
automorphism group of A. Further suppose that A contains no infinite defin-
able proper G—invariant subgroup. Then there is a definable field F such that
the additive group of F is definably isomorphic to A and there is a definable
embedding of G into the multiplicative group of F so that the action of G on
A corresponds to multiplication in F.

Remark 3.5.9. Here is a more precise statement of the conclusion of the
proposition. The definable action * of G on A is assumed to induce an embed-
ding θ of G into Aut(̂ L) by: θ(g) is the automorphism a such that α(α) = #*α,
for all g e G, a e A. (Here Aut(A) is simply the automorphism group of A
as an abelian group.) Use θ to define A xi G. Then the proposition yields a
definable field F and a definable embedding from Ax G into F+ XJ FX which
restricts to an isomorphism of A onto F + .

Proposition 3.5.6. Let T be an ω—stable theory, F an infinite definable
field of finite Morley rank and S a definable group of field automorphisms of
F. Then S= {1}.
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Finally we also make use of the following fact whose proof is omitted in
favor of bigger fish.

Lemma 3.5.7. Let G be an ω—stable group of Morley rank k + 1 < ω.
Suppose H is a definable subgroup with MR(G/H) = 1. Then MR(H) = k.

The restriction to transitive actions in the theorem does not eliminate
many interesting cases:

Lemma 3.5.8. Let (G,X) be an ω—stable faithful group action with X
strongly minimal and G infinite.

(i) IfY is a finite orbit, \Y\ < deg(G).
(ii) There is an 0— definable finite set Y C acl(Φ) Π X such that G acts

transitively on X \Y.

Proof, (i) Given y eY, \Y\ = [G : stab(y]. Thus, stab{y) has finite index in
G and \Y\ = [G : stab(y] < [G : G°] = deg(G).

(ii) If each orbit is finite, G° C stab(x) for all x G X, contradicting that
the action is faithful and G is infinite. Thus, X contains an infinite orbit.
Since an orbit is a definable set and X is strongly minimal, X contains only
one infinite orbit and this orbit is X \ Y for some finite Y. Since Y is the
union of all finite orbits, Y is 0—definable.

Lemma 3.5.9. Let (G, X) be a transitive faithful group action with G
abelian. Then the action is regular.

If, in addition, (G,X) is ω-stable, MR(G) = MR(X).

Proof. Let a € X and suppose g G G is such that ga — a. Let b be any
element of X. By the transitivity of the action there is an h G G such that
ha = b. Then gb = gha = hga = ha = b. Since the action is faithful, g = 1,
proving that the action is regular.

Suppose (G, X) is ω—stable, a G X and g G G is generic over a. By
the regularity of the action g G dcl(a,ga). Thus, MR(G) = MR(g) =
MR(g/a) < MR(ga/a) < MR(X). Now suppose 6, c G X are independent
with MR(b) = MR{c) = MR{X). By the transitivity of the action there is a
heG such that hb = c. Then MR(X) = MR(c/b) < MR(h/b) < MR(G),
completing the proof.

Notation. Prom here until the end of the subsection we assume (G, X) to
be an ω—stable transitive faithful group action with X strongly minimal and
G infinite, unless stated otherwise. These hypotheses may be repeated in key
results to make later reference easier.

Lemma 3.5.10. If N < G is infinite and definable then N acts faithfully
and transitively on X.



3.5 Introduction to ω—stable Groups 117

Proof. It is clear that the action of N on X is faithful. If N° acts transitively
on X then certainly iV acts transitively on X, so we may as well assume N
is connected. Suppose the orbit of x under N is finite. Then Nx — {x} by
Lemma 3.5.8(i). An arbitrary y G X is gx for some g G G (by the transitivity
of the action of G) hence, since N is normal, Ny = Ngx = gNx = {gx} =
{y}. In other words the elements of N fix every element of X, contradicting
that the action is faithful and N φ {1}. Thus, every orbit under N is infinite.
Since X is strongly minimal and TV is definable X can only contain one infinite
orbit under N. That is, N acts transitively on X, as required.

