VI. Preservation of Additional
Properties, and Applications

This chapter contains results from three levels of generality: some are
specific consistency results; some are preservation theorems for properties like
“properness + “w-bounding”, and some are general preservation theorems, with
the intention that the reader will be able to plug in suitable parameters to get
the preservation theorem he needs. We do not deal here with “not adding reals”
- we shall return to it later (in VIII §4 and XVIII §1,§2).

Results of the first kind appear in 3.23, §4, §5, §6, §7, §8. In §4 we prove
the consistency of “there is no P-point (a kind of ultrafilter on w)”. We do
this by CS iteration, each time destroying one P-point; but why can’t the filter
be completed later to a P-point? (If we add enough Cohen reals it will be
possible.) For this we use the preservation of a property stronger than “w-
bounding, enjoyed by each iterand.

More delicate is the result of §5 “there is a Ramsey ultrafilter (on w) but
it is unique, moreover any P-point is above it” (continued in XVIII §4). Here
we need in addition to preserve “D continues to generate an ultrafilter in each
yPar,

In 3.23 we prove the consistency of s > b = Ry; i.e. for every subalgebra B
of P(w)/finite of cardinality i, there is A C w which induce on B an ultrafilter
{B/finite: B € B and A C* B}; but there is FF C “w,|F| = ®; with no
g € “w dominating every f € F. We use a forcing @ providing a “witness”
A for B = (P(w)/finite)"; not adding g dominating (“w)Y; we iterate it (CS).
After wy steps the first property is O.K., but we need a preservation lemma

to show the second is preserved. The definition of this  and the proof of its
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relevant properties are delayed to §6. In §7 (i.e. 7.1) we prove the consistency
of a > b. Lastly in §8 (i.e. in 8.2) we prove the consistency of h < b = a. On
history concerning §6, §7, §8 see introduction to §6. See relevant references in
the section.

x ok *

We now review most of the preservation theorems appearing here for count-
able support iteration of proper forcing; actually this is done for more general
iterations (including RCS, a pure finite/pure countable, FS-finite support), see
0.1 and we can weaken “proper”. You can read it being interested only in CS
iteration of proper forcing, ignoring all adjectives “pure” and the properties
“has pure (61, 02)-decidability” (or feeble pure (61, 82)-decidability), so letting
<pr=<.

0.A Theorem. For any CS iteration (P;,Q; : i < 4,j <) if for each i < a we
have IFp, “Q; satisfies X” then Pj satisfies X; for each of the following cases:
1) X = “Q is proper and “w-bounding” [Why? By 2.8D, i.e. by 2.3 + 2.8B
+ 2.8C).
2) Let f,g:w — w+1)\{0,1} be functions diverging to infinity [i.e. (Vn <
w)(Fk < w)(Ym)(k <m <w = f(m) > n&g(m) > n)] and:
X = “Q is proper and for every { < w and 7 € ([], f(n)[-q(")l])vQ
there is a sequence (u, : n < w) € V such that A, n(n) € u, and
lun| > 1 = |un| < g(n)/¢. [Why? By 2.11F ]
3) X = “Q proper and every dense open A C “”w includes an old such set”.
[Why? See 2.15D; or see 2.15B(2) for an equivalent formulation, then by
2.15C, 2.3(5) we can apply 2.3(2)].

Remark. Particular cases of 0.A(2) are the Sacks property (f constantly w, all
g’s), and the Laver property (f, g vary on all legal members of “w), the names
were chosen for the most natural forcing notions with these properties. Other
pairs f,g € “w were introduced in and important for [Sh:326 §2]. Concerning

the PP-property and the strong PP-property see 2.12, 3.25-6.
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For some other properties we can prove that in limit stages, violation does
not arise; but leave to the specific iteration the burden for the successor stages.

We say “X is preserved in limit”.

0.B Theorem. For CS iteration of proper forcing, Q = (P,, Qp:a<§p<
d), 4 a limit ordinal.
1) If for < 4, in VP~ there is no new f € “w dominating all h € (“w)V

then this holds for V5 [see 3.17(1)],

2) If for a < 4, in VP~ there is no new f € “w dominating all & € (“w)" and
no real which is Cohen over V' then this holds for V¢ [see 2.13D(2); more

on Cohen see 2.17].

3) If for a < § in VP> there is no random real over V' then this holds for Vs

[see 3.18].

x ok %

We now turn to the third kind of results.

In §1 we present a general context suitable for something like: for every
nE (“’w)vq there is a “small” tree T C “Zw from V such that n € lim(T"); so
we assume that the family of small trees has some closure properties. In 2.1 -
2.7 we more specify our context, so that we can get preservation in successor
stages too. In 1.16, 1.17 we deal with a generalization where we have several
kinds of n € “w (but for simplifying the presentation, we restrict generality in
other directions). A reader who feels our level of generality is too high (or goes
over to this view while reading 2.1-2.8) can prefer a simplified version (which is
[Sh:326, A2 pp 387-399]), so read only 1.16, 1.17 for the case k* = 1 and then
look at any of 2.9 - 2.17 (each dedicated to a specific property being preserved)
ignoring the undefined notions.

In 3.1 - 3.13 we give another context (tailored for “there is no dominating
reals”). Here for successor stages we use a stronger property (like almost “w-
bounding). In XVIII §3 we give another such general theorem.

The reader is tuned now to countable support iteration of proper forcing
but we shall later consider other contexts (semiproperness in Chapter X; forc-

ing with additional “partial order <p,” (pr for pure) plus some substitute of
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properness in Chapter XIV, XV). To save repetition, in 0.1 below we describe

the various contexts. The subscript 6 has a role only when <, is present (cases

D-F below) and its meaning is described in 0.1(3). Note that also FS iteration

of c.c.c. forcing is a particular case: <p; is equality and 6 = R; (the relevant

results will be presented in §3). Let 6 missing mean § = 1. We may write e.g.

0.1g=y, rather than 0.1y, to stress this.

0.1¢ Iteration Context:

1) We shall use iteration Q= (P, Qi:j<ai< o) of one of the following

forms:

(A)

(©
(D)

(E)

(F)

Countable support iteration of proper forcing (see III). In this case
<pr is the usual order, 1.11 is just III 1.7; “purely” can be omitted;
similarly for (B) (C).

Like (1) but for § < « limit we weaken “Q; is proper” to “for
arbitrarily large ¢ < 4, Ps4+1/P;4+1 is proper or even just E-proper”
where E C S<y,(p) is a fixed stationary set (we can use similar
variants of the other cases).

RCS iteration which is a semiproper iteration (see Chapter X).

Each forcing notion @; has also a partial order <y, [p <pr ¢ = p < gJ;
a minimal element (g and is purely proper (i.e. if p€ QN N,Q € N,
N countable and N < (H(x), €,<}), then there is a (N, Q)-generic
¢,P <pr ¢ € P). The iteration is defined as P; = {p : p a function
with domain a countable subset of 4, for j € Dom(p) we have: I-p,
“p(j) € Q;” and {j : not IFp;, “Dg; <pr p(j)” } is finite}.

A particular case is FS iteration of c.c.c forcing. This (i.e. clause (D))
is a particular case of Chapter XIV.

The iterations @ which are GRCS as in XV §1 (and see 0.3), such
that: for each a < £g(Q) for some n we have Ibp_,  “(2%1) 4 |P,| is
collapsed to R,” and each Q, is purely semiproper.

The GRCS iterations as in XV §3 (so each Q; satisfies UP(I, W),

where W C w; is stationary.
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(G) The GRCS iteration as in XV §4.

2) We say “P purely adds no f such that (Vz € V)p(z, f)” if for every p € P
and P-name f, for some ¢ € Pand z € V: p <pr ¢ and ¢ IF “f does not
satisfy ¢(z, f)".

3) 6 € {1,2,R,N;} and: & = 1 means no demand, § > Ry means each Q,
(or each Py, Py/Pp41) has pure (6, 2)-decidability (see Definition 1.9) and
# = 2 means they have pure (2, 2)-decidability (see Definition 1.9).

Remark. We shall concentrate on case F in 0.1(1) as it is the hardest.

0.2 Definition.

1) We say W is absolute if it is a definition (possibly with parameters) of
a set so that if V1 C V2 are extensions of V (but still models of ZFC
with the same ordinals) and z € V! then: V2 | “z € W” iff V1 |=
“r € W”. Note that a relation is a particular case of a set. It is well
known that I3 relations on reals and generally x-Souslin relations are
absolute.

2) We say that a player absolutely wins a game if the definition of legal
move, the outcomes and the strategy (which need not be a function
with a unique outcome) are absolute and its being a winning strategy
is preserved by extensions of V.

3) We can relativize absoluteness to a family of extensions, e.g. for a
given universe V and family K of forcing notions we can look only
at {V9 : Q € K}; so for V9 we consider only the extensions
{V@: Qo < Q € K}, or even demand Q/Qo has a specified property.

We do not care to state this all the time.
Though Case D is covered by Chapter XIV, (and XV) we may note:

0.3 Theorem. 1) The iteration in case (D) preserves “purely proper”.

2) X§2 is generalized to “purely semiproper is preserved” by GRCS iterations.
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§1. A General Preservation Theorem

An important part of many independence proofs using iterated forcing, is to
show that some property X is preserved (if satisfied by each iterand). We have
dealt with such problems in Chapter V (preserving e.g. “w-properness + the
“w-bounding property”), [Sh:b] Chapter VI (general context and many exam-
ples), [Sh:207}, [Sh:177] (replacing the weak form of w-proper by proper), Blass
and Shelah [BsSh:242] (preserving ultrafilters which are P-points), [Sh:326]; in
[Sh:b] Chapter X §7 we have dealt with semiproperness. Here we redo [Sh:b]
Chapter VI §1, giving a general context which serves for many examples re-
placing proper by the weaker condition semiproper and even UP and “CS
iteration” by “GRCS iterations” i.e. revised countable/finite support with pu-
rity (and correcting it). You may read this section replacing everywhere: UP
by proper, RCS iteration by countable support iteration, <p; by the usual or-
der, S by the class of regular cardinals, W = w;, semi-generic by generic, omit
I-suitable, then 1.9, 1.10 are not necessary.

In fact there is more in common between the examples discussed later even
than expressed by the stricter context suggested here (fine covering model) (i.e.,
the use of trees T, TN ™w finite and absoluteness in the definitions of covering
models) but the saving will not be so large; we shall return to this in §2.

Unfortunately “adding no reals” will require special treatment (as is the
case even if we assume properness). We have dealt with it separately in Chapter
V and will return to it in VIII §4, XVIII §1, §2.

For applications it suffices to read Definitions 1.1 - 1.5 (the fine covering
models and preservation of them); also 1.9 and Theorem 1.12 (on more general
preservation theorems). Another general way to get such preservation theorems
is presented in XVIII §3. A simpler version of the theorem is presented in 1.16,
1.17 here (and see 1.3(10); earlier see [Sh:326, Appendix A2 pp. 387-399] (but

also for a finite sequence of covering models)).

1.1 Definition. We call (D, R) a weak covering model (in V') if:
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a) D a set, R a two place relation on D, zRT implies that T is a closed
subtree of “”w (i.e., () € T, T is closed under initial segments, and
above any 1 € T there are arbitrarily long members of T'),

b) (D,R) covers, ie. for every n € “w and z € Dom(R)(= {z :
(3T)xzRT}) there is T € D such that zRT and 5 € lim T, where

IimT ={ne“w:nlkeT for every k < w}

1.1A Remark. The intuitive meaning is: zRT means T is a closed tree of
“size” at most x. In Definition 1.2, which exploits more of our intuition, we
have an order on the set of possible z’s, z < y, with the intuitive meaning “x

is a smaller size than y”. So it would be natural to demand:
zRT,z <y = yRT and zRT,T' C T = zRT!

However, no need arises. Note also that sometimes z appears trivially (e.g. see

the “w-bounding model in 2.8).

1.2 Definition. (1) A fine covering model is (D, R, <) such that:
() (D, R) is a weak covering model
(B) < is a partial order on Dom(R), such that
(i) (Vy € Dom(R))(3z € Dom(R))(z < y)
(ii) (Vy,z € Dom(R))(3z € Dom(R))(z <y 2z <2< Yy)
(iii) if y < z,yRT then for some T* € D, T C T* and zRT*
(iv) if y < z and for | = 1,2 yRT; then there is T € D such that:
ZRT, Ty CT and for somen, v € To & v |ne T = veT)|
(v) (@) fz >z > yp41 > yp for n <w and T;, € D,y,RT,, (for n < w)
then there is T* € D,z RT™ and an infinite set w C w such that:

limT™ D {n:nisin“w and for every i € w,n | min(w \ (1 + 1)) € U T; UTo}
i<i
jEwW
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(b) if n,mn € “w, NIn = Ny n for each n < w and £ € Dom(R) then for

some T € D, zRT, n € limT and %, € lim T for infinitely many n.

(8) condition (y) continues to hold in any generic extension in which ()
holds.
(2) For a property X of forcing notions, (D, R,<) is a fine covering model
for X-forcing if Definition 1.2(1) holds when we restrict ourselves in (§) to
X-forcing notions only.
(3) We say (D,R,<) is a temporarily fine covering model if it satisfies

(@), (B), () i.e. is a fine covering model for trivial forcing.

1.3 Remark. 1) In an abuse of notation we do not always distinguish between
(D,R,<) and (D, R).

2) Look carefully at (4), it is in a sense, meta-mathematical.

3) So if (D, R, <) is a fine covering model and P is a (D, R)-preserving forcing
notion (see Definition 1.5 below) then in VP the model (D,R,<) is still a
fine covering model. [Why? In Definition 1.2(1) clause («) holds as P is (D, R)-
preserving, clause () holds as it is absolute, clause (v) holds as in V, (D, R, <)
is a fine covering model by clause (§) of Definition 1.2(1) and clause (8) by its
transitive nature.

4) In (v)(a) of 1.2(1), we can replace “y,RT,” by z'RT,, (by (8) (ii) (ii1)).

5) We write in 1.2(1)(8) (iv)* if n = 0.

6) If we assume 1.2(1)(8)(iv)*, then in 1.2(1)(y)(a) w.l.o.g. T, € T4 hence

the conclusion in (y)(a) is:
imT™ D {n € “w: forevery i€ w, n [ i€ T maxjwniju{o}]}-

7) We can in () add “and 0 € w”.

8) A condition stronger than (y) = (7y)o of 1.2(1) is:
(Y = (M)t ifz >zt > ypp1 > yn for n < w and Ty, € D,y,RT, (for
n < w) then there is T* € D,zRT™ and an infinite set w C w such that:

HmT* 2 {n:nisin “w and foreveryi € w,n [ i € U T;}
i<i
JjEw
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(Le. it implies both (a) and (b) of 1.2(y) (when (D, R) covers, of course).)

If we assume (8)(iv)™, then in 1.2(1)(y) w.lo.g. T, C Tr4+1 hence the demand
in (y)t is imT* D {n € “w : for every i € w, n [ i € T}}.

Why? Let y,, be: ¥y = Yo, Yn41 = Yn+2. We choose by induction on n, T},
such that y,RT, and T; = Ty, and T, C T}, and for some k, we have

nk, €T, &ne U Tm=mne€T,,, Now by clause (y)* there are an
m<n+1
infinite w’ C w and T* such that zRT* and lim(T™) D {n € “w : for every i €

w’ we have [t € L<J T;}. Let w' = {n; : i < w} with n; < niy1. Let j(£)
j€w

(£ < w) be increasing fast enough, i.e. nj(e11) > knj,y_,» W def {nje : £ < w}.

It is enough to prove that w and T™ are as required in clause (). So assume

1 € “w belongs to the set on the right hand side of the inclusion in clause (v),

and we shall prove n € limT™. So we are assuming that for every £ < w we

have n[n;e4+1) € U T,; UTp. So it is enough to prove that n appears in the
right side of the ]irjzlusion in () for w', (T} : i < w). So let i < w and we
should prove that n[n; € UT,’1 , (as w' = {n; : i <w}, n; increasing with 7).
Let £ be such that j(£) SZS; < j(£ + 1), so by the assumption on 7 we have
nin; ANnjes1) € UeTj(m) U Ty. We prove this by induction on 1.

m<

Case 1: mnjes1) € To
So nin; € To, but T —0 = T§ C T;(i) hence nfn; € T,y € U T;L(Z) as
£<i

required.

Case 2: There is m < £ such that n[n;e1) € Tn

i(m)

Necessarily ¢ > j(£) > j(m) so by the induction hypothesis on i we

have ninjp-1 € U Ty, but T, C T) ., so n[njg-1 € T,’l],(l)_1 as by
k<j(6)-1

assumption 7[njeq1) € Tn m < £, by the choice of T, as j(£+1) >

i(m)? nj(e)

kn;.,_, necessarily nin;ey1) € T,’m[) but T'/lm) C T;, and n; < njeyq) hence
nin; € T, < |J T}, as required.
8A) In clause g; w.l.o.g. T, C T4 (ie. this weaker version implies the original
version using (a), (8) of course).
[Why? By 2.4D (note 2.4A, 2.4B, 2.4C, 2.4D do not depend on the intermediate

material).|
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9) Note in 1.2(1)(7)(a), that any infinite w’ C w is o.k.

10) In some circumstances clause (b) of 1.2(1)(7) is a too strong demand, e.g.
preservation of P-points. We can overcome this by letting R = \/, . Re (k
is finite) and demanding 1.2(y)(a) for each R, whereas instead 1.2(7)(b) we
demand

(b)" if N, N € “w, Npln =nin for n < w, and for some m < k we have
(Vz € Dom(R,,))(3T)(zRmT & n € limT) and

(Vz € Dom(Rp)) \GT)(zRmT & 1 € im T)

n
then for every z € Dom(R,,) for some T we have: R, T and for infinitely
many n < w, N, € im(7).
See more on this in 1.16, 1.17 and §5.

Proof. E.g.
9) Assume 1 € “w and
(x)o i € w = nimin(w’ \ (t+1))e U T;UTyp;
jew' j<i
we have to prove 1 € lim(7™). For this it suffices to prove:
(*)1 i €w=nl(min(w\i+1)e U T;UT.
jEw,j<i

Let ¢+ € w, define ¢y = 4, j; = min(w’' \ i), i2 = min(w \ (1 + 1)),
J2 = min(w’ \ (j1 + 1)); so in particular 1; < j; € W', 11 < iz < Jo, J1 < Jo.
As ()¢ holds apply it to j; and get n[js € U T UTp, hence for some

jewlvj<j1
Jos Jo =0 V (jo < j1 & jo € w') and we have 7[j, € Tj,. As iy < j clearly
nliz € Tj,. As j1 = min(w’ \ i) we know that i; < j; and [i1, 1) Nw’ = 0 and
thus jo = 0V (jo < i1 & jo € w’). Hence jo =0 V (jo < i1 & jo € w). So
nlia € Tj, € U T UTo, as required. (See more 2.4D.) Oi3
JjEw,j<1

1.4 Convention. If the order < is not specified then <=<4y;s (see below). Let
<o be such that:

z <oy iff z,y €“w & z(0) <; y(0)
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where (w, <g) is isomorphic to (Q, <) (i.e. the rationals). Let <g;s be:

T <gis ¥ ff T,y € “w,1 < z(n) < y(n) for every n

and y(n)/z(n), z(n) diverge to oco.

Let <3 be: ¢ <}, v iff y <gis z. (Note: in DP(Yw) o {z e“w:z(n) >1,

(z(n) : n < w) diverges to infinity}, <o, <gis and <%;, satisfy clauses (8)(i),
(ii), (iii) of Definition 1.2(1)).

1.5 Definition. Let (D, R) be a weak covering model. We say that a forcing
notion P preserves (D,R) or is (D, R)-preserving if IFp “(D,R) is a weak
covering model”. We add “purely” if: for every p € P and f such that p IF
“f € “w” and z € Dom(R), for some ¢, T we have p <, ¢ € P,zRT and q IF
“f€limT”.

1.6 Definition. 1) For a weak covering model (D,R) and y € Dom(R),
(D, R) | “pais (y)” if:

for everyn* € “w and function F from D xw to Rang(R) = {T': (3= € D)zRT}
such that (Vn)(Vz € Dom(R))[zRF(z,n) and n*|n € F(z,n)].
there are T*, yRT™ and an infinite set w of natural numbers, and z; € Dom(R)
for £ € w such that:

T* D {n € “?w : there is £ € w such that n | £ < n*, and n € F(z,£)}.
Note that the truth value of (D, R) | “pais (v)” depends on V' (remember <

means initial segment).

1A) For a weak covering model (D, R) and y € Dom(R) we write (D,R)
G W) iE

for every n* € Yw , and a function F : D x w — Rang(R)} such that
(Vn)(Vz € Dom(R))zRF(z,n) and a function H from D x w into “w such
that n* [ n < H(z,n) € lim F(z,n) (so n* [ n € F(z,n))

there are T*, yRT* and an infinite w C w and ny < w, and 2z, € Dom(R) for
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¢ € w such that:

T* 2 {n € “’w: thereis £ € w such that n | £ < n*,
and n | ng <9 H(2¢,%) and n € F(z,£)}.

(If ng > £, then “n | £ < n*” is not necessary and if ny < ¢, then n[ny, < H (2, £)
is not necessary). Note that the truth value of (D, R) |= ¢}, (y) depends on V'
and @4is(y) = ¢4 (v) (as in %, the set of n € “”w which we demand to be
in T™* is smaller than for ¢ gis ).
2) We call (D, R) a covering model if it is a weak covering model and
(c) for every y € Dom(R), (D, R) [= ¢ais(y) or at least (D, R) = ¢4 ().

3) For a weak covering model (D,R) and Z = (z, : n < w) and 2z, where
{zn : n <w}U{z} C Dom(R) we say that (D, R) = v¥ais(Z, z) if:
(x) for every n* € “w and a set {T,; : n,j < w} such that z,RT, ; for

n,j < w there are (T* : & < w) such that:

(i) T* C T™*! and T° C T*

(ii) zRTY (so T* € D)

(iii) n* € lim T°

(iv) if n,j <w and v € (lim T3 ;) N (lim7T™) N (lim T), then for some k:

(Vp)v Tk<QpeTh;=pe T NT¥

4) (D, R) is a strong covering model if it is a covering model and

(d) For every z € Dom(R) there are z,(n < w) such that:

(D, R) = vais({zo, 71,-..), 2)

1.7 Definition. 1) Let K be a property of weak covering models. We say that
a forcing notion P is K-preserving if:

for any (D, R) € V satisfying K, P preserves (D, R). We add “purely” if for
any (D, R) satisfying K, P purely preserves (D, R).

2) We call a covering model (D, R) smooth if:

for any (D, R)-preserving forcing notion P, IFp “(D, R) is a covering model”.
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3) We call a strong covering model (D, R) strongly smooth if:
for any (D, R)-preserving forcing notion P we have IFp “(D, R) is a strong

covering model”.

1.8 Claim. 1) If (D, R, <) is a fine covering model then (D, R) is a strongly
smooth strong covering model.
2) The following is a sufficient condition for (D, R) | ¥ais({Zn : n < w), 2):
(*) for some y, € Dom(R) (for n < w) :
(@)n ifn <w, z,RT} for j <w and y, RT then for some (n; : j < w) and T*:

(i) Yn+1RT™

(i) TCT*

(i) neT; &nlnjeT=>neT*
(b) if y, RT™ for n < w,T™ C T™*! then for some T*, zRT* and A\, T™ C T*.
3) For a weak covering model (D, R) we have: if (D, R) is a strong covering

model then it is a covering model, and strongly smooth implies smooth.

Proof: 1) By 1.2(1)(a) we have: (D, R) is a weak covering model. Now we show
that it is a strong covering model. So by 1.6(2), (4) we have to check conditions
(c), (d) of Definition 1.6.

Proof of (¢) We are going to prove that for y € Dom(R) we have (D,R) =
Pis(¥):

So suppose n* € “w, F is a function from D X w to Rang(R), and H is a

function from D X w to “w such that:
(Vn)(Vz € Dom(R))[zRF (z,n) & n* [ n < H(z,n) € lim F(z,n)]

First we use a stronger assumption.

Proof of (c) assuming (v)* of 1.3(8):  So there exist, by (8)(i), (ii) of Definition
1.2, yt, z, (for n < w) such that y > y' > 2,41 > 7, > ... > 70 (choose y' and
then, inductively on n, z,). Let z, def T, and ng 4ef p and let T, def F(zn,n).

Apply condition (v)* of Definition 1.2(1) (i.e. 1.3(8)) to get T* and an infinite
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w C w such that imT™* O {n € “w : for every i € w,n [ i € Ujje(«:: T;} and
yRT*. Remember ny > £.

We shall show that 7™ and w and (n, : £ < w) are as required in 1.6(1A).
We have to prove that (for each £ € w and n € “>w):

(*) n [ ne < H(z,8) & n € F(2¢,8) = neT*.
(Note: p [ £ < n* follows from i [ £ = 7 | ng < H(z,£) because n* | £ <
H (2, ?) by the assumptions on H in 1.6(1A).)

So assume 7 | ng I H(z,£) and 1 € F(2¢,£) (so n € T), and we have to
prove 1 € T*. We can choose v, n < v € lim F(zg, £), so it suffices to show that
for any i € w we have v | i € Ujegi T;. If i > ¢, then: v | i € F(z,8) =T, C
U< Tj and if 4 < £ then: v[i =]77w[ i=n"[1i< H(z,1) € lim F(z;,1), hence
v ][Ez"u € F(zi,1) =T; C Ufes.l T; (remember i € w). So by the conclusion of
(7)* (in 1.3(8) which we have applied) v € limT* hence n € T* is as required;

so we have proved condition (c).

