
XV. A More General
Iterable Condition Ensuring

Is Not Collapsed

§0. Introduction

Chapter XI was restricted to forcing notions not adding reals in a specific way

so that under CH, Nm is always permissible. This was used to show that various

combinatorical principles of N2 were equiconsistent with the existence of (small)

large cardinals. We constructed our models starting from CH without adding

reals, so that CH also holds in the final model. But what if we want CH to fail

in the final model? Can we phrase a condition preserved by iterations, implying

KI does not collapse and include semiproper forcing and Nm? This, promised in

the first version of this book, is carried out here. We start with notions similar

to the one in Chapter X, and then move in the direction of semiproperness.

Further theorems (which shed light on preservation of not adding reals) will

appear elsewhere (see [Sh:311]). The preservation theorems from this chapter

are sufficient to prove analogue of some theorems from Chapter XI with the

negation of CH. For example adding Cohen reals to the construction of XI 1.4

we can show: If "ZFC+ 3 weakly compact cardinal" is consistent, then so is

"ZFC-f 2N° = N2 + for every stationary S C SQ there is a closed copy of ω\

included in it". Generally the preservation proofs generalize those of Chapter

XI, except in the case of "iterating up to a strongly inaccessible and doing one

more step (in this case 3.6). We generalize Gitik and Shelah [GiSh:191] which

improve the relevant theorem in XI (i.e. [Sh:b, XI]).
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Of course we can also add reals to the construction in XI 1.2 and get

an extension Vp where K^ — Kf , K = K^ and the filter generated by the

measure on K in V will include Sfi, and it is not clear that it will be precipitous,

see X §6. As in Chapter XI, we use for proving the preservation, partition

theorems and Δ-system theorems on trees: mainly 2.6 and 2.6A, 2.6B, 2.6C.

Some of them are from Rubin and Shelah [RuSh:117], see detailed history there,

on pages 47, 48.

§1. Preliminaries

The replacement of RCS (revised countable support) by GRCS (defined below)

is not essential - it is intended to simplify the preservation theorems (one of

the cases in Chapter VI refers to GRCS).

1.1 Conventions. A forcing notion here, P, is a nonempty set (denoted

by P too) and two partial orders <pr, < and a minimal element 0p € P,

[p <pr q —* P < Q] We call p e P pure if 0p <pr p and we call q a pure

extension ofp if p <pr q. (In Chapter XIV=[Sh:250] this was written <o).

We denote forcing notions by P, Q, R- (The forcing relation of course refers

to the partial order <).

1.2 Definition. Let MAC(P) be the set of maximal antichains of the forcing

notion P.

1.2A Remark. 1) Note: \MAC(P)\ < 2'pl, P satisfies the |P|+-c.c. and if P

satisfies the λ-c.c. then \MAC(P)\ < |P|<λ.

2) Note

(*) if Q is a forcing notion, λ = λ<λ > \Q\ + H0, \\-Q "(Vμ < λ)μH° < λ" and

Q' = Q * Levy(Nι, < λ) then \MAC(Q'}\ - |Q'| - λ

1.3 Notation. Car is the class of cardinals.

IRCar is the class of infinite regular cardinals.
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RCar = IRCarU{0}.

RUCar is the class of uncountable regular cardinals.

T>cχ is the filter of co-bounded subsets of λ.

η- = η\ (tg(η) - 1) for η G V<ω and ίg(η) > 0

1.4 Notation. H(χ) is the family of sets with transitive closure of power < χ;

let <* be a well ordering of H(χ).

1.5 Definition. GRCS iteration is as defined in Ch X, except that, for each

condition all but finitely many of the atomic conditions in it are pure (or as in

Chapter XIV §1 for K = NI, e = 1).

1.6 Fact. (*)ι if Q is a GRCS iteration, and for each i <^=<Qί then Q is

an RCS iteration.

(*)2 if Q is an GRCS iteration, and for each i the order <Qf is equality then

Q is essentially a finite support iteration.

(*)3 the distributivity law, etc. (Chapter X 1.5, and §1 generally) holds for

GRCS (by Chapter XIV §1).

1.7 Claim. Suppose we want to prove for all generic extensions VQ of V, that

for iteration (PΪ7 Qj : i < α, j < α) as in 3.1 below, for a property φ that:

Q*P
(*) if Q and each Qi has the property φ (of course Q in V, Qi in V ~ *)

then Pa has the property φ (in V®).

Then it is enough to prove (*) when (a) and (b) below hold:
Q*P

(a) for i < j < α, Pj/Pi has the property φ (in V " *)

(b) ^g(Q) is: 2, or ω, or ωi, or strongly inaccessible > |P;| for each i <

Remark. You may add:

(c) (*) holds for all ζX, (P/,Q^ : i < α7, j < α7) for which a1 < a (not just in

V, but in every generic extension of it).
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Proof. By induction on α, using 3.7 (later in this chapter) and X §1 (or XIV

§1).

§2. Trees of Models and UP

2.1 Definition.

1) A tagged tree is a pair (Γ, I) such that:

(a) T is a ω-tree, which here means a nonempty set of finite sequences of

ordinals such that if η G T then any initial segment of η belongs to Γ.

T is ordered by initial segments, i.e., η < v iff η is an initial segment

of v.

(b) I is a partial function from Γ such that for every η G Γ : if \(η) = \η is

defined then \(η) is an ideal of subsets of some set called the domain

of l^, Dom(lr7), and

Sucτ(η) = \y : v is an immediate successor of η in Γ} C Dom(lr7),

and if not said otherwise S\ιcτ(η) φ \η. Usually 1^ is ^-complete.

(c) For every η G T we have Sucτ(η) ^ 0.

2) We call (Γ, I) normal if η G Dom(lr?) => Dom(lr?) = Sucτ(τ?).

2.1 A Convention. For any tagged tree (Γ, I) we can define I1", by:

Dom(Γ) = {η : Sucτ(η) C Dom^), and Sucτ(r/) φ \η} and

we sometimes, in an abuse of notation, do not distinguish between I and |t e.g.

if |ΐ is constantly /*, we write /* instead of I.

2.2 Definition. 1) η will be called a splitting point of (Γ, I) if 1^ is defined and

Sucτ(η) φ \η (normally this follows but we may forget to decrease the domain
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of I). Let split(Γ, I) be the set of splitting points. We will only consider trees

where each branch meets split(T, I) infinitely often.

2) For η G T, T^ d= {v G T : v = η or v < η or η < v).

2.3 Definition. We now define orders between tagged trees:

a) (Tι,lι) < (T2,I2) if T2 C TI, and split(T2,l2) C Split(Tι,lι), and Vr? G

split(T2,l2) : l2(r?nSucT2(r?) - 11(77)^^(77).

(where / f A = {B : B C A and Be/}). (So every splitting point of T2 is a

splitting point of TI, and I2 is completely determined by li and split(T2,12)

provided that I2 is normal.)

b) (Ti, li) <* (Γ2,12) ttfCΓi, li) < (Γ2,12) and split(Γ2,12) = split(Γi, lι)ΠΓ2.

c) (Tι,lι) <® (T2,I2) if (Γι,l!) <* (Γ2,I2) and η G T2 \ split (Γi, li) =>

SucT2(τ7) = SucTl(τ7)

(d) (Γι,l!) <® (T2,I2) t/(Γι,lι) < (Γ2,I2) and 77 G Γ2 & |SucΓl(τ/)| < μ =»

SucT2(τ7) - SucTl(ry) and r^ G T2 & |SucTl(r/)| > μ & ry G Sp(T1? li) ^> ry G

Sp(Γ2,l2)

2.4 Definition. 1) For a set I of ideals, a tagged tree (T, I) is an I-tree if for

every splitting point η G T we have 1^ G I (up to an isomorphism).

2) For a set S of regular cardinals, an S-tree Γ is a tree such that for any point

η G T we have: |Sucτ(r/)| G S or |Sucτ(r?)| = 1.

3) We omit I and denote a tagged tree (T, I) by Γ whenever 1^ = {A C Sucτ(^) :

|A| < |Sucτ(τ7)|} and |Sucτ(r?)| G IRCar U {1} for every η G Γ.

4) For a tree T, limΓ is the set of branches of T, i.e. all ω-sequences of

ordinals, such that every finite initial segment of them is a member of T:

limΓ - {s G ωOrd : (Vn) s|n G Γ}.

5) A subset J of a tree Γ is a front if: 77 / f G J implies none of them is an

initial segment of the other, and every η G limT has an initial segment which

is a member of J.

6) (T, I) is standard if for every nonsplitting point η G T, |Sucτ(??)| = 1.

7) (T, I) is full if every η G T is a splitting point.
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2.4A Remark. (1) The set limΓ is not absolute, i.e., if V\ C F2 are two

universes of set theory then in general (limΓ)Vl will be a proper subset of

(2) However, the notion of being a front is absolute: if V\ |= "F is a front in Γ" ,

then there is a depth function p : T — » Ord satisfying r/ < ι/& Vfc < ίg(r/)[r/ffc ^

F] — > p(r/) > p(ί^). This function will also witness in V^ that F is a front.

(3) F C T contains a front iff F meets every branch of T. So if F C T contains

a front of Γ and T' C Γ, then F Π Γ' contains a front of Γ'. Also this notion is

absolute.

2.4B Notation. In several places in this chapter we will have an occasion to

use the following notation: Assume that (T, I) is a tagged tree, and for all η G T

there is a family aη of subsets of T^ such that η < v => MA G α^ 35 G α^

[S C A]. Then we can define for all α G Ord U {00}

Dpα(τ?) iff V/J < αVA G α^i/ G ,4 Π split (T)[{p : p G SucrM&Dp^ip)} ^ 1^].

Then it is easy to see that

Dp(τ?) d= max{α G Ord U {00} : Dpjr?)}

is well defined, and Dpα(τ/) <^ Dp(τy) > α. We call Dp(r/) the "depth" of η

(with respect to the family a = (aη : η G Γ) and the tagged tree (T, I)). It is

easy to check that η <\ v => Dp(ry) > Dp(z/).

2.5 Definition. 1) An ideal / is λ-complete if any union of less than λ members

of / is still a member of /.

2) A tagged tree (T, I) is λ-complete if for each η G Γ Π Dom(l) the ideal 1^ is

λ-complete.

3) A family I of ideals is λ-complete if each / G I is λ-complete. We will only

consider H2-complete families I.

4) A family I is restriction-closed if I G I, A C Dom(7), A φ I implies

I\A = {B G / : B C A} belongs to I.

5) The restriction closure of I, res-cl(I) \s{I\A:Iel,AC Dom(7), Aφl}.
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6) / is λ-indecomposable if for every A C Dom(/), A φ /, and h : A —* λ there

is y C λ, |y| < λ such that h~l(Y) £ I. We say I or I, is λ-indecomposable if

each \η (or / G I) is λ-indecomposable.

7) / is strongly λ-indecomposable if for Ai G I(i < λ) and A C Dom(7), A φ I

we can find B C A of cardinality < λ such that for no i < X does Ai include

B.

2.5A Remark. As indicated by the names, if / is strongly λ-indecomposable

then / is λ-indecomposable at least when λ is regular. [Why? Given A, h as in

2.5(6), let Ai = h~l({j : j < i } ) ] if for some z, Ai φ I we are done, otherwise

by 2.5(7) there is Y C A, \Y\ < X f\.Y £ A». But as λ is regular > |y|,

z(*) = sup{fo(x) -f 1 : x G Y} < X hence Y C A^*), contradiction.]