Proof of Theorem 3.5.2(i}. Suppose MR{G) = 1. Then G° is a strongly
minimal group, hence abelian by Corollary 3.5.5. By Lemma 3.5.10 the action
of G° on X is transitive, so the action is regular by Lemma 3.5.9, proving (i)
of the theorem.

Proof of Theorem 3.5.2(ii). We assume now that MR{G) = 2. By Propo-
sition 3.5.4 G° is solvable. Since G° < G, G° acts transitively on G (by
Lemma 3.5.10). If G° were abelian Lemma 3.5.9 would contradict that
MR(G°) = 2 and MR(X) = 1. Hence G° is nonabelian. Let A = (G°)' =
[G°,GO], a definable connected subgroup of G° by Lemma 3.5.6. Since G° is
nonabelian A φ {1}, hence A is infinite (see Remark 3.5.6). The solvability
of G° forces A to be a proper subgroup, so A must be strongly minimal. By
Theorem 3.5.2(i) A acts regularly on X.

Fix x G X and let Gx = { g G G : gx = x }, the stabilizer of x in G. For
#, h G G, #GX = /ιGx if and only if gx = far. Thus, the map g \-± gx defines
a bijection between G/Gx and X. Since MR(G) = 2 the only possibility for
MR(GX) is 1.

Claim. Conjugation defines an embedding θ of Gx into Aut(A). Moreover,
the action of G°x on A by conjugation is faithful and regular on A\ {1}.

Since A acts regularly on X, for any g e G there is a unique α G A
such that #£ = ax, hence # G αG^. Since A is a normal subgroup of G,
conjugation defines a homomorphism # of G^ into Ant(A). Suppose towards
a contradiction that θ is not an embedding; i.e., there is a g φ 1 in Gx which
commutes with each element of A. Then given y G X there is an a G A with
y = ax, hence gy = gax = agx = ax = y. In other words, g fixes each element
of X, contradicting that G acts faithfully on X. Thus 0 is an embedding of
Gx into Aut(-A).

Conjugation also defines a group action of Gx on A. The above argu-
ment shows this action to be faithful on A \ {1}. By part (i) of the theorem
conjugation defines a faithful regular action of G°x on A\ {1}, proving the
claim.

The embedding θ in the claim can be used to define A x Gx. There is a
map ψ from G into A x Gx defined by ψ(g) = (α, h) if and only if g — ah.
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(The first sentence in the proof of the claim shows that G = A GX.) A routine
verification shows ψ to be an isomorphism.

Since A has no infinite definable proper subgroups it is G°x—invariant.
Since MR(GX) = 1, G°x is abelian. Thus, Proposition 3.5.5 yields a defin-
able field F and a definable embedding σ of A x G°x into F + xi Fx which
restricts to an isomorphism of A onto F+. This isomorphism guarantees that
F has Morley rank 1. By Corollary 3.5.4, F is strongly minimal, hence the
embedding of G°x into Fx is surjective.

The field structure can be transferred onto A as follows. Let 1' be any
element of A \ {1}. For each a φ 1 in A let a" be the unique element of G°x

taking V to α (which exists by the claim). Define a binary relation ® on A by:
l ® α = α ® l = l f o r a l l α G i 4 and α ® 6 = (α" 6")Γ, for α, 6 G A \ {1}. The
reader can show that (A, , ®, 1,1') is a field isomorphic to F (via a definable
bijection). Since the action of A on X is regular there are also definable
operations on X under which X is a field (definably) isomorphic to F. The
action of A on X corresponds to the translations x y-^> x -\- a, a e A, while
the action of Gx on X corresponds to the dilations x ι-> bx, b G Gx. (See
Example 3.5.3.) Thus A x Gx acts on X like the affine group of the field F.
To finish the Morley rank 2 case we need only show

Claim. Gx = G°x.
x.

Since G°x acts faithfully on A it acts regularly by Lemma 3.5.9. Fix a £ A.
For any g G Gx there is an h G G° such that gag~ι = hah"1. Since h~~ιg G
5 = { / G G x : faf~λ = a } the claim will be proved once we show 5 = {1}.