The full proof of (c): Let y',z, be as above. Now we prove (c) using (7y) of
1.2(1) only. So we are given n*, F' and H as in the assumptions of 1.6(1A).
Apply condition (v)(b) of Definition 1.2(1) with zo,n*, H(zn,n) (for n < w)
here standing for z,7n,7n, (for n < w) there, and get an infinite wog C w
and Ty € Rang(R) such that zoRTy and A,,, H(zn,n) € limTp, hence
n* € limTp. _

Let wo = {k¢ : £ < w}, ke increasing with ¢, of course w.lo.g. ky +1 <
ke (hence £ + 1 < kg). Applying (B8)(iv) (of 1.2(1)) choose Tg4+1 such that
Tk, +1RTev1, Fo € Tp41, even Ty C Tpyq, and for some m; < w we have:
[olme € To & p € F(zk,,ke) = p € Tp41]- So by (y)(a) (of 1.2(1)) for

some T* and infinite w; C w we have: yRT™* and for every n € “w we

have [A;c,, nfmin(w: \ (i + 1)) € Ujje<wi1 T; UTy) = n € T*. We define
w={ke:£+1¢€ w} and for £+ 1 € w; let us define ng, as the first
natural number n = ng, such that ng, > £, in the interval (¢, ng,) there are at
least two members of w;, and ng, > my.

We are going to prove that w, (nj : j € w) are as required (in 1.6(1A)).

Remembering that the general members of w have the form k, with £41 € wy,
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it suffices to prove that (the replacement of 7 € “”w by v € “w is as in the
proof above of clause (c) from (y)* of 1.3(8)):
(x) for any £ and v we have ® = @ where
® (A) ke w (ie. £+1€w)
(B) ve“w
(C) vike < n*
(D) vink, < H(zk,,ke)
(E) v € lim(F(zk,, ke))
® v e lim(T*)
By the choice of T™*, for getting & it suffices to prove
®i if i = i) € wy, and iz = min(w1 \ (i1 +1)) thenvlize U T;UTo.
JEw1,5<11
Note that k, € wp (see above before choice of the T}’s). We split the proof of
®; accordingly to how large ¢ is.
Case 1: ~(Fj)[l < j € wi Niy)
By the choice of ng, we know that in interval (¢,ng,) there are at least
two members of wy, but 4; < min(w; \ (¢ + 1)) and i2 = min(w; \ (i1 + 1)) so
necessarily io < ng,. Hence (by the previous sentence, by ®(D), by the choice

of Tp, and trivially respectively) we have

vliz Qvink, < H(zk,,ke) € lim(To) and thus vfize | ) T;UTp
JEw1,j<i
as required (in ®;).
Case 2: (37)[€ < j € w1 N14]

Let 19 = max(w; N 1), so by the assumption of the case not only iy is
well defined but also it is > £. Looking at the desired conclusion of ®; and
the definition of iy it suffices to prove that v|i; € T;,. But we know that
[n <w = T, C Tn41] and (by the previous sentence) £ < 4g, hence Ty,; C T,
so it suffices to prove v|iy € Tpy. For this by the choice of Ty, it suffices to
show the following:
®2 (A) vime e Ty

(B) vlig € F(zk,, ke)
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As for clause ®3(B), by the assumption ®(E) it holds. As for clause ®2(A), we

know

vimg < ving, < H(zk,,ke) € im(Tp).

[Why? first < holds as my < ng, by the choice of ng,, second < holds by
assumption ®(D), and the last “€” holds as k; € wo and the choice of Ty, wp.]

So both clauses of ®, hold hence ®; holds in case 2 hence in general, hence
we have proved (). Thus we have finished proving clause (c) in the general case.

Having proved condition (c) we shall now prove condition (d).

Proof of (d). Choose z! and then by induction on n < w,z, such that
Tp < Tnp1 < ... <zl <z (they exist by (8) of Definition 1.2(1)).

So it suffices to prove that (D, R) = vais({zo, 1, . .), 2). Let n* € “w and
(Tn,j : n,j < w) be as in () of Definition 1.6(3).

For each n < w, by applying w times Def 1.2(1)(8)(ii), we can find z, ; (for
Jj <w) such that £, < Tno < Tn1 <... < ZTpw < Tny1 (first choose z,,, and
then 0, Tn,1,. . .). We now define by induction on n, T}; such that z, RT,; and
Ty C Ty, . First let Tg be such that zoRTg,n* € lim Ty (possible by 1.1(b)
and 1.2(1)(«)). Second, assuming T} was defined, we can choose by induction
on j trees Ty, ; satisfying: Ty, ; C Ty, i1, Tho = Ty, Tn i RT}, ;,n* € limT,

and such that for some m = m(n, Jj) we have
(Vp)lp € Tnj&p I meT, ;= peT, il

(possible by 1.2(1)(8)(iv)). Now by (y)(a) of Def 1.2(1) we can find w(n) C w
infinite and T};, ; such that z,1RT;,; and

Typq 2{n: for every i € w(n), n [ min(w(n) \ (i + 1)) U ;UTL}

i<i
j€w(n)

Necessarily Ty C Ty, 1
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Then applying (y)(a) of Definition 1.2(1) we can find w C w infinite and
T} such that zRT; and:

T 2 {n: forevery i € w, n [ min(w\ (i+1)) € U T; UTg}-
j<i
JjEwW

As said above T,y C Ty, for each n, clearly from the condition above zRT;
and T§ C T and in particular n* € lim 7§ C limT};. So in 1.6(3) (*), (with
T2 here for T* there) conditions (i), (ii), (iii) are satisfied. As for condition
(iv), let v € (limT, ;) N (lim7T;) N (im7}}). Then any k < w such that:
k>min{fi cw:|inw\(n+1)]>1}and £ > min{i: [iNw(n)\ (j +1)| > 1}
and k > m(n,j) is as required. So T is as required in 1.6(3), i.e. we have
proved (d) from 1.6(4).

Now why is (D, R) strongly smooth? By remark 1.3(3). Suppose P is
(D, R)-preserving then in V¥ still (D, R) is a weak covering model as P is
(D, R)-preserving, hence (a) of Definition 1.2(1) holds in VF, (B) is trivial,
and (7), (6) hold by (8). So (D,R,<) is a fine covering model in V' hence,
by what we already proved it is temporarily a strong covering model. As this
holds for every P we finish.

2) Similar proof.

3) Read the definitions. Ois

1.9 Definition. A forcing notion @ has pure (61, 62)-decidability if: for every
p € Q and Q-name t < 6y, there are a C 64, |a| < 63 (but |a| > 0) and r € Q
such that p <pr r, and r kg “¢ € a” (for 6, = 2, alternatively, ¢ is a truth

value), [if = 6; = 6, we write just 6].

1.9A Remark. 1) If Ry > 6, > 2, pure (63,2)-decidability is equivalent to
pure (2,2)-decidability.

2) Q purely semiproper implies @ has (Ry, R;)-decidability.

3) If Q is purely proper then @ has (), R;)-decidability for every A.

4) If <=< and Q is proper or Q has the c.c.c. (and we let <, be equality if
not defined) then Q is purely proper (see 0.1 case D).
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1.10 Lemma. For (61, 602) € {(2,2), (Ro, 2)} the property “Q has pure
(61, 62)-decidability” is preserved by GRCS iteration as 0.1.

Proof. In quoting we refer to case F. We prove it by induction on the length of
the iteration (for all ¢,t and generic extension of V). By the distributivity of
the iteration (in case F claim XV 1.7) it suffices to deal with the following five

cases:

Case 1. o <1 Trivial.

Case 2. =2 Easy.

case 8. a = w; If there is q1, ¢ <\ q1 € P, such that for some 8 < o, and
Pg-name ty,: g1 € Pg and q1 IFp, “t = t;”, then we can use the induction
hypothesis. By XV 3.3 this holds

Case 4. o strongly inaccessible, a > |P;| for i < a: Even easier than the case

a=uw.
case 5. a =w: So 0y =2, and wlo.g p={p, : n < w},pp a Py-name of a
member of Qn. We define ¢,, such that:

(i) gn a Py-name of a member of Qn,

(ii) P, “Pn <pr qn”

(iii) in VP, q,, decides s,,, where:

for Gp+1 C Pny generic over V, s,[Gny1] is k+1 iff thereisr € P, /Gpyq

such that Dom(r) = [n+1,w), Py/Gpt1 Ep [ [n+1,w) <rrandrikp, /¢

“t = k”, with k minimal under those conditions; otherwise (i.e. if there is no

n+1

such k) s, = 0. (Actually gy, is a P,-name of a member of Q,[G,].) (If 61 = Ro
- clear, if 6; = 2 - use Definition 1.9 twice, see 1.9A(1)).

Now ¢ = {gn : n < w} € P,,p <pr q; clearly thereisr, ¢ <7 € P, and
£ < 61 such that r IF “¢ = £”. Also w.l.o.g. for some n(x),[n(¥) <n<w=r]
{n} is pure]; hence r[n(x) I-p, ., “Pu/Pny Ep [ [n(¥),w) <pr 7 [ [n(*),w)”.

We can prove by downward induction on m < n(x) that for some £ > 0 we
have (r | m) U {gm} Ik “sm = £".

For m = 0 we easily finish (by the definition of s,,). 0110
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1.10A Claim. Assume that Q is (D, R)-preserving, (D, R) a is weak covering
model, Q has pure (64, 6)-decidability and for some A and stationary S C
S<x,(A), the forcing notion Q is purely S-proper (or the parallel for semiproper
and |D| = ¥, follows from 0.1(1) in all cases there).

(a) If (01, 62) = (Ro,2) then Q is purely (D, R)-preserving.

(b) If (61,62) = (Ro, Ro) and for every z € Dom(R) there is y € Dom(R) such

that for each n < w:

(VT1,...,T, € Rang(R))(3T € Rang(R))[ \ yRT; » zRT & A\ T, C T
. =1 =1

then Q is purely (D, R)-preserving.

Proof. Straight. Ui.104

1.11 Claim. 1) Assume Q = (P,,Qn : n < w) a GRCS iteration with Q,
having pure (Ro,2) decidability, as XV 3.1. Then for every p € P,, pl- “f €
“w” there is ¢,p <pr ¢ € P,, such that ¢ I “f(n) = kn” where ky, is a
P,-name.

2) If we assume in addition: plt-p, “f < g”, g € “w” (and g € V) then we can

replace “having pure (Ro, 2)-decidability” by “having pure (2, 2)-decidability”.

Proof: Straightforward. Uiz

1.12 Theorem. Suppose (D, R) is a smooth strong covering model, Q =

(Pi, Qi : i < 0) a GRCS iteration as in 0.1, e.g. satisfying (L;,j, Ai j, i 5, Si,5, W

(1,7) € W) (asin XV 3.1), I = U{L;; : (i,j) € W}, and S C S, ; for (i,j) € W,

each Q; with pure (61, 62)-decidability and

(*) (61, 82) € {(No,2),(2,2)} and' if (61,682) = (2,2) then for each T, z, k
there is F' € “w such that

Vn[zRT & n € “>w & (3k)(n(k) > F(k)) & n [ k € T) = n € T}

' The meaning of this is like 1.11(2), i.e. we are not interested in all “w just

in {n:n€“wandn<g (ie (Vn)(n(n) < g(n))}.
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and
(**) |D| < Ry or at least every regular uncountable x < |D| belongs to S.

If P; is purely (D, R)-preserving for each i < § (0 a limit ordinal) then Pj
is purely (D, R)-preserving.

1.12A Remark. If SS;:SQ", the pure (61, 62)-decidability is always trivially

true for (Ng,2) and even (00, 2).

Proof: By XV 1.7 it is enough to consider only the cases § = w,§ = wy,d
strongly inaccessible A;_;5J > |P;|. In the last two cases RV"™ = Uics RY"™ so
wlo.g § =w.

Suppose p € P, f a P,-name, pl-p, “f € “w” and z € Dom(R).

By 1.11 above (using part (1) if (61,62) = (No,2) and using part (2) and
(*) if (61,02) = (2,2)) w.lo.g f(k) is a Pc-name of a natural number.

For notational simplicity we shall write the members of P, as (gg 1l <
n),lFp, “ge € Q¢” and similarly for P,,. Let p = (g, : £ <w), and let for m <n
(in VPm) Pp/Pp = Qm* Qmy1* ... % Qn_1.

Now we define by induction on n < w, a condition p™ € P, such that
p" = (g{}, . ,g’;_l), and for each m < n a Pp,-name t, ,, such that:

a) p I n <pr Pn, and pp <pr Pnt1 | N, moreover

1
“_P[ “gl Spr g? Spr g?+ ",

B) If Gr, C Py, is generic (over V) m < n, then in V[G,,] we have

<q%’ s ,{12-1) ”-Pn/P'm. “__f(n) = .tn,m[Gm]”§

$0 tn,n = f(n). Equivalently, (,0,...,0,q,,...,qn_1) Fp, "f(n) = tnm”.

Y) ke, [qu ”—._Qm “tn,m+1 =$n,rﬁ”]
This is easily done: define (g7 : £ < n < w) by induction on n, for each n

let tnn = f (n) and define q7,ten by downward induction on £ < n.
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Let fm be the P,,-name of a function from w to w defined by: for n > m
we have: fi(n) = tmn and for n < m we have: f.,(n) = f(n). So clearly we
have:

&) (0,....0,qn) rpyy “fmn 0= fmy I 0"
e) Ikp, “fanln=fIn"
By Definition 1.6(4)(d) there are z,(n < w) such that

(D, R) E ass((To, - . ), 2).

Now let x be large enough, and we split our requirement according to the kind
of iteration. (The cases are from 0.1, cases A,B of 0.1 are covered by the later
cases).
Let N be countable (the cases listed cover all possibilities):
Case D or C: N < (H(x),€,<%), N is countable such that (x) below holds.
Case E,F,G: Let (N, : n € (T,l)) be an (I, W)-suitable tree of models,
N = N, such that
(*) (P;,Qe: £<w), PeN,andalso (D,R),f,(g7: £<n<w), {tam:
m < n < w) belong to N and NNw; € W in cases E, F, G.
Let (T,j : j < w) enumerate {I' € DN N : z,RT} and n* be fy (which is a
Py-name, i.e. a function in V). Now let (T®: a < w) be as guaranteed in (%)
of 1.6(3).
We now define (in V!) by induction on n conditions r™ = (ro,...,Th_1) €

P, (so trivially r™ = r"*! | n) such that:

a)pln<pr"

b) r* I “fn € (imT™) N (im T%)”,

c)Case D: r™ is generic for (N, P,).

Case C. r™ is semi-generic for (N, P,).
Case E,F,G: for some P,-name M, letting N-ﬂ = Uk <w Nyn tk
we have: ™ is semi-generic for (Np,,, Pn)

and " I-p, “Ny,[Gp,] is (U, I¢)-suitable model for x”
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If we succeed then we easily finish; clearly rf = (ro,r1,...,7p,.. .) satisfies

P <pr rt;alsoforn < w:
(rtIn)lbp, “fIn=faln"

Hence (r! [ n) IFp, “f I'n €T NT* and therefore rt Ip, “f € imT* ™.
As zRT“ (by 1.6(3)(*)(ii)) clearly rf,T% are as required.

So we have just to carry out the induction. There is no problem for n = 0 (by
the choice of n*). So we have to do the induction step. Assume r™ is defined,

and we shall define 7 +1.

Note. as P, purely preserves (D, R) we can deduce:
®  Qn (in V) purely preserves (D, R).

Let G, C Py be generic over V,r™ € Gp, 50 fn41 becomes a Qﬂ[Gn]-name
fn+1/Gn of a member of “w. But (D, R, <) is purely preserved by Py 1, hence
for every g € Qn[Gr], and y € Dom(R) there is a condition q', ¢ <pr ¢t (where
qt € Qn[G »]), such that qt FQuGn] “fn+1/Gn € lLimTt ” for some Tt € D
satisfying yRT!. Also there are (q} : £ < w), and v such that:

v e limT?t, in Qn[Gn] we have ¢f <pr q;g <pr q{ <pr ... and q} "‘Qn[gn]
“fnr1 [€=v [ L. [Why? v = f[G,] can serve.]

We can use choice functions, so let ¥ = Fi(g,2) and g} = Fy4(g,2) and
Tt = Fy(q,2), and ¢! = F(q, z). By our hypotheses (smoothness) in V[G,,] we
know that (D, R) is still a covering model. Note also that w.l.o.g. Fo, F1, Fy
belong to N[Gr]. Remember (by (a)) that in Case F N[Gy] is an (U, Le)-
suitable model for .

So now we apply condition c¢) of Definition 1.6(2) (the definition of a
covering model) and get that in V[G,] the statement ¢}, (zn+1) holds. Look
at the definition of ¢} (1.6(1A)) and apply it to n* & JnlGn] (which is an

actual member of “w in N[G,]), the function H with domain D xw, H(z,m) def

Fi(g™,2) and the function F : Dom(R) x w — D defined by F(z,m) Lo

Fo(q™, z). So we get a tree Ty € D, and an infinite set w, as described there.
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However note: D C V, so though T}; is defined in V[G,,] it is an element of V.
Working in V' we have P,,-names T7,, w,.

In fact without loss of generality T € N, hence (by assumption (**) of
1.12 and condition (c) on 7™) we have (rq,...,Tn—1) IFp, “T% € DN N” so
for some P,-name j = g(n) (of a natural number) we have (ro,...,7n_;) IFp,
“T;, = Tn;”. Now (ro,...,mp—1) forces fn € (imT") N (limT%) N (lim T3,) =
(UmT™) N (m T¥) O (lm Ty, ).

Hence, working in V[G,], by the choice of (T : o < w) (see 1.6(3)(iv))
there is k < w (which depends on f,[Gy]) such that:

(A) fnlGnl 1k <p €T jmye NT = pe T NTY.
Now w.l.o.g. we can increase k, so w.l.o.g. kK € w,[Gr] (and k > n); (k was
defined in V[Gy]). By the choice of g5 and the f’s:

(B) ¢ ”'Q,.[G’.,) “fn[Gn] [k < frr”,
also by the choice of Fy, F1, Fy, Fa, :

(C) Fae(qk, zpnt1) FQ.(Gn] “frt1 1L Fi(¢*,zn41)” and

(D) ¢k < Fy0(, n41) € @n[Gn] N N[Gy], and

(E) H(zpy1,k) = F1(¢5, Tnt1) and F(z,,n) = Fo(gk, zn).
Now by the choice of T = T7 1 | for some £

(F) Hzps1,k) 1 Qp€ F(zn,n)=>p€ T jiGn]
So together.

(G) Fp, (q,’i, Tpn+1) is a member of Q@ [GR]NN[G,), it is a pure extension
of pn, and it forces fn11 (really fn+1[Gr]) to belong to lim T N lim Tv.

Now we can choose Ty, F2 1(gX, Tn+1) <pr Tn € Qn[Ghr] to satisfy (c) thus

finishing the induction and the proof. Oq.12

So e.g.

1.13 Corollary. Suppose
(@) (P;,Q;: i < a,j < a)is a GRCS iteration as in XV 3.1. (i.e. 0.1F)

(8) (D, R) is a fine covering model,
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(7) Fp, “Q; is purely (D, R)-preserving”

(8) D has cardinality R; (or just (*x) of 1.12)

(¢) each Q; has pure (Ro, 2)-decidability.
Then P, is purely (D, R)-preserving.

Proof: We prove by induction on o that I-p, “(D, R) is a smooth strong covering

model” and P, is purely (D, R)-preserving.
Case 1. a =0 By 1.8(1) we know (D, R) is a smooth strong covering model.

Case 2. a = B+ 1 By the induction hypothesis V¥ |= “(D, R) is a smooth
strong covering model”, as Qg is (D, R)-preserving VP = kg, “(D,R) is a
weak covering model”], hence (see Definition 1.7(3)):

VFPs = [IFq, “(D,R) is a strong covering model”].

Let R be a Py-name of a (D, R)-preserving forcing notion; easily I-p,
“Q * R is (D, R)-preserving” so as above I-p, “[F “g,«r (D,R) is a strong
covering model”]” .

So in VP = (VP 3)93’ for every (D, R)-preserving forcing notion R,

IFr “(D, R) is a strong covering model”.

So in VP= (D, R) is a smooth strong covering model. As for “P, is purely

(D, R)-preserving”, by 1.10A it follows by the previous sentence and clause («).

Case 3. o limit The real case, done in 1.12. 0113

1.13A Corollary. Suppose:
() @ is a countable support iteration of proper forcing
(B) (D, R) is a fine covering model
(7) P, “Qi is (D, R)-preserving ”

Then P, is (D, R)-preserving.

1.13B Remark. 1) We have parallel conclusions to 1.13 weakening (¢) to
(8)" “Q; has (2,2)-decidability ”
if we add the requirement from 1.12(x) for (01, 62) = (2,2).

2) We can have parallel conclusions to 1.13 weakening () to



§1. A General Preservation Theorem 271

(8)" “Q; has (Ro, Ro)-decidability”
if we add
(¢) each Q; is purely “w-bounding.

1.14 Definition. 1) A class (= property) K of objects (D, R, <) is a fine class
of covering models if:
(i) each member satisfies (), (3), () of Definition 1.2.
(ii) if Q is a forcing notion, K-preserving (i.e. each (D, R, <) € KV is a weak
covering model even in V9) then in V@: each (D,R,<) € KV is in KV°
and satisfies (y) of Definition 1.2(1); note that clauses (c), (8) of 1.2(1)
follows.

2) “K is a (smooth) (strong) class of covering models” are defined similarly.

1.15 Theorem. In 1.12, 1.13 (and 1.13B) we can replace the covering model

by a class of covering models.

1.16 Definition.
1) (D,R) is a weak covering k*-model if: D = (D : k < k*), R= (R : k <
k*), k* <w and
(a) for each k < k*, Dy, is a set, Ry is a two place relation on Dy, zRT
implies T is a closed subtree of “~w.
(b) (D, R) covers, i.e. for every n € “w, for some k < k*, 7 is of the k-th
kind which means: for every z € Dom(Ry) = {z : (3T)xRiT'} there
is T € Dy such that zR,T and 7 € lim(T).
2) (D, R,<) is a fine covering k*-model if
(@)
(B) < = (<k: k <k*), <k is a partial order on Dom(R}) such that
(i) (¥ € Dom(Ry))(3x € Dom(Rx))(z < )
(i) (Vy,z € Dom(Ry))(3z € Dom(Ry))(z <k y = = <k z <k Y)
(iii) if y <k z,yRiT then for some T* € D, T C T* and zRT™

(D, R) is a weak covering k*-model



272 VI. Preservation of Additional Properties, and Applications

(iv) if y <k = and for £ = 1,2 we have yRyT, then there is T € Dy,
such that:
zRyT, Ty CT and for some n, v € To & v [ne Ty =>veT)
(7) (a) for each k < k* the following holds. If z > ¥ >k Yny1 >k yn for
n < wand T,, € Dg,yn RiT), (for n < w) thenthereis T* € Dy, zR,T*

and an infinite set w C w such that:

lmT™* 2 {n € “w: for every i € w,n [ min(w\ (i+1)) € U T;UTo}

j<i
JEwW

(b)if k < k*, {n}U{nm :n<w}C%,n[n=n,[nand z <x vy,
and 7, n, are of the k-kind (see below), then for some T € Dy we have
yRiT & 1 € lim(T') and for infinitely many n, 7,, € lim(T").

(6) condition (vy) continues to hold in any generic extension in which (c)
holds.

3) For a property X of forcing notions, (D, R,<) is a fine covering k*-model
for X-forcing if Definition 1.16(2) holds when in (&) we restrict ourselves
to X-forcing notions only.

4) We say (D,R,<) is a temporarily fine covering k*-model if it satisfies
(@), (B), () i.e. it is a fine covering k*-model for trivial forcing.

5) Wesay n € “w is of (k, z)-kind (or just the z-th kind when (Dom(Rg) : k <
k*) are pairwise disjoint) if there is T" such that n € lim(7") and zR;T (note:
(D, R) covers iff for any n € “w and Z = (zx : k < k*) € [] Dom(Ry)
for some k, the sequence 7 is of the (k, zy)-kind). We say nki<sk;)f the k-th
kind if it is of the (k, z)-kind for every € Dom(Ry).

For simplicity we restrict ourselves to the fine case (and not the parallel of

smooth strong covering).

1.17 Theorem. Assume (D, R, <) is a fine covering k*-model.
1) IfQ = (P, Qj 1< 4,7 <6) is a CS iteration, each Q; preserves (D,R,3)
then so does Ps

2) Similarly for other iterations as in 0.1 (with pure preserving).
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Proof. For simplicity Dom(Ry) are pairwise disjoint so let <= {J, ;. <k. We
concentrate on part 1). By V 4.4, if § is of uncountable cofinality then there is
no problem, as all new reals are added at some earlier point. So we may suppose
that cf(6) = No hence by associativity of CS iterations of proper forcing (III)
without loss of generality § = w.

We claim that IFp, “(D, R, <) covers.” (Note that this suffices for the proof
of the theorem.)

So let p* be a member of P, and f a P,-name such that p* IFp, ¢ [ €W,
and zj € Dom(Ry) for k < k*. It suffices to prove that for some k, T, and p
we have: p* < p € P, zxRiTx (so Ty, € D) and p IFp, “f € im(7T%)”. As
we can increase p* w.l.o.g. above p*, for every n, [(n) is a Pp-name. Let x be
large enough and let N be a countable elementary submodel of (H(x), €, <})
to which {zo, ..., Zg-_1,p*, f, Q} belongs.