2.6 Lemma. Let θ be an uncountable regular cardinal (the main case here

is θ = HI). Let I be a family of fl^-complete ideals, (To, I) a tagged tree,

A = {η G T : 0 < |SucTo(r?)| < θ}, [ηeT0\A=ϊ\ηe I&SucToM Φ M and

[η e A => SucTo(r?) C {η~ (i) : i < 6>}] and H : Γ0 -> <9 and e = (eη : η e A),

is such that eη is a club of θ. Then there is a club C of 0 such that: for each

5 G C there is T£ C Γ0 satisfying:

(a) T<5 a tree.

(b) If η G Ή, |SucTo(r?)| < β, then SucTδ(τ7) - SucTo(r7), and if |Suc(τy)| -

θ, then Sucτδ(r7) = {η* (i) ' i < 6} Π Sucτ0(^) and δ G eη.

(c) ry G T§ \ A implies SucTδ(η) φ \η

(d) for every η G Tδ: H(η) < δ.

Proof. For each ζ < θ we define a game Dζ. The game lasts ω moves, in the nth

move ηn G TO of length n is chosen.

For n — 0 necessarily 770 = ( ).

Forn = m + l: If |Sucτ0(f?m)| = β, then the first player chooses r/m+ι G

SuCTo(r?n), ^m+lM < C

If |SucTo(??m)| < β, then the /ϊrst player chooses any rym+ι G

SucTo(r/m).
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If ηm φ A, then the first player chooses Am G \ηm, and then the

second player chooses η rn+i £ Sucj 0(?7m) \ Am.

At the end, the second player wins if for all n, H(ηn) < ζ and |Sucτ0(^n)| =

θ => ζ G eηn. Now clearly

(*) if for a club of ζ < θ the second player has a winning strategy for

the game D^, then there are trees T$ (as required).

Let 5 = {δ < θ : second player does not have a winning strategy for the game

us}; we assume that 5 is stationary, and get a contradiction.

Let for δ G 5, F$ be a winning strategy for first player in D§ (he has a

winning strategy as the game is determined being closed for the second player).

So FS gives for the first (n — l)-moves of the second player, the nth move of

the first player.

Let x be regular large enough, and let (No, G) -< ( H ( χ ) , G) be such that

θ +1 C NO, |N0| = θ, (T0,1) e N0, e G N0, and (F* : 5 G 5) G N0. We can find

NI -< NO such that \Nι\ < θ, NI Π θ is an ordinal and (Γ0,1) G A/Ί, (Fδ : δ G

5} G NI and e e NI. Let 5 = NιΓ\θ. Since 5 was assumed to be stationary,

we may assume δ G 5.

Now we shall define by induction on n, ηn G TO Π NI of length n, such that

(ηt : t < n) is an initial segment of a play of the game 3$ in which the first

player uses his winning strategy F§.

Case 1. n = 0:

We let r?o = (). (The AI G \ηι are not mentioned as they are not arguments of

Fδ).

Case 2. For n = m + l , r / m G ^ 4 : the first player has a winning strategy F$ for

the game 0)5. So F$ gives us ηn. Now if |Sucτ0(^m)| < θ then Sucτ0(?7m) £ NI

(because TO, ηm belongs and N\ Π θ is an ordinal), hence ηn G N\ as required.

If |SucTo(r7m)| = θ then necessarily SucTo(^m) Q KrΓ (i> : i < 0}, ??n =

^m Λ (i),ί < ^ (as the play is of the game D$), so necessarily i e NI hence (as

also ηn G NI.
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Case 3. Lastly if n — m 4- l,^m Φ A : so F§ gives us A^ G 1̂  which is not

necessarily in AΓ1? however let A* = IJί^m : C £ £» and there is a play of Dζ in

which (ηt\i< m) were played and the first player plays according to Fζ (this

play is unique) and the strategy Fζ dictates to the first player to choose A^} .

Now A" is in N\ (as F G Λ/Ί) and as the union of < θ members of \ηrn it

belongs to \ηrn hence A* Γ\ Sucτ0(f/m) is a proper subset of Sucτ0(^m)5 so there

is η m Λ {*} G Sucτ0(?7m) \ ^4*? so there is such i G Λ/i (so necessarily i < ί). Let

the second player choose ηn = ηm

 Λ (i).

So we have played a sequence (ηn : n G ω) of elements of AΓ1? always

obeying F^ so this sequence was produced by a play of DS in which the first

player plays according to the strategy F$. But then for all n : ηn G NI =>

r/n € JVi => er,n G ΛΓi =>ί = sup(er?τι n ί) => ί G e^;

hence second player wins in this play. So F$ cannot be a winning strategy.

Contradiction, so S is not stationary. U2.6

2.6A Lemma. Suppose (T, I) is an I-tree, θ regular uncountable, (Aη : η G T)

is such that: Aη is a set of ordinals, [η < z/ => A^ C A^] and

(*) (a) S C RUCar,

(b) F = I \ {/ : |Dom(/)| < μ} is μ+-complete or at least strongly μ-

indecomposable for every μ such that μ G S or μ G pcf (S Π Aη) for

some 77 G T and

(c) I is 0-complete and | pcf (S Π Aη)\ < θ for η G Γ and (9 < min(S)

(d) \Aη\< min(S) for η G T

T/ien there is T f, (Γ, I) <* (Tf, I), such that:

if λ G Aυ Π S and v G Γ^ then for some αιy(λ) < λ for every p such that

v < p G limT^ we have α^(λ) > sup(λ Π Un<u; ̂ ptn)
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Proof. It is enough to prove the existence of a T^ as required just for v — ( ) (as

we can repeat the proof going up in the tree) . This can be proved by induction

on max(pcf (S Π A( ))) (exist see [Sh:g, I 1.9]). Let a\(η) = sup(Aη Π λ).

As this lemma (2. 6 A) is not used in this book we assume knowledge of

[Sh:g].

Let α = S Π AQ (if α is empty we have nothing to do), μ = maxpcf (α), and

(fa '. OL < μ) be <j<μ[α] -increasing cofinal. Let {bε : ε < ε(*)} be cofinal in

J<μ[a] e.g. this set is {\Jθec 60 [α] : c C pcf α \ {μ} finite} so ε(*) < θ hence by

an assumption I' is |ε(*) ̂ -complete.

For ε < ε(*), ζ < μwe define:

(*)ζ there is a subtree T' of Γ, (T, I) <* (T', I) such that for every η G lim(Γ/)

and \n G α \ bε we have ot\n(η\n) < fζ(λn).

It suffices to find such T1 (for some ε, C) as: maxpcf (bε) < maxpcf (α), so

we can apply the induction hypothesis on T1 '.

In V define for ζ < μ and ε < ε(*).

Bζ = {η G lim(Γ) : for some ε < ε(*) for every λ G α \ bε we have

B^£

 ά= {η e lim(Γ) : for every λ € α \ b ε , n < u ; = > aχ(η\n) < /c(λ)}

Clearly Bζ,ε is closed and Bζ = \J Bζί£. Now ζ < ξ < μ => Bζ C Bξ, (as
ε<ε(*)

/C <J<μ[α] Λ) and lim(Γ) - UC<μ

5C (*s (/c : C < μ) is cofinal in Πn<u;λn))

hence using 2.6B(3) below (with μ, ε(*) here standing for 0, ε* there) for some

C(*) < μ and ε < ε(*) and T' we have (T, I) <* (Tf, I) and lim(T') C JBc,ε. So

(*) holds, but as said above this suffices. ^2.6A

Question. If I G #(χ) is there a countable JV -< (H(χ), G, <* ) such that: le N

and for every λ G RCarΠ N, letting l'Λ' = { J G I : J is λ+-complete }, there is

(N* : η G (T, I)) an 1̂  -suitable tree (see Definition 2.10) such that N <χ

(Or replace RCar by a thinner set.)

2.6B Lemma. Let (Γ, I) be an I-tree, I a family of ideals,
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1) If H : T —> μ and μ*° < λ and I is λ - complete then there is T" such that

(T,I)<*(

η, v € r

2) If lim(T) = (Ji<9 Bi, θ < λ, I is λ - complete and each Bi is a Borel set

ί/ien there is T' such that

(T, I) <*(!*, I)

for some i :[limT C Bi]

3) If θ is regular uncountable, lim(Γ) = \J B^ and £i is a Borel subset of
ΐ < 0

lim(Γ), increasing with z, and (*) below holds then

(a) for some i < θ and T' we have (T, I) <* (T',1) and lim(Γ/) C B<

(b) if in addition η eT\ split ((T, I)) => |Sucτ(r?)| < θ then in (a) we can

demand (T, I) <® (Γ', I)

where

(*) every / £ I is 0+-complete or at least strongly 0-indecomposable (see

2.5(7)).

4) Assume lim(T) = \Ji<θ\Jε<εi &i,e, each Bit£ is a Borel set, [i < θ =»

ε^ < σ], I is σ-complete, and each I e I is strongly ^-indecomposable, and

Bi = \^)ε<ε. Bi^ε is increasing in i and

[ηeT\ split(Γ, I) =» |Sucτ(r?)| < σ].

Then for some i < θ and ε < ε^ and T' we have (T, I) <Θ (Γ',1), and

lim(T') C Bit£.

2.6C Remark. 1) We can combine 2.6B(3), (4) with 2.6A.

2) To what can we weaken "strongly ^-indecomposable"? A sufficient condition

is the existence of a precipitous normal filter E on θ such that for every I G I

and Ai G / for i < θ and A* e /+ there are Xi G A* for i < θ such that

{i e A* : {Xj : j < i} <£ A^} ^ 0 mod E

3) We can elaborate 2.6B(4). We can have t C ω>Ord be a tree with no ω

branch, (Bη : η G t) a sequence of subsets of lim(T) such that:
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(a) if η G max(t) then Bη is Borel

(/?) if 77 G £ is not maximal, then (a) or (b)

(a) I is |Suct(r?)|+-complete, Bη = |J{^ : ̂  £ Suct(r/)}

(b) (Bη-φ : η~(ϊ) G 81104(77)) is increasing and letting θη = cf(otp({i :

η~(i) G £})), I is strongly ^-indecomposable.

Now we prove by downward induction on η G t that

(*)τ7 there are (Γ', I) and i/ such that: 77 < v G max(ί), (Γ, I) <* (T', I) and

lim(T') C Bi or in the game corresponding to (J{BP : η < p G max(ί)}

the first player wins

4) We can combine 2.6C(3) with 2.6B(3).

Proof. 1), 2) By [RuSh:117] or see here XI 3.5, 3.5A.