Define θ on Gx by

9o® 9i= 92 if and only if {g^gQl){gιag^λ) = c / 2 ^ 1 ) .

Just as (A, , 0 ) was a field isomorphic to F , (G£, θ , •) is a field isomorphic
to F.

The group 5 acts on G°x by conjugation. We claim this action defines
an embedding of S into the group Γ of field automorphisms of (G£,θ, •)•
Conjugation by s G 5 is clearly a bijection σ of G£ which is an automorphism
of . Also, σ is an automorphism of 0 since

1 $~ι.

Thus 5 is a definable group of automorphisms of the field (G£,θ, •)• By
Proposition 3.5.6 S = {1}. This completes the proof of the claim and Theo-
rem 3.5.2(ii).

For the cases when MR(G) > 2 we need the following two lemmas.

Lemma 3.5.11. Suppose MR(G) > 2 and x G X. Then Gx acts faithfully
and transitively on a cofinite subset of X. Moreover Gx acts transitively on
a cofinite subset of X.
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Proof. This follows immediately from Lemma 3.5.8 once we show that Gx is
infinite. Suppose to the contrary that Gx is finite. Then for any y £ X there
are finitely many g G G such that gx = y. Thus, picking g to be a generic of
G independent from x and y = gx, MR(g) < MR{y/x) < 1. This contradicts
that MR(G) > 2 to prove the lemma.

Lemma 3.5.12. Let MR(G) = k + 1 > 3. Suppose that any ω—stable tran-
sitive faithful action (i7, Z) with Z strongly minimal and MR(H) = k acts
sharply k—transitively. Given x G X let Y be the unique infinite orbit under
G°x. Then X\Y — {x} and G acts sharply k + 1—transitively on X.

Proof. First observe

Claim. MR(GX) = k.

Let X \ Y = Z and n = \Z\. Define an equivalence relation ~ on X by
a ~ b if and only if G°a = G£. Any finite orbit of G°x contains a single element
(by Lemma 3.5.8) so Gz D G°x for any z G Z. By the transitivity of the action
of G, MR{Gy) = MR(Gy>) for all y,y' G X. Thus, G°z = G°x for all z G Z;
i.e., the ~ —class of x is Z. For any g G G and a G X, Gga = gGag~ι, so
G°ga = gG°ag~λ. Thus, ~ is preserved by the action of G; i.e., a ~ b if and only
if ga ~ gb. Since G acts transitively on X every ~ class contains n elements.

Claim. If a φ b G Y then α / 6.

Let i ί denote G°x and fix α 7̂  b G Y\ Since there is a definable one-to-
one correspondence between X and the cosets of Gx in G, MR(G/GX) = 1.
By Lemma 3.5.7, MR(GX) = k, hence H acts sharply k—transitively on Y.
Thus, Ha acts sharply (k — 1)—transitively o n F \ {a}. Let c be a sequence of
k — 1 distinct elements of Y \ {a}. By the sharpness of the action there is a
c—definable bijection between Ha and (y\{α})/e~1. Since deg(y\{α})/c~1 = 1
(by Exercise 3.5.10) Ha also has degree 1. Hence Ha is connected. Since
Ha C Ga and Ha is connected Exercise 3.5.7 forces Ha to be a subgroup of
G°a. If a ~ 6, i7α c Gb, hence any element of i7α fixes b. The action of £fα on
Y \ {a} is (k — 1)—transitive, so this is impossible. This proves the claim.

Thus, each ~ —class contains a single element and X \Y = {x}. In
particular Gx acts transitively and faithfully on X\{x}. Since MR(GX) = k,
Gx acts sharply A;—transitively on X \ {x}. Since this is true for each x e l ,
G acts sharply (k + 1)—transitively on X. This proves the lemma.

Corollary 3.5.11. If G has finite Money rank k > 2 then the action of G
on X is sharply k—transitive.