For clarity think that our universe V is countable in the true universe
or at least J3(|P,|)V is. We let K = {(n,p,G) : n < w, p € P, is above
p*, G C P, is generic over V and p[n € G}. On K there is a natural order:
(n,p,G) < (n,p,G")ifn<n/,P, =Ep<p and GC G Alsofor (n,p,G) € K
and n’ € (n,w) there is G’ such that (n,p,G) < (n/,p,G’) as Q is an iteration
of proper forcing notions. Also if (n,p,G) € K and p < p’ € P,/G (ie.
p’ € P, and p'In € G) then (n,p,G) < (n,p,G). For (n,p,G) € K let
Linpay=1{9:9€ (“w)VIC] and there is an increasing sequence (py : £ < w) in
V[G] of conditions in P, /G, p < po, such that pe I f[£ = gl¢}. So:

()1 K#0
(*)2 (n,p,G) € K= Lnpc) #0
(*)3 9 € Linp,c) = (fI)[G] = gIn.

Note also

(*)4 L(np,g,) is a Py-name.

(%)s if (n,p,G) < (n',p',G") then L(n gy NV C Lnp )

1.17A Fact. There are k < k* and (n,p,G) € K such that if (n,p,G) <
(n',p',G’) € K then for some (n”,p"”,G") € K, (n',p',G") < (n",p",G") there
is g € L(n» pv gy which is of the k’th kind.
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[Why? otherwise choose by induction (nf,p¢, G¢) for £ < k*, in K, increasing
such that: L(ne+1 pes1 gerry has no members of the £-kind for ¢/ < £. So
L(ps+ pi= gr=y = 0, a contradiction.]

So choose k and (n®,p®,G®) € K as in the fact, w.lo.g. n® = 0.

Remember that f(n) is a P,-name for each n.

1.17B Fact. If (n®,p®,G®) < (n,p,G) € K and z € Dom(Ry) then there is
g € L, p ) Which is of the (k, z)-kind.

Proof. By the choice of (n®,p®,G®) there is (n’,p',G') € K such that
(n,p,G) < (n',p',G’) and L(n gy has a member g of the k-th kind. So
there are T' € Rang(Ry) and (p} : £ < w) such that g € lim(T"), zR:T, py = p/,
Py < Poyr Py € Pu/G', by \kp,ja “f1€ = gl€”. Note that T € V. From the
point of view of V[G], all this is just forced by some ¢ € G’, so ¢ forces that
(py : £ < w), T, g are as above. So we can find (g¢ : £ < w), ¢ € Pn/G, qu
increasing, ¢ < g¢ and g, forces a value to pj, say py and to g[£ and is above
pyIn'.

And we are done.

1.17C Fact. If T C Rang(Ry) is countable and = <j y, and (VT € T)(Jz <
z)(2RiT) and T° € T then for some T" € Rang(Ry) we have yR,T!, T° C T?

and for each T € T for some m we have:

(VW) veT &vimeT® =veTh).

Proof. Let (T, : n < w) list T (possibly with repetitions) such that Ty = T°.
Let z <; x’ <k y, choose inductively =,, T <g Tn <k Tp+1 <k =’ (possible
by clause (3)(ii) of Definition 1.16(2)). Choose inductively T,, € rang(Rj) such
that T) = Tp = T° and z,RT,, T, C T, and for some k, < w we have:
v € Ty, vikn € T, = v € T, (possible by clause (8)(iv) of Definition
1.16(2)). Choose, for each n, T}/ € Rang(Ry) such that z'RyT}/, T, C T,
(possible by clause (8)(iii) of Definition 1.16(2)). Next use 1.16(1)(7)(a) to find
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an infinite w C w and T € Rang(Ry) such that yRT?, T§’ C T* and

i€w&vimin(w\ (1+1)) € U T/UTy =>veT.
j<i,jEw

Check that T? is as required. Ur.17c

Continuation of the proof of 1.17.

Choose z’ < zj, and then inductively on n choose x, such that z, < z’
Zn <k Zn+1, and choose a countable N < (H(x),€) (with x = cf(x) >
Ju(|Pu])) such that all the elements (z, : n < w), (Pr,Qn : n < w), f,
p® belong to N. Now, working in V, we choose by induction on n sequences
(Pn:n €"w), (fn:n€"w), (g : M € "w), and T, such that
(A) pp is a Pgg(y-name of a member of P, NN, py = p®, p, < py- ),

Pnln < gnpn.

(B) gy is (N, Pyg(n))-generic, g, € Pyg(n) and [£ < £g(n) = ¢, = qype]-

(C) fn is a Pyg(y)-name of a member of “w and ¢, IFp,.,, “fy € lim(Z,) N
N[Gp,,,,] is of the (k,z3,)-kind and belongs to Ln,pa[Gryy ) Crrginy)
when 7 € "w.

(D) z3nRxTy and T, C Tpyq.

(E) pn- o) kR, “fall= fn- 1t = fIC.

Suppose we succeed in this endeavour. By (3)(iii) of 1.16(1) we can find T},
such that T,, C T}, =’ Ri T}, (as z3, <t '). Let w and T™* be as guaranteed by
clause (7y)(a) of Definition 1.16(1) (for (T}, : n < w), 2/, =) and let (n; : i < w)
be the increasing enumeration of w. So zR,T™* and: if niniy1 € U Ty, U Ty for
each ¢ < w then n € T™. =

Let g(3) 4 i Let v = (n2j+1 1 J < w).

So it is enough to prove that for some q € P, which is above p®, we have
qlrp, “f € im(T™*)". We choose g € P, by qli = g, i, by clause (B) we have:
q € P, is well defined and above each g,; and above each p®|i hence above
p®.

We just have to prove: g I- “fIniy1 € U T, UT". As q[(i+1) = qui(i+1)s

J<i
by clause (A) we have p,¢i4+1) < ¢l(i+1); by clause (E) letting n = v[i, £ = v(i)
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we have g Ibp, “fpll = frnll = f1€7, but £ = v(i) = ngi41, so we have
gk “fIn2iv1 = furilnait1”; now by clause (C) applied to n = v[i remembering
T, C T, we have ¢ I+ “f,1; € Im(T})” hence by the last two statements
q Ik “(fIn2it1) € T{". So, as n;j < nyj1, for i = 0 we have g IF “fIn; € Ty”,
and for ¢ > 0 we have ¢ I- “flng;11 € T C T3, ,” and for i > 0 we have
q Ik “finzize 9 flngirs € Ty C T3" so g Ik “finiy € U Ty, U TP holds
(check by cases). =

Hence we have finished proving IFp, “(D,R) covers “w”. So it suffices to
carry out the induction.

There is no problem for n = 0.

Let us deal with n + 1. By fact 1.17C (above) there are T, ; € Rang(Rx)
for i < w such that

() () Tao =Tn
(ii) Tn,i € Tnit+1
(iil) z3n4iRxTn,
(iv) if T € (Rang(Rk)) N N and (32)(z <k Z3n+i & zRiT) then for some
m=mr<wwehaveveT & vimeT,; =>veT,;.

Let Thy1 =Tn 3.

Next we define p,- (o), fr-(e), @y~ (¢ for n € "w, £ < w. It is enough
to define then in N[Gp,] where Gp, is any generic subset of P, to which g,
belongs (note that e.g. py, - (¢) is a P, 41-name, and if ¢, ¢ Gp, the requirements
on it are trivial to satisfy).

Let n € ™w, and let Gp, be a subset of P, generic over V' such that
qn € Gp,. So now p, isin (P,/Gp,)NN|[Gp,], and f, o fn[Gp,] is a member
of “w of the (k,z3,)-kind which belongs to L(n , @p, ), moreover f, € N[Gp,].
So in N[Gp,] there is an increasing sequence (pgA @ * £ < k) of members of
P,/Gp,, pn = p?f o) pgA @ FPr./ce, “f1e = fyl€ wlo.g. p?,A @I = pyln.
If Gp,,, € Ppy1 is generic over V extending Gp, and pg -0 [(n+1) € Gp,,,
then (n+1,p0- 4y, GP,;,) 2 (n®,p®, G®) is from K, so by Fact 1.17B there are

fne € (“’w)V[GP ~+1] and an increasing sequence (p}7 I < w) of conditions
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from P, /Gp,,, starting with pgA © such that p}'. @), = “flj = fn,el7” and
fn.e is of the (k,z3,)-kind, say f,, € lim(Tf,’,Z), z3anT3’e.

Letting Q, = Qn[G p,.] we have Qn-names for these objects so (fy¢: £ <
w) is a Qn-name of an w-sequence of members of “w of the (k,z3y)-kind and
T3 and (p;v” : J <w) are @Qn-names as above.

W.Llo.g. ((fn,e: T 0 @717 0, I <w)l<w)e N[Gp,].

So we can find ((p;, ;, T, ,) : £ < w) such that:

Qn F “Pg,z < Pé,e(")”y

Ppeltq. “Th =T, , hence fy ¢ € im(T} ,)”
and xngkTﬂl’e

Also we can find g, 4, P}, (£ < w, j < w) such that p},o = P} P}, ; <
Pheiv1 @0d Pl oo b “freli = gneli” where gyp € “w necessarily
gneld € Tr}’l hence g, ¢ € lim(T,ie). W.lo.g. (p%,l,j Al <w,j<w), (gne: L <w)
belongs to N[Gp,]. So gy ¢, fn € “w are of the (k,z3,)-kind and g, (¢ = f,[¥,
so by clause (v)(b) of Definition 1.16(2), there is T,? € Rang(Ry) such that
T3, Ry T, and B = {£ < w : gy ¢ € lim(T2)} is infinite.

Now as f, € im(T,), z3,RxT? and T? € N[Gp,] N Rang(Ry) clearly, by

(x) above, for some m, < w, fylm, Qv € T,? = v € Tp41. Hence
e Bl &t>my = gyp € im(T2) & gnelmy = fylmy = gne € lim(T, 7).

As 23, R T, Ty, € N[Gp,] N Rang(Ry) clearly for some my ¢ € (my,w) we

have g, e[m, . <v €T, , = v € T, and hence
Pogma,e FQn “fnelMye = gnelmae and fr e € lim(T,; )"

Thus pye,m, . FQ. “fne € im(T;,2)”. (Note that BY, T} ;, Mn, Mine are P,-

names.)
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Now, at last, we define p, - (;y for i < w. So py- ;In = py, and we define
Py~ (iy(n) in V[Gp,] where ¢, € Gp, (justified above). Let £(i) be the ¢{-th
member of B] \ my, and py, - 5y(N) = Pp.e(i),my ey 304 - i) b€ fn o))

Lastly let g, - ;) € Pny1 be such that g, 4y[ = gy, ¢y~ iy above p, - (;y and
is (N, P,+1)-generic (possible as in the proof of preservation of properness by

iteration. Oi.17

§2. Examples

In this section we use the machinery from the previous section. First (2.1-2.7)
we try to restate the results in a way easier to apply by putting more of the
common part of the examples in the general results, but you can deal directly
with the examples i.e. you can essentially ignore 2.4-2.5, start with 2.7, and
use 1.15 (instead 2.1 - 2.5) but have to check somewhat more. Then we deal
with several properties which we call: “w-bounding property, Sacks property,
Laver property, (f, g)-bounding and more. Several have been used (explicitly or
implicitly) and we show that their preservation by countable support iteration
follows from 1.13A (so actually from 1.12; really we use 1.15). We usually
present the “classical” examples of such forcing.

Names (Sacks, Laver) come from the forcing which seems to be “the
example” of a forcing with this property. However as Judah comments, maybe
“Sacks property” is confusing as Sacks’s forcing satisfies a stronger condition.
For simplicity:

2.0 Convention. Forcing notions are from the first case of 0.1 (e.g. proper)

and V' subuniverse of V means, if not said otherwise, V = (V1)@ Q as above.

2.1 General Discussion and Scheme.

For usual notions we have two variants of the preservation theorem. We
first define a family K of candidates for covering models, usually they have all
the same definition, ¢ but applied in some subuniverse V1 (with the same R;)

and we get ¢(V1), and demand that it is a weak covering model (or a family of
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covering models; this restricts the family of V1. we can further restrict ourselves
to the case V = V1[G] where G is a subset of some forcing notion P € V' generic
over V). We then write K = K, ( - the definition, possibly with parameters).
Then we prove:
(A) any model from K, is actually a temporary fine covering model.
So
(B) if (D, R, <) € (K,)V still covers in VP then it is (in VF) still a temporary
fine covering model.
This implies that
(C) if Q = (P;,Qi : J < o,i < a) is an iteration as in 0.1, a a limit ordinal,
(D,R,<) € K, in V and for every 8 < o we have IFp, “(D, R, <) still
covers, so it is a weak covering model” then (D, R, <) covers in VP,
But we may want a nicer preservation theorem in particular dealing with

the composition of two.

2.1A Definition. 1) For a formula ¢ = ¢, (possibly with a free parameter
z) defining for any universe V1 which satisfies + € V1 a weak covering model
¢z[V1] (the definition in V1) and a property Pr of forcing notions, we do the
following. Let

Kg" = pP"(V) = {@.[V1] :V! a subuniverse of V, V = (V1)@ for some
forcing notion Q satisfying Pr,z € V7,

¢z[V1] covers in V, so Q is w,[V1]-preserving},

so ¢;[V] is a member of P (V). We omit Pr if Q fits into the appropriate
case of 0.1 (see 2.0); for simplicity we concentrate on this case’.

2) A forcing notion P is Kf T-preserving or -preserving if it preserves each
(D,R,<) € KP™. We may add “purely” to all of them.

3) Writing D¥, R¥, <¥ we mean ¢[V] = (D%, R?, <¥); if ¢ has a free parameter

z and a fixed parameter t we write @;[V; z], or ¢; [V].

t it is reasonable to deal only with Pr preserved by the relevant iterations,

and everything is similar.
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2.2 Restatement of Definition.
1) ¢ is a temporarily definition of weak covering models if (each instance
satisfies):
(o) (a) 1.1(a)
(b) 1.1(b) (i.e. p[V] covers in the VT in which we define)

1A) ¢ is a temporary fine definition of covering models if () (above) and in

addition:
(8) 1.2(1)(B)
(7) 1.2(1)(y) ie. [V1] satisfies it in V'
2) ¢ is a fine definition of covering models if in addition:
() if Q@ € V is ¢(V)-preserving (i.e. each member of p(V) covers in V®
i.e. (@)(b) holds also in V?) then in V@ still each member of p(V?)
satisfies 1.2(1)(y).
3) o is a finer definition of covering models (for simplicity with no free pa-

rameter) f in addition:

(a)(e) <¥ is absolute for y-preserving extensions i.e. if V! is a class of
V2, p(V1) covers in V2 (remember 2.1A(3) and 2.0), z,y € V! then:
Vi <?yiff V2 =z < y. Similarly for D¥, R®.

(¢) if Q is p(V)-preserving, p[V] = “y < z”, and T* € V¥ and p[V?] =
yRT* then for some T** € V we have: T* C T** and ¢[V] = zRT**
moreover

(e)* like (€) above but Q is demanded only to be ¢[V]-preserving.
4) o is a finest definition of covering models if in addition:

(¢) if Q is ¢(V)-preserving, and z € Dom(R¥[V?]) then there is a y €
Dom(R¥[V]), such that p[V?] Ey < z.

5) the p-covering model is ¢[V]; a p-covering model is a ¢[V1] for an appro-

priate subuniverse V1 so it belongs to (V).

6) (D,R,<) is 2-directed when: if y < z,yRT1,yRT; (so z,y,T1,T>» € D)
then for some T, xRT and T3 UT, C T. We say ¢ is 2-directed if every

©[V] is (see 1.2(1)(B)(iv) and 1.3(5)).
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2.3 Restatement of Theorems.
1) If ¢ is a fine definition of covering models, Q = (P,-,Qj 1< a,f < a)
is an iteration as in 0.1p—x, and Q; is purely p-preserving for j < o then
P, is purely o-preserving, hence: ¢[V] covers and ¢ is a fine definition of
covering models, even in Ve,
2) If ¢ is a finer definition of covering models, Q = (P;, Qj:i<aj<a)is
as in 0.1g_y, and
(%) each Q; is purely o[V Fi]-preserving (and (see 0.1) Q; has pure (Ro, 2)-
decidability)
then P, is purely o[V]-preserving.
3) In (2) we can weaken (*) to
(¥)~ for i < j < e, i non limit we have P;.;/P; is purely @[V F]-preserving
4) fine < finer.
5) finer < finest.
6) If v is a finer definition of covering models, and @ is ¢[V]-preserving then
Q is (V)-preserving.
7) We can replace pure (Xg, 2)-decidability by “pure (2,2)-decidability” if each
e(V') is as in 1.12(x).
Proof: Straightforward. E.g.
6) Suppose ¢[V'] = (D',R, <) € p(V), so V = (V')?, Q' as in 0.1 and
(D', R, <') covers in V too. Suppose further that p € @ and p I- “f € “w” and
z € Dom(D’); choose y € Dom(R’), y <’ z.
By clause (a)(c) (see 2.2(3)) ¢[V] E “y < z” (and z,y € Dom(R*")). As
Q is purely ¢[V]-preserving there are ¢ and Tj such that: p <, ¢ € Q,
T; € Dom(R*V]), p[V] E “yRTy” and q IF “f € im(T1)". By clause (e)*
(see 2.2(3)) there is Ty € Rang(R’) such that zR'Ty, Ty C Tp. So q, Ty are as

required. U3

We can save somewhat using: (we shall usually use 2.4(2))

2.4 Claim.
1) Suppose (i) (D, R, <) is a temporarily fine covering model in V, and:
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(ii) V is a subuniverse of V! and (D, R, <) covers in VT, or just V1 =
V?,Q is (D, R, <)-preserving,

(iii) every countable a C D from V1 is a subset of some countable b € V
(e.g., Q is proper or: Q preserves N1,V = “|D| < ®y”),

(iv)* there are one-to-one functions h,, : w — w such that hy|n = hyy1[n,
and (Rang(hy,)) N (Rang(hn,)) € Rang(hy, [Min{n,m}) and: for ev-
ery x € D for some y € D, for every T} such that yRT; there is Tp,
zRTp such that: n € lim T} implies (n(hn(£)) : £ < w) € limTp for
infinitely many n. In fact (h, : n < w) may depend on z.

Then (D, R, <) is a temporarily fine covering model in V7.

2) We can replace (iv)* by
(iv)** there are an infinite w C w and functions h, : w — w and a sequence

((gk, f*) : k < w) such that

(a) hpin = hpyiln

(B) for k < w the set vg 4ef {(n,€) : £ > n—1,n < wand hp(¢) = k}
is finite, g is a function from *w to w, f* = (f(kn,z) : (n,f) € i),
f(kn,e) : w — w such that f(kno,eo)(gk(' C M)y ) (nyf)€vk) = M(no o)

(y) for every z € DomR for some y € DomR we have: if yRT} then there
is Tp satisfying zRTp and

(v € im T3) (3% n) [(fisy) (1(An(£))) : € < w) € lim T]

3) We can replace (iv)* by

(iv)*** for every z € DomR for some Borel function B from {{n, : @ < w) :
Ne € “w and 7, [n = 1y [n} into “Yw, there is y € DomR such that:
for every T satisfying yRT; there is Ty satisfying zRTy such that

(Mo : @ <w) € Dom(B) & B((ny : @ <w)) € lim T}

= (3%°n)(Ne € lim Tp).

Remark: Applying 2.4 we may wonder if (iii) is a burden. At first glance, if
V1t = V@, Q not proper, this may be so. But actually we need it only for the
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limit cases, and there in the cases of iteration of non-proper forcing notions,

we usually assume that in some earlier stage the cardinality of D becomes R;.

Before proving 2.4, we make some observations of some interest, among them

a proof.

2.4A Observation. If A\ T, C Tp41 and Ty, T are perfect subtrees of “”w
and w is a witness for (*)ir. ..., r then u is a witness for (¥)(r, ooy 7 if ©
holds, where

(*)%Tnm<w)’T T,, T perfect trees C “>w, Ty C T and for some w =
{no,n1,...} (strictly increasing called a witness): n € “w, A,[nIniy1 €
Uj(iT"j UT()] =>nelT,

® u C w is infinite and: if i < 4; < iy are successive members of w then
|un (g,%2)| < 1 and the second member of w is smaller than the second mem-

ber of u.

Proof. Let w = {n; : i < w}, and u = {m; : i < w}, both in increasing order.
Assume 1 € “Zw and A\;n[m;y; € Uj <iTm; U T, and it suffices to prove that
Aininiv1 € U;jc; Tn; U To. As each Tj is perfect without loss of generality
£g(n) = nyx) for some i(x) > 0, and we shall prove by induction on i < i(*)
that nn;4q € Uj <i In; UTp. For i = i(x) — 1 we will get the desired conclusion
by the choice of w. For i = 0 we have Uj<iTm]. UTo=Tp = Uj<iTn]. U Ty so
as my > np the conclusion should be clear.

For i +1 > 1, as |uN (n;—1,ni+1)| <1 (holds by ®), if un[0,n;-1] = 0
then by u N [0,n,4;) has at most one member hence m; > n;;; and we do
as above. So there is j < w such that m;;1 > ni41, mj—1 < ni—1. Now we
know nlm;j41 € U€<j Tm. U To, so if nm;y1 € To then nin;p1 < nimjpq €

To € U.c; Tn, UTop and we are done. So for some € < j, nIm;1 € T, hence

Nniv1 SnMmjs1 € T, € T,y € Tniy € Upey Tng U To as required. Uaaa

2.4B Observation. Suppose h : w — w is one to one (or just finite to one),
Ty, Sp, T are perfect subtrees of “”w, A,, Sp C Sp41,To € So and for each n

for some m € [n,w) we have (*)%Mn)’ 5,54, Dolds (see below).
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Then (*)%Sn:n<w),T = (*)%Tn:n<w),T where:
(*) {1, m<wy,r Tns T perfect trees C “>w, Ty C T and for some w = {ng,n1,...}

(strictly increasing): n € “>w, A;[ninit1 € Uj; Tn; UT0] = n €T,
(*)%, 1, 1, for some k < w (the witness) p€ T1 & plk € T = p€eTs.
Remark. Note (*)%1.,:,1;’:,1; &T|CTy &T5CTy &T3 CTy = (*)’%‘{,Tz’,Tg

Proof. We want to prove (*)%T,.:'n. <w),T? 50 We have to find an appropriate w.
Let w; = {n; : ¢ < w} (the increasing enumeration) witness (*)%Snm <w),r and
for j < w let k; be such that it witnesses (*)%hm’ s;,8,, (for the first possible
m > n, note that (*)%‘h(j),sj,smH is preserved by increasing m as Sy, C Spy1).

By 2.4A above without loss of generality

@® A;ni € Rang(h), and kn, < niy1 and (Vk)(h(k) < ni = k < ni1),

hence n; < h(n;+1) < nit+2, and also for some m € (n;,ni+1) we have

2
Gy S S WE O (KT 50, Sy, )
Choose m; = h(n4;+4). Now we shall prove that w def {m; 1 i < w}is

a witness to (x) )T thus finishing the proof of 2.4B. So we assume

1

(Th:n<w
n € “w, \;nimiy, € Uj<iij U Tp and we have to prove that n € T.
As wy = {n; : i <w} witnesses (%)

%S,.:n <w),r it suffices to prove: for each

i < w we have n[n;;1 € J,; Sn; U So.

j<i
We prove it by induction on i. If n,y; < m; then as nim; € Ty, Ty C Sp,
Ty is perfect, clearly n[n;y1 € Sp C qu.Sj U Sp. But n;41 < my holds if
ni+1 < h(ng) what implies ¢ < 9. So we assume i > 9. Let 4i(*) +2 < i <
4(i(x) + 1) + 2 (so i(x) > 1). So by the assumption ®, we have nln;;; <
NTh(Raie)+1)+4) = MMy 41 € Uj<i(*) T, U Tp. Stipulating m_; = 0, for
some j(x) € {~1,0,...,i(x) — 1} we have nlm;y41 € Tinjey- I G(x) = —1,
then 7lniy1 < Nimyuy41 € To € So € U,
j(*) € {0,...,i(*) — 1}. But we know that (%)% s [Why?

mj(*)’S"4j(*)+4’ "4j(*)+5

As by the definition m;) = h(n4;(x)+4), and by & above], and we want to

Sn; U Sp as required. So assume

apply it to p def NIMi(x)+1. The first assumption of (x)3.

() 5 g () 441543 (#) 45
was deduced above: p = nfm;(y4+1 € T'm;(.,- The second assumption there is
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PlEngi(oyia € Snajiysa (DY the choice of Ens;ieysq)s DOW we know j(x) < i(x) and
Plhngsora = MEngicrs T NMM450045 € Sngjiayia
[Why? First, the equality holds as:
(a) p=mnlImiu+1
(b) Knyjeyea S Mice)415 because mi 11 = h(naieo+1)+4) > MaGe)+1+3
= Nagi(e) 47 2 MAGE)+)+T > M) 46 > Kngiioy s
(why? by definition of m;x,)4+1, by @, arithmetic, as i(x) > j(*),
arithmetic and @ respectively).
Secondly, the <1 holds as kn,;,, ., < n4j(+)+5 by &
Finally, the membership holds - by the induction hypothesis on 4, and
(Sp : n < w) being increasing, note the induction hypothesis can be applied
as j(x) < i(*) hence 45(x) + 5 < 4(i(x) — 1) + 5 = 4i(x) + 1 < 4].
So we can actually apply ()2 s S and get p = n[m;()41

() TG () +4° T MG () +5

belongs to Sp,; .5+ As N[Niy1 < NIMi)41 = p (see above) and 4j(x) +5 <

4(i(x) = 1) +5 < 4i(x) + 2 < 4, really nni41 € U;o; Sn; U So as required, thus

we have finished. Uz.4B

2.4C Observation. If (*)%Tnm <o)T holds as witnessed by w, and A, T, C
Tny1 and h : w — w is such that Rang(h) is infinite, h(0) = 0 and we let

def
Ty = Theny then (+){rimeu), T

Proof. Let u C w be infinite such that hlu is one to one (possible as Rang(h)
is infinite), hlu is strictly increasing and for 7 < j in u, h(i) < j & i < h(j),
moreover, |(h(i),7) N w| > 2. Now u is as required by 2.4A above. Os.4c

2.4D Observation. In 1.2(1)(y)(a) we can add the assumption T, C T4

and get an equivalent condition (assuming 1.2(1)(a), (8) of course).