3) Similar to the proof of 2.6. First we prove clause (a). Without loss of

generality (Γ, I) is standard, so for notational simplicity it is full (see Definition

2.4(6), (7)). For each ζ < θ let Dζ be the following game with ω moves, letting

770 = () and in the n'th move 77n G T is chosen; the first player chooses An G \ηn

and the second player ηn+ι G Sucτ(7?n) \ An. In the end (jn<ωηn € lim(Γ),

and the second player wins the play if |Jn ηn £ Bζ. It suffices to prove for some

C < θ, the second player has a winning strategy. So otherwise for each ζ the first

player has a winning strategy Fζ. Let χ be large enough, NI -< (H(χ), G, <*),

\\Ni\\ < θ, δ d= NI Π θ < θ such that (T,l), (Bζ : ζ < θ) and (Fζ : ζ < θ)

belongs to NI. We shall simulate a play (^4m,?7m+ι ' rn < ω) of D$ such that

77m+ι G NQ. Assume (At,ηt+ι : £ < m) is already defined. Let S'm — {ζ < θ:

there is an initial segment of a play of c\ in which the first player uses the

strategy Fζ and the second player plays (77^ : ί < m)}, note that such initial

segment is unique, for a given ζ. For ζ G S'm let A^ be the (m + l)'th move

of the first player, for such a play with the second player using the strategy

Fc, so (A^ : ζ G S'm) G NI, also clearly δ G S'm, hence |5 |̂ = θ and by the

assumption (*) for some B € NI, B C Sucτ(τ7m), \B\ < θ and Λζ€5^ B 2 Am-

As B G NI and NI Π θ = δ, clearly B C NI and choose i G B \ Aδ

m and let
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For proving clause (b), denning Dζ if \Sucτ(ηn)\ < θ we change the rule

and let player I choose ηn+ι G Suc^(?7n).

4) We define, for ζ < θ and ε < ες a game Dζ?ε as in the proof of 2.6B(3)

clause (a) for Bζί€. If for some ζ < θ, ε < ες the second player wins then

we get the desired conclusion. Otherwise as each such game is deter mind (as

Bζ^ε is a Borel set) there is a winning strategy Fζ,ε for the first player. As I

is |εζ |+-complete, there is one strategy Fς good in all the games Fζί€(ε < εζ)

simultaniously (take the union of the sets suggested by all those strategies). So

Fζ is a winning strategy in Dζ, and we can proceed as in the proof of 2.6B(3).

2.7 Definition. Let I be a set of ̂ -complete ideals, S a set of regular cardinals,

NI = Min (S) and P a forcing notion.

1) We say that (T, I, λ, ξ, ξ) is a (I, P, S)-tree if:

a) (T, I) is a I-tree (see Definition 2.4(2))

b) λ is a function from T to S

c) ξ is a function with domain T such that for every η e T, ξ(η) is a

P-name of an ordinal < X(η)

d) ξ is a function from T \ {{)} such that each ξ(η) is an ordinal.

2) We say that the (I, P, S)-tree (T, I, λ, £, ζ) obeys a function F if there are

fronts Jn C T for n < ω (see Definition 2.5 (2)) such that every member

of Jn+ι has a strict initial segment in Jn and η G Jn implies

(Sucτ(η),\η, (CM : " € Sucτ(τy)>) -

where w[η] is {k : η\k G \Jt<ω Ji}

2.7 A Definition. We say that the forcing notion P satisfies EΛP(I, S, W) (the

"universal property"), where W C ω\ is stationary, S a P-name of a set of

uncountable regular cardinals (in V) which contains Nf, provided that: letting

S* = S*[S] = {AV : K regular < |P|, JK "K φ S"}, for every p G P there is a
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function Fp (with domain and range as implied implicitly in (2)) such that: for

any (I, P, S*)-tree (Γ, I, λ, £ ξ) obeying Fp and any T*, (Γ, I) <* (Γt , I) there

is q G P, p <pr q such that:

q Ihp "there is η G limT t such that: if sup{ζ(η\£) :£<ω and ζ(η\t) < ωι}

is not obtained and belongs to W then: for every m < ω satisfying

X(η\m) e S, for some ί < ω we have ξ(η\m)[GP] < ξ(η\£) < \(η\m)"

2.7B Notation. 1) If I is the set {j£d : λ > N 2 ,λ is regular} (where

{B C A : sup(B) < sup(4)}) then we may omit it. We let λ^ d=f λ(ry),

1̂  1lf £(77), ζη

 d= ζ(η). If S = {Ni} we may omit it and omit λ. If S = RUCarv

we may write * instead of S. If W — ω\ we may omit it (note: no object can

serve as two among I, S and W, so no confusion should arise).

It is always understood that the trivial / is in E (even if we write 1 = 0),

a trivial / is the empty set with domain a singleton.

2) If not said otherwise, we shall ignore the non- ̂ -complete members of I, i.e.

E7P(I, S, W) means C7P(F, S, W) where Γ = {/ G I : / is N2-complete}.

2.7C Remark. l)Why do we use S* and why can we require S* C IP]"1"?

(a) S is only a name (if S was a set 6 V, S* = S is o.k.) and

(b) P-names of an ordinal < λ, λ = cfλ > |P|+ have an apriori bound.

2) A reader may use S = {Ki} all the time.

2.7D Claim. 1) In Definition 2.7, if S = RUCarv we can replace in 2.7(1) (c)

"a P-name of an ordinal < λ(r/)" by "a P-name of a member of V", in 2.7A

demand ζ(η\m) = ζ(η\(£)) and omit λ and get an equivalent definition (we can

also replace < |P| by < Min{κ; : P satisfies the κ-c.c.}).

2) The forcing notion P satisfies Ϊ7P(I, S, W) iff its completion (to a complete

Boolean algebra) satisfies it (assuming ^pr^^).

3) If Q satisfies C/P(I, *,W) (i.e. as in part (1)) and I is μ+-complete (e.g.

1 — 0) then any "new" countable set of ordinals < μ is included in an "old"

countable set of ordinals i.e. one from V.

4) Q satisfies ί/P(0, *) iff Q is proper
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5) Q satisfies [7P(0, {Hi}) iff Q is semiproper.

6) If Q satisfies E7P(I,S, W) and I C I^Si C S and \Nl C W then Q satisfies

UP(Iι,Sι,Wι).

7) In Def. 2.7A, we can replace S by any set S' of uncountable regular cardinals

of V, such that Ihp "S Π |P|+ = S' Π |P|+".

Proof, (sketch) (1) is easy.

(2) Note that F is defined on sequences of names, and it is well known

that P-names can be canonically translated to Q-names, if P is a dense subset

of Q.

(3) Use 2.6B(2) repeatedly.

(4), (5): If I = 0, then each branch of an I-tree is itself an I-tree, so a

strategy from XII 1.1 (or 1.7(3)) easily yields a function F.

(6) Easy.

(7) By 2.7C(l)(b). D2.7D

2.7E Convention. 1) We write Fw(η, (λ/,ξ/,C* : ί < lg(n))) for

we omit A£ when S = {Nι}

In Definition 2.7, the value F gives to Sucτ(r?) is w.l.o.g. {r?Λ (α) : a < X}

for some λ, and we do not strictly distinguish between λ and Sucτ(^).

2.8 Definition. 1) For an ideal collection I, a set S of uncountable regular

cardinals, (where KI = min(S), and I is N2-complete) and χ regular large

enough, we say a countable model N -< (Jf(χ), €, <*) is strictly (I, S,W)-

suitable for χ if. N Π ω\ G W and in the following game the second player has

a winning strategy (letting NQ = N).

in the nth move: the first player chooses In G I Π Nn and set An (not

necessarily in ]Vn),^ln C Dom(/n), An G /n,

then the second player chooses xn G (Dom(/)) \ AI and let Nn+ι D Skolem
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Hull of Nn U {xn} such that for each λ G S Π Nn:

sup(7Vn+ι n λ) = sup(7Vn n λ)

2) If W is omitted we mean W = ωι, if S is omitted we mean {Ni}, if both are

omitted we write strictly I-suitable.

2.9 Claim. A model N -< (H(χ), G, <*) is strictly (I,S, W)-suitable for χ iff

there is an I-tagged tree (T, I) and (Nη : η G Γ) such that:

a) 7V = ]V ( ) , {I,S,W}G7V

b) Nη -< (#(χ), G, <*) is countable

c) Nηtk -< Nη

d) for λ G S Π Nηjk, k < lg(η) we have: sup(Nη Π λ) = sup(^rfc Π λ)

e) for every η G Γ and / G I Π Nη

{v \ η < v, v a splitting of (Γ, I) and \v = 1} contains a front of

f) r y e TV

g) T V Π u i e W.

Easy: from a winning strategy we can build a tree, and for any such tree

(Nη : η e T) a winning strategy of player II is to choose some r/n+ι G T, ηn <

r/n+i preserving |J^n N^U N C Nn = Nηn. D2.9

2.10 Definition. Fix I,S, W.

1) An I-tagged tree of models is an I-tagged tree (T, I) whose nodes η are used

to label countable models Nη (we write this as TV = (Nη : η € (T*,l)})

satisfying the following:

(a) for 77 G Γ we have Nη -< (-H"(χ), G, <* ) is a countable model.

(b) NQ contains all necessary information, in particular I, S, W.

(c) η < v G Γ implies Nη ~< N»

(d) for η G Γ we have η e Nη and 1^ G A^.

Whenever we have such an I-tagged tree N of models, we write Nη =

2) We call such a tree l-suitable if
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(e) \fη G TV/ G I Π Nη {v G T^ : v G split(Γ), \v = I (or just they are

isomorphic) } contains a front of T'77].

3) We call N suitable* if instead of (e) we only have

(e)* Vr? G TV/ G InW{ι/ G Γ^ : v G split(T), \v <RK /} (see 2.10A below)

contains a front of T.

4) We call TV ^-strictly (I,S, W)-suitable if N is suitable and in addition

(f) for some δ G W, for all η G T we have: Nη Π ω\ — δ

5) we call TV strictly (I, S, W)-suitable, if in addition to clauses (a) - (e) we

have:

(g) for all v G T, λ G S Π Nδ there is δχ < X such that Vr? G Γ

\v < η =» sup(AΓr/ Π λ) = Jλ].

6) We call N uniformly suitable or Ki-uniformly suitable if (g) or (f) respec-

tively hold only for all η G lim(Γ).

Remark. Note: for suitable trees, S is essentially redundant so we may omit

it or allow names. Similarly so for W. In 2.9 and 2.10 we omit W when it is

α i, and omit S when S = {^ι}5 so I-suitable means (I, {Nι},cι;ι)-suitable. Let

η G (T, I) means η G T and we write T when I is clear.

2.10A Definition. 1) For ideals Ji, J% we say

if there is a function h witnessing it, i.e. h : Dom( J2) — > Dom( Ji) is such that

for every A C Dom( J2) : A ^ 0 mod J2 => h"(A) ^ 0 mod Ji

or equivalently, J2 5 {h~l(A) : A G Ji}.

2) For families Iι,I2 of ideals we say Iχ <RK ^2 if there is a function H

witnessing it i.e.

(i) H is a function from Ii into I2

(ii) for every J G Ii we have J <RK H(J)

3) For families l!,I2 of ideals, Ii =RK I2 ifli <RK I2&I2 <RK Ii-

2.10B Fact. Assume I </?/<: F, where I,F are families of ideals.
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1) If (TV T? G (T, I)) is a I'-suitable* tree and I G N(}, then (Nη : η e (Γ, I)}

is also I-suitable*.

2) If (Nη : η G (Γ, I)) is I-suitable*, then there is a tree (T', I') satisfying the

following:

(a) Γ' C T (but in general not T < T', as the function I7 will be different)

(b) sPiit(r, v) = r n spiit(τ, i)
(c) (̂  : T/ e (T', Γ)) is I-suitable.

Proof. (I) Should be clear, as <RK is transitive ( as a relation among ideals

and also among families of ideals).

(2) For each η e split (T, I) pick an ideal \'η G I Π Nη, \'η <RK 1^ such that:

for all v G T, for all Γ G I Π Nv : {η G I'M : /' = \'η} contains a front of Γ^l

This can be done using a bookkeeping argument.