Proof It follows from Theorem 3.5.2(ii) that a group of Morley rank 2
acting faithfully and transitively on a strongly minimal set acts sharply
2—transitively. From here the corollary follows by induction on k.
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Proof of Theorem 3.5.2(iii). In this case MR(G) = 3. By the previous
corollary G acts sharply 3—transitively on X. Fix a point in X and call it
oo. Then G ^ acts sharply 2—transitively on Y = X \ {oo}. By (ii) of the
theorem there is a field K defined on Y. Moreover, if 0 G Y is the zero of K,
Goo,o (— the set of elements of G fixing both oo and 0) is isomorphic (via a
definable map) to the multiplicative group of K. Among other things, Goo,o
is strongly minimal.

Since the action of G on X is sharply 3—transitive there is a unique a EG
such that a maps the triple (0,1, oo) to (oo, 1,0). Since α 2 fixes {0,1, oo}, α 2

must be 1.

Claim. Conjugation by a defines an automorphism σ of Goo,o5 σ ^ 1, σ2 = 1
and σg = g~ι for all g G Goc5o

Given g G Goo,o, otga~l is also in Goo,o> hence conjugation by α defines
an automorphism σ of Go^o Let a G X \ {0,1, oo} and g G Goo5o such
that g\ = a. If σ = 1, then aga~ι = g, hence aa = agl = g\ — α, a
contradiction since G acts faithfully and a φ 1. Since a2 = 1, σ2 = 1. It
remains to show that σ is inversion. Let B = {a G Goo,o : σa = a} and
C = {a G Goo,o : ca = a~λ }. Since G^o is strongly minimal and B is a
proper definable subgroup, B is finite. Consider the map r : Goo?o —• Goo,o
defined by τ{x) = σ(x)x~λ. Then, for any x G Goo,o?

σ(τ(x)) = σ2(x)σ(x~1) = xσ(x)~ι = τ{x)~\

so r maps Goo,o to G. If τ(x) = τ(y), then σ(xy~1) = xy~λ and x G Ϊ/B.
Since B is finite, x is algebraic over y. This shows that the kernel of r is finite,
hence C contains a generic. Thus, C is all of Goo5o, completing the proof of
the claim.

In other words, σ is inversion on Goo,o Given a G UΓX, let h G G^o be
such that hi = a. Then aa = ahl — h~ιa\ = h~λl = a~ι. Thus, α acts like
inversion on Kx. It follows that G contains the group of automorphisms of P 1

generated by all affine maps x h-> cx+d and x ι—• x" 1. Thus PGL 2(i^) embeds
into G. Since PGL 2(K) itself acts 3—transitively on X and the action of G on
X is sharply 3—transitive, this embedding of PGL 2 (if) into G is surjective.
That is, the action of G on X is isomorphic to the action of PGL 2 (K) on P 1.

This proves Theorem 3.5.2(iii).

To complete the proof of Theorem 3.5.2 it remains to show that MR(G) <
3.

Claim. MR(G) φ 4.

Suppose to the contrary that MR(G) = 4. By Lemma 3.5.12 G acts
sharply 4-transitively on X. Fix two points 001 and oo2 in X. Then Gooi.ooa
acts sharply 2—transitively o n l \ {001,002} so there is a field structure K
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definable o n l \ {001,002}. Moreover, the action of the multiplicative group
of K (on itself) is isomorphic to the action of Goo^oc^o = H.

There are σi, σ2 G G such that σ\ maps (0,1,001,002) to (001,1,0,002)
and G2 maps (0,1,001,002) to (002, l,ooi,0). As in the proof of Theo-
rem 3.5.2(iii), σiHσ~ι = H and σ̂  ^ C{H) (= the centralizer of H) for
i = 1,2. Repeating the proof of the previous claim shows that Oihσ~λ = h~ι,
for all h e H. Let ω = σ\σ2> For any h G H, ωh = σ\h~λσ2 = hσ\σ2 = hω.
lϊx e Kx \ {1} and h G H is such that hi = x then

ωx = ωhl = hωl = hi = x.