Proof. Of course we only need to assume this apparently weaker version and
prove the original version. Let o < ... < Tp < Tpy1 < ...y <y, T, RT?
be given. We define by induction on n, T} such that: T} C T}, ,, Tg = T¢,
Tp+1RT! and (*)%S,TJYT.IL“ (possible by 1.2(1)(8)(iv) which says: if y < =z,
yRT, then (3T)[Ty C T & (%)%, 1, 7). So T} C T1,, and (as we are assuming
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the weaker version of 1.2(1)(y )( )) (*)1T1 n<w),r holds for some T' such that
yRT. By 2.4B, (with S, efr y T def T? and h(n) = n) we get (x)} (T9:n<w),T

as required. Os.4p

2.4E Observation. If V, V1 (D, R, <) satisfy conditions (i), (i1), (i) of claim
2.4(1) then (D, R, <) satisfies (7)(a) of 1.2(1) also in V7.

Proof Let £ > z! > yny1 > yn for n < w and T, € V be such that y,RT,
(but the sequence (T, : n < w) may be from V. Let b be a countable set
from V such that {T}, : n < w} C b C V. Let (S : n < w) € V enumerate
{T €b: () (y < z'&yRT)}, so {T,, : n < w} C {S? : n < w}. Without loss
of generality S§ = Tp and for each n for infinitely many m we have S9, = S9.
By 1.2(1)(8) we can find in V a sequence (z,,S},kn : n < w), 2! such that
zt < zp < zp41 < 2! <z for n < w (of course S} € V), k, < w such that
2, RS}, and S§ = To, S C Sk, and [p € SO & plkn € SE = p € SE,,] (choose
them inductively). So ()% so,s1,61, 5 DOW (*)2 _ _ has obvious monotonicity
properties in its variables (see 2.4B), hence np < n < n; = (>o=)s0 s1,.81, "

—_ ho

Choose by induction on n, h(n) as
min{m : T, = S°, and m > n and m > sup{h(k) : k < n}},

well defined by the choice of (S, : m < w). So we know ()2 50 5161
nny S Shmy 1’
We want to apply 2.4B with (S! : n < w), (T}, : n < w), h here standing
for (S, : n < w), (T, : n < w), h there; we have here almost all the assumptions

(including h is one to one (even strictly increasing) and A \/ (* )T;.( 81,81 )
n m n

but still need to choose T* and prove that 2RT™ and () S1in<w), T

Apply (v)(a) of 1.2(1) in V (which holds by (i)) with (S} : n < w), (2, :
n < w), 2",z here standing for (T, : n < w), (y : n < w),zf, T there, and get
T* (in V!) such that (*)(S,{:n<w),T~ holds and zRT™. So we can really apply
2.4B hence get that (*)%Tn:n<w),T‘ holds, as required. Os4E.

2.4F Proof of 2.4(1). From definition 2.2(1A), part (a) and (8) should be
clear. By 2.4E we know that (y)(a) of 1.2(1) holds, so it suffices to prove (7y)(b)
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of 1.2(1).

Given z € Dom(R) and 7, n, € “w such that nfn = n,[n, let y and h,
(n < w) be as in (iv)*. We can find v € “w such that: for each n < w
we have n,(k) = v(hn(k)) (note that there is such v € “w because if ¢ =
hn, (k1) = hp,(k2) then £ € Rang(h,,)"Rang(h,,) hence k1, k; < min{nj, ny},
80 hp,(k2) = hn, (k1) = hn,(k1), but hy, is one to one so k1 = k2). As (D, R, <)
covers we can find 77 such that yRT; and v € lim(71). Now let Ty be as
guaranteed by (iv)* (of 2.4). U4

2.4G Proof of 2.4(2), (3). Similar.

2.5 Claim.

(1) We can get the conclusion of 2.4 and even strengthen it by “ in V' the
model (D, R, <) still satisfies (); (see 1.3(8))” if we replace (iv)* by:
(iv) every f € (“w)V" is dominated by some g € (“w)V,

(v) (D, R, <) satisfies (7)1 of 1.3(8),
(vi)’ (D, R, <) is 2-directed (see 2.2(6)).
(2) In 2.4(1) we can replace (iv)* by (iv)~, (v)’ below and (vi)’ above, where
(iv)~ no f € (“w)"" dominates (“w)V
(V) ()2 if v, 2yl xn, T, € DyV], o < 1 < ... < yt < y, £ RT,,
T,, C Tp41 (for each n < w) then for some k < w and (T* : £ < k),
(Be : £ < n) we have:
(a) w=U B
e<k
(b) if n € By, n € Ty, nln € Ty then n € T*
(c) yRT*.

(3) Assuming (&), (8) of 2.11 we have (v)3 = (v), (7)3 = (72) where

(v)s like ()2 replacing (b) by
(b)* if £ < k, and (Vn)(nIn € U{T\n : m < n and m € B,}) implies
n € im T*.

Remark. Can we phrase a maximal (v),? Like (7)2 but without T;,.
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Proof. 1) As in the proof in 2.4F, we have (), (8), (y)(a) of 1.2(1) and it
suffices to prove (y)(b) and (7); of 1.3(8), but the latter implies the former.
So let VI, (z, : n < w), zf, z and (T, : n < w) be given as there. So z, RT,,
{z!,z} C Dom(R), zn, < Tn4+1 < ! < 2. As in the proof of 2.4E we can find
((20,89) : £ < w) € V such that {(z,,T,) : n < w} € {(2,59) : n < w},
and w.log. n < w = 2,RS? & 2z, < z!. By the 2-directness we can find a
sequence {(yn,SL) : n < w) € V such that yn, < yn+1 < 2' and SL = Ty and
ynRSL and SS U SL C Sk, (possible by (vi)’ which). Define h € (“’w)vt by
h(n) = min{m : T,, = S} and choose a strictly increasing function g € (“w)"
such that [n < w = h(n) < g(n) & n < g(n)]. By (y)1 of 1.3(8) applied to
(S;(i) 11 < w) in V there are T* € Rang(R) and infinite w; C w such that
(x)1 zRT
(*)2 Im(T*) 2 {n:ne“wandicw =nlie U S, }
JEw1,j<i
Let us prove that T and w are as required. So we assume
(¥)3 n € “w and
icew=qlic |J T
JE€w1,j<i
We should prove that n € lim(T™), but by (x)9 it suffice to prove:

(x)gi€ew=>nliec U Sk,
) a16))
jEw1,5<4

AsT; C S}  this is immediate.

2) Asin the prcfc(:f of 2.4(1) we can deal with conditions (), (8), (v7)(a) (the first
two: trivially, the last one by 2.4E). For (y)(b) let 1, 7n € (“w)V", mnln = nin
and y € Dom(R) be given and choose z'; (z, : n < w), (T, : n < w), (x = y)
(SL :n < w), zn, y' as in the proof of 2.5(1), so in particular n € S} and
h(n) = min{m : m > n and 7, € lim(S})} are well defined; note Sy C S ;.
Let g € “w be strictly increasing, g(0) = 0 such that A = {n : h(n) < g(n)}
is infinite. We can find such g by clause (iv)~ of the assumption. Now apply
(M2 to yn (n < w), 2T, y, (S}, : " < w), and get k < w, (Be : £ < k),
(Tt : £ < k) as there (in particular yRT*). Now for each n € A for some
£(n) < k, we have (v € “Yw) & vin € Sgl(o) &veSy,,=>ve T4™, So, if
n€ A, nin=nin € S5 =Sy0) M € Shiny € Symy
some £ < k, {n € A: {(n) = £} is infinite and we are done. Oz

hence 7, € T*™. So for
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2.6 Definition. TTR = {T'N m2y:m<w, T C“w a closed tree and for
every n < w we have T'N "2w finite }, where “T is a closed tree” means, as
usual: T # 0, ne T &van=veT|neT =\, n (i) €T] Note that
TTR has a natural tree structure: ¢ < s if t = sN "2w for some n. For t € TTR
let ht(¢t) =min{n:¢tC "2w} and TTR, = {t € TTR: ht (t) = n}.

2.6A Notation. DP(“w) = {r € “w : z(n) > 1 for every n and (z(n) :
n < w) diverges to infinity, i.e. for every m < w for some k < w, for every

n > k,z(n) >m.}

2.6B Remark. Usually we can replace z by z/, z'(n) = Min{z(m) : n <m <

w}, hence without loss of generality z is nondecreasing.

2.7 Fact. Each closed tree T C “Zw such that (Vn)[|T N "2w| < Rg] induces
a branch {T'N "2w : n < w} (in the tree TTR) and is its union. Now TT'R is
isomorphic to “>w.
* * *
Now we deal with some examples: we do not state the aim - the preservation
theorems by combining with 2.1-2.7 - for each ¢; separately but usually we

mention the case of CS iteration of proper forcing.

2.8A Definition. [“w-bounding]: 1) We define ¢ = ¢{™ (a definition of
covering models) by letting ¢[V] = (D, R) if:
a) D=H®X;)V
b) zRT iff z,T € D,z € DP(*w), T is a closed tree and (Vn)(T'N "w
is finite) (so z has really no role)
¢) <=<j (see 1.4)
2) A forcing notion P is “w-bounding (in V) if it is ¢§™-preserving (see 2.8C-

equivalent to the definition from V).
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2.8B Claim. ¢ = ¢{™ is a finest definition of covering models for proper

forcing, and it is 2-directed.

Remark.
1) Instead of “proper” we can use “forcing @ such that every countable subset
of min{(2%)V" : o*™[V] covers V} from V? is included in one from V.

2) We just “forget” to mention the pure version.

Proof: Let us check the conditions in Definition 2.2, the 2-directed should be
clear.

(a) (a) Trivial by a), b) of Definition 2.8A.

(a) (b) Trivial (a tree with one branch).

(a) (c) and (B) are trivial.

(7), (¥)* Let z > y,yRT, (remember 1.3(4)).

Put w & w, T™ def {n: for every k < w,n [ k € UjSk T;} and check that
T* is as required.

(6) By 2.4 for (v), 2.5(1) for (y)*.

(e)* Now we use Fact 2.7 applied to T™, (i.e. to the branch of TTR which
T* induced). So there is a closed tree C C TTR,C € D,zRC and for every
n,T*N "we C.Let T** = {n € “>w: for somet € C,n € t}. Clearly T** € D
(asC € D,D = H(X;), T** is a closed tree C “”w), and T* C T**. In addition,

for every n

T N "w:U{tﬂ "w:teCNTTRu4+1},

S0, being a finite union of finite sets, T** N ™w is finite.

(¢) Easy. Uasp
2.8C Fact. If V C V1 then ¢§™[V] covers in V1 if and only if

(Vf € (“w)V)(39)(f <* g € (“w)")
if and only if

(Vy € DP (“w)"")(3z € DP (“w)")[y <k, 2]
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if and only if

(Vy € DP (“w)"")(3z € DP (“w)¥)[y <dis 7).

2.8D Conclusion. For a CS iteration @ = (P;,Q; : i < ,j < ) if Ip; “Q;

is proper and “w-bounded” for each i then P, is proper and “w-bounding.

Proof. By 2.3(2) and 2.8B + 2.8C.

2.9A Definition. [The Sacks property] Define ¢ = ¢5™ (a definition of a
covering model) by letting ¢[V] = (D, R) be
a) D=H(X;)
b) zRT iff z,T € D and z € DP(*w),T C “>w and for every n < w,
T N ™w has at most z(n) elements.

c) <=<qgis (see 1.4).

2.9B Claim. ¢ = ¢§™ is a finest definition of covering models.

Proof. Let us check the conditions in Definition 2.2.

(a) (a) Trivial by a), b) of Definition 2.9A.

(a) (b) Trivial.

(a) (c) Trivial.

(B) Trivial, by the definition of the partial order (1.4).

(7)t Let y,RT, and y, <dis Yns1 <dis ' <dis T (for n < w). Define ny

inductively as the first n < w such that £ < k = ngy < n and for every £,
n < f < w, we have (k +2) -zt () < z(¥). Let w = {ny : k <w} and

T*={n:new=nlne U T.}.
m<n
mew

(6) Immediate by 2.4(1).



292 VI. Preservation of Additional Properties, and Applications

(6)t There is by 2.7 a closed tree C C TTR in D, T* N ™w € C, zRC where
z(m) = xz(m)/y(m). Let C; = {t € C: for every n, |t N "w| < y(n)} and let
C be the maximal closed tree C C;. Clearly Co € D and T* N "w € Cs for
every n, now T** = |J{t : t € C2} € D is as required.
(¢) Easy by 2.8C. Uzom
2.9C Claim.
1) IfV C V1, p§™[V] covers in V1 iff for every n € (“w)V" and y € DP(*w)"
there is (ag: £ <w) €V, ag Cw, |ag| < y(¢) and A, n(€) € a,.
2) If V.C V1 and p§™[V] covers in VT then p§™[V] covers in V1.

Proof. Straight.

2.9D Conclusion. For a CS iteration Q = (P,-,Qj i< a,j <a)iflbp; “Q;
is proper and has the Sacks property” then P, is proper and has the Sacks
property.

Proof. By 2.3(2) and 3.9B + 2.9C.

2.10A Definition. [The Laver Property] 1) We define ¢ = ¢§™ by letting
¢[V] = (D, R, <) (the Laver model) be
a) D=HX;)V.
b) zRT iff (z,T € D and) z € DP(*w), T C “”w a closed tree and:
(Vn) [the set {n(n): n € T,L9(n) = n+1,(¥i < n)n(i) < z(2i)} has
power < z(2n + 1)].
¢) z<y iff (z(2n+1):n <w) <gis (Y¥(2n+1):n < w) (see 1.4B) and
(z(2n) :n <w) = (y(2n) : n < w).

2.10B Claim. ¢ = ¢§™ is a finest definition of a covering model.
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Proof. It can be proved very similarly to the proof of 2.9B. The proof of (a),
(B) is totally trivial and (4) follows from (y) by 2.4(1), so we shall prove (y)*.

Let £ > Y > Yn+1 > Yn, In, be given and y, RT,.

We can choose ng < n; < ng < ... (by induction) such that: for k > ny,
(£+2) xy(2k +1) < z(2k + 1), and let w = {n, : £ < w},

T* =ToU{n: for every i € w,n [ 1 € Jsz: T}

T° = {n € “>w: for every i < £g(n), n(z)]€<w$(2z)}

Clearly T* C “>w is a closed tree, and for any k, |T°NT*N *w| < z(2k+1),
because, letting ny < k < ngy1, {n(k) : fgn > k,n € T°NT*}| < |{n(k) : Lgn >
ki € T° 0 (Ujcprr T} < Xjcors {n(k) = £g(n) > kyn € TON Ty} <
Yi<er1 Y2k +1) <zt(2k +1).

So T™* the definition of x RT™* is satisfied and T™ is as required.
(e)*, (€) left to the reader - similar to the proof of (). Os.108

2.10C Claim. 1) If V C VT, o§™([V] coversin V1 iff foreveryn € ([], ., (n+
1))VY and y € DP(“w)Y there is {(as : £ < w) € V, ap C w, |ag| < y(£) and
Aen(8) € ag iff for every f € (DP(“w))V for every y € (DP(“w))”" and
ne ([I f(n)V" thereis (ar : £ < w) € V, |ag| < y(£) and eé\ n(f) € ag iff

n<w
similarly for some f.

2) A forcing notion P has the Sacks property (i.e. is @§™-preserving) iff it has
the “w-bounding property (i.e. is ¢§™-preserving), and the Laver property (i.e.

is p§™-preserving).

Proof. Easy.

2.10D Conclusion. For a CS iteration Q = (P, Qj i< q,j<a)iflbp “Q;

is proper and has the Laver property“ then P, is proper and has the Laver
property.

Proof. By 2.3(2) and 2.10B + 2.10C.
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The next example deal with trying to have: every new n € [, ., f(n) belong
to some old [],, ., @n, (|an| : n < w) quite small, where f(n) can be finite.
Below we could have used Y = {id}, but in applying it is more convenient to

have Y. See more on this in [Sh:326] and much more in Roslanowski, Shelah
[RoSh:470].

2.11A Definition. Let f denote a one place function, Dom(f) = w,1 < f(n) <
w, f diverges to co and g denote a two place function fromw to {a: 1 < a < w};
both nondecreasing, for clarity. Let Y C DP(“w) have absolute definition and
<=<y be an absolute dense order on Y with no minimal member, and those
properties are absolute (so Y may be countable, if Y = DP(“w) we omit it).
Finally, let H denote a family of such pairs (f, g). If H = {(f, g)} we write f, g.

We define ¢ = ¢y g, but if Y = DP(“w) we may omit it, by letting for
a universe V, p[V] be (D, R, <) where

a) D = H(Xy),

b) Dom(R) is the set of triples (z, f,g) for z € Y, (f,g9) € H; more
formally member z € DP(*w) such that (z(3£ 4+ i) : £ < w) codes z when
1 =20, f when i = 1 and g when i = 2; we write x = (2%, f%, g*). We define:
zRT iff z, T € D, z € Dom(R), T C “?w is a closed tree and for each n
the set {n(n) : n € T, £g(n) = n+ 1,(Vi < n)n(i) < f*(i)} has cardinality
<1+ g*(n,2%(n)). (So for g*(n,2*(n)) = w this means “finite”.)

c) <y is the dense order of Y (e.g. <o or <gis) and (2}, fl,g') <
(22, f2,9%) iff f1 = 2, g' = g% and 2! < 22.

We may use also g with positive real (not integer) values, but still algebraic.
Let us note that ¢§™ (“w-bounding), ¢§™ (Sacks), ¢§™ (Laver) are par-

ticular cases of g’y g:

2.11B Claim. 1) Let f = w (i.e. the function with constant value w), g(n,i) =
wand Y = DP(“w). Then for universes V C V1 p§™[V] covers in VT iff
©4t.g [V] covers in V1 (hence a forcing notion @ is ¢§™-preserving iff it is

vq', g-preserving) .
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2) Let g be g(n,i) = 1 + 4. For universes V C V1 ,0§m[V] covers in V1 iff
for every f € DP(“w), 3% ,[V] covers in V' (hence a forcing notion Q is
p§™-preserving iff it is ¢} -preserving for every f € DP(“w)).

Proof. Check.

2.11C Claim. 1) Assume
(i) H is a family of pairs (f,g) and Y C DP(“w) (an absolute definition,
dense with no minimal element),

(ii) each (f,g) € H is as in 2.11A and z <y y = (g9(n,y(n))/g(n,z(n)) :
n < w) diverges to oo, ‘

(iit) for every (f,g9) € H and y € Y there are x € Y and (f',¢9') € H
and hy : w — w one to one, hp[n = hpt1n, [0 < m = Rang(h,) N
Rang(hm) = Rang(hn[n)] and g'(hn(£),z(hn(£))) < g(¢,y(¢)) and
f'(hn(£) = £(6).

Then ¢y g is a fine definition of covering models.
2) In part (1) we can replace clause (iii) by
(iii)~ for every (f,g) € H and y € Y there arex € Y and (f',¢') € H and
hyn : w — w such that:

(a) hnln = hnpiln

(B) for every k < w, letting wy, = {(n,£) : £ > n — 1 and h,(¢) = k} we
have [ f() < f'(k)

(n,€)€wy
(1) g(n,€) = g'(n, hn(£))
3) Assume we replace (iii) by
(iii)* for (f,9) € H,z1 <y inY there are x5 € DP(*w),(f’,9') € H such
that: for every n large enough f'(n) > f(n)9(™*1(") and g(n,y(n)) >
g9(n,z1(n)) x ¢'(n, z2(n)).

Then ¢gy p is a finest definition of a family of covering models.
Proof. 1) Let us check the conditions in Definition 2.2. Let (f,g) € H and we
deal with each g’y [V] separately (this is enough).

(a) (a) Trivial by definition 2.11A.
(a) (b) Trivial.
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(a) (c) Trivial.
(B) Check.
(Y)* Let y < z, yRT, for n < w (remember 1.3(4) letting y = z1).
Choose ny by induction on k such that: A, <k e < ng and n; < w and
[ne <€ <w=kxg(ty() < g z(£))] (possible by assumption (ii)). Now
w={ng:k<w}and T* = {n € “>w: for every n € w,n [ n € Je<n T;} are
as required. -
(0) By 2.4(1) (for (iv)* use the assumption (iii) of 2.11C(1)) and 2.7.
2) The proof is similar to the proof of part (1) using 2.4(2) instead 2.4(1) in
proving clause (6).
3) Note that (iii)* = (iii)~ easily, so demands (), (8), (7), (7)*, (6) hold.
(¢)* Straightforward (use a tree T, zoRT, to “catch” the T in a narrow
tree C TTR).

(C) Check. Dz,uc
2.11D Conclusion. For Y, H satisfying (i), (ii), (iii)* of 2.11C, for any CS
iteration Q = (Pth 1< a,) < a),iflkp, “Qi is proper and wﬁf’{,;H[VPi]-

preserving” then Py is proper, @'y y[V]-preserving.

2.11D Definition. We say that a forcing notion Q is (f, g)-bounding (where
fyg€“w+1\{0,1})) if for every n € ( [] f(n))VQ there is (an :n <w) €V
n<w
such that |a,| < g(n) and n € [] an.
n<w
2.11F Conclusion. Assume
() f,g€“(w+1\{0,1}) are diverging to infinity.
IfQ = (P,Q;:i < aj<a)isa CS iteration such that Q; is (fgl, [9)/)-
bounding in VP for every £ < w then P, is proper and ( fgt, g)-bounding for

every £ < w.

Proof. We use 2.11C(3) (and 2.11A, 2.11B and 2.3). Welet Y ={r € “w: z

constant }, so we can identify « with z(0), let {a, : n < w} list the positive
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rationals, define z < y & az(0) < ay(o) and let go(n, z(n)) = [g(n)% /] (=the
integer part, note: z is constant so z(n) = z(0)) and fo(n) = f(n)l®™’],

Lastly let H = {(fe,9¢) : £ <w}, s0 9§y is well defined.

Now we show that "}, ;; is a finest definition of covering model, to get this
we would like to apply 2.11C(3). Among the three assumptions there, clause
(i) holds by the choice of Y and H. Also the first phrase in clause (ii) holds, as
for the second, if x < y and (f,g) € H, then for some ¢, (f,g) = (fe, ge), hence

9(n,y(n))/g(n, z(n)) = [g(n)*©/¢]/[g(n)*© /"]

> (g(n)™v®/% — 1)/(g(n)*=0/%) = gln) @0~/ — g(n)=ex0/*

as ay(0) > az(0) > 0, this clearly diverges to infinity.

Lastly for clause (iii)*, let (f,g) € H (so for some ¢, (f,g) = (f¢,9¢)) and
let z; < yinY. Now choose z2 € Y such that e +xz2(0) < y(0) —z1(0) for some
€ > 0 and choose m such that a;, (0)/¢ < m and let (f',9") = (fexm, ge+m). Let

us check:
F1(n) = ferm(n) = fR)P™ = (f(n)9™" )9O = fy(n)s™™

> fe(n)ge(n@l(n))

(the last inequality because ge(n, z1(n)) = [g(n)?=1™/¢] and ag, o)/ < m)
9(n,y(n)) = ge(n, y(n)) =

[g(n)®/4]) > g(n)2v/t — 1 > (g(n) =1 /¢)(g(n) 2 /%) (g(n)*) - 1
> g(n,z1(n))g(n, z2(n))g(n)** — 1 > g(n, z1(n))g(n, z2(n))

(the last inequality: for n large enough).
So really (iii)* of 2.11C(3) holds hence 2.11C(3) applies and gy g is a
finest definition of covering models, so 2.3(2) applies.
Lastly, we can check that by monotonicity
® Q is 9§y y-preserving iff Q is ( 79 gV ¢])-bounding for every £ < w.
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So by the last two sentences we are done. Os11E

2.12A Definition. [The PP property] 1) We define p = pf™ (a definition
of a covering model) by letting ¢[V] = (D, R, <) (the PP model) where:

a) D= H(¥;)

b) zRT iff z,T € D,z € “w is strictly increasing, T C “”w is a closed
subtree and T N ™w is finite for every n and:

(*) for arbitrarily large n there are k, and n < i(0) < j7(0) < i(1) <
j(1) < ... < i(k) < j(k) < w and for each £ < k, there are m(f) < w and
n%°, . ™8 e T n i®y, such that: 5(£) > z(i(£) + m(£)) and

(vne T n i®y) \/ o™ <.
£m

c) < is <Yy

Remark: concerning the PP property, there is a strong version (“strong PP-
property”) proved in 4.4 and 5.6 for the forcing notion there and a weak version
(“weak P P-property”) derived in 2.12D below and used in 4.7 and 5.8 (though
in the statement the “PP-property” appears). See Definition 2.12E.