Now define T' as follows: If 77 G Γ'\split(T, I), then SucT'(r/) - Sucτ(τ?). If

ry € T' Π split (T, I), then \'η is already defined and it belongs to Nη. Let gη be a

witness for 1^ <RK \η, so ̂  introduces an equivalence relation on Sucτ(^). Let

Aη be a selector set for this equivalence relation, i.e. gη \Aη is 1-1 and has the

same range as gη. Note that we can choose gη and Aη in Nη. So without loss of

generality we may assume that gη\Aη is the identity, and let Sucτ(η) — Aη.

Π2.10B

2.11 Claim. Assume I is a restriction closed family of ideals, S a P-name of a

set of regular uncountable cardinals, P a forcing notion, I is ^-complete and

W C ω i . ThenTFAE:

(A) P satisfies C7P(I,S,W).

(B) for large enough regular χ, if S* - {λ JKP "λ ^ S" and λ < |P|} and

TV = (Nη : η G (T, I)) is a (I, S*, W)-suitable tree of models for χ (see

Definition 2.10(2)) and p G JV{) Π P, t/ien there is a ς G P, p <pr 9, such
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that:

q \\-P " for some η G limΓ ( in (Vp)) (J Nηιk Πα i φ W or :
k<ω

for every fc < ω, and λ G S Π A^^ and

Qi £ Nη\k, a P— name of an ordinal < λ

we have g[GP] < sup[(J(A^fn Π λ)]"
n

i.e. 4 Ihp "for some η G lim(T) : if sup(\Jk<ω Nη^ Π ωi) G W then

sup(U ^>r*[Gp] n λ) = supOJfc Nηlk Π λ) for λ G S Π (Ufc Λ^)"

(B)* Like (B) replacing suitable by suitable*.

2.11A Remark. We can use, in (B), "λ G S Π Nηlk[GP]" instead of "λ G

S Π Nη\k" if in 2.7(1) we change all λ(τ?) to be P-names. Such a change would

not hurt the rest of this chapter.

Proof. (A) ̂  (B)

So let (Nη : η G (T, I)} be (I,S, W)-suitable tree of models for χ and p G

NQ Π P. We should find q as in (B). There are F G N( ) witnessing UP (I, S, W)

for p and χ0 e N{} (such that <*0G N(}) where {F, P, 2'pl} G N( > Π ί/"(χ0)

Now we form an (I, P, S)-tree (T^, l"*",λ,ξ, ζ) which obey F, and a func-

tion /ι : Γf -> T satisfying [ry < z/ ^> ft(τ/) < ft(ι/)] and [77 G T1" =>

{^^^(ry),^),^)} G 7VMr7)], and:

(*)ι for every η G T*, λ G Nη Π S*, / G I Π AΓη and ξ G Nη a P-name of

an ordinal < λ, for some front J of T^ consisting of splitting nodes of (T^, I)

above ry,
l v ε J = * ( λ ( v ) , ξ ( v ) ) = (λ,ξ)}

[v e 7 => It = /]

Note that as F 6 NQ -< Nv necessarily

[v € J
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Now apply Def 2.7A to (Γ* , |t , λ, £ C) so in Vp we get q G P and η G lim(Γt)

(a P-name) as required there (i.e. forced by q to be so), now there is a P-name

v G lim(Γ) such that f\k<ω h(η\k) < v\ so g, ι/ are as required.

(B) =» (Λ)

Easy. Choose χ large enough, and let us define a function F which will exemplify

(A). Let (An : n < ω) be pairwise disjoint infinite subsets of ω, with Min(An) >

n and α; = ]Jn<ω An.

Now

is defined as follows: let n be the unique n < ω such that \w\ G An, son <

and let v = v^ = ry fn, we let ̂  d=f the Skolem Hull of {S, I, η}U((\ι,ξι,ζι) : I <

n) in (ff(χ), G, <* ); and let {(/£, λ^,ξ^, C) : m G An) be the <* -first list of

this form of all tuples (/, λ, ξ, C) such that / G Ny Πl, λ G RUCar Π Λ^, ξ G Λ^

a P-name of an ordinal < λ and ζ G N» an ordinal.

Lastly,

C(/?Λ(x})^ sup(λ|w| n Λ/^)

So let (T, I, λ, ξ, 0 be an (I, P, S)-tree obeying F.

Now apply (B) to (Nv : v e T) and get ς, η as required in (A), i.e. they are as

required in 2.7(3).

(B)* => (B) Easy as a suitable tree is a suitable* tree.

(B) =*(B)* By 2.10B(2). Π2.n



752 XV. A More General Iterable Condition Ensuring HI Is Not Collapsed

2.12 Claim. If S,P,I,W,z G H(χ) and S* is as in 2.7A (i.e. S* - {θ :

θ = cf(0) < |P| and ¥P "0 φ S"}, e.g. S = {Ni}), I is N2-complete or for

each / G I, K G S we have / is /^-indecomposable, ίfeen there is a Ni-strictly,

uniformly (I, S, W)-suitable tree TV with x G NQ.

Proof. We will construct this tree in three steps: first we find a suitable tree,

then we thin it out to be a uniformly suitable tree, then we blow up the models

to make it Ni-strict. For notational simplicity let S = {Ni} so S* = {Ki} .

First Step: An easy bookkeeping argument (to ensure 2.10(e)) yields an (I U

{J£f })-suitable tree (Nη : η G (Γ, I)}; so for η G lim(Γ) we let Nη = (J Nηli.
i<ω

Hence we get that for all η G lim(T), for all / G (I Π Nη) U {j£f}, there are

infinitely may k such that η\k G split (Γ, I) and Sucτ(η\k) — {η* (x) : x G

Dom(/)}.

Second Step: Define H : T —> ω\ by if (r/) = sup(A^ Π α i) < ω\. Apply 2.6 to

get a subtree T;, and a limit ordinal ί G W C ω\ such that clauses (a) - (d) of

2.6 hold. By clause (d) of 2.1, for all η G T', NηΓ\ωιC δ. Let <50 < ίi < . . . ,

(Jnδn = δ, and let

Γ2

 d- {η G Γx :Vfc < ίg(η), if Sucr^t/c) = {η\k~ (α) : α < ωi}

(so Suc τ/(ryffc) = {η\k~ (a) : a < δ}) then ry(fe) = δfc}.

Clearly T2 will be Ki-uniformly suitable.

Third Step: For r? G Γ2, let Λ7^ =the Skolem hull of ̂  U 5. So A^ Π ωi D δ.

Conversely, let v G lim(T2), η < z/, then Nη U δ C Nμ, so N^ C N^ hence

Λ^ Πα; C <S. So ΛΓ^ nα i = 5, i.e. (N^ : η e Γ2) is an Ni-strictly by (I, S, W)-tree

of models (see Definition 2.10(4)).

We claim that this tree is still suitable. Indeed, let η G Γ2, v G lim(Γ2),

77 < v and / G IΠ AΓ^. Then for some a < δ, I is in the Skolem hull of Nη U α.

Let k < ω be such that α G Λ^ Π ωi, fc < ^g(r ). Then since (TV^ : 77 G Γ2)

was suitable, there is £ > fc such that \y\i = I. So {AΓ^ : η G T2) is also suitable.

^2.12
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2.12A Conclusion. If P satisfies UP(l, S, W) and S is as in 2.7A (or S = {Ki})

(recall that this notation implies I is N2-complete, KI G S, W C ωι stationary)

then Ihp "W is stationary". Moreover, if W C W is stationary then also Ihp "W

is a stationary subset of ω\\

Proof. The "moreover" fact is by 2.7D(6) (i.e. monotonicity in W).

Assume that p\\- "C is a club of ω\ and C Π W = 0". By 2.12 we can find

an Ni-strictly (I, S, W)-suitable tree of models (Nη : η G (T, I)} with C, p G NQ .

Let δ = N Π ωι, so δ G W. By C7P(I,S, W) we can find a condition q as in

2.11(B) in particular p <pr q. Clearly q Ih UN^[G] Π ω\ = ί" and, trivially

p Ihp "C is unbounded in N(}[G\ Π ωi" hence p Ih 'Wo^] Π α i € C". So

ς f l h " ( 5 G C Π W " . D2.i2A

2.12B Remark. From now we shall use 2.11+2.12 freely. Usually we assume

I, S satisfies 2.6A(*)(a)+(b), S = {Ki} is the main case. We could have started

with 2.11(B) as a definition of UP but did not as the definition 2.7 was closer

to Chapter XL

2.13 Remark. From the proof of 2.12 we can conclude that in 2.11; in clause

(B) we can replace "(I, S, W)-suitable" by "Ni-strictly (I,S, W)-suitable, Nη Π

ω\ — δ G W", and then the condition q will be N^-semi generic.

2.14 Conclusion. 1) If P satisfies UP(l, S, W), Q a P-name of a purely proper

forcing then P * Q satisfies I7P(I, S, W).

2) If S = {Hi}, Q purely semiproper is enough.

3) Generally Q is purely (S, W)-semiproper is enough where:

Q is (S, W)-semiproper when: if χ regular large enough, Q G N -< (-ff(χ),

G, <*), \\N\\ = HO, P € Q Π N and A Γ Π α i G W ί/ien there is <?, p <pr ς G Q,

such that:

<7 Ih "for every λ G T V π S , i f g G A Γ i s a Q-name of an ordinal < λ then

a[GQ] < sup(A^Πλ)" .

(Note that Q is (S, W)-semiproper iff Q satisfies the £/P(0,S, W)).



754 XV. A More General Iterable Condition Ensuring NI Is Not Collapsed

4) Suppose Qo is a proper forcing (in V), λ > |Qo|K°, (of course λ = λ*° >

density of Q0 suffices), I G V is a λ+-complete family of ideals which is λ+-

directed under <Rκ and Ihg0 "Qi is a forcing notion satisfying t7P(I)".

Then Qo * Qi satisfies E7P(I) (in V).

5) In 4) we can add W.

6) If Q satisfies the λ-c.c., satisfaction of "Q satisfies Z7P(I,S, W)" depend on

S Π λ only so we shall ignore S \ λ. For notational convenience we will demand

URCard\λ C S.

Proof. 1), 2), 3), 5), 6). Left to the reader.

4) Let x be regular large enough and let (Nη : η G (T, I)) be an I-suitable

tree of models for χ, (po»Pι) £ Qo * Qi and {(po,Pι),Qo * Q1'^} G ^<> ^or

77 G lim(T) we let Nη

 d= \Jk<ωNηιk. As λ > |Q0|
H°, as I is λ+-complete, by

2.6B(1) w.l.o.g. for η € T we have: Λ^ Π Qo depends only on t^rj) and hence

Nη Π Qo is the same for all branches η G lim(T). Now for each η € lim(T),

in V Nη is a countable elementary submodel of (ff(χ), €, <*) hence there is

9° € Qo,Po <Pr ^°, and g° is (]V7?,Q0)-generic.

Now for each q,pQ <pr q G Qo, let

£g = {77 G lim(Γ) : q is (7Vr/,Q0)-generic}.

So lim(T) - U{Bς : pQ <pr g G Q}

Note

(*) for η G lim(T), p0 <Pr g G Qo, we have: η e Bq iff for any maximal

antichain J7 G A^ of Q0, we have: [r G JΓ \ AΓ^ => r, g incompatible].