Since α l = 1, α; is the identity on Kx. It follows that <j = 1, contradicting
the fact that ωO = 002. This proves the claim.

Let k be the minimal natural number > 3 such that there is an ω—stable
group G of Morley rank k and a faithful, transitive, ω—stable action of G on
X. Given x G X, Gx acts faithfully and transitively on a strongly minimal
subset of X and MR{GX) = k — 1. Thus, k must be 4, contradicting the
claim. This proves that MR(G) < 3 when MR(G) is finite.

To finish the proof we must show that any ω—stable group G acting
faithfully and transitively on a strongly minimal set must have finite Morley
rank. We know

{l} = {geG:VxeX,gx = x}= f]{geG: gx = x}.
xex

By the descending chain condition on subgroups there are # i , . . . ,xn G X
such that {1} = {g G G : gx\ = xι,...,gxn = xn}. It follows that the
map g »—• (gxi,... ,gxx) is a one-to-one map of G into Xn. Thus MR(G) <
MR{Xn) = n.

This completes the proof of Theorem 3.5.2.

3.5.2 /\ —definable Groups and Actions

Occasionally (most notably in Section 4.5) a theorem giving the existence of
a group will not immediately yield a definable group, but a group on the set
of realizations of a type in the universe. We show in Theorem 3.5.3 that any
such group in a t.t. theory is actually definable. The relevant definitions are
as follows.

Definition 3.5.10. Let (£ be the universal domain of a theory. A subset X
of (ί is called infinity-definable over A (abbreviated /\ —definable over A) if
for some type p over A, X — p(£). X is /\ —definable if it is f\ —definable
over some set A.

Every definable subset of £ is /\ —definable.
Given (£ the universe of a t.t. theory and D an /\ —definable set, specifi-

cally, D =
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- MR(D) and deg(D), the Morley rank and degree of D, are defined to be
MR(p) and deg(p), respectively.

Definition 3.5.11. Let T be a complete theory.
(i) We call (G, •) an / \ —definable group over A in (£ if

- (G, •) 25 a group,
— G is a subset of €, / \ —definable over A and
— there is a function / , definable over A in (£, such that f \ G x G defines

the binary operation on G under which G is a group.

(ii) Similarly, a group action (G, ,X, *) is an / \ —definable group action
over A in (t if (G, •) is an / \ —definable group over A in £, X is a subset of
<L, f\ —definable over A, and * is the restriction to G x X of an A—definable
function.

(Hi) An f\— definable ω—stable group (action) is an f\—definable group
(action) in an ω—stable theory.

Theorem 3.5.3. An f\ —definable ω—stable group is definable.

Remark 3.5.10. Let G be an ω—stable /\-definable group over 0. Since G
may not be definable we cannot relativize the universe to G and retain a full
description of the definable relations on G. That is, Proposition 3.3.3 may
fail when relativizing to a set which isn't definable. So, we have to keep sight
of the ambient theory.

We say X C Gn is a locally definable relation on G if X = Y Π Gn for Y
some definable n—ary relation.

Remark 3.5.11. The reader is asked to verify the following basic facts. Let
G be an f\ —definable ω—stable group over A. An element a G G is generic
over B D A if MR{a/B) = MR(G). A type p G S(<£) is generic 'up extends
the type defining G and MR(p) = MR(G).

(i) If α, b G G and a is generic over B U {6}, then a b and b a are generic
over BU{b}.

(ii) For any formula ψ{x,y) there is a formula θ(x such that for all α,
|= θ(ά) if and only if ψ(a, y) is in every generic type.

The theorem will follow quickly from previously proved results and

L e m m a 3.5.13. Let G be an f\—definable ω—stable group over A. Then
there is a definable group H such that G is a subgroup of H.