2.12B Claim. 1) If the forcing notion P is @§™-preserving then it has the “w-
bounding property; if P has the Sacks property (i.e. is p§™-preserving) then it
is pEgM-preserving.

2) If (D, R, <) is a Sacks model (i.e. o5™[V]) then

(Vn € “w)(Vz)(3T € D) [z € (Dom(R¥"))ND = xR T & 7 € lim T)

3) If (D, R, <) is a PP-model (see 2.2(5)) then

(Vn € “w)(Vz)(3T € D) [z € (Dom(R*1"))N D = zR*"T & n € limT).

Proof. Easy.

2.12C Claim. ¢ = pg™ is a finest definition of a covering model, 2-directed.
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Proof. Let us check the conditions in Definition 2.2.

(o) (a) Trivial by a), b) of Definition 2.12A.

(a) (b) Check.

(a) (c) Check.

(B) Trivial.

(7)(a) So let (D, R, <) be ¢[V]. Let © > y, and yRT,. Let hp, : w — w be
such that for any n there are i(0) < j(0) < ... < j(k),ne; (for i <m(£),£ <k)
witnessing (x) of Definition 2.12A(1)(b) for yRT;, and n (so n < i(0)) such
that j(k) < hm(n). Now we define n; by induction on 4,ng = 0 and n;y; is
such that: choose £y, ¢1,...,4;1; as follows: £y = n;,€; 1 = hn,;(¢;) + 1, and
Niy1 = Liy1. Let T* = {n : for every i,n | ny41 € Uj<1anj} i.e. we choose
w={n;: i <w}.

So clearly zR¥s"T* is as required.

(7)(b) Easy.

(6) We use 2.4(2) with hy,(£) = £. So let z € Dom(R), and we choose y = .
Now wy = {(n,£) : £ > n}, gn is any one to one function from "w onto w, ftne)
is thus determined. Now check.

(e)* So we know Q is p¢™[V]-preserving, p¢™[V] Fy < z and T* € V9,
and <p[VQ] E yRT*. We should find T** € V such that: T* C T** and
¢[V] E zRT**. We work in V* = V? but (D,R,<) = ¢g™[V]. The proof
is straight but still we elaborate. Let h* : w — w be defined for T* as h,,
was defined for T}, in the proof of clause (y)(a). So by 2.12B(3) there is
h** € (DN“w)V such that h** is strictly increasing and (Vn)[h*(n) < h**(n)).

We now choose z such that for every n, there are n = mg < m7 <... <
me 1, mpy, = h**(m}) + m7 + 1, and let z(n) = mp,,. Clearly z € DV.

So remembering 2.7, we can apply the “covering property” of (D, R) to T*
(i.e., the branch T™ induces in TTR). Apply it for z and we get an appropriate
closed subtree C € D = H(®;)V of TTR, (so T* N ™2w € C for every n).
Clearly T** = |J,¢c t is a closed subtree of “”w, it belongs to D, and there is
no problem to prove T* C T**. The only point left is why zRT™**.

Let Ct be the set of t € C such that if n < w, h**(n) < ht(t) then for some
k < ht(t) and n < i(0) < j(1) < ... < i(k) < j(k) < ht(t) the statement in
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(*) of Definition 2.12 A clause (b) holds (for ¢ and y). Let C” be the maximal
closed tree C Ct. It is easy to check that C” € D, and that T* induces a branch
C ", so without loss of generality C = Ct = C”.

Now for arbitrarily large n, there are k < w, and n < i(0) < j(0) <
(1) < j(1) < ... <i(k) < j(k) < w, and for each £ < k there are m(¢) < w,
te,0,---stem(e) € CNTTRj such that j(£) > z(i(€) + m(£)) and

(Vt € CNTTR))[\/ tin < t].
In

By the definition of z, there are £(£,0) < ... < &(¢,m(£) + 1) such that
i(0)+m(6)+1 < £(£,0) and £(¢, m(£)+1) < j(£), and B**(£(6,m)) < £(£, m+1).
So by the assumption on C(= C') for each such £ < k, m < m(£), there
are kem, £(£,m) < i(0,£,m) < j(0,£,m) < i(1,£,m) < j(1,4,m) < ... <
i(kem, £, m) < j(kem,€,m) < £(€,m + 1) and n(a,£,m) (for a < ke,m) such
that j(a, £, m) > z(i(a, £,m) + n(a,£,m)) and n.,6.6,m € ((@E™w) Nty m (for
B < n(a,£,m)) and (Yv € tg, NEEMFD W)[Va,5 a8 V).

Now the set of i(a, £,m),j(a,?,m),n(a,£,m) and Naempg for B < n(a,£,m)
supplies the required witnesses.

(C) Easy (by 2.8 C) D2.1gc

2.12D Claim. Assume V C V' and p£™ (V') covers in V'. Then for every n €

(“2)V’ there is an infinite w C w from V and (kn, (in(£), in(£) : £ < kn) : 1 € w)

from V such that:

(a) n < in(0) < Jn(0) < in(l) < Jn(1) < ... < in(kn) < jn(kn) < min(w\
(n+1)).

(b) for every n € w for some £ < k, we have n(in(£)) = n(jn(£)).

Remark. Only the z defined by z(£) = 2¢ suffices.
Proof. Easy.

2.12E Definition. 1) A forcing notion Q has the PP-property iff it is 5™ -

preserving.
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2) A forcing notion @ has the weak P P-property if V, V@ satisfies the conclusion
of 2.12D.

3) A forcing notion @ has the strong PP-property if changing g™ to ¢g% in
Definition 2.12A by demanding k = 0 in (%), we have: ¢[V] covers in V9.

2.12F Claim. For a forcing notion Q:
1) the strong PP-property implies the P P-property.
2) The PP-property implies the weak P P-property.

2.12G Conclusion. For a CS iteration Q = (P, Qj:i<a,j< a), if lFp, “Qi
is proper with the PP-property” then P, is proper with the PP-property.

Proof. By 2.3(2), by 2.12C.

The following deals with “no Cohen real + no real dominates F' (C “Zw, see
§ 3)” .

2.13A Definition. We define ¢ = p§™ (a definition of a covering model) by
letting ¢[V] = (D, R, <) where

a) D =H(X;)

b) zRT iff T is a perfect nowhere dense tree, z € DP (“w).

) <=<
2.13B Observation. Q is p§™ preserving iff  adds no Cohen real.

2.13C Claim. ¢g™ is a 2-directed, fine definition of a covering model for
forcing which are p§™-preserving! (= “w-bounding) or even just not adding a
dominating real’t and are proper (or satisfy UP) (caution: not preserved under
composition).

t Of course as “w-bounded forcing necessarily add no Cohen reals.
t On this see 3.17(2),(3).
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Proof. (a) (a), (b), (c) Trivial

(B) Trivial

(7) Check, even (7)1 (see 1.3(8)) and ()2 (of 2.5(2)) hold. E.g. concerning
(7)2, given (T, : n < w), nowhere dense trees, choose by induction on i < w,
n; < w as follows: ng = 0, n;41 is minimal n such that n € (n;,w) and for every

n € ™Z(n; + 1) there is v: 7 < v € ™ n such that v ¢ EJ T;. Let for £ < 2,
SNy

7t &t {n € “>w : for some i = ¢ mod 2, and n € [n;,n;4+1) we have n|n € Ty,
and n € T,,}.

(8) By 2.5(2). Uz2.13¢

<aj < a),

2.13D Conclusion. 1) For a CS iteration Q = (P, Qi : 1

if IFp, “Q; is proper not adding a Cohen real (over VFP)” and P, adds no
dominating real over V' then P, is proper and adds no Cohen real over V.

2) The property “P purely does not add a Cohen real nor an 77 € “w dominating
F” where F C “w is fixed not dominated in the old universe, is preserved in

limit of iterations as in 0.1g=y,-

Remark. 1) Note we have (|D|, R;)-covering in §1.

2) What if in 0.1 we use (D), <pr is = (so we use FS iterations satisfying the
c.c.c.)? In the limit we add a Cohen real, necessarily the family is empty. We
cannot apply it as for P a c.c.c. forcing, < is equality so “P purely preserves
w5
3) Of course we can interchange using/not using F' in parts (1) and (2) of
2.13D.

always fails.

Proof. 1) By 2.3(1) and 2.13C applied to @§™.
2) Usually using in addition 3.17. Os.13D
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The following deals with “every new real belongs to some old closed set of

Lebesgue measure zero”.

2.14A Definition. We define ¢5™ (a definition of a covering model) by letting
¢[V] = (D, R, <) where

(a) D=H(X,).

(b) zRT means T is a perfect tree, with lim T" having Lebesgue measure zero.

(C) <=<p
So if Q is p§™-preserving then @Q adds no random real but not inversely.

2.14B Claim. p$™ is a 2-directed fine definition of a covering model for forcing
which are purely ¢§™-preserving (= “w-bounding property) or even just not

adding a dominating real (caution! not preserved under composition.)

Proof.

(a) Trivial

(B) Trivial

(v)* Check

(6) By 2.5(1). Oz.17D

2.14C Conclusion. 1) The property “P purely does not add any real, which
does not belong to any old closed measure zero set from V' and is purely “w-
bounding and has pure (2, 2)-decidability” is preserved by limit (for iterations
as in 0.1p—2) [but not necessarily composition].

2) The property “P purely does not add any real not belonging to any closed
old set of measure zero from V and adds no real dominating F” is preserved

in limits for iterations as in 0.1, where F' C “w is a fixed undominated family.

Proof. Like the proof of 2.13C. 02140



304 VI. Preservation of Additional Properties, and Applications

The following deals with “every new dense open subset of “”w is included in

some old one”.

2.15A Definition. Let (p; : ¢ < w) enumerate “”w. Let T* C “”w be a
perfect tree such that for every v € limT™, A, wf {p} : £ <w and v(2¢) = 1}
is open, and pj "p;(% +1) € A, (hence A, is dense)}, and such that for every
dense open subset A of “”w there is v € lim T* such that A = A,.
We define ¢§™ (a definition of a covering model) by letting
wg"(V) = (D,R,<) :
(a) D= H(X,)
(b) zRT means that z € DP (“w) and T' C T* is perfect satisfying:
N{A, : v € imT} is dense open.
(c) <=< (see 1.4)

2.15B Claim. 1) For A C “”w there is a closed T = T4 C T* such that:
if n € imT™ then A, (which is dense open) include A iff n € limT4. So
T € Rang(R) iff for some dense open A C “>w we have T' C Ty

2) A forcing notion @ is p§™ (V)-preserving iff every open dense subset of
“>w in V@ include a dense open subset of “>w from V iff for some (every)
subuniverse VT of V such that @§™ (V1) covers in V, Q is p§™ (V1) preserving.
3) If Qo is §™(V)-preserving and kg, “Q; is ©§™(V@0)-preserving” then
Qo *x Q1

is g™ (V)-preserving.

4) If Q is pg™-preserving then @ is “w-bounding.

Proof. 1) - 3) Check.

4) For h € (“’w)VQ let Ap = {n € “>w: for some n, A, ., 1(¢) =0, n(n) #0
and £g(n) > n+ h(n) + 1}. So Ay, C “”w is dense open, so there is A C “>w,
dense open, A € V,A C Aj,. Define g : w - w in V by: g(n) = min{fg(n) :
n € A,n =min{l : n(¢) > 0}}. Then g : w — w, g € V and (Vn)h(n) < g(n).

O2.15B

2.15C Claim. g™ is a finest definition of a covering model which is 2-directed.
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Proof. (@), (B), 2-directed: easy, now we prove more than (vy) (see 2.5(3)).

()3 Assume yRT,, so for each n there is a dense open A,, C “Zw such that
T,, C T4, . We choose by induction on n < w, k, < w such that A, <n ke < kn,
and if £ < n there is p € ,,<,, Am such that pj < p, p € {p}, : m < kn}. Now
let k =2, and for i < k let

B; = {n: for some £ =i mod 2 we have k; <n < ket1}

and let
T, ={veT": ifn <(fg(v) thenvin e U{TAm :m < nand m € B;}.

(8) by 2.5(2) (remember that ()3 = ()2 by 2.5(3)).
(e)*, (€) left to the reader. Oa.15¢

Remark. alternatively, instead of 2.15 B,C, look in XVIII §3.

2.15D Conclusion. For CS iteration (H-,Qj 1 <o, < a), iflkp, “Q; is
proper and any new open dense subset of “”w includes an old one” then P,
is proper and any dense open subset A € V¥ of “>w includes a dense open

subset A € V of “”w.

Proof. By 2.3(2) and 2.16C (and 2.16B(2)).

2.16 Conclusion. For § = R, the property “ Q is purely @,[V]-preserving with
pure (6,2) decidability” is preserved by iteration asin 0.15 for £ =1,...,8 (e.g.
by CS iterations of proper forcing). This is true for § = 2, £ = 1,...,8 when
(*) of 1.12 holds (recheck).
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The following is an addition from early nineties, inspired by the interest in

“adding no Cohen real”. It is dual to 2.13, see 2.17 C(1) below.

2.17A Definition. For Y C DP(“w) with an absolute definition we define

gy, a definition of a covering model. For a universe V we let ¢[V] = (D, R, <)
be:

(a) D = H(Xy).
(b) zRT iff
(i) = = (¢, 2z z12) say 2(3n + i) codes zl(n), 2 € Y, 2l (n+1) >
zl1(n) and the difference is a power of 2, zl?[n] < log,[zM(n + 1) —
()],

(ii) T € “”w closed subtree,
ne“w&nneT &nn) >zln) = neT.

(iii) for each n the following holds:

(*)n for any m < (zl(n+1) -zl (n))/ZIm (") there is a function g = gn.m
with domain the interval [z!! (n)+m-2“‘m ), gl (n)+(m+1)-2xm ),
(V0)[g(£) < zP(8)] and [n € T & £g(n) > zM(n+1) = gn.m L 7).

So g def U 9n,m belongs to [],.,, zl% (), we call g a witness.

n,m

(c) z < y iff zl0 = yl0 £l = ¢ and 2 <455 Y@ (see 1.4).
Ezplanation. So what is the meaning of xRT? The interesting part of T is
7% {n1e:n e WmT) N ] zl%n)} and T is in a way “explicitly nowhere

n<w

dense” i.e. for some g € [] zl%(n), for every n € im(T") for every n for many
n<w

subintervals I of [zl (n), z[!I(n + 1)) we have g[I # n|I.

2.17B Claim. Assume V C V*. Then (y) = (8) = (a), where:

() “for every f € DP(“w) and g € ([T .., (&))" thereis h € ([T, f(£))V
such that {¢: h(£) = g(£)} is finite.

(B) ps3[V] covers in V* for Y = DP(“w).

(7) every covering model from ¢g'p p(w,y (V) covers in Vt.
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2.17C Remark. 1) It is well known that: condition (&) implies there is no
Cohen real over V in V*; and if Vo C V; C Va, in V; there is a real f in “w
dominating (“’w)vo; and in V; there is g € [],.,, f(€) contradicting (o) then in
V5 there is a Cohen real over V.

The preservation theorem below implies a Cohen real is not added in limits.
2) Note that making z[% smaller makes being in lim T', zRT', harder.

3) The absoluteness requirements can be restricted as usual.

4) What we deduce below is complimentary in a sense to 2.13 A-C.

5) Why in 2.17A the 22® ()7 Of course a more general notion will use norms
(see [RoSh:470]).

6) If Y is closed enough then in 2.17B we have (y) < (0).

2.17D Claim. 1) Assume
(i) Y is a subset of DP(“w),
(ii) for every € Y there is y € Y and there are (£}, : n < w) such that:
(a) lim £, = o0
(b) 1n§ £y < Ly .4, £y a power of 2 (for technical reasons)
(c) ] =yl
(d) !0 = yl°]
() yPl(n) = 2)(n) — logy(£;) > 0
(iii) for < from 2.17A(c) (Y, <) is dense with no minimal member.
Then g [V] is a fine covering model.
2) Assume (i) Y is an absolute definition of a subset of DP(“w),
(ii) clause (1)(ii) holds absolutely,
(iii) clause (1)(iii) holds absolutely.

Then g5 is a fine definition of a covering model.

Proof. We check the condition in definition 2.2.
() (a)(b)(c) Check.
(B) Check.
(v)* We check on ¢g5[V].
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So let z, < Tp41 < ' < y be given, £, RT,. Now any thin enough infinite
w C w will work as:

®  Upce(s) Te satisfies (x), from (b)(iii) of Definition 2.17A for y if A\, zRTy,
2l0 = yl0 £ = 41 and 22 /() 45 > ().

(6) We use 2.4(3) (and for checking the demand (iv)*** there we use
assumption (ii)).

Let z € Dom(R) be given and we shall define y and B as required in
clause (iv)*** of 2.4(3). So let y be as defined by clause (ii) of 2.17D(1). Now
we define the Borel function B; we let B({(ny : @ < w)) = v (where 7, € “w,
Nala =Ny la, v € Yw) if:

(@1) Let n < w, m, (zW(n + 1) — zltl(n)) /25"
() (no(zM(n) +m- 2= 4 4) 1 i < 227 () s equal to (wyM(n) +m-
22 ()6 1) 1 < 25 (M)

(b) if k < £ —1 then (ne(zM(n) + m - 22(m) 4 i):i< gz ()} is equal

to (w(yW(n) +m - 2274 4 (k+1) - 257 4 4) ;4 < 257y,

So assume T satisfying yRT is given and we should define appropriate T .
As yRT, there are functions g} ,, for n <w, m < (yM(n+1) —yl(n))/ ™ (m)
witnessing it. For n < w, m < (y!(n+1)—yt(n))/ 22" (") we define a function
9 m as follows. Its domain is of course (z!l(n) +m - 227™ 2M(n) 4+ (m+1) -
2="/()) and for each k < £%, we have Inen mte © Inym-
The checking is straight. Os.17D

Remark. Note that for many pairs (zg, ;) from T3, 1 RT; we can produce

To, xoRTy, where Ty in a way codes Tj.

2.17E Conclusion. For ¢§% as in 2.17D(1), for CS iteration Q = (P;,Q; :
i < 4,j <4),iflkp, “Q; is proper” and P; preserve ¢g'y [V] for i < § then Ps

preserve pg'y[V].
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§3. Preservation of Unboundedness

3.1 Notation. 1) 1 may denote an absolute definition of a two-place relation
on “w which we denote R¥[V] (so when extending the universe, we reinterpret
R, but we know that the interpretations are compatible). We write x Ry instead
of R(x,y). Sometimes 1 is an absolute definition of a three-place relation R on
Yy and then we write zR?y instead of R(z,y, 2).

Let R denote (R, : n < w) (each R, as above) so R™ = (R™ :n < w). We
identify (R : n < w) with R.

Remember Sc(A) = {B C A : |B| < k} and if  is regular uncountable
then D, (A) is the filter on S (A) generated by the sets G(M) = {|N|: N <
M,||N|| < k and NNk is an ordinal} for M a model with universe A and < &

relations.

3.2 Definition. 1) For F C “w and a two place relation R on “w, we say that
F is R-bounding if (Vg € “w)(3f € F)[gRf].
2) F C “w is R-bounding if it is R,-bounding for each n (where R = (R, : n <
w)).
3) For F C “w, R (each R, two place) and S C Scy,(F) the pair (F,R) is
S-nice if:
a) F is R-bounding.
B) For any N € S, for some g € F, for every ng,mo < w player II has a
winning strategy for the following game and, moreover, the strategy is absolute.
The game is defined for each countable set N (but only N N F is needed) and
it lasts w moves.
In the kth move: player I chooses fr € “w,gr € F N N, such that fi |
mey1 = fo [ meqq for 0 <2 < k and fiyR,, gx and then player II chooses
Mi41 > Mg and ngqq > ng.
In the end player II wins if (U, fx | mk) Rnog, (or if player I can’t
choose in the k’th move he lose).
4) We say (F, R) is S/Dy,(F)-nice if: for some C € Dy, (F), we have: (F,R) is
(S N C)-nice.
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5) We omit S when this holds for some S € Dy, (F).

3.3 Notation. <* is the partial order on “w defined as: f <* g iff for all but
finitely many n < w, f(n) < g(n). In this case we say that g dominates f. We
say that g dominates a family F' C “w if g dominates every f € F.

3.4 Definition. 1) A family F' C “w is dominating if every g € “w is dominated
by some f € F.

2) A family F C “w is unbounded (or undominated) if no g € “w dominates it.

3.5 Definition. 1) A forcing notion P is almost “w-bounding if: for every P-
name f of a function from w to w and p € P for some g : w — w (from V!) for

every infinite A C w (again A from V') there is p/,p < p’ € P such that:

p’ Ikp “for infinitely many n € 4, f(n) < g(n)”

2) A forcing notion P is weakly bounding (or F-weakly bounding, where
F C (“w)Y)) if (“w)Y (or F) is an unbounded family in V7.

3.6 Claim.
1) If a forcing notion P is weakly bounding, and @ (€ VP) is almost
“w-bounding, then their composition P * Q is weakly bounding.
2) If Q is almost “w-bounding, FF C “w an unbounded family (from V)
then F is still an unbounded family in V<.
3) If Q is adding A Cohens (i.é. Q def {f : f a partial finite function from
A to {0,1}} ordered by inclusion) then @ is almost “w-bounding.

Proof. 1) By part (2) (apply it in V¥ to F = (“w)V and the forcing notion Q).
2) Assume p € Q forces that f dominates F' and we shall get a contradiction.
Let g € (“w)Y be as in Definition 3.5(1). As in V, F' is unbounded, for some
f* € F we have {n <w: g(n) < f*(n)} (€ V) is infinite, so choose this set as
A, so by Definition 3.5(1) we know that for some p':

(@ p<p eq
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(b) p' IFq “for infinitely many n € A, f(n) < g(n) (hence by A’s definition
f(n) < g(n) < J*())"
and this contradicts p I-q “f dominates F”.
3) Easy. D3,6

3.7 Definition. R¥° = vy(V) is: fRg iff {n: f(n) < g(n)} is infinite.

3.8 Claim. A forcing notion P (in V) is weakly bounding (= adds no domi-
nating real) iff IFp “F is R-bounding” where F' = (“w)V, R = R¥o. O3

3.9 Claim. Let R = R¥° and F C “w be an R-bounding set, such that
(Yfo,---s fny--- € F)(3g € F)[A\,c, fn <* g]. Then (F,R) is nice.

Proof. We have to describe g and an absolute winning strategy for N (and
ng,mo). Choose g € F such that (Vf € N)[f € F = f <* g|. As for the
strategy, ny is irrelevant, we just choose mg1 = min{m : there are at least k

numbers 7 < m such that g(i) > fi(i)}. Oz

3.10 Claim. Suppose that P C [w]®° is a P-filter (i.e. it is a filter containing
the cobounded subsets and for any A,, € P (n < w) for some A* € P we have
(Vn)[A* Cqe Ay]) and P has no intersection (i.e. there is no X € [w]*° such
that X C,. A for every A € P; recall that X C,. A means “X \ A is finite”).
Let R be:

TRy iff ¢ [wW]™ ory ¢ [w]™ or T Zee v.

(We identify z C w with its characteristic function. The case “y ¢ [w]°” will
be irrelevant.)

Then

1) (P, R) is nice.

2) Let Q be a proper forcing notion. P is R-bounding in V9 iff I-g “ the filter
P generates is a P-filter with no intersection ” (i.e. every q € Q forces one

statement iff it forces the other).
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Proof. 1) Clause ) of Definition 3.2(3) is obvious as “P has no intersection”

(see above). In () choose g = A* € P such that
(VAeEN)[AeP= A" Coe Al

Again, the least obvious point is the winning strategy; again nj is irrelevant

and player IT chooses my = min{m : fy Nm \ g has power > k}.
2) Left to the reader. Os3.10

3.10A Remark. We can use “) instead “w.

Sometimes we need a more general framework (but the reader may skip it, later

replacing H,, Rz by F, R,,).

3.11 Notation. If H is a set of (ordered) pairs, let Rang(H) = {y :
(32)[(z,y) € H|} and Dom(H) = {z : (3y)[(z,y) € H]}, Hs = {y : (z,y) € H}.

We shall treat a set F (from e.g. Definition 3.2) as the following set of
pairs: {(0,,z) : € F} where 0, is the function with domain w and constant

value 0 (so e.g. 3.13 applies to 3.2 too).

3.12 Definition. 1) For a set H C “w x “w, and R (an w-sequence of three
place relations written as R?y) and S C Sy, (H) we say that (H, R) is S-nice
if:

a) H is R-bounding which means: for every z € Dom(H), H, is R?-bounding,
ie. (Vn)(Vf € “w)(3g € H,)[fR%g] letting R* = (RZ : n < w).

B) Forany N € S, z € Dom(HNN) and for every ng, mp < w for some g € H,
and zo € Dom(H) N N player II absolutely wins the following game which
lasts w moves.

In the kth move: player I chooses fr € “w,gr € Rang(H N N) such that
fr I mes1 = feo | meyq for 0 < £ < k and frRZk gx; then player II chooses
Mig1 > Mg, Ngt1 > Nk and zg4q € Dom(H N N).

At the end of play, player II wins iff (U fx | mi+1)RZ, g
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2) (H, R) is S/Dx,(H)-nice if for some C € Dy, (H) we have: (H, R) is (SN C)-

nice.

3.13 Lemma.
1) Suppose
(i) Q= (Pj, Qi 11 < 4,j <6) is an iteration as in 0.1, for! I
(ii) S C Scx,(H) is stationary in V, and if we are in one of the cases (C),
(E), (F) of 0.1, then |H| = ¥
(iii) (H,R) is S/D<x,(H)-nice
(iv) for every i < 4, in V¥ we have: H is R-bounding
(v) all Q; have pure (R, 2)-decidability (see Definition 1.9)
(vi) |H| = Ry or at least

(Va € [VF]) [la] <Ro & a C H = (I € (S, (H))V)a C 8] .