Hence, Bς is a closed subset of lim(T), (as if 77 G lim(Γ) \ Bq then for

some J G MAC(QQ) Π A^ and r e J\Nη we have r,<? are compatible; then

for some m < ω, J G Nηfm, and ryfm < z/ G lim(Γ) still implies r G J \ A^

(because NηΓ\Q0 = N^Γ\ Q0) but r, g compatible. So lim(T) \ JBς contains the

neighborhood determined by r/fra).
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So by 2.6B(2) if λ > |Qo|*°, for some q G Q0 and T' we have: p° <pr g,

(T, I) <* (T', I) and lim(Γ') C Bg. So g lhQo

 uNη[GQo] Γ}ωλ = Nη Πωl for every

η G T'" and clearly q Ih u(Nη[GQo] : r? G Γ') is an I -suitable* tree of models for

X". Why the suitable* not suitable? There may be η G Γ', 1 G KnNη[GQo]\Nη',

we get the I-suitable* by 2.14A below.

So we can finish easily. [U2 14

2.14A. Assume that (Nη : η G (Γ, I)} is a (I, S, W)-suitable* tree, Q is a

forcing notion satisfying ft-c.c. and (I, <RK) is ^-directed. Then \\-Q "(Nη[G] :

η G (Γ,l)) is (I,S,W)-suitable*".

Proof. First we claim that for each name 7, if p Ih "7 G I" then there is J G I

such that p Ih "7 <RK J" - Indeed, since Q satisfies the κ-c.c. we can find a set

Y Cl,\Y\ < K such that p Ih "7 G F". Now let J be a <βκ-upper bound for

Y. So for all Γ G Y we have 7' </?/<: J. The function witnessing this relation

will also witness it in VQ, hence p Ih "7 <RK J" •

Now work in V[G]. Let 7 G Nη[G] Π I. Applying the claim we have just

proved, in Nη we can find J G Nη Π I such that 7 <## J. In V[G] the set

{x G Tfol : 77 < z/, J ^ΛK 1^} contains a front F of T^l F is also a front in

], so by transitivity of <RK we are done. Π2.14Λ

2.15 Theorem. Suppose

a) <3o is a forcing notion, satisfying C/P(Io,So, W)

b) Ihg0 "ζ>ι is a forcing notion satisfying C/P(Iι,Sι, W)". So: S0,Iι are Qo-

names and Si is a <2o * Qi-name.

c) λ - λκ° > |MAC(Q0)|, and [7 G I0 ̂  λlDom(7)l - λ]

d) ϊi is λ+-complete. (i.e. Ihg0 "each 7 G \\ is λ+-complete ").

e) {^} C So C {μ : Nx < μ = cf(μ) < λ},

f ) IQ C I and I \ E0 is λ+-complete and (I \ I0, <RK) is λ+-directed (or just

/^-directed where Qo satisfies the tt-c.c).

g) lhQo "for every 7 G Ii for some Γ G 1,7 <RK /'" (<RK - Rudin Keisler

order, see 2.10A), moreover Γ G I \ I0 (hard to fail this addition).
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h) S - So Π Si i.e. Si Π (s0 U (|Qo|, |Qo * Qι|]) -

Then Qo * Qi satisfies Z7P(I,S, W)

2.15A Remark. 1) Comparing with Ch XI, 5.1 we lose a little: we demand

λ > \MAC(QQ)\ instead demanding λ > |Qo| but this seems marginal, (see (*)

of 1.2A(2)).

2) More on <RK is this context see §4.

2.15B Example. Let Qo — Nm, Q\ = Levy(Nι,λι) (for some large enough

λi (in VQo)) Q2 = Nm (in VQ°xQl), Q3 = Levy(Nι,λ3) for some even larger

λ3, etc., then Q0, Qo * (Qi * £2), (Qo * (Qi * Qi}} * (Qs * £4), . satisfy E7P(I)

for appropriate I, by 2.15.

Before we prove 2.15 we will remind the reader of a definition and a

combinatorial lemma.

2.16 Definition. For a subset A of (an ω-tree) T we define by induction on

the length of a sequence 77, res^(^, A) for each η G T. Let res^({ ), A) = { ).

Assume resτ(r?,A) is already defined and we define resτ(r/Λ(α), A) for all

members r/ Λ {α} of Sucτ(τ?) If η £ A then resτ(^Λ (α), A) — resτ(?7, ^K(α)>

and if η ^ A then resτ(^Λ (α), A) = τesτ(η, A) Λ {0). If η G lim(Γ), we let

res(r/, A) = \Jkeω ΐes(η\k, A).

Explanation. Thus res(T, A) = {resτ(f?, A) : η G T} is a tree obtained by

projecting, i.e., gluing together all members of Sucτ(^) whenever v φ A.

We state now (see Chapter XI, 5.3):

2.17 Lemma. Let λ,μ be uncountable cardinals satisfying λ<μ = λ and let

(T, I) be a tagged tree in which for each η £ T either |Sucτ(τ7)| < μ or \(η)

is λ+ -complete. Then for every function H : T — » λ there exist T' satisfying

(T, I) <* (T',l) such that for ηl,η2 G T' we have: (letting A = {μ G T :

|Sucτ(μ)|<μ}):

τesτ(ηl,A) = resτ(τ72,^4) implies:
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H(ηl) = H(η2) and η1 G A <£> η2 G A, and: if η G T' Π A, then Sucτ(r?) =

Sucτ/(r/)

Proo/ of Theorem 2.15. Let χ be large enough. Let (Nη : η G (T, I)} be an

Ki-strictly (I, S, W)-suitable tree of models for χ such that

{Qo,9ι,S0,Sι,Io,ϊι,W}G N(}, and (po,pι) € (Qo * Qi) n 7V( },

let μ = Min{μ : λμ > λ}, so μ > N0,μ > |Dom(/)| for I G I0, μ = cf(μ), and

λ = λ<μ. Let us define a function H with domain Γ: #(77) is the pair

Π MAC(Qo), isomorphism type of (Nη,Nηlo . . * ,

so |Rang(fΓ)l < λ. By the lemma above there is T1 satisfying (T, I) <* (Γ1, 1)

such that for η, v e T1 :

7, A) = resτ(^, A) =» ff (77) = ff (i/) & [77 G ̂  <= >̂ i/ G A]

where >1 = {77 G Γ : |Sucτ(r?)| < μ}

letT* = {resτ(r?,^) : η G T1}.

We can find T2 satisfying (Γ1,!) < (Γ2,l) such that the mapping η ι->

resτ(τ7, -A) on Γ2, is one to one onto T*. By 2.6A (for S = {^i}) without loss

of generality for some δ < cji, η G lim^1) =ϊ δ = \Jι<ω Nη\tΓ\ω\, by the proof

of 2.12 without loss of generality η G T1 => A^ Π ω\ — 5; and looking at the

definition without loss of generality δ G W. Let Afr'es , Ax = Λ^ for 77 G T2.

By assumption (f) we have (N^ : v G T*} is an (I0, SQ, W)-suitable tree for

X, po G Qo Π A/"^. So there are <?0,Po <pr <?o € Qo? and Qo-name z/ G lim(T*)

such that go '^Q0 " Ufc ^t/cI^Qo] n λ and Ufc N^kΓ\X has the same supremum

Let T+ - {77 G Γ1 : resτ(r/,^) = ̂ ^g(ry)}, this is a Q

Let qo € G C QQ,G generic over V, and let ί/ = z/[G].

Now we need:

2.18 Fact. 1) (Nη[G\ : η G (T+[G\, I)) is an ^[G]- suitable* tree for χ.
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2) For η G lim(T+[G]) and K G (SJ U S0[G]) Π \Jk<ω Nηlk we have:

sup(|J Nηik[G\ Π «) = supdjΛΓ^fc Π «).

3) Moreover if in (2) we choose η in some further generic extension, it still

holds.

Proof of 2.18. 1) One point is Nη[G\ Γ\ ωι = Nη Γ\ ωι(t ωι) which follows by

the choice of qQ, v as NI G S0 (in fact Nη[G\ Π ω\ — 5, for every 77 G T, as TV

was Ni-strict). Another point is that for / G Jι[G] Γ\Nη[G\, η G T+[G] we have

{i/ : r? < v G T+[G] and / = \η or at least 7 <RK \η}

is a front of (T+[G])M, this follows as : if / G Nη[G\ Πl^G] then there is

Y G A^, |y| < |Qo| (even |y| < K if Q0 satisfies the ft-c.c) such that

note / φ IQ. Now y Π I \ IQ has a <κκ-upper bound in II hence in I Π Nη by the

assumption on I\!Q being λ^-directed, λ > |Qo| (or ^-directed, Q0 satisfying

the K-C.C.).

2) If K > λ then «: > |Qo| hence this is immediate; so assume K < X.

Let v — v\G\ be the branch we obtained by applying J7P(I, S,W) to ζ>o,

and let 77 G lim(T+) be any branch. Now there is an isomorphism g = gη

from \JkNηtk onto \JkN^k such that g(η\l) = v\l for ί < ω, g \ N ( ) = the

identity, g"(Nη\t) = N^£ for ί < ω, and necessarily g\(MAC(QQ) Π Nη\k) =

the identity (as NηnMAC(Q0) = N^MAC(QQ)). Now for every α G (Jfc ^rfc

a Qo-name of an ordinal < tt,α is just a maximal antichain of Qo with a

function from it to ordinals. So g(g) = a and of course g(κ) — K. So as the

isomorphism g is onto \Jk Nv\k we see that go H~Q0 "if Ή ^ lim(T+[^Q0])
 t^ιen

a = ̂ (g) < sup(Ufc ΛΓηffc Π «)" as required.

3) Same proof as g can still be defined. 1^2. is
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Continuation of the proof of 2.15: By the fact 2.18 in V[G] there are v\ and

<?ι such that Qι[G] \= [pi <pr <?ι; Qi IH "*Ί a branch of Γ+[G], and for

K G Si[GjnTV^ we have sup(\Je<ω N^ r* Π «) = sup \Ji<ω(N^ l£[G] Π «)"].

Now, back in V, there are £Ί,gι and q'Q £ G such that #0 '^Q0 "#ij£Ί are

as above" (actually ί/i is a <3o-name of a Qi-name); w.l.o.g. QQ = gό(e Qo) as

the existence proof works for any G such that #o € G. Note (^ό?^ι) £ Q and

ι/ι e lim(T+) C lim(Γ) are as required (remembering 2.15A(3)).

Π2.15

Now clearly

2.19 Claim. 1) If (a forcing notion) P satisfies the (I, W) - condition (see Ch

XI) then P satisfies £7P(I, W) [look at Definition 2.7, 2.7A]

2) if P = Nm'(jD) (see chapter X), D an N2 - complete filter, I = {/ : for some

A C Dom(D) satisfying ^4^0 mod D we have / = {X C A : X = 0 mod D}}

then P satisfies UP (I)

3) Let (Γ*, Γ) be an I-tagged full tree, and

P = {(Γ, I) : (Γ*, I*) < (T, I), and for every η € lim(Γ) we have

(3°°n)[η\n is a splitting point of (T, I)}

ordered by inverse inclusion.

P' = {(Γ, I) : (Γ*, I*)W <* (T, I) for some η G Γ*}

ordered by inverse inclusion.

Then

(a) P, P' satisfies UP(I)

(b) if for λ regular

Vr? G lim(Γ*) 3°°n VA G (\*lnΓ[\η\A is not λ-indecomposable]

thenlhp, "cf(λ) = N0"

(c) if (Vη G lim(Γ*))3nΛm>nVA G (i;fn)
+ [I^A is not λ-indecomposable]

thenlhp αc
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4) Let λ = cf(λ) > Ni, S C {δ < X : cf(δ) = N0 } stationary, club (5) = {h :

h an increasing continuous function from some i + 1 < ω\ into 5} ordered by

inclusion. Then club (5) satisfies UP({/}) if / is a uniform filter on λ.