Proof Let be a definable function whose restriction to G x G is the group
operation on G. Let Φ be a set of definable sets such that G = f| Φ. Pick (by
compactness) Xo G Φ such that for all x, y, z G Xo, x (y z) = (x y) z and
x 1 = x. For any Y G Φ let

Xy = { x G XQ : for all y G G generic over x, x y G F }.
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Then

G = f]{XY: YeΦ}.
(Simply because G is a group, G d y , for all Y e Φ. If x e Xy for each
Y G Φ, then for any y G G generic over x, x-y e G (because G = f]Φ). Since
x, y G Xo, x = x 1 == x (y y~ι) = (x y) T/"1 G G.) We can furthermore
assume that for any finite Φo C Φ there is a 7 G Φ such that 7

Claim. There is a Z € Φ such that X o 3 Z and for all £, y G Xz, £ y G Xo

If x G Xχ 0 and y e G, then x - y e Xχ0. (Let z G G b e generic over
{x, 2/}. Then y z is generic over {x, ?/} and (x y) - z = x (y - z) e Xo.) Let
Zι £ Φ be such that for all x G Xχ 0 and y G Zi, x y G X o . A set Z G Φ
such that X^ C Xχ 0 Π Z\ satisfies the requirements of the claim.

Let X1 = Xz.

Claim. If x G X\ and y G G then x - y £ Xι.

Simply because x,j/E Xz, x ' V € Xo Choose a z G G generic over {x,y}.
Then y z G G is generic over x. Since x G Xy, x - (y - z) G Z. Thus,
(x - y) - z E Z, proving that # y G Xz as required.

Let X2 = {y G Xi : Vx(x G Xi =4> x 2/ G X i ) } . Then X2 is a
definable set closed under , and is associative on X2 . We proved in the
claim that G C X2 . Thus, the invertible elements of X2 form a definable
group containing G.

Proof of Theorem 3.5.3. Let G be an ω—stable /\ —definable group over A.
Let Φ be a collection of definable sets such that G = f]Φ. By Lemma 3.5.13
there is a definable group H Z> G. In fact, from the proof of the lemma
we see that for any X G Φ there is a definable group Hx, X D Hx D G.
Hence, G = C\XeφHχ The descending chain condition on definable groups
in an ω—stable theory (Proposition 3.5.1) yields a finite Ψ C Φ such that
G = Γ\χe& Hχ This proves the theorem.

Historical Notes. Proposition 3.5.1 is due to Macintyre [Mac71b]. Groups
of finite Morley rank were studied by ZiΓber [Zil77b] (translated in [Zil91])
and [Zil77a] and independently by Cherlin [Che79]. The notion of a generic
type came out of these papers, [CS80] and Poizat's [Poi83a]. ZiΓber's In-
decomposability Theorem is found in [Zil77b]. Theorem 3.5.3 is due to
Hrushovski [Hru90b, Theorem 2], although Poizat had earlier proved that
an /\ —definable group which is contained in a definable group is the inter-
section of its definable supergroups [P018I].

Exercise 3.5.1. Let φ{x) be a formula in an ω—stable group G and let a
be an element. Show: φ(x) and φ{a~ι x) have the same Morley rank and
degree.
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Exercise 3.5.2. Verify that the connected component of an ω—stable group
G is definable without parameters.

Exercise 3.5.3. Prove Remark 3.5.5.

Exercise 3.5.4. Prove Corollary 3.5.7. HINT: Use Corollary 3.5.1.

Exercise 3.5.5. Prove Corollary 3.5.8.

Exercise 3.5.6. Prove Corollary 3.5.9.

Exercise 3.5.7. Let G be an ω—stable group and H a definable subgroup
of G. Assuming that H is connected show that H C G°.

Exercise 3.5.8. Let T be an ω—stable theory and G, H infinite groups
definable in the universal domain of T. Let K = G x H. Then c is a generic
of K if and only if c = (α, b), where a G G and b G H are generics and a is
independent from b.

Exercise 3.5.9. Give a proof of Proposition 3.5.3(ii).

Exercise 3.5.10. Let T be u -stable and (H,Y) a definable group action,
where Y is infinite. Suppose H acts sharply A;—transitively on Y and H is
connected. Then Y, y 2 , . . . , Yk all have degree 1.