Then in VF5 H is R-bounding.

2) We can weaken (v) to
(v)~ all Q; has pure (2,2)-decidability
provided that for some fixed f* € “w, [(31)[f(z) > f*(@)] = fR,zlg] for
any z € Dom(H) and g € H,.

3) Assume R = (R, : n < w) a decreasing sequence of (absolute definitions
of) three place relations on “w, F C “w is R bounding (i.e. we are in the
context of Definition 3.2 not 3.11, 3.12). Assume further (i), (ii), (iii), (iv)
and (vi) from (1), replacing H by F and
(v)s all Q; have pure feeble (o, 2)-decidability (see Definition 3.14 below).
Then in VP5 | F is R-bounding.

4) Assume, as in (2) that for some fixed f* € “w, [(3i)f(i) > f*(i) = fRng]
for any f, g € “w. The results of (3) holds if we replace (v); by (v);
meaning replacing there (Ro, 2) by (2,2).

t So the reader may think on CS of proper forcing so <,,=<. The I is from

clause (F) there, so can be ignored for the cases (A)-(E), e.g. the two cases just

mentioned.
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3.13A Remark.
1) You can read the proof with ng = 0, F instead H, R instead RZ* (see 3.11).
2) The proof gives somewhat more than the lemma, i.e. it applies to more
cases. “H is R-bounding” means that (a) of 3.12 holds.
3) We can weaken 3.12(1)(8) to “ in no generic extension of V, no strategy of
player I is a winning strategy” ( and 3.13 still holds). The proof is similar,
only we choose the Gy, in VLew (2™

4) Part (3) (or (4)) of 3.13 is suitable for FS iteration of c.c.c. forcing by
3.16(4) below.

3.14 Definition. 1) A forcing notion @ has pure feeble (6, 62)-decidability if:
for every p € Q and Q-name 7 satisfying p kg “T < 6,” there are a C 6y, |a| <
02 and q,p <pr g € Q such that g weakly decides 7 € a; where
2) q € Q weakly decides 7 € a (or any other statement) if no pure extension of
q decides this is false.
3) A forcing notion @ has pure weak (61,62)-decidability if for each p € Q in
the following game, player II has a winning strategy.

In the n’th move player I chooses 7,, a @-name of an ordinal < 6; and
player II chooses an,an C 01, |an] < 2. In the end player II wins the play if

for every n < w there is gn, p <pr gn € Q, gn Weakly decides /\l<n Te € ay.

8.15 Proof of 8.13 (1). We speak mainly on cases (A) and (F) of 0.1(1). W.l.o.g.
cf(8) = g or for every i < § we have IFp, “cf(§) > Ro” (by 3.16 below we
have associativity; use a maximal antichain of conditions deciding and restrict
yourselves above one member; then if necessary use renaming.)

If cf(8) > Ro, then any real in V¢ belongs to V7 for some j < § (see
III 4.1B(2), (or X or XIV or XV); hence there is nothing to prove, so we shall
assume cf(6) = w. By III, 3.3 or XV 1.7, w.lo.g. § = w.

Suppose p € P, 2 € Dom(H), ng <w and I+p, “f € “w” ; we shall find r,
p<pr 7 € P, and g € H, such that r Itp, “fR;, g”. Let mo < w. Let N be a
countable elementary submodel of (H()), €) (X regular large enough) to which
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(Pj,Qi 11 < w,j < w),p, f,2,5, H belong as well as the parameters involved
the definitions of the R,,’s. The set of such N belongs to D<x, (H())), hence
for some such N, NN H € S (and N is I-suitable for case (F) of 0.1).

By 1.11 w.l.o.g. for each n < w, f(n) is a P,-name, and we let p = (p? :
n < w) where IFp, “p? € Q@n”. Let g € H, and zp € N N Dom(H) be as in
clause () of Definition 3.12 (for N N H and z, ng, my).

We shall now, by induction on k¥ < w, define k> Pk 9k Zk» Mk, Wk Such that

(a) gk € Py is (N, Py)-generic (for (A) of 0.1(1)) or (N, P;)-semi-generic

(for (F) of 0.1(1)) and g IFp, “N[Gp,|NH = NN H”

(b) gr [n=gqn forn<k

(c) pk € P, in fact is a Pi-name of a member of P,

(d) pr Ik <pr gk

(€) pe+1 [k =pk [ k and pr <pr prt1

(f) gk IFp, “pr € N[Gp,]” i.e. pi is a Pr-name of a member of N[Gp,] N

(Pw/GPk)

(g) zk is a Py-name of a member of Dom(H) N N

(h) Mk < mk+1 and B < Bkt

(i) mg, ng are Pe-names of natural numbers
Note that (a) implies that N N H belongs to the club of Scx,(H) involving
“(H,R) is S/D<y, (H)-nice”.

For k =0 we let go = 0,po = p.

For k+1, we work in V[Gy], G, a generic subset of Py satisfying g € Gx. So
Pk = pk[Gk] € N[Gi| and px [ k € Gi. In N[Gg] we can find an <p;-increasing
sequence of conditions px,; € P,/Gy for i < w, such that pxo = l’k[Gk] and
Pki € N[Gi], moreover even (py; : i < w) € N[Gy] and py,; forces values
for f(j) for j < 4. So for some function fr € N [Gk] we have fr € “w and
pri Wpp, “f 1= fe | 9. As N[Gk] < (H(N)[Gk],€) (see III 2.11), for
some gy € N[Gy]N H,, = NN H,,, we have N[Gi] “fkR,i’;gk”f. Now
we use the absolute strategy (from Definition 3.6(2) for N N H) to choose

t Really ng, gr are Pi-names so we should have written ny [Gk] but ignore

this.
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Zk+1,Nk+1,Mk+1 (the strategy’s parameters may not be in N, but the result
is) and we want to have pxi1 = pk,m,,,- However all this was done in V[Gy],
so we have only suitable Py-names which is O.K. In the end, let r € P, be
defined by r [ k = gx | k for each k; by requirement (b) we know that r is
well defined and belongs to P,,. Suppose r € G, C P,,G,, generic over V. As
in the proof of the preservation of properness we can prove by induction on
k that Pk <pr 1 for each k. Then in V[G,] we have made a play of the game
from Definition 3.12(1)(8), player II using his winning strategy so (U fx |
k)[G.])RzZ, g holds in V[G.), but clearly pin, <pr Pk+1 <pr T hence pk,nkke G,
hence (f [ mg)[Gu] = (fr [ mk)[Go]. Consequently f[Gu] = (U, fx [ k)[Gu]
and f[G,|R}, g holds in V[G,,)] and r forces the required information .

Proof of 8.18(2): Similar.
Proof of 8.18(3): Like 3.13(1). We use freely 3.16 below, but note that no
harm is caused if player II increases my, ng (not z;!). A play (or an initial
segment of the play) in which player II do this is said to weakly follow the
strategies. Now the strategy in use is to weakly follow all possible subplays. L.e.
above (in the proof of 3.13(1)) we, by induction on k < w, choose gk, p, g,
((zyymy,ny) : k € v C k+ 1): and mg, nk such that:

(a) - (f) and (h) as before
(g)" zv is a Pg-name of a member of Dom(H) NN

(i) M, Ny are Py-names of natural numbers, and
k= max(v) = my, < M\ (k) & T < Do\(k)

(G) mk = max{m, +k:vCk+1}, px = max{n, +k:v Ck+1}.

In the induction step, px; (i < w), fr are chosen such that: pr <,
Pk,0, Pk;i <pr Pk,i+1 and no pure extension of py; in P, /Gy forces f[i #
frli. Now for each v such that k € v C k + 1 we pretend that the play so
far involve only player I choosing {((fe,g¢) : £ € v) and player II choosing
((Mun(e+1)s Bon(es1), Zon(ern)) © € € v\ {k}) and player’s II given winning

strategy dictates (M, Dy, 2v)- Lastly mk41, nr+1 are computed by clause (j).



§3. Preservation of Unboundedness 317

We have defined a name for a strategy; we can show that it is forced that
unboundedly often we have made the right move, so moving to the appropriate

subplay we are done.
Proof of 8.18(4): Similar. Os.13

3.16 Claim. 1) For (61, 62) € {(2,2),(Ro,2)} the property “Q has pure feeble
(01, 62)-decidability” is preserved by iteration as in 0.1.

2) Similarly! for “pure weak”.

3) @ has pure feeble (81, 62)-decidability if Q has pure weak decidability.

4) If Q has feeble pure (6*,2)-decidability and 6* is uncountable and <, is
equality (as we do for FS iteration of c.c.c. forcing) or 6* > 2 and <, is <@
(as for CS iteration of proper forcing) then Q has pure feeble (9, 2)-decidability
for every 6.

5) For (01,02) € {(n,2) : 2 < n < w}, every Q has pure feeble (61,02)-
decidability.

Proof. 1) We copy the proof of 1.10, changing (iii) (in the proof of case 5
(a=w)) to
(iii)’ first for n < w we define a P,41-name s,: for Gny1 € Pry1 generic over
V,$n|Gn+1] is k + 1 if there is r € P,/Gpn41 such that Dom(r) = [n + 1,w),
P,/Gn+1 E “p I [n + 1,w] <pr r” and r weakly decides t = k, i.e. for no
.1 <pr 1" € P,/Gny1 does p' Ikp_sq,.., “t # k”; if there is no such r, then
$n[Gnt1] = 0.

Second let gn € @n [Gr] be such that p, <, ¢, and ¢, weakly decides the
value of sp, (i.e. of sp/Gr) (if 61 = 2, use Definition 3.13A twice).

Also in the end we prove by downward induction on m < n(x) that
(r I m) U {gm} weakly decides s, = ¢.
2) Similar proof (using 3.16(1)).
3) Read the definitions.
4) Straight.

t Alternatively use XIV §2.
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5) Easy. Us.16

We now give some applications. Concerning 3.17 if you want also “no Cohen”,
see 2.13.

3.17 Conclusion. 1) The property “P is weakly bounding” i.e. “P does not
add a dominating real over V" is preserved in limit (for iterations as in 0.1p—2,
see 0.1(3)) provided that Y = X; in the non-proper case.

2) If F C “w is not <*-bounded then “P does not add a <*-bound to F” is
preserved in limit (for iterations as in 0.19—2) provided that e.g. |F| = R; in
the non proper-cases. ‘

3) In parts (1)+(2) we can use iterations as in 0.1 with pure feeble (R, 2)-
decidability.

Proof. 1), 2) Let Q be such an iteration, F = (“w)Y for 3.17(1), given for
3.17(2) and R is defined by v (see Definition 3.7). By 3.9 (F, R) is a nice pair
in V. Even for every i < £g(Q), in Vi the set F is still unbounded and every
countable subset of F in V is included in a countable subset of F from V;
hence by 3.9 (F,R) is a nice pair even in V. By 3.13(3) this is true also in
VPs(where § = £g(Q).

3) Similar proof (to that of 3.13(1)) or by 3.13(3)). Os.17

3.18 Lemma. The property “P, purely adds no random real over V” is
preserved under limits for iterations as in 0.1g—2 or just by iteration as in
0.1 with every @; having pure feeble (Ro, 2)-decidability (see 3.16(4)).

Remark. Concerning the successor case see X VIII 3.20(i). Before we prove 3.18
we need some definitions and claims. Now for T C “”w, and n € “>2 we let
TM = {v: n"v|[fg(n),w) € T}. Note that Lemma 3.18 includes the case of

FS iterations.
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3.19 Definition. 1) We let 1; be as follows:
TRY'y iff y is a perfect subtree of “>2 with positive Lebesgue measure, z € “2
and (Vn < w)(Vp € "2)[p" (z([n,w)) ¢ limy].
2) Let HY be {(y1,2) : y1,y2 are perfect subtrees of “>2 with positive Lebesgue

measure such that: limy, C {n € “2 : for some n < w and p € ™2 we have

p” (nln,w)) € limy;} }

3.20 Claim. 1) HY is an R;-directed partial order.
2) Suppose V' C V;, and for any countable a C HY from V; there is a countable
bC HY,aCbeV; (and R = R¥1). The following are equivalent:

(i) no real in V; is random over V

(ii) Dom(HY') is R-bounding in V;

(iii) (Dom(HY ), R) is nice in V; (here Definition 3.2(3) is the relevant
one, with Dom(H/) here having the role of F there).

Proof. 1) Easy

2) (i) = (ii): Let = € (“2)"’. As z is not random over V there is a Borel
set B € V of Lebesgue measure 0 such that z € B (i.e.  belongs to the V;-
interpretation of B). Without loss of generality B is closed under =* (i.e. if
M,z € “2 and n =* M2(= V ml(n,w) = n2l[n,w)) then n € B =13 € B).
There is T C “>2 perfect, ;fz V such that lim T has positive measure and
lim(T) N B = 0. So it is enough to prove that zRT, i.e. (Vn < w)[z ¢ limT(™)]
where T & {n : for some p € T we have £g(p) = ¢g(n) and (Vf)(n < £ <
Lgp — p(£) = n(£)} ie. z € “2\U, ., lim(T(™), but this follows from z € B.

(ii) = (iii): Condition (a) of Definition 3.2(3) is clear. For condition (3) let
N < (H(x),€) be countable, zgp € N N Dom(H;), so for some a we have
NnHY CaCHY,aeV,V | |a| = R. So there is T' € Dom(HY{’), such
that “2\ U,,.,, T™ contains all 2 \ U, ,, Lm(T{™) for Ty € N N Dom(HY),
hence it contains all Borel measure zero sets from V which are in V.
We have to give the winning strategy for player II.

In stage k, fx, gk are given fxRgk, gx € NNDom(HY ), so g is a perfect subtree
of “>2 of positive Lebesgue measures. Then p” (fi[[n,w) ¢ lim g; for p € "2,
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n < w and (gx,T) € Hy; together with the choice of T we know that for n < w
and p € "2 we have p” (fi[[n,w)) ¢ imT.
Choose mj41 > my large enough such that: for every n < my, p € "2 we

have: p” fi [ [n,mk+1) ¢ T.

(ili) = (i): Immediate. Us.20

3.21 Proof of lemma 3.18

Let F % Dom(HY'). Let Q be an iteration as in 0.1, £g(Q) = 4, and in
no VFi(i < §) is there a real random over V. So by the claim 3.20(2) we know
that (F, R) is nice in V. Hence by 3.13(3) it is nice in V5, hence by claim

3.20(2) in Vs there is no real random over V. Os.18

We now give an application of 3.17, taken from [Sh:207], Lemma 3.22 is proved
in §6 (see 6.13). On history see introduction to §6.

3.22 Lemma. There is a forcing notion @ such that
(a) @ is proper
(b) Q is almost “w-bounding.
(c) QI =2%
(d) In V9 there is an infinite set A* C w such that for every infinite
B C w from V we have A* N B is finite or A* \ B is finite.

3.22A Remark. For 3.23 it is enough to prove 3.22 assuming CH.

3.23 Theorem. Assume V |= CH.
1) For some forcing notion P*, P* is proper, satisfies the Ra-c.c., and
(*) In VP " 2Ro — Ry, there is an unbounded family of power X;, but no
splitting family (see below) of power N;.
2) We can also demand that in VP~ there is no MAD of power R; (see
Definition 3.24(2)).
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3.24 Definition. 1) P is a splitting family if P C [w]® (= the family of
infinite subsets of w) and for every A € [w]X° for some B € P we have:
|[ANB| = |A\ B| = Xy.
2) A family A is MAD (maximal almost disjoint) if:

(a) A is a subset of [w]®0

(b) for any distinct A, B € A the intersection A N B is finite

(c) A is maximal under (a) + (b).
3) Let b = min{|F| : F C “w is not dominated} where “F not dominated”
means that for every g € “w for some f € F we have ~f <* g. Let 0 =
min{|F| : F C “w is dominating} where “F is dominating” means that for
every g € “w for some f € F we have g <* f. Let s = min{|P|: P C [w]M isa
splitting family (see above)}

Proof of 3.23. 1) We define a countable support iteration of length R, :
(Pay Qo : @ < wg) with (direct) limit P* = F,,. Now each Q4 is the Q from
3.22 for VFa g0 VFPe |= “Qal = 2%0” As V |= CH we can prove by induction
on a < wy that IFp, “CH” (see III, Theorem 4.1). We also know that P*
satisfies the No-c.c. (see III, Theorem 4.1). If P is a family of subsets of w of
power < R; in VP then for some a < wa, P € VF=| and forcing by Q, gives a
set A% exemplifying P is not a splitting family by clause (d) of 3.22. So from all
the conclusions of 3.23 only the existence of an undominated family of power
R; remains. Now we shall prove that F' = (“w)Y is as required. By 3.8 it is
enough to show

(*) IFp,, “Fis R¥0-bounding” (see Definition 3.7).
Now note: F' has power X; as V = CH. We prove that F is R¥°-bounding in
VPe by induction on a < wy. For a = 0 this is trivial; o = 4+ 1 : as Qﬁ is
almost “w-bounding (see 3.22 clause (b)) and by Fact 3.6(1); if cf(a)) > Ro by
Conclusion 3.17(1).

2) Similar. We use a countable support iteration (Pj,Q; : 1 < w2,j < wp)
such that:

(a) for every i < wg, and MAD (A, : a < wi) € VP, for some j > 1,

either Q2; = adding R; Cohen reals, and Q2;41 = {p € vazj“ :
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p > p2j+1} where in VF2i+1 we have pojy1 kg “(Aa : @ <wi) is not
a MAD family” ‘
or Q2; = adding Ni-Cohen reals, Q2j4+1 = Q[I2j+1]) where Injiq is
the ideal (of subsets of w) which (4, : @ < w;) and the cofinite sets
generate (on Q[I] see Definition 6.10).

(b) For j even Q; is adding X, Cohen reals.

(c) For j odd, Q; is @, or {p € Q : p > p;}, or it is Q[I 4] where A is a
P;j_1-name of a MAD family of cardinality ®; and VFhiE [H—Q “Aj is
MAD”]

(d) for Ry ordinals j, Qa;41 is Q¥ 7*".

There is no problem to carry out the definition. Each Q; is almost “w-
bounding by 3.22 (i.e. see 6.13, when Q; = QVPj ), by 6.22 (when Q; = Q[ 4,]
we can apply it to VFi-1 as Qj-11is adding R; Cohens so 6.15 applies and the
second possibility in 6.22 fails by clause (c) above) and 3.6(3) (if j is even i.e.
Q; is adding ®; Cohens). So as in part (1), P,, preserves “(“w)" unbounded”.
Also s = Ry and 2% = Ry are proved as part (1) by clause (d). Lastly assume
A C P(w) is a MAD family, | A| = Ry, so for some i, A € V. So there is j as in
clause (a). Work over Vy = VP2 so Q2; is adding ®; Cohens. If p l|-92 *Q “Ais
not MAD” for some p € Q2;*Q then w.l.o.g. p € @ (as Q2; is homogeneous) and
we use the second possibility in clause (c). If not, we use the third possibility

of clause (c). Us.23

We add the following in Summer’92 after a question of U. Abraham. In the
proof of the consistency of “there is no P-point” below (§4) we use the “PP-
property” (see 2.12A-F). We actually prove a stronger property called “the
strong P P-property” which implies the “PP-property” which we have proved
is preserved, so Abraham asked whether it itself is preserved. The following
variants would have sufficed for the purpose of §4 which was the reason of

existence.



§3. Preservation of Unboundedness 323

3.25 Lemma. Assume that f : w > w+1\{0,1}, h: w — w\ {0,1} and
F C Ilin ef {f : Dom(f) = w and f(n) a subset of f(n) of cardinality
< h(n), lim (|f(n)|/h(n)) = 0} are such that:

(*)nfoioany countable A C F there is f € F such that A (V*n)[g(n) C

g€eEA
f(n)].
Let R be defined as: gRf iff
(a) g, f € I1s (i-e. we consider a member of “w as coding such sequences)
(b) (3n)g(n) € f(n).
Let S C Scy,(F) be stationary and assume F is R-bounding.

Then (F, R) is S-nice. (Hence, we have a preservation theorem for a limit).

Proof. Check Definition 3.2(3). Part (a), F is R-bounding, should be clear. For
clause (8), given N € S, let fy € F be such that f € NN F = (V*n)[f(n) C
fn(n)] (it exists by the assumption (*)). The winning strategy is clear: choose
mg+1 such that {i < myy1 @ fr(®) C gr(?) C fn(4)} has at least £ members.
Us.25

But of course it is nicer to have also preservation for composition of two forcing

notions.

3.26 Lemma. 1) Let f : w > w+1\{0,1}, h* : w — w \ {0} for t € Q be such
that for s < t (from Q) we have 0 = le (h*(n)/ht(n)) and for each t € Q the
set H,'ht satisfies () of 3.25. The fOerWTIJlg property is preserved by iterations
as in 0.1g—2 and as in 0.1 with each Q; having pure feeble (2, 2)-decidability:
(*)1 (a) Q is purely “w-bounding.
(b) for every s < t from Q, f € V9 such that f € [l ps and ko < ky < ...
(so (ki : i <w) € V) for some g € V such that g € []; . we have
(3"%) Neegri kirn) £ € 9(O)].
1A) So e.g. in (1), if Q = (P;,Qj : i < a,j < a) is CS iteration, IFp, “Q; is
proper satisfying (*);” then P, is proper satisfying (*);.
2) We can replace ()1, by
(¥)2 (a) Q is purely “w-bounding
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(b) for every s < t from Q and f € V9, such that f € ¢ pe for some
g €V, g € [lp and for every infinite A € ([w])*°)V, for infinitely
may i € 4, £(i) C g(i).
3) In (1) we can assume F = (“w)" (for some V' C V, a just reasonably
closed) is unbounded X;-directed by <* and replace (x); by
(*¥)s (a) Q purely preserves “F is unbounded”
(b) like (b) of (x); for (k; :i < w) € F.

Proof. Similarly to the previous Lemma one may deal with limit cases using 3.13
for the respective variant of clause (b) (and by 2.8 for (x)1(a), (*)2(a), 3.17 for
(¥)3(a)). So now it suffices to prove this for iteration of length two: P, = Qo*Q
(so Py = Qg, P, is trivial). First we prove part (2). Let f € (Hf,hs)vﬁ, s<t
from Q. Choose ' € (s,t)g. Applying (*)2 to f,s,t', VF1, V2 we can find
fle [Hf’hg]vpl satisfying the requirements there on g. Next we apply (x)2 on
fit',t,V, VP and get g € [nyht]v.

Now for any infinite A C w, A € V, by the choice of g we know that
A = {ic A: f'(i) C g(3)} € V is infinite. Hence by the choice of f’ we
know that A” % {t € A" : f(i) C f'(¢)} is infinite and clearly it belongs to
VP2 Putting together A” = {i € A: f(i) C f'(i) C g(i)} is infinite. So g is as
required.

Now we prove part (1), so we are given s < t from Q and (k; : i <
w) € V (strictly increasing) and f € (Hf,hs)vpz. Let t' € (s,t)g. Applying
()1, to f,s,t, VL VP2 (k1 i < w) we get f € (]_[f)hu)vp1 satisfying the
requirements on g in (x);. So A =: {1 : for every £ € [k;, k;+1) we have f(£) C
()} is infinite. As Qo is “w-bounding there is a sequence £(0) < £(1) < ...
(in V) such that AN[(3), £(i+1)) # P for every i < w. Let k = ky(;) and apply
()1 to f',t',t,V, V' (k] : i <w) and get g, which is as required.

The proof of part (3) is similar. 0306

3.26 A Remark. In 3.25 we have the requirement F'N ][, satisfies (x) of 3.25.
We can work as 3.26(2) and weaken it to:
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(¥)” for any s < t and countable A C [];,. there is f € [],. such that
A (v*n)lg(n) C f(n)].
gEA

84. There May Be No P-Point

We define the forcing notion P(F) (introduced by Gregorief) which, for an
ultrafilter F', adds a set A such that w \ A, A # 0 modF, see definition
4.1. If F is a P-point (see definition 4.2A) this forcing is a-proper for every
a < wi, and has the PP-property. Our point is that P(F)“ enjoys all these
properties and in addition IFp(ry» “F cannot be completed to a P-point ”.
We will argue in the following way: as we use P(F)“, we can define a new
subset A, of w such that IFpry. “A, € E”, where E is an extension of F
to an ultrafilter in the generic extension, but for each g € “w NV we have
IFpFys “Npew(An U g(n)) =0 mod F”.

We originally (see the presentation in Wimmer [Wi]) use the stronger
version of the PP-property, but there were problems with the preservation
theorem i.e., in that version the essential forcing was not an iteration.

Note that, we continue to add reals after forcing with P(F)“, so in fact we
prove the above described argument works with @ instead of P(F)“ provided
P(F)¥ < Q, @ has the PP-property. So the importance of proving that this
property of @ is preserved is clear. The iteration in the end is standard.

The proof presented in [Wi] uses not exactly P(F)“. Rather we note that
if Q satisfies the c.c.c. then for any P-point Fy in VP there is F} def {A C
w:AeVikg “A€ Fy"} which is a filter enjoying some of the properties of
Fy : P(w)/F; (in V) is a Boolean algebra satisfying the c.c.c. and (if Q has the
“w-bounding property), for every A, € F} there is A € F1, A, ., A Cae 4n.
Let {F®:i < Ry} (assuming G.C.H.) list all such filters in V. Now the product
P with countable support of all the P(F?)* satisfies: in V', no F* can be
extended to a P-point by an argument as mentioned above. However to close
the proof we need “P satisfies the c.c.c. 7, which fails. But we replace P by a

subset which satisfies it and still has the desirable other properties. I expect
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that the proof can be modified to have 2% > R, (but this was not carefully

checked), whereas for the present proof we do not know how to do this.