Proof. We will only give a sketch of (2), leaving the other claims to the reader.

We will use the following fact about Nm'(Z)):

(*) If p G Nm'(D), α is a Nm/(JD)-name of an ordinal, then there is q, p <* q

such that the set {η G q : for some β we have qW Ih "α = βn} contains a

front.

This fact follows easily from 2.6B(2) (let H : P -> {0,1} be defined by

H(η) = 1 iff pfal decides α, define H(η) = \imneω(H(η\n)) for η G lim(p), and

find </ such that fl" is constant on lim(g)). Let I be such that the ideal dual to

D is in it.

Now let (Nη : η G (T, I)) be an Ni-strictly I-suitable tree, {p,D} G NQ a

condition. We can now find a condition <?, p <* <?, an index set (pη : η G p) of

conditions and a function / : q —> T satisfying the following:

1. If 77 < ι/ in q, then /(r?) <3 /(ι/)

2. For all 77 in #, Sucτ(/(^)) ?̂  0 mod D and 1^ is the ideal dual to D

3. For all η in ςr, Sucς(ry) C Sucτ(/(r/))

4. For all η in <?, p^ G Nf(η),tτ(pη) = r/,pW <* p^.

5. For all ry in q, pη < q^.

6. For all η in <?, all names α in ^V/(r/)j the set {z/ G ς : Pt/ decides α} contains

a front of p^.

We can do this as follows: by induction on n < ω we choose <?nn(Dom(D))

and ((f(η),pη,Sucq(η)) : η G qΓ\n(Dom(D))) satisfying the relevant demands. If

^ < ^g(tr(p)) this is trivial. If we have defined for n, for each v G gnn(Dom(D))

and 77 G Sucq(ι/), we do the following. We can find f(η) satisfying (l)+(2)

because (Nη : η G (T, I)} is I-suitable. We choose pη using a bookkeeping

argument to take care of (4)+(6), using (*). Then we choose Sucq(η) such that

(3) and (5) are satisfied.
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Now let G be Nm'(£>) -generic, q G G. Now G defines a generic branch

η through q. This induces a branch v through T by: v = \Jneω f(η\n). Let

a G Ny\k, then there is ί such that pημ Ih "α = β and β G Nf^η^ C Nj," .

2.19A Remark. 1) Note: 2.19(1) tells us that various specific forcing notions

satisfy E7P(I, W) via Chapter XI 4.4, 4.4A, 4.5, 4.6.

2) We leave to the reader to compute the natural S's.

§3. Preservation of the C7P(I, S, W) by Iteration

3.1 Definition. We say that Q = (Pi, Qi : i < a) satisfies { Iί><7 , λ^μ^ , Sij :

( i , j ) G W*) for W provided that the following hold:

(0) W* C {(i,j) : i < j < ct,i is not strongly inaccessible}, W* 2

{(i 4- I j j ) : i < j < a} (we can use some variants, but there is no

need),

(1) Q is a GRCS iteration.

(2) Pitj = Pj/Pi satisfies UP(litj,Sitj, W) for (ij) G W* (in VPi).

(3) for every J G I^j, the set Dom(/) is a cardinal, / is λ^-complete (in

V), \ij < |Dom(/)| < μitj and \MAC(Pi)\ < \ij, and \itj > H2 and

(^ ij,<Rκ) is λ^ - directed (note that lij is from V and not Vp\

and i < \ij < μi,j)

(4) if <(0) < i(l) < t(2) < α,(i(0),i(l)) G W*,(i(l),t(2)) G W*

ίften (λi(i)^(2))<μί(0)'ί(1) = λi(i)^(2). (Hence λ<(0),t(i) <

(5) for every / G Ii(2),i(3) and i(0) < i(l) < i(2) < i(3) such that

(<(0),<(1)> G W* and (i(2),i(3)) G W* we have: / is A+0)|.(1)-

complete.

(6) ift(O) <i(l)«(2),
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and then Si(0)li(2) is S^o),^!) Π Sί(1))i(2) [this holds if (always) S<j =

{^i}, and essentially if (always) Sij — RUCar ]. (Remember - by

2.13(6) every χ G RCar \ (P^i)!4" C RCar \ λi(i)|ί(2) is considered to

be in Si(0),i(i).)

Note:

3.1 A Remark. If I is λ+ - complete, K < λ+,

/\ |Dom(/)| < μ, [ /\ μ* < μ => H μ* < μ] and
i<OL

iM d= IU {Π«α/i : α < K, K < μ,/< G 1}

(product Πi<α^ defined in 4.11(1)) ίften iW is λ+ - complete, / G 1̂ 1 =>

|Dom(/)| < μ and (1 ,̂ <RK) is K - directed (see more in 4.11).

We shall use 3.1 A freely.

3.2 Lemma. If Q = (Pn,Qn '• n < ω) satisfies (I^Aij^j,?^ : i < j < ω)

for W and I = \Jn<ω In>n+ι then Pω = RlimQ satisfies [7P(I,S,W) where

S = {λ : λ is regular > NO and for every n, cf(λ) G Sn} (a P^-name.)

3.2A Remark. For the case <pr^< use VI 1.10.

Proof. Let En = In,n+ι and λ^ = λ-^+i and μ» = μi,i+ι, note that PΪ}Ϊ+I — Qi

[see 3.1(2)], so Qn satisfies the In-condition, \P^\ < λ^, and μ^ < λi+i =

Let (Nη : η e (T, I)) be an Ni-strict (I,S, W)-suitable tree of models for

χ , 7 V ( ) Π α ; 1 G W , p G A Γ ( ) n P U J a n d { W , Q, ((In,λn,μn) : n < α ; ) } G A Γ ( ) .

The proof will combine the proof of Ch XI 6.2 and the argument in

preservation of (semi) properness.

We now define by induction (similarly to Ch XI§1) on n < ω, a tree Tn

such that (letting An = {η G T : \Sucτ(η)\ < μn})

(i) To = T

(ii) (Tn,l) is an I-tree
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(iii) (Γ n,l)<*(ϊWι,l)

(iv) if η, v e Tn+ι , res(η, An) = res(ι/, X) ίΛen

(a) Nη n MAC(Pn+1) = Nv n MAC(Pn+1)

(b) the structures

and

are isomorphic

(v) if 77 G Γn+ι, |SucTτι(r7)| < μn *Λen SucTτι+1(r?) =

This is done by applying to (Γn, I) Lemma 2.17 (for the function H implicit

in (iv), and (λ,μ) there correspond to (λn+ι,μn) here).

In the end let T* =f Πn<u; ̂ n5 now for every n we have (Γn, I) <* (Γ*, I);

why? if η € T*, then for some n (Vfe < ίg^))^^ € U?<nH hence for

fc> n, SucTfc (η) = SucTfc+1 (77).

We let T- =f {res(ι/, An) : v e Γ*}.

We now define by induction on n < α;, pn^n^n and Pn-name ί/n such

that:

(a) qn € Pn

(b) gn+1 fn = ^n

(c) pfn <pr ςn

(d) ^n Ih Vn G lim(T-)" (lim is taken in Fp-)

(e) qn+ι Ih "res(ι/n+ι,Λn) = i/n" (more exactly res(ι/n+ι, {res(p, An+ι) : p G

(f) qn+ι Ih "z/p G limΓ*,res(p, An) — vn then

<u
n<ω
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moreover for every K, G Γ\e<n(§W+ι u [l ̂  l~M^ω|]) which belongs to

(Jn<ωNP\n we have

sup (U NP\n)[Gpn]rικ = sup
n<ω . n<ω

(g) ηn e T*,77n < ηn+ι,lg(ηn) = n

(h) res(77n,An) = ι/nΓn

(i) po = P,Pn <Pr Pπ+i € Λ^n+1 and p n fn = pn+ifπ (we can get this from

chapter VI).

(j) Pn\n <pr qn

(k) if K G A^n a regular cardinal, α G A^n is a Pω-name of an ordinal < K

then for some m, and /? G A^m we have β is a Pm-name of an ordinal < K

andpm+ι Ih "α < β or K £ 5".

The induction step is done as in the proof of 2.15 (remember that by 3.1(3)

(It,jϊ ^RK) is λ^1"-directed), (plus bookkeeping for (k) if <prτ^< we use VI 1.10).

Π3.2

3.3 Lemma.

1) If Q = (PaiQa OL < ωι) satisfies (lajβ,λa,β,μ>a,βι§a,β '. a < β < ωι

&α non-limit ) for W, and I = Uftj '• i < j < ωι,i non-limit } then

P = Pωι = RlimQ satisfies UP (I, S, W) where

S=

2) For P = RlimQ as above, Uα<u;ι ^α *s a dense subset of P, moreover for

every p G P there is q such that p <pr q G Uα<α;ι ̂ α'

3) We can replace ω\ by a 5 such that cf 6 < \ij and lhp i "cf<J G S^./" for

any ( i , j ) G W*.

Proo/. 1) Let (Nη : η e (T, I)) be an Ni-strict (I,S, W)-suitable tree of

models for χ,N()Γ\ωι G W, {W,Q, {{Iα,/3,λαί/g,μα^,SαϊJg) : α < β <
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ωι,a non-limit )} belongs to NO and p G Pωι Π NO. So I G NO, hence

(as Nη Π ω\ — NQ Π ωι):

(*) for every η G T, 1̂  € I^j for some i < j < N(> Π ω\.

Let 0 = 70 < 71 < 72 < - - , Un<a; 7n = 5 = ΛΓ(} n ωi and each 7ι+n is a

successor ordinal. We repeat the proof of 3.2 (again remembering 3.1(3)) using

PΊn instead Pn, and get q — qω, vω as there.

The new point is why p <pr q, and not only p\δ = p\(\Jn<ωΊn) <pr Q

The answer (as in Chapter XI, proof of 2.6) is: Let ζn(pi) be prompt names as

in XI 1.9. By (k) above q forces ζn(pi) to be bounded by δ = N( > Π ω\, so we

can finish.

2) We have proved this: for every p G Pωι by 2.12 we can find (Nη : η G

(T, I)) and q G Pωι,p <pr Q, as above; q is as required.

3) Almost the same proof. DS.S

3.4 Conclusion. 1) For Q an iteration as in 3.1, and limit δ < £g(Q) such

that cf(ί) = ω\ and [i < j < ί, i non-limit =Φ ( i , j ) G W*] ίΛen Ui<5^i ig a

dense subset of P$.

2) Instead cf(<5) = α i, it is enough that for some i < 5, Ihp. "cf(5) = ωi",

3) Also if δ is strongly inaccessible, |Pi| < δ for i < δ then

(a) conclusion of (1) holds.

(b) Pκ satisfies the κ-c.c. (in a strong sense: Δ-system lemma!)

4) In (1) we can weaken the demand on W*, it is enough: for some unbounded

A C δ we have [i < j & i G A & j G A => (i, j) G W*].

5) Moreover in (4) we can replace A by a set of strictly increasing sequences

of ordinals < δ, such that [η G t => η(0) = 0], [m < k < ίgη & 77 G t =>

(77(71), 7j(fc)) G W*] and [77 G t & α < 5 =» V0e(α,ff) ̂  (0) € *]• Of course this

is because we can use a sequence from ί as (70,71, •} in 3.3. Similar claims

holds for 3.5, 3.6.