4.1 Definition. For a filter D on a set I (we always assume all co-finite subsets
of I are in D), we define the following forcing notions ordered by inclusion:
1) P(D) = {f: f is a function from B to {0,1} for some B = §) mod D, i.e.
B CI,I\ B e D},
2) PT(D)={f € P(D): f~1({1}) is finite },
P'(D) = {f : f a function from B to {0,1}, B # I mod D},
P"(D) = {f € P'(D) : f~Y({1}) is finite }.

4.1A Remark. Mathias [Mt3] used P (D) for the filter D of co-finite subsets
of w; Silver used P!(D) for the filter D of cofinite subsets of w and for an
ultrafilter D, Gregorief used P(D) for an ultrafilter D, and proved that it

collapses R, iff it is not a P-point.

4.2 Lemma. If F is a P-point (see below) then Q = P(F)“ is proper (in fact
a-proper for every a < w;) and has the PP-property.

Proof. It will follow from 4.3 and 4.4. 040

4.2A Definition.

1) A filter F on I is called a P-filter or P-point filter if (it contains all co-
finite subsets of I and) for every A, € F (for n < w) there is A € F such
that A C,. A, for every n. Just “a P-point” means an ultrafilter.

2) We call F fat if for every family of finite pairwise disjoint w, C I (for
n < w) there is an infinite S C w such that |J, . wn =0 mod F. (Clearly
every P-point is fat.)

3) F is a Ramsey ultrafilter (on I) if for every h : I — w there is A € F such
that hlA is a constant or 1 —1 (and F' contains all co-finite subsets of I).

Note that a Ramsey ultrafilter is a P-filter.
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4.3 Fact. Assume F is a fat P-filter on w. Let F* be {A C w X w : for every n
for some B € F, AN({n} xw) = {n} x B}. Then F* is a fat P-filter on w X w,
and the forcing notion P(F)“ is isomorphic to P(F™).

Proof of the Fact.

First condition: F* is a filter on w x w including all co-finite sets. Check.
Second condition: F* is a P-filter. Let Ay € F*, then Ax N ({n} x w) =
{n} X By, for some By, € F. As F is a P-filter there is B* € F, B* C,¢ Bin
for every k,n. Let B} “ B n Nk<n Bk,n and A* def U,<o({n} x By).
Clearly B € F (as we have assumed that F is a filter), hence A* € F*.
Now A"\ A € Upeul{n} x (B; \ Bem)] € Ungel{n} x (B; \ Bin)], bus
By \ Bi,n € B* \ Bg,n, hence it is finite. Therefore A* \ Ay is finite and hence
A* C,e Ag. But k is arbitrary, so A* is as required.

Third condition: F* is fat. Let w, C w X w be finite and pairwise disjoint for
n < w. We define by induction on n infinite sets S, C w, Sp+1 C Sy, such that
{i <w: (n,i) € Upes, we} = @ mod F. We can do this with no problem,
and let £(0) = Min(Sp), k(n) = Min(S, \ {k(0) ... k(n—1)}). As every cofinite
subset of w belongs to F, it is easy to check |J,, ., Wk(n) = ?® mod F*.
So we have established the first conclusion of 4.3.

The isomorphism of P(F)* and P(F*) is trivial, for p = (fo, f1,f2...) €
P(F)“, let H(p) € P(F*) be H(p)((n,k)) = fn (k). U3

So it suffices (for proving Lemma 4.2) to prove:

4.4 Lemma. If F is a fat P-filter on a countable set then P(F) is proper (in
fact a-proper for every a < wy) and has the PP-property.

4.4A Remark. We will really prove the strong P P-property, see remark to
2.12A and Def 2.12E(1),(3).
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Proof of 4.4. W.lo.g. F is a filter on w. So let py € P(F), {po,F} € N <
(H(A),€), N is countable and A is large enough. Now, before proving proper-

ness, we prove:

4.5 Crucial Fact. For every p € P(F) and every P(F)-name t of an ordinal
and n < w, there is ¢ € P(F), p < g, such that ¢/n = p|n and for every

g :n — 2, there is an ordinal ag such that (¢[[n,00)) Uglkpp) “t = ay”.

Proof. Let g; (for i < 2™) be a list of all functions g : n — 2. We shall define by
induction, an increasing sequence of conditions p; € P(F) (so p; < pi+1), for

1 < 2". Let pg = p, and if p; is defined let

p} = (pil[n, 00)) U g;.

Clearly p;f € P(F) hence there are oy, and p € P(F), pI < p! such that
P Fpry “t = ag,”. Let piy1 = p; Up)I[n,w). Clearly p; < piy1 € P(F), and
(Pir1l[n,w))Ugs Ik “t = a,”. So p(any is as required from g. So we have proved

Fact 4.5. Oas

Before we prove 4.4 we also note
4.6. Fact. Assume F is a fat P-filter (on w). If p, < ppy1 (for n < w),
pn € P(F) then there is ¢ € P(F), ¢ > po such that ¢ > pn[[n, o) for infinitely
many 7n.

Proof of Fact 4.6. Let A, be the domain of p,, so A, = 0 mod F hence
w\ A, € F. As F is a P-filter there is A, w\ A € F, such that for every
n, (w\ A) Cee (w)\ Ay) ie.,, Ay Coe A. Hence there are k, < w such that
(An \ [0,k,)) C A. wlo.g. Ao = Dom(pg) € A and k, > n.

Now we shall choose natural numbers £(0) < #(1) < £(2) < ..., and want

to choose them such that

g = po U JPem 1[E(n), w)) € P(F)
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So as ¢ is a function from a subset of w to 2, (because p, < pp+1) we only
have to take care of the demand Dom(gq) = @ mod F. Note that Dom(q) \ A =
Un<w(Dom(peeny) \ A\ [0,£(n)) = Uncy, (Aeny \ A\ [0,£(n))) = U, (Agmy N
[€(n), keny) \ A) (remember A, \ [0,k,) C A, Ap C A).

Now let wg = [£, k¢), (for £ < w) which is a finite set. As Min(w;) = ¢, there
is an infinite S C w such that {w, : £ € S} is a family of pairwise disjoint sets.
Since F is fat there is an infinite S; C S such that | J{w, : £ € S1} =0 mod F.
So let {£(n) : n < w} be a list of the members of S1, £(n) < £(n + 1). Then
g € P(F) which proves Fact 4.6. Oae

Continuation of the Proof of 4.4. Let {r; : i < w} be a list of all P(F)-names

of ordinals which belong to N. Using the crucial fact 4.5 we can define by

induction on n, p, € P(F)N N, p, < pp+1 (po is already defined) such that:
(x) if g: n — 2 ={0,1} and £ < n then for some ordinal a(g, £)

(Pnlln,w)) Uglkpry “Te = a(g,£)”.

Applying the Fact 4.6 for the sequence (p, : n < w) constructed above with
the property (x) we obtain a ¢ € P(F) such that ¢ > po and q > pj,[[n,w) for
infinitely many n. For such an n we have (p,[[n,w)) U q[[0,n) < g, hence g IF
“for £ < m, T¢ = a(g,£) for some function g : n — 2 extending ¢[[0,n)”. So ¢ is
(N, P(F))-generic, and as g > po, we have proved that P(F) is proper. In fact
not only q is (N, P(F'))-generic, but even ¢[[n,w) for any n < w is, as every
gUgql[n,w) is, for g : n — {0,1}.

Let us prove P(F) is a-proper for any countable a, by induction on c.
Let (N; : i < a) be as in V.3.1, p € P(F) and {p, F} € Np; we shall prove
that not only is there ¢ > p, (N;, P(F'))-generic for every ¢ < a, but also
ql[n,w) is (N, P(F))-generic (for i < o,n < w). If a = 0 we have proved
this, if o is a successor use the induction hypothesis. So assume o is limit

and let a = {J, .,

gn € Ng, 41, such that for every i < a, and k < w we have gn [k, 00) is

Qn, Gn < apy1. By the induction hypothesis we can define

(Ni, P(F))-generic and go > p,¢n+1 > gn.
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Apply Fact 4.6 to po, g0, g1, - - - and get g as required, remember that as q
is (N;, P(F')))-generic for every i < a, it is also (N, P(F))-generic.

(From Lemma 4.4 only the strong P P-property remains to be shown (see
on it 2.12, particularly 2.12E(3); this suffices by 2.12F(1)). So let z € “w diverge
to infinity, and let N be as above, f € N be a P(F)-name of a member of “w,
and w.l.o.g. we can assume that for n < w, 72, = f(n) where {7, : n < w}
was a list of the names of ordinals used in the proof of the properness of
P(F). When we define the p,, by induction on n, make one change in (x)
above (in this proof): instead of considering £ < n, we consider the £ such that
£ < 2z(n+1+2"*1) + 2. So we have:

(*)" if g:n— 2 and £ < 2(z(n+1+2""!) + 1) then for some ordinal a(g, £),
plln,w)Uglkpr) “te = a(g,£)”.

Now we let kn, =0, m,(0) =27, i,(0) =n+1, jo(0) =z(n+1+2") + 1.
Then, by (), we have p,[[n,w) IFpr) “flin € {hgj. : g:n — 2}, where
hg,j. (€) = a(g,2£). So py[[n,w) allows f[j,(0) at most 2™ possibilities which is
mp(0). As ¢ > pp[[n,w) for infinitely many n, and for each such n,g “allows”
f1n less than m,(0)+1 possibilities, clearly kn, = 0,m(0), in(0), jn(0) witness
n is as required in 2.12E(3) (i.e. 2.12A(b)(*) with k = 0), so we have finished.

O4.4,4.2

4.7 Lemma. Suppose F is a P-point and P(F)¥ < P and P has the PP-
property (or just it is “w-bounding and has the weak P P-property, see Defini-
tion 2.12E).

Then in VP, F cannot be extended to a P-point.

Proof. Suppose p € P forces that E is an extension of F to a P-point (in V).
Let (rn : n < w) be the sequence of reals which P(F)“ introduces (i.e. r, (i) = £

iff for some (fo, f1,...) € Gp(r)» We have f,(i) = £). Define a P-name:
h(n)islif {i <w:rn(i) =1} € E and

h(n)is 0if {i <w:1,(1) =0} € E.
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SoplFp “h € “2”. Now as P have the PP-property, by 2.12D (and see 2.12E),
there is p; > p, (p1 € P), and for each n < w there are k(n) < w, i,(0) <
3n(0) < in(1) < Jn(l) < ... <'in(k(n)) < jn(k(n)), and jn(k(n)) < in41(0)
such that:

p1 IFp “ for every n < w for some £ < k(n) we have h(in(£)) = h(jn(£))”.

Now define the following P-names:

An ={m <w: for some £ < k(n),1;,(¢)(m) =rj,0)(m)}.

4.7A Fact. p; IFp “A, € E”.
This is true because p; forces that for some ¢ < k(n) we have h(i,(¢)) =
h(jn(€)) and by the definition of h we know:

plkp {m <w: 1, (M) = h(in(€))} € E”
plkp “m <w 1) (¢(m) = h(jn(¢))} € E”.

Putting together these three things (and p < p;) we get p; IFp “{m < w : for
some £ < k(n) we have r; (¢)(m) = h(in(£)) = h;(jn(£)) = 7j,.(ey(m)} € E” but
this set is included in A,, hence p; IF “A,, € E”. So Fact 4.7A holds. [y74

Sop; IF “{4p :n <w} C E”, but as p; I+ “E is a P-point” for some g we also
have p; IFp “g € “w and N, (4, U [0,g(n)]) € E”. Now as P has the PP-
property by 2.12B(1) (or 2.12F(4)), it has the “w-bounding property, hence
there is p2, p1 < p2 € P and g € “w (in V) such that ps IFp “g(n) < g(n) for
every n”. Hence

p2lFp “ () (4nU[0,9(n))) € E”

n<w

and therefore

(%) P2 Ikp “Npew(An U[0,9(n)]) # 0 mod F..

As p; € P and P(F)¥ < P, there is ¢ = (fo, f1,...) € P(F)* such that p,
is compatible (in P) with any q',q < ¢f € P(F)“. As F is a P-point, there
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is A* Cw (in V) such that A* = 0 mod F and Dom(f;) C,e A* for every i.
Choose, by induction on n < w, a, < anp+1 < w, such that o, > g(n) and for
< k(n):

(Dom(f,,(¢)) U Dom(fj,¢)) \ [0,an) C A™.

Now we shall define ¢! = (f] : £ < w), ¢ < ¢! € P(F). Let: f , =
fin(©Y0an,ani1)\ 4 and f}n(e) = fin©Yan,ans1)\4a+ (Where Op is the function
with domain B and constant value 0, 15 defined similarly.) Otherwise f, = fo..

Plainly, f}, is a function (by the definition of a,), its domain is the same as
that of f,, plus a finite subset of w, hence Dom(f},) C w, Dom(f},) =% mod F.
Also fm C f1, hence ¢ < ¢' = (fI,fl,...) € P(F). Clearly ¢! IFp “4, is
disjoint to of (o, ant1) \ A*” (by the definition 4,, and f:n @ f}n )

Also g(n) < ap, hence

qT IFp “An U[0,g(n)] \ A™ is disjoint to [an, Ctnt1)”

and thus

n<w

g Ikp « ﬂ (An U[0,g(n)] \ A) is disjoint to U[an,an+1) = [ao,w)”.
Consequently (as A* =0 mod F and [0, ap) is finite)

g trp () (4nU[0,g(n)]) = @ mod F .
n<w
By the choice of ¢ we know that p, ¢! are compatible in P so let p3 € P be a
common upper bound of py, q', hence p3 IFp “ N (4,U][0,9(n)]) =@ mod F”

n<w
which contradicts (x). Ug.7

4.8 Theorem. It is consistent with ZFC +2% = R, that there is no P-point.

Proof. Tt is left to the reader, or see the 5.13, where a similar proof is carried

out. Uas
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4.9 Claim. Assume iteration Q = (Pi,Qj:1<6,j<d)isasin 0.1, Eisa
non principal ultafilter in V' which is a P-point (i.e. if A, € E for n < w then
for some A € E we have A\ A, finite for each n < w) and if P; is not proper,
E is generated by < R; sets. If F is (pedantically generates) an ultrafilter in
VP for each i < § (and ¢ is a limit ordinal) then E is a P-point in VPs.

Remark. We weaken the assumption on E (in V) to
(*)o £ C P(w) and fil(E) = {A C w: (3B € E)A D B} is a non principal

ultrafilter on w, which is a P-point.

Proof.
We shall use 1.17 (see Definition 1.16, for our family of forcing notions).
Let k* =2, Dy = H(x)V, and
zRoT iff (z € (“w)N D and) for some A = A} € E for every n € lim(T') we have
{n<w:nn)=1}24
TRy T iff for some A = AL € F for every n € lim(T) we have {n < w : n(n) =
1}NnA=90

(so the z’s are not important).
Then clearly (D, R) = ({(Do, D1), (Ro, R1)) is a weak covering 2-model, in

particular it covers in V; use the standard <;. Note

(*)1 (D, R) covers in V¥ iff E generates an ultrafilter in V7

(x)2 if in VP the family E generates an ultrafilter then E generates a P-point
in VP (of course provided that P is proper or P preserves N; and |E| = ®;
or Ikp “Scx, (|E))Y is cofinal in Scx, (|E))V"”).

We next prove that (5, R,<3) is a fine covering 2-model. We check Definition
1.16(2).

Clauses (), (8) are trivial.

Clause (y)(a): Let k < 2, zRyT,. By symmetry let K = 0 so RoT;,. So let
A, = Aﬁ‘n, s0 A, € E. We can find B € E such that B C Ay, B C,. A, for each
n. Let T* = {n € “w : (Vi € B)n(i) = 1} so the choice A%. = B exemplifies
zRyT* (for any ), so it suffices to prove the inclusion from (v)(a). Toward this

let for i < w let m; € (i,w) be such that B\ m; C A;, and let w C w be infinite
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such that if i < w, j € w, ¢ < max(w N j) then m; < j. Now suppose n € “w
and i € w = nf(min(w\ (i+1)) € U T;UTo, and we are going to prove
n € lim(T*). This means that we sh]o<1;ifi€;rove A ={n<w:nn) =1} D B;
so let n € B; if n is smaller than the second member of w, then applying
the assumption for i = the first member of w we get n[(n + 1) € Tp which
implies the desired conclusion. If not let i9p < iy < n < i, where ig, i1, i2
are successive members of w. So by the assumption nli; € U T; U To, now
if nliz € Tp we are done, so assume nfiz € Tj, j < 1o, henjcfzu;n]— <1 < n.
Then A%, N [mj,00) 2 BN[m;,00) 2 {n}, hence as n € T; we get n(n) = 1 as
required.

Clause (7)(b): We can find B; € E such that {n < w : n;(n) = k} 2 B;, then
we can find B € E such that B\ B; is finite say C [0,m;) for ¢ < w. Choose
(nj : j < w) as in the proof of (v)(a); by symmetry w.l.o.g. U[ngj,nng)

j
belongs to the ultrafilter which E generated. So BN [n2;, n2;+1) N{i: n(i) =

J
k} belongs to this ultrafilter, hence it includes some B’ € E. Consequently,
{i <w:np,,(#) =k} 2 B for each j <w and {i <w:n(i) =k} 2 B, as
required.

Clause (4): Straight by (*)1, (%)2. O

4.10 Remark. 1) Mekler [Mk84]| considers the generalizations to finitely addi-
tive measures p : P(w) — [0,1]r, generalizing this proof to prove the con-
sistency of “the parallels of P-points do not existence”. Though there the
P P-property fails, he showed that “w-bounding suffices. Still we felt the PP-
property is inherently interesting.

2) Baumgartner [B6] was interested in ultrafilters with properties which weaken
“being P-points”. Answering his question we prove that if in the iteration above
we use unboundedly often random real then there is no P-point (see above),
and there is a measure zero ultrafilter (see [B6]).

3) The question of whether there are always NWD-ultrafilters (see van Douwen
[vD81], and [B6]) is answered negatively in [Sh:594], generalizing the proof here
(and continuing the “use of E” from [Sh:407]). There the PP-property is used.
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§5. There May Exist a Unique
Ramsey Ultrafilter

Usually it is significantly harder to prove that there is a unique object than
to prove there is none. The proof is similar to the one in the previous section,
but here we are destroying other Ramsey ultrafilter (in fact “almost” all other
P-points) while preserving our precious Ramsey ultrafilter. By a similar proof
we can construct a forcing notion P such that e.g. in V¥ there are exactly two
Ramsey ultrafilters (in both cases up to the equivalence induced by the Rudin
Keisler order) or any other number.

More exactly we shall prove the consistency of “there is a unique Ramsey
ultrafilter Fy on w, up to permutation of w, moreover for every P-point F,
Fy <rk F”.

Note that if there is a unique P-point it should be Ramsey; however,
concerning the question of the existence of a unique P-point we return to it in
XVIII §4.

Our scheme is to start with a universe with a fixed Ramsey ultrafilter Fy,
to preserve its being an ultrafilter and even a Ramsey ultrafilter. Our ultrafilter
will be generated by N; sets. Now in each stage we shall try to destroy a given
P-point F' such that FoL gy F. The forcing from §4 does not work, but if we

use a version of it in the direction of Sacks forcing it will work.

5.1 Claim.

1) If F is a P-point in V, P is a proper forcing notion and I-p “F generates
an ultrafilter ” then it (more exactly the one it generates) is a P-point in
VP,

2) If the ultrafilter F' is Ramsey in V/, and P is “w-bounding, proper and

IFp “F generates an ultrafilter”, then in V¥, F still generates a Ramsey

ultrafilter.

Proof.
1) As for being a P-filter, let p IFp “{4, : n < w} is included in the ultrafilter
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which F generates ”. So w.l.o.g. plFp “A,, € F”, and by properness for some
¢, p < q€ P,and A, ,, € F (for n,m < w) we have ¢ IFp “ for each n,
Ap € {Apm :m < w}’. As F is a P-point in V and {Apm : n,m <w} CF
belong to V, there is A € F' which is almost included in every Ay, hence in
each A,; (note: e.g., if F' is generated by R; sets, then “P does not collapse

R;” is sufficient instead “P is proper”).

2) As F generates a P-point in V7, the following will suffice: let 0 = ng < n; <
n2...and p € P;then we can find A € F and ¢ > psuch that ¢ I “AN[n; ni41)
has at most one element for each i” (i.e. F' is a so called Q-point). Remember
P has the “w-bounding property. So there are h € “wNV, and ¢ > p such that
qglkp “ (Vi)p; < h(3)”. W.Lo.g. h is strictly increasing.

Define n} (in V by induction on 4): n§ = 0,n},; = h(n 4+ 1) + 1. Now for
no i,j we have n;[G] < n} < nj,; < 0i41[G]. [Why? Assume this holds and,

of course, i < j; as ng < ne+1, clearly £ < ng[G] hence
niyy > h(n} 4+ 1) > h(ni[G] +1) > h(i + 1) > 1:41(G]

(remember h is strictly increasing), a contradiction]. Also F' is an ultrafilter

<

1

in V[G], by the assumption. As in V, F is a Ramsey ultrafilter and (n
w) € V, there is A € F such that AN [n},n;, ;) has at most one element for
each i. Let G C P be generic over V be such that ¢ € G. Checking carefully
in V[G] we see that for every i we have A N [n;(G], ni+1(G]) has at most two
elements and in this case they are necessarily successive members of A. Let
Ao ={k € A:|ANk| is even}, so either Ag or A\ Ap belong to the ultrafilter

which F' generates, and both are as required. Os.1

5.2 Lemma.
1) “F generates an ultrafilter in V¥ which is a P-point, Q is proper” is

preserved by countable support iteration for F' a P-point.
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2) “F generates an ultrafilter in V9 which is Ramsey + @ is “w-bounding

+ Q is proper ” is preserved by countable support iteration for F' a Ramsey

ultrafilter.

Proof. 1) By 4.9 and see 5.1(1).
2) Combine (1), 5.1(2) and 2.8. Os.2

5.3 Definition. For F a filter on w, let SP(F) be {T : T is a perfect tree
C “>2 and for some A € F, for every n € A, n € T N ™2 implies n"(0) €

T & 1" (1) € T}. The order is the inverse inclusion. We denote the maximal

such A by spt(T).

5.3A Remark.
1) So SP(F) is a “mixture” of P(F) and Sacks forcing and SP*(F') (defined

below) is half way between SP(F') and SP(F)“.

2) Remember Tjy def {veT:v<angpon v} foranyn € T and

T % (g e T : 4g(n) = n} for any n < w.

5.4 Definition. Let 7® %' X e<n(€2), T® &f Un<w T2 ordered by the being
initial segment, i.e. for f € T, and g € T,2 we set f < g iff f(i) = g(4) for each
i < n. (Note f(i) € *2). For a filter F on w, let SP*(F) be

{T : T is a perfect tree CT® and for every k < w we have spt,(T) € F},

where

spte(T) = {n < w : for every n € TI"(= TN T®) and v € *2 there is

p€"2,n (p) € T2, NT such that plk = v}.

The order is the inverse inclusion.

5.5 Claim. Let F be a filter on w and @ be SP(F') or SP*(F).
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DIFT e Q1M = {m,...,m} (with no repetition), T, = T[,"],T;r € Q,
T, < T} (ie. T} CTp) then T < TT % UX_, T} € Q and Tt IF “for some
te{l,...,k} we have T} € Gg”.

2) If t is a P-name of an ordinal T € Q and n < w then there are T,
T < Tt € Q and A such that Tt IFg “ € A” and |A| < |TI|, and
Uesn T C Tt. Moreover for each n € T, T[;] determines ¢.

Proof. 1) Observe that spt;(TT) 2 Mi<e<k sPt;(T2) \ (n +1).
2) For each n € T there is T7, Ty < T7 such that T decides the value ¢.
Now amalgamate the T™ together by applying part 1). Os 5

5.6 Lemma. Let F be a P-point ultrafilter on w. Then
1) SP(F) is proper, in fact a-proper for every a < w;, and has the strong
PP-property; and so is SP(F)¥
2) SP*(F) is also proper, a-proper for every a < w; and has the strong
P P-property.

Proof. Similar to the proof of 4.4. For its proof we shall use the following
theorem, of Galvin and McKenzie, (but later we shall prove a similar theorem

in detail (5.11)); note that we use only the “only if” direction.

5.7 Theorem. Let F be an ultrafilter on w. Then F is a P-point [Ramsey
ultrafilter] iff in the following game player I has no winning strategy:

in the n-th move:

player I chooses A, € F

player II choose wy, C A, w,, is finite [a singleton].

In the end player II wins if {J, . wn € F.

n<w

Proof of 5.6 from 5.7. We just have to define a strategy for player I, (in the
game from 5.7): playing on the side with the conditions in the forcing. From the
two forcing listed in the lemma we concentrate on proving only the properness
of SP*(F) (the other have similar proofs and this is the only one we shall use).
Let N < (H(x),€,<}) be countable with F' € N, so SP*(F) € N; and let
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T € SP*(F)N N and let (Z,, : n < w) be a list of the dense subsets of SP*(F)
which belong to N. We shall define now a strategy for player I. In the n’th
move player I chooses “on the side” condition T;, € SP*(F) N N in addition
to choosing A, € F and player II chooses finite w, C A,. For n = 0, player I
chooses Ty = T and Ag = w.