Proof. Easy. D13.4

3.5 Lemma. Suppose Q = (Pi, Qi : i < K) satisfies (I<j, λij,μi,j,Sij i < j <

K, i non-limit} for W, K is strongly inaccessible \Pi\-\-\ij-\-μij -I- |Dom(/)| < K,
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for every (ij) G W* J G I j and I = Ui,jt,j τ/ιen ̂  = lim(<2) satisfies the

condition C/P(E,S,W) where S = {λ : for every (ij) € W*, in FPi, cf(λ) G S*

(or λ = c f λ > IP,-))}.

Proof. Let (Nη : η e (Γ, I)) be an Ni-strict (I,S, W)-suitable tree of models

for x. Choose for each η G T a strictly increasing sequence (7™ : n < ω) of

non- limit ordinals from NηΓ}κ such that 0 = 7^, sup(Nη Γ\κ) = \Jn<ω 7τp and

7?rfc < 7£ for k < tg(η). Let A^n = {PeT: \Sucτ(η)\ < μ7»ι7»+ι}

We define by induction on n, Tn such that

(i) To - T

(ii) (Tn,l) is anl-tree

(iii) (Γn,l)<*(Γn + 1,l)

(iv) if η G Tn, and ίg(ry) < n then 77 G Tn+ι

(v) if η G Tn, ig(η) = n, r? < 1/1 G Γn+ι,r/ < ι/2 G Γn+1 and

res(ί/ι, A^^) = res(z/2,Λ,n) then

(a) JV^ Π MAC(P^) = N»2 n

(b) the structures

> » ^ij c)c€ΛΓ, and

are isomorphic.

There is no problem in this: Let Γ* - Πn<ω Tn> easily (τn? 0 <* (Γ*, I) for

every n (by (iii) and (iv)). The rest is like the proof of 3.3. The only difference is

that instead of actual ordinals 7n we will have prompt names: jn = 7^ . We can

use XI 1.10 to get the conditions pn G PΊn. Also remember that every Q-named

ordinal ζ(< K) is bounded below K (as for δ < K of cofinality NI, \Ja<δ Pa is a

dense subset of PS). Πs.5

3.6 Theorem. Suppose

(a) K is strongly inaccessible,
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(b) Q = (Pi,Qj : i < K) satisfies (I^j, \ij,μij, Sij : i < j < κ,i

non-limit) for χ, W, \Pi\ < K for i < K, Pκ = \Ji<κ

pi-

(c) \\-Pκ "Qκ satisfies t/P(IΛ,SΛ,W), lκ is /^-complete" and (lκ,<RK) is

(< AC) - directed.

(d) I = IΛ

(e) S = n«lJ

Γften PΛ * Qκ satisfies £7P(I, S, W).

Remark. This generalizes Gitik, Shelah [GiSh:191] which improves the relevant

theorem in XI §6.

Proof. Let (Nη : η G (Γ, I)) be an Ni-strict (I, S, W)-suitable tree of models for

X, N( ) Π ωi e W, (pa,Pb) € (PK * QK) n ^{) You maY assume, for simplicity

that Sij — {Kι},SΛ = {Ki} = S. Let T* be as in the proof of the previous

theorem. Let G* C Levy(^0,2
x) be generic over V. Let « = Un<α;α^' eac^

αn+ι a successor, α0 = 0, αn < αn+ι, Un<u;α^ = κ (in ^t^*]')-

We choose by induction on n, βn, Gn € V [G*], Tn, ι/n such that

(a) Gn C Pβn, Gn generic over V, Gn+ι Π P^ - G?n, αn < /3n < βn+ι < «,

(b) Γ° -Γ*, Γn+1 CΓn,

(c) (A^[Gn] : ̂  € (Tn, I)) is an En-suitable* tree of models for χ, In = \J{lij :

(iJ)εW*, i>βn}\Jlκ,

(d) Nη[Gn] nωι = N(}nωl for all η G Γn

(e) Tn has a unique member of length fcn, z/n,

(f) if # is a function (from F), Dom(F) - Γ, if (r/) G I,,, for n < ω, Jn is a

front of T and [17 G Jn+ι =* M i<igηη\£ G Jn] and 77 G Jn =» 1^ G lκ then

for infinitely many n, there exists mn, kn > n such that ι/nffcn G Jmτι and

Now G = U Gn is a generic subset of Pκ over V (as PΛ satisfies the
n<ω

K-c.c., every maximal antichain in P^ is contained in some Pατι, hence meets

some Gn).

We define Γα - {77 G Γ : [̂G] Π α i - 7V ( )

We define a depth function on Tα:
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Dp(η) > 0 iff ηeTa.

Dp(η) > α(> 0) iff for every β < a

for every / G lκ Π Nη[G\, there is z/, / <RK /,/, η < v G Ta such that

{ ί : z / Λ ( i ) eTa,Dp(v~(ί)) >β} ^0mod/ ί / .

Easily Dp G V[G\ and its definition is absolute, [η < v G Tα => £>p(z/) <

£>p(r/))] and Dp({ )) = oo as Un<u, "n witnesses (in F[G*]).

So in F[G], Γ6 =f {i/ G Tα : Dp(ι/) = 00} is the desired tree (i.e. we can

continue as in 2.15 with Pκ, Qκ here corresponding to Qo? Qi there). Ds.6

3.7 Lemma. Suppose Q = (Pi,Qj : i < a,j < a) satisfies (I^λ^μ^S^ :

i < j < a,i non-limit) for W;z(*) < α is a non-limit, G^ C P^ generic

over V, and (iζ : ζ < β) is an increasing continuous sequence of ordinals in

V[Gi(#)],io = i(*),iβ = α, each a^+i a successor ordinal.

In V[GίW], we define P^ - Piζ/Gi(*},Q'ζ = QaJGi(^Q' = (P'^Q^ : C <

β,ξ<β), then, in F[Gί(*)],Q' satisfies (Iα c ,t€ ,λi ζ ,ή»Mi c , i€» s ic,ύ : C < C < A C

a non-limit) for W.

Proof. Straightforward. D,13.7

3.8 Conclusion. For every function F, stationary W C ω\ and ordinal α* there

are a < α* and a GRCS iteration Q of length o; satisfying {Î  , A^j, μίjι7 , Sij<7 ; f <

j < a, i non-limit ) for W with (Qi,IM+ι,Si,i+ι) = F(Q\ί) and α = α* or

a < α*, and F(Q) does not satisfy (*) below or there is /?, β + α; < α and

(*)F(Q) has the form (Q, I, S), Q a Pα-name of a forcing notion satisfying

UP(I,S, W), and (a) or (b) below holds:

(a) \\-Pa "α φ H2" (i.e. lhα "|α| < K2") and for some λ the family I is

λ+-complete, where λ = λ |Dom(/)l whenever / G l^,i < j < α, and

\MAC(Pa)\ < X and (I, <βκ)-is λ+-directed.
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(b) \\-po "α = ^2" (i e. α is strongly inaccessible, \Pi\ < a for i < α), I

is α-complete and / 6 lij&z < .7 < α => |Dom(/)| < a and (I, <RK)

is α-directed.

Proof. Straightforward. D13.8

§4. Families of Ideals
and Families of Partial Orders

4.1 Definition. 1) We call an ideal J fine if {x} G J for every x £ Dom(J).

2) We call the ideal with domain {0}, which is {0}, the trivial ideal.

4.2 Claim. 1) If an ideal J is not fine then J <RK "the trivial ideal". (See

2.10A for the definition of <RK)

2) In 2.10B we can weaken the hypothesis to Iχ <RK ^2 where 1'2 = IfeU {the

trivial ideal}. The same holds in similar situations.

3) <RK is a partial quasiorder (among ideals and also among families of ideals).

Proof. Easy. U4.2

4.3 Definition.

1) For an (upward) directed partial or just quasi order L = (JB, <) we define

an ideal id/,:

idL = {A C B : for some y G L we have A C {x G 5 : -«y ^ χ}}

(Equivalently the dual filter fil^ is generated by the "cones" Ly = {x e

L : ?/ < x}.) We call such an ideal a partial order ideal or a quasi order

ideal. We let Dom(L) = Dom(id£/)(= 5), but we may use L instead of

Dom(L) (like Vx G L) abusing notation as usual.
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2) For a partial order L let dens(L) = Min{|Θ| : θ C Dom(L) is dense i.e.

(Vα G Dom(L))(36 G θ)[α < b])} (this applies also to ideals considered as

the quasi order (/, C)).

3) For a family C of directed quasi orders let id/: — {idz, : L £ C}.

4.4 Fact.

1) id^ is λ-complete iff L is λ-directed.

2) dens(L) — dens(id(L)<), C)

3) If h : LI — > L2 preserves order (i.e. Vx,y G L, (x < y =Φ> h(x) < h(y))) and

has cofinal range (i.e. Vx G L2Ξh/ G LI(X < h(y))) then idι,2 <RK idz,ι

4) /ι : LI — * 1/2 exemplifies idL2 <κκ id^ ijff for every x2 G £2 there

is #ι G LI such that: y G LI & #ι <LX y => %2 <L2 My) (i e f°r

y e LI : ~ x2 <L2 My) =^ ""^i ^LI y but /ι is not necessarily order

preserving) .

5) the ideal id(£5<) is fine iff (L, <) has no maximal element.

Proof. Straight. E.g.

4) Note: h exemplifies idL2 < id^ iff

(MA C Lι)(A ^ 0 mod idLl -> (Vx2 G L2)[ti'(A) Π{yeL2:x2 <L, y} ^ 0])

iff

(Vx2 G L2)(VA C Li) [A ^ 0 mod idLl -̂  /ι;/(A) Π {y G L2 : x2 <La y} φ 0]

(Vx2 G L2)[{y G LI : -.χ2 <L2 Λ(2/)} = 0 mod idLl]

(Vx2 G L2)(3x! G Lι)(Vy G Lι)(-.χ2 <L2

iff

(Vx2 G L2)(3x! G Lι)(Vj/ G LI)(XI <Ll y -> ^2 <L2

Π4.4
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4.5 Fact. 1) For every ideal J (such that (Dom(J)) φ J), let J\ = id(j jς),

then

(i) Ji is a partial order ideal

(ii) |Dom(Jι)|HJ|<2 |Dom(J) l

(iii) J <RK Jι

(iv) if J is λ-complete then (J, C) is λ-directed hence J\ is λ-complete

(v) dens(J, C) = dens(Jι,C)

2) For every dense Θ C J we can use id(θ,c) and get the same conclusions.

3) For every ideal J there is a directed order L such that:

J <RK idz,, dens(J) = dens(L) and:

for every λ if J is λ-complete then so is id£.

Proof. Least trivial is (l)(iϋ), let h : J — > Dom(J) be such that h(A) G

(Dom(J)) \ A (exists as (Dom(J)) φ J). Let Ji = i

If X C Dom(Jι) - J,X i Ji and A d= h"(X) belongs to J, then

{B G J : -Ά C B} G id(j,c) = Λ (by the definition of id(j?c)) hence (as

X φ Ji) for some B G X,A C J5, so Λ(β) G h"(X) = A contradicting the

choice of h(B) (as A C B). D4<5

4. 5 A Remark. So we can replace the ideals by partial orders without changing

much the relevant invariants such as completeness or density.

4.6 Conclusion. For any family of ideals I there is a family of L of directed

partial order such that

(i) I <RK {id(L,o : (L, <) G C}

(") 14 < |I|

(iii) sup{|L| : (L, <) G £} < sup{| J\ : J G I}) < ( sup{2lDom(J)l : J G I})

(iv) sup{ dens(L, <) : (L, <) G £} = sup{ dens(J, C) : J G 1}

(v) if I is λ-complete then every (L, <) G £ is λ-directed.

Proof. Easy. D4.6
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4.7 Definition. For a forcing notion Q, satisfying the ft-c.c., a Q-name L of a

directed partial (or just quasi) order with (for notational simplicity) Dom(L) G

V] let L* = apκ(L) be the following partial order

Dom(L*) = {α : α C Dom(L) and |α < K}

a <* 6 iflf lhg "(Vy G α)(3x G 6)[L |= j/ < z]"

(this is a quasi order only, e.g. maybe a <* b <* α but a^b).

4.8 Claim. For a forcing notion Q satisfying the AC-C.C. and a Q-name L of a

λ-directed partial order (with Dom(L) G V for simplicity) such that λ > « we

have:

(i) apκ(L) is λ-directed partial order (in V and also in V®).

(ii) |αpΛ(L)| < |Dom(L)|<Λ

(in) \\-Q "idL [G] <βχ idαp.(L)"

Proof. We leave (i), (ii) to the reader. We check (iii). Let G C Q be generic

over V, and in V[G] we define a function h from apκ(L) to Dom(L[G]):

/ι(α) will be an element of Dom(L[G]) such that

(VxGα)L[G] μ ux<h(ά)n.

We can now easily verify the condition in 4.4(4). U4.8

4.9 Conclusion. 1) Suppose Q is a forcing notion satisfying the AS-C.C., |ι a

Q-name of a family of λ-complete filters and λ > K. Then there is, (in V), a

family U2 of λ-complete filters such that:

(i) II-Q "!ι <RK I2"

(ii) |I2| = |Iι|

(iii) sup{|Dom(J)| : J e 1%} = sup{(2μ)</ΐ: some q G Q forces that some

J G Ii has domain of power μ}.

2) If Ii has the form (id(£}<) : (L, <) G C} then in (iii) we can have

(iii)' sup{|Dom(J)| : J G I2} = sup{μ<Λ : some g G Q force some (L, <) G C

has power μ}.
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Proof. Easy. Π4.9

4.9A Remark. The aim of 4.8, 4.9 is the following: We will consider iterations

(Pi, Qi : i < a) where Ihp. "Qi satisfies {/.?(!$)", but 1$ may not be a subset of

the ground model V. Now 4.9 gives us a good <^^-bound 1$ in V, and we can

prove (under suitable assumptions) that Pa will satisfy the UP(\Ji<ali).

4.10 Definition. 1) We say a family I of ideals is /^-closed if. for every a < K

and Ji € I for i < a there is J G I, /\i<a Ji <RK J It is strongly ^-closed it is

/^-closed, and it is closed under restriction.

2) We say a family C of partial orders is ^-closed if {idi, : L G C} is.

4.11 Fact. 1) Let ( Ji : i < a) be a sequence of ideals; we define J = Πi<α Ji

as the ideal on Y[i<a(Dom(Ji)) generated by {Uj <α IL<α ̂ ' : for iJ «* we

have A{ C Dom(Ji) and for each i < a we have A] G J^}, then

(i) J is an ideal

(ii) |Dom(J)| = Ui< JDom(J,)|

(iii) dens(J)<Π ί < α dens(J,)

(iv) if each Ji is λ-complete then J is λ-complete

(v) Ji <RK J for each i < a

(vi) if for each ί, (Dom( Λ)) £ Λ then (Dom( J)) φ J

(vii) if ̂  = id(Li)<.) then J is naturally isomorphic to id(£,}<) where

(^<)=Πi<α(^ <«)

2) This product is associative.

4.12 Definition. 1) For K, a regular cardinal the K-closure of a family I of

ideals is

2) Similarly for a family of partial orders

4.13 Fact. For a family I of ideals let F be the /^-closure of I, then:

(i) |I'| < |I|<«

(ii) F is /^-closed

(iii) supJ€F|Dom(J)| < ( supJβ(|Dom(J)|)<-
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(iv) if I is λ-complete so is F

(v) supJ€I ( dens(J)) < ( supJ€l dens(J))<κ

(vi) if I = {idL : L G £} then F =RK id/:/ where C' is the ^-closure of C (in

fact, F, id/:, are isomorphic)

Proof. Easy. D4.ι3

The following claim gives better cardinality restrictions in §3 (and 2.17)

and not having to use "not too large I for Pi in the iteration for the sake of

Qi" (also alternative proofs). Here S is just {Hi}.

4.14 Claim. Suppose Q satisfies t/P(I, W), Q satisfies the κ-c.c. and (Nη : η G

(Γ, I)) is an Ni-strict (I, W) - suitable tree of models (for χ). Let F = {/ € I: /

is ^-complete } and assume F is ^-closed, Nη Π ω\ — δ G W.

Then for every p G NQ Π Q there is an (N§, Q) - semi generic q,p <pr q G Q

such that

q IΓ-Q" there is T' C Γ such that (^[Gg] : η G (Γ7,1))

is a Ni-strictly (F, W) - suitable* tree of models"

Proof. Let G C Q be generic over V. Let 5 = NQ Γ\ω\. By 2.14A we know that

(Nη[G\ : η G (T, I)} is (F, W)-suitable*, but it is not necessarily Ni-strict. So

let (in V[G\) :

T* - Γ*[G] d= {r/ G T : ΛΓ^[G] Π ωι = δ}.

C7P(I,W) implies that we can find <? such that p <pr g and q forces that T*

contains a branch, but we want T* to contain even an (F, W)-suitable* tree.

Define (in V[G])) a depth function Dpτ as follows:

Dpτ(τy) > a iff : η G T* and V/3 < αVJ G F Π Nη[G\ 3vη G T*

[ry < i/i, & / <RK \^^{p:pe SucT K), Dpτ(p) > /?} ^ I,J.

Clearly Dpτ : T* —> Ord U {00} is well-defined, and if ry < z/, then

> Dpτ(ι/).

For each η G Γ, define A^ as follows:

if 77 £ split (Γ*, I) or \η £ F, then Aη = 0

otherwise A^ — {p G Sucτ*(??) : Dpτ(r/) = Dpτ(p)}.
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If Aη G \η let Bη = Aη, otherwise let Bη = 0. Now we return to V. So for

each η we have a name Bη such that Ihg "β^ G 1̂  G I'". As I' is /^-complete

and Q satisfies the «-c.c., there is B* G \η such that \\-Q "β^ C β*". Now

define T° as follows:

T° = {η : for all ί < ίg(η), if \η\t G I' and η\ί G split (Γ, I), then η(i) $ β*}.

So we have (Γ, I) <* (Γ°, I), and (Nη : η G (Γ°, I)) is still an Ni-strictly (I, W)-

suitable* tree of models. So we can find a condition q and a name η such that

P <Pr Q and q Ih "77 G lim(T°) and for all ί < ω: Nηl£[G] Π ωi = ί". We now

claim

(*) g Ih " for all ί < ω, Όpτ(η\l) = oo".

So work in V[G], where q G G. Clearly η\£ eT* for I < ω and assume toward

condition \^tΐ>pτ(η\£) < oo. As 77 < ι/(e T*[G]) => Dp(r/) > £>p(ι/) for some

to < ω, (it > 4)[Dpτ(?7|t) = α0 < oo]. Let r/0 = r/Γ^o % definition of Dpτ,

there are / G Nη[G] Π F and β < α0 4-1 such that for all ι/ G T*: if 77 < z/, and

/ <ΛK li/ and z/ G split (Γ, I) then {p G Sucτ*(^) : Dpτ(p) > /?} G 1^. W.l.o.g.

β — αo Since (̂ [G] : i^ G T°) is suitable*, and 77 is a branch, we can find

i\ > £Q, such that (letting η\ = r f^i): / <RK lτ?ι and Sucj (ryι) ^ 1 ;̂ now as

lι > IQ clearly η <η\ and (by the choice of ^o) Dpτ(?7ι) — o o; by those things

and by the previous sentence {p G Suc^*(?7ι) : Dpτ(p) = QQ} ^ l^i But then

we must have η\(ί\ 4-1) G {p G Sucτ*(r?ι): Dpτ(p) = αo} C Aηι — Bηι C Bη.

This is impossible as η\(ίι -h 1) G T°. So we have proved (*). Now it is easy

to see that T'[G] = {η G Γ*[G] : Dpτ(r/) = CXD} satisfies all requirements. D4.ι4

We can conclude (and it should be easy for a reader who has arrived here):

4.15 Iteration Lemma. Suppose:

(a) (P^, Qj : i < α, j < a) is an RCS iteration

(b) for every i for some n we have lhpί+n "|P^| < HI"

(c) W C ω\ stationary
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(d) for each i for some P^-name of regular cardinal $i > NI (in V) and P^-name

I,:

(a) Pi satisfies the ^-c.c. (i.e. if p Ihp. "& = ft" then Pi\{q £ Pi,q > p}

satisfies the ft-c.c.) and

(β) ""Pi "Qi satisfies C7P(Ii, W) and !» is ̂  - complete."

Then

(1) PQ, satisfies C7P(I,W) for some (Mπii<α/5;;)-complete I(e V) (i.e. I is K-

complete where K = Min{/ί : for some i and p G P^,p Ihp. ^ = «).

(2) U;<<5 -Pt is a dense subset of P^ (δ limit ordinal < α) if: cf(5) = HI or

!hpδ "cf(ί) = HI" or 5 strongly inaccessible and /\i<δ |P$| < 5.

(3) also the existence lemma holds, (like 3.8).

Proof. Should be clear. CU.is

We note:

4.15A Claim. 1) In 4.15, we can use the "strong preservation" version (and

it works).

4.16 Lemma. The following property, t7Pcon(I, W), is preserved (even strongly

preserved) by iterations as in 4.15, and implies that forcing by Q add no real,

where:

Z7Pcon(I» W) is satisfied by the forcing notion Q, if: for any (Nη : η G (Γ, I)}

an Ni-strict (I, W)-suitable tree of models for χ, such that for every 77, v e

T, of the same length hη^ is an isomorphism from Nη onto Nv,hη^(Q) =

Qi hη\e,ί/\ι S h>η^ and: i/ 77* G lim(T) and Gη* is a directed subset of

\Ji<ω Nη* \i Π Q, not disjoint to any dense subset of U^<ω ̂ Γ t^ ^ Q defined

in (Um<u;^*rm, ^* ̂ > Q' 'tj* ^)^<ω ^en ΛβΓe ™ Q € Q SUch that ςf Ihg

"there is v G lim(Γ) (in VQ) such that U^<α; ̂ \t,v\t(G Π JVΊ/^) is a subset of

GQ".

4.16A Remark. 1) This property relates to the UP (I, W) as E-complete re-

late to E-proper (see V §1).

2) Who satisfies this condition? W-complete forcing notions, Nm^Z)), Nm(D)
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(D is H2-complete) Nm^(Γ,2)) (2) is ^-complete), and shooting a club

through a stationary subset of some λ = cf(λ) > HI consisting of ordinals

of cofinality ω (and generally those satisfying the I-condition from Chapter

XI).

Proof. Should be clear (and will be elaborated elsewhere, see [Sh:311]). D4.ι6