For n > 0, for the n’th step player I, using 5.5, chooses T}, € SP*(F)N N,
such that Tp,_1 < T, T,Lk_"g = T, where k,, &' max[| {wn : n' < n}u{n}]+
n+1and (Vn € T,[,k"]) ((Tn)in) € I). Then player I plays A, = spt,(T,). Note
that whatever are the choices of player I, we have T;, € N and we can let player
I choose T, as the first one which is as required by the well ordering <}. As F is
a P-point, by 5.7 there is a play in which he uses the strategy described above
and player II wins the play; this will give us the desired sequence of conditions.
Indeed, T = (N, T € SP*(F) satisfies spt,,(T) 2 U{wi : k € [n,w)} (for
each n < w) and hence T belongs to SP*(F). Os.6

Similar argument is carried out in more detail in the proof of 5.12.

5.8 Lemma. 1) If F is a P-point ultrafilter, SP(F)¥ < @, and @ has the
PP-property then in V9, F cannot be extended to a P-point ultrafilter.

2) If F is a P-point ultrafilter, SP*(F) < @Q, Q has the PP-property then in
V@, F cannot be extended to a P-point ultrafilter.

Proof. The proof is almost identical with the proof of 4.7, so we do not carry
out it in detail. (In fact we get the variant with weaker assumption as proved
in 4.7).

This is particularly true for part (1). For part (2) copy the proof of 4.7,
replacing P(F) by SP*(F) and defining r, as:

rn(i) =L iffi<n={£=0and

i>n= (3T € Gsp+(r))(3n € T3 )T = Ty & (n(i))(n) = 4.

This is done up to and including the choice of pg (i.e. (*) in the proof of 4.7).
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As ps € P and SP*(F) <¢ P clearly there is ¢ € SP*(F) such that p,
is compatible in P with any ¢' satisfying ¢ < ¢’ € SP*(F). For k < w,
as ¢ € SP*(F) by Definition 5.4 we know that spt,(q) € F, so as F is a
P-point there is B* € F such that B* \ spt,(q) is finite for every k < w.
Choose by induction on n < w, a, < w such that o, < a1, an > g(n) and
an > jn(k(n)) and B*\spt; (x(n))+1(2) C [0,y ). Define ¢’ 4f {n:n € qand for
every m < w we have: if an < m < £g(n), m < ant1 and m € spt; (t(n))+1(9)
then for each £ < k(n) we have (n(m))(in(£)) = 0 and (n(m))(jn(¢)) = 1}.

Now
(a) ¢' C T? is closed under initial segments and () € ¢/

[Why? Read the definition of ¢']
(b) ¢’ has no <-maximal element

[Why? Assume n € ¢'NT.2. If m < ap then any v € Sucy(n) belongs to ¢'.
So let an < m < apy1; if m & spt; (k(ny)+1(¢) again any v € Sucy(n) belongs

to ¢', so assume m € spt;  (k(n))+1(¢), which means
(V' € qNTE)(Vp € 1)) (v) € q & vjn(k(n) +1 = .

Apply this for 7’ and for the p* € J»((k(M)+12 defined by {£ < jn(k(n)) + 1 :
p*(8) = 1} = {jn(®) : £ < k(n)}, and find v satisfying p* < v and such that
n"(v) € Sucy(n) and even 1" (v) € Sucy (n).]

(c) If o <M < atng1, M € 5Pt (k(n))+1(q) then m € spt; (0)(q').

[Why? Same proof as of clause (b) noting that for any p; € *(®2 we can
find p* such that p; < p* € (k) +12 such that for m € [in(0), jn(k(n)) +1),
we have p*(m) =1 m € {jn(l) : £ < k(n)}]

(d) Let k < w, then spt,(q’) € F.

[Why? Choose n(*) such that k < ip(x)(0). Now if m € B* \ ap) then
for some n, n(x) <n < w and a, <m < anty hence m € spt; (x(n))+1(q) and
so by clause (c) we have m € spt; (5)(q'). But spty(g’) decreases with £ and
k < i) (0) < in(0), so m € spt;(q'). Together B* \ an(x C spty(q’), but the
former belongs to F'.]

(e) q' IFgp=(m)“ Q (4 U[0,g(n))) is disjoint to B* \ ap”
n<w
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[Why? Because if a, < m < an41 and m € B* then: by the definitions
of 75 ), Tjney (¢ < k(n)) and A, (which is {a < w : for some £ < k(n),
ri.(a) = 7. 0(a)}) we know m ¢ A, also m > o, > g(n), together this
suffices.]
Now ¢', po are compatible members of P (see the choice of ¢ and remember
q < ¢ € SP*(F)), so let p3 € P be such that p, < p3, ¢ < p3. So by clause
(e) the condition ps, being above ¢’, forces that () (4, U [0,g(n))) is disjoint

n<w

to a member of F. So as py < p3 clearly ps cannot force () (4, U|[0,g(n))) #
n<w
?® mod F. But this contradicts the choice of po. Os.s

We now state some well known basic facts on the Rudin-Keisler order on

ultrafilters.

5.9 Definition.

1) Let Fi, F» be ultrafilters on Iy, I3, respectively. We say F1 <gpg F» if there
is a function f from I to I such that f(I2) = {f(i) : i € Is} € F; and:
AcFiff ffYA) e R

2) In this case we say Fy = f(F3), if |I1] < |I2| we can assume w.l.o.g. f is

onto I.

5.9A Remark. We shall use only ultrafilters on w, which are not principal,
i.e. in f(w) \ w in topological notation.

It is known (see e.g. [J])

5.10 Theorem.
1) <gk is a quasi-order.
2) An ultrafilter F' on w is minimal 4ff it is Ramsey (minimal means
F' <pkx F = F <gg F' (see part (4)).
3) If F is a P-point, Ft <pg F then F' is a P-point.
4) If F! <prk F? <gk F1, then there is a permutation f of w such that
F, = f(Fy).
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Proof. Well known. Us.10

5.11 Lemma. Suppose Fy, F; are ultrafilters on w. Then the condition (A)
and condition (B) below are equivalent.
(A) Fj is a P- point, Fy is a Ramsey ultrafilter, and not Fy <gpg Fj.
(B) in the following game player I has no winning strategy:
in the n-th move, n even:
player I chooses A,, € Fy
player II chooses k,, € A,
in the n-th move, n odd:
player I chooses A, € F}

player II chooses a finite set w, C A,

In the end player II wins if

{kn : n < weven} € Fy and U{wn :n<wodd } € F.

Proof. =(A)=> =(B): If F} is not a P-point or Fy is not Ramsey then player I can
win by 5.7. (L.e., if F; is not a P-point, then are B, € F; for n < w such that
for no B € F; do we have B\ By, is finite for every n, now player I has a strategy
guaranteeing: for n odd, A, = ()| B\ (supU{we : £ < n odd) + 1), this
is a winning strategy. If Fp is :51(:”; lgIt/azmsey ultrafilter there are B,, € Fy for
n < w such that for no k, € B, (for n < w) do we have {k, : n < w} € Fp,
now player I has a strategy guaranteeing Ay, = B, this is a winning strategy.)
So we can assume Fj is a P-point and Fp is Ramsey, so by —(A) necessarily
Fy <rk Fi, hence some h : w — w witnesses Fy <gk Fi. Then player I can
play such that [J{h~1(k,) : n € w} and |J{wn : n € w} will be disjoint. So one
of them is not in F}, thus player I wins.

(A)=(B): Suppose H is a wining strategy of player I. Let A be big enough,
N < (H(N),€),{Fo,F1,H} € N and N is countable. As F; is a P-point there
is A} € F, such that A} C,. B for every B€ F; N N.
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Now we can find an increasing sequence (M, : n < w) of finite subsets of

N,N = ,.«., My, such that it increases rapidly enough; more exactly:

a) H,Fy, Fy € My, M,, € My 1; also can demand z € M,, & z finite = z C

M,; also M, Nw is an initial segment of w,

B) if p(z,aq,...) is a formula of length < 1000 + |M,,| with parameters from
M, U {M,} satisfied by some z € N, then it is satisfied by some x € M,

v) for £=0,1if Be F,N N, B € M, then BUM,; 2 A},

8) Mynw = 0.

Let upt1 = (Mp+1 \ Mp) Nw. So (u, : n < w) forms a partition of w.
As F, is an ultrafilter, there are Sy C w such that (J{u, : n € S¢} € Fy, and
n<mé&{n,m} CSg=>m-—n>10.

Can we demand also n € Sy, m € S; implies the absolute value of n — m
is > 57 For the Sy, .S we have, for each n € Sy there is at most one m € S
such that |n — m| < 4 and vice versa. So in the bad case there are S}; C Sy,
f: 83 — 8 one to one and onto, n — 4 < f(n) <n+4, U{un :n € S}} €F,

for £ = 0,1; moreover, for any S; C SZ,
Hun:nesSsteR iff (Jun:ineSiteh

provided that S} = f(Sg). Also as Fp is a Ramsey ultrafilter, there are k,, € u,
(for n € S(‘;) such that {kn : n € S}} € Fy. So the function f* : w — w defined
by f*(¢) = ky for £ € ugm), n € Sg, and f*(¢) = 0 otherwise, exemplifies
Fy <grk Fi, contradiction.

So without loss of generality
(%) for n € Sp,m € S; we have n —m has absolute value > 5,

(x+) there are k}; € u, N A} (for n € Sp) such that {k;; : n € So} € Fy (because
Fp is Ramsey.)
It is also clear that by (v) above, as A* € Fi:
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(* * ) For n € Sy let v, e ({A: A€ F,NM,_3}. Then

U{vn 'n € S1} € Fi,

also h; e \{{A: Ae FbNnM,,}.
[Simply note u, N A* C v, and w.l.o.g. min(Se) > 2].

Now there is no problem to define by induction on ¢ < w, ny, < w and
an initial segment £* of length £ of a play of the game (both increasing) such
that: the initial segment belong to M,,; and every k; will appear among the
k’s which player II have chosen in the play if n < ng, n € Sp; and every v, will
appear among the w’s player IT have chosen in the play if n < ny, n € Si; and
ng has the form n* + 2 with n* € Sy U Sy; and player I uses his strategy. But

in the play we produce player II wins, contradiction. Os.11

5.12 Main Lemmma. Suppose Fjy is a Ramsey ultrafilter (on w), F is a P-point,
and Q = SP*(F'), and kg “Fp is not an ultrafilter” then Fy <gg F.

Proof. Let Tp € Q, A be a Q-name, Ty kg “A Cw and w\ 4,4 # 0 mod Fy”,
and w.l.o.g. IFg “A C w”, (such Tp, 4 exists as after forcing with Q, Fy will no
longer generate an ultrafilter). Note that by the choice of Ty, A for any T' > Tp:

{n: for some Tt > T, Tt kg “n € A” and for some T > T,T' I-q “n ¢ A"}

belongs to Fp.

Now we use the game defined in Lemma 5.11. We shall describe a winning
strategy for player I. During the play, player I in his moves defines also T, € Q

preserving the following:

(*) (@) Th41 2 Tn
(b) Tp kg “ke € A” for £ even, £ < n
(c) T,[:Z(l")] = T™™! where m(n) = 1+ max[J{we : £ odd, £ < n}U{n}]
(d) for £ < n odd we have: wy C spt,(T,) (see Definition 5.4)
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(e) for n even, for the play from 5.7 player I chooses
A, CHk: T K “k ¢ A"}

(f) for n odd, for the play from 5.7 player I chooses A, = spt,, ) ()

More exactly, player I chooses T5,+1 in the n-th move after player II’s move (see
below more).

This is enough, as if in the end (J{we : £ < w odd } € F, then T def
N, Tn € Q, because for each £ < w, we have n > £ = spt,(Th+1) C spty(Ty)
and spty, 1(Ty) C spty(Tn) so by clauses (c)+(d)
(¥) £ <m <k = wi Cspty(Th).
Hence spty(T) 2 (,,5¢5Pte(Tm) 2 Uppsewm € F (as all cofinite subsets of w
belong to F'). Now T forces {k; : £ < w even } C A (remember clause (b)),
s0 {ke : £ < w even } ¢ Fy by the hypothesis on Tp, A (as {k¢ : L < w} € V,
and To < T, T Ikp “{dke : £ < w} C A” so {ke : £ < w} € Fp implies:
T kg “w\A =0 mod F”, a contradiction). So the strategy defined above is a
winning strategy for player I hence by Lemma 5.11, Fy <gg F. So it remains

to show that player I can carry out the strategy i.e. can preserve (x). Note that

To is defined.

Case 1: n even > 0: Player I lets m(n) < w be max[J{we : £ <n odd}u{n}]+
1, and let /™™ = {no,... ,Ms(n)} With no repetition. For each 7, (£ < s(n))
clearly (T7,)[n,) is > To and belongs to Q, hence

A} = {k < w: there are Ty, Ty}, > (Tn)[y,], such that Ty, I-q “k € A”, and
17, g % ¢ 4°)

belong to Fp.
Now: player I plays A4, = negs(n) A7} which is clearly a legal move.
Player II chooses some k, € Aj,.

Player I (“on the side”) lets Toy1 = |J T}, (it is as required in (x)).
£<s(n)

Case 2: n odd: Player I lets A, = spt,,,)(Tn) (note Q@ = SP*(F)). Note Ty,

has just been chosen.
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Player II chooses a finite w, C A, and player I lets on the side Tp,4+1 = Tj.
Us.12

5.13 Theorem. It is consistent with ZFC +2%0 = X, that, up to a permutation
on w, there is a unique Ramsey ultrafilter on w. Moreover any P-point is above

it (in the Rudin-Keisler order).

Proof. ~We start with a universe satisfying 2% = N; + 2% = N, and
Q(s5<Ry:cf(5)=R,}- Lhere is a Ramsey ultrafilter F' in V. We shall use a CS
iterated forcing (P;,Q; : i < wp) such that each Q; is proper, has the PP-
property (hence is “w-bounding), has cardinality continuum and forces that F
still generates an ultrafilter. So by 5.1, 5.2, F remains a Ramsey ultrafilter in
VP for i < wy and also we can show by induction on i < ws, that in VP CH
holds and P; has cardinality X;; so by VIII §2 below P,,, satisfies the Ro-chain
condition. If F; € V[G,,] (G C P,, generic) is a P-point, not above F, then
there is a p € P,, forcing F'; is a name of such ultrafilter, and for a closed
unbounded set of § < g, cf(§) = Ny implies that F} P NPV e VP
and p forces that F} is a P-point not above F (in VF%).

Now, by the diamond {(5<x,.cf(5)=r,} We can assume that for some such
8, Qs = SP*(F}).

Now by 5.12 forcing with Qs (over V%%) preserves “F (generates) an
ultrafilter”, by 5.6(2) Qs has the PP-property hence (by 2.12B) Qs is “w-
bounding and trivially Qs has cardinality continuum; so Q; is as required. Now
as each Q; (i < j < ws) has the PP-property, P,,/Ps has the PP-property (by
2.12C+2.3). So by lemma 5.12 we know F} cannot be completed to a P-point

in VP2, Us.13

§6. On the Splitting Number s and Domination
Number b and on a

For a survey on this area, see van Douwen [D] and Balcar and Simon [BS].
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Nyikos has asked us whether there may be (in our terms) an undominated
family C “w of power X; while there is no splitting family C [w]®® of power R;.
He observed that it seems necessary to prove, assuming CH, the existence of a
P-point without a Ramsey ultrafilter below it (in the Rudin-Keisler order).

In the third section we have proved a preservation lemma for countable
support iterations whose first motivation is that no new f € “w dominates all
old ones, and prove (3.23(1)) the consistency of ZFC+2% =R, + 2 =5 > b
where 0 is the minimal power of a dominating subfamily of “w (see 3.24(3)),
and s is the minimal power of splitting subfamily of [w]®° (see Def 3.24(1))
and b is the minimal power of an undominated subfamily of “w (see Definition
3.24(2)).

However one point was left out in Sect. 3: the definition of the forcing we
iterate, and the proof of its relevant properties: that it adds a subset 7 of w
such that {A € V : A C w,r C* A} is an ultrafilter of the Boolean algebra
P(w)V; but in a strong sense it does not add a function [ € “w dominating all
old members of “w; this was promised in 3.22. Note that Mathias forcing adds

a subset r of w as required above, but also adds an undesirable f. This is done

here; its definition takes some space. This forcing notion makes the “old” [w]®°
an unsplitting family. The proof of this is quite easy, but we have more trouble
proving the “old” “w is not dominated. ;From the forcing notion (and, in fact,
using a simpler version), we can construct a P-point as above.

Then A. Miller told us he is more interested in having in this model “no
MAD of power < R;” (MAD stands for “a maximal almost disjoint family
of infinite subsets of w”) (i.e. 5, @ > R; = b). A variant of our forcing can
“kill” a MAD family and the forcing has the desired properties if we first add
R; Cohen reals (see 3.23(2), 6.16). We also like to prove the consistency of
ZFC+2R0 = 2% = Ry + Ry = 5§ > a = b = R;, where a = min{|A4| : 4 a
maximal family of almost disjoint subsets of w} (see Definition 3.24(2)). In the
seventh section we show that in the model we have constructed (in the proof of
3.23(1)) there is a MAD (maximal family of pairwise disjoint infinite subsets of

w) of power X; (hence a = X;). This answers a question of Balcar and Simon:
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they defined

a; = min{|A| :4 is a maximal family of almost disjoint subsets of w x w,

which are graphs of partial functions from w to w}.

They have proved s < a, and a < a, < 2%, 50 our result implies that a < ag
is consistent.

In the eighth section we prove the consistency (with ZFC 420 = 281 = R,)
of Ny = h < a = b = Ry (where b is the minimal cardinal x for which
P(w)/finite is a (k, 2%)-distributive Boolean algebra).

The relations between the cardinals above are described by the following

diagram.

s — 0 —— 2N

T 1 I

Ny — h — b - a - a;
(where arrow means “< is provable is ZFC”) (see [D] and [Sh:207] for results not
mentioned above, and two other cardinal invariants); sections 6, 7, 8 represent
material from [Sh:207] (revised).
* * *

Now we turn to the definition of the forcing we iterate and the proof of
its relevant properties: that it adds a subset r of w such that {A e V : A C
w,T Cqae A} is an ultrafilter in the Boolean algebra P(w)V; but in a strong sense
(that is, almost “w-bounding) it does not add a function f € “w dominating

all old members of “w.

More on such forcing notions see [RoSh:470].

6.1 Definition. 1) Let K,, be the family of pairs (s, h), s a finite set, h a

partial function from P(s) (you can think of h(t) when not defined as —1) to

n + 1 such that:

(a) h(s)=n

(b) if h(t) =£+1 (sot C s),t =t; Uty then h(t1) > £or h(tz) > £ and |t| > 1.
We may add
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(c) if t; C to are in Dom(h) then h(t1) < h(t2).
2) K>pn, K<n, Knm are defined similarly, and K = |J Kp.

We call s the domain of (s, k) and write a € (s,?SuiJnstead of a € s. We call
(s, h) standard if s is a finite subset of the family of hereditarily finite sets. We
use the letter ¢ to denote such pairs. We call (s, h) simple if h(t) = [log,(|t])]
fort Cs.If t = (s,h) € K, let lev(t) = lev(s, h) be the unique n < w such that

te Ky.

6.2 Definition. 1) Suppose (s¢, hy) € Ky for £ € {0,1}. We say (so, ho) <¢
(s1,h1) (or (s1,h1) refines (sg, ho)) if:

so = s1 and [t; C t2 C so & hi(t1) < hi(t2) = hi(t1) < ho(t1) < ho(t2)] (so
lev(so, ho) > lev(s1, h1) and Dom(h;) C Dom(hy)).

2) We say (sg,ho) <¢ (s1,h1) if for some s; € Dom(hg), (s, holP(sp)) =

(slvhl)
3) We say (so, ho) < (s1, h1) if for some (s', h'), (so, ho) < (s', h) <% (s1,h1).

6.3 Fact. The relations <%, <¢, < are partial orders of K. Oe.3

6.4 Definition.
1) Let L, be the family of pairs (S, H) such that:
a) S is a finite tree with a root called root(S).
b) H is a function whose domain is in(S) =the set of non-maximal points
of S and with values H for z € in(S).
c) For z € in(S), (Sucs(z), Hz) € K>n, where Sucg(z) is the set of
immediate successors of zin S, so Hy(Sucs(z)) > n.

2) We say (S°, H%) < (S1, H!) if S° D S!, they have the same root, in(S?) =
SN in(S°) and for every x € in(S'), (Sucso(x), HY) < (Sucs:(z), H}) and
of course Sucg: (z) = Sucgo(z) N SL.

3) Let int(S) et S\ in(S), lev(S,H) = max{n : (S,H) € L,}, x € (S,H)
means € S. A member of L, is standard if int(S) C w and in(S) consists
of hereditarily finite sets not in w. Let for z € S, (S, H)?l = (Sl H[Sk])
where Sl is S[{y € S: S =z <5 y}.
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4) For t € Ly, let t = (S*, H*) and let lev(t) = max{n:te€ L,}
5) We say t',t? € |, ., L are disjoint if St NSt =

6) Let int(t) = int(S*).

7 Let L= U Ly

n<w

6.5 Fact. The relation < is a partial order of L = J, L,. Oe.5

6.6 Fact. If (S, H) € Ly, then (S',H') o half(S, H) belongs to Li(n41)/2) and
(S,H) < (S',H') where S' = S, H(A) = [H,(A) — lev(S, H)/2] where [z] is
the largest integer < z and Dom(H) = {A: H,(A) > lev(S, H)/2}. Oe.6

6.7 Fact. If (S, H) € Lny1, int(S) = Ag U A; then there is (S, HY) > (S, H),
(S',HY) € L, such that [int(S') C Ag or int(S') C 4;].

Proof. Easy by induction on the height of the tree (using clause (b) of Def
6.1(1)). Ue.7

6.8 Definition. We define the forcing notion Q:

1) pe Qifp = (w,T) where w is a finite subset of w, T is a countable (infinite)
set of pairwise disjoint standard members of L and T'N L,, is finite for each
n, moreover for simplicity the convex hulls of the int(t) for t € T are
pairwise disjoint; let cnt(7") and cnt(p) mean |Jy gyer int(S, H). Writing
T = {t, : n < w} we mean (min(int(t,)) : n < w) strictly increasing.

2) Given t; = (S1,Hi),...,tx = (Sk, Hg) all from L such that S;NS; =0
(i # j), and given t = (S, H) from L, we say t is built from ty,...,t; if:
there are incomparable nodes ay,...,ax of S such that every node of S is
comparable with some a;, and such that, letting S(a;) ={b€ S :b>g a;}
we have (S;, H;) = (S(ai), H!S(a;)).

3) (@, T° < (w',TY) iff: w® C w! C w® U cnt(7?), and, letting T° =
{t9,¢9,...}, T' = {t§,tl ...}, there are finite, nonempty pairwise disjoint

subsets of w, By, Bi,. .., and there are t; > tJ for all i € | J; B; such that
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for each n only finitely many of the t; are inside L,, and such that for each

Tt

4) We call (w,T) standard if T = {t, : n < w}, max(w) < min[int(t,)],

j, letting B; = {i1, ..., ik}, t} is built from t;,,...,t

max|[int(t,)] < min[int(t,+1)] and lev(t,) is strictly increasing (and writ-

ing T = {t, : n < w} we mean this).

6.9 Definition. For p = (w,T) we write w = wP, T = TP. We say q is a pure
extension of p (p <pr q) if ¢ > p, w? = wP. We say p is pure if w? = @), and

p <* ¢ means omitting finitely many members of 79 makes ¢ > p.

The following generalization will be used later.

6.10 Definition. 1) For an ideal I of P(w) (which includes all finite sets)
let Q[I] be the set of p € Q such that for every A € I, for infinitely many
t € T?, int(t) N A = 0. The main case is I = family of finite subsets of w (then
Q= Q).

2) Let Q'[I] be {p € Q : thereis g such that Q F p < q and ¢ € Q[I]} (so
Q[I], Q'[I] are equivalent).

6.10A Remark. 1) So if p = (w, {t, : n <w}) € Q[I] then p < (w, {half(t,) :
n <w}) € Q[I].

2) More generally if p = (w, {t, : n < w}) € Q[I] and h : w — w is a function
from w to w going to oo (i.e. lim 711(12 h(n) = oo) and t], > t,, or even t,, > o]

and lev(t;) > h(lev(t,)) then (w,{t, : n < w}) € Q[I].

6.11 Fact. 0) Q is a partial order.

1) If p € Q and 7, (for n < w) are @-names of ordinals, then there is a pure
standard extension ¢ of p such that: letting 79 = {t, : £ < w}, for every n < w
and w C max[int(t,)] + 1, if we let ¢} = (w, {tg : £ > n}), then for k < n:

qy, forces a value on T iff some pure extension of g, forces a value on 7.
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Moreover if TP = {tS : n < w}, we can demand A t; = tQ but then the
demand on n, w above is for n > n* — 1 only. <

2) Q is proper (in fact a-proper for every a < wy).

3) kg “{n : (3p € G@)[n € wP]} is an infinite subset of w which P(w)V does

not split.”

Proof. Easy (for (3) use 6.7, see more in 6.16(3)). Oe.11

6.12 Lemma. Let g, 7, be as in 6.11(1). Then for some pure standard extension

r of ¢, letting T" = {t, : n < w}, (lev(t]) strictly increasing, of course and)

the following holds.

(x) For every n < w, w C [ max(int(t),_;)) + 1], and t/, > t/, (so we ask only
lev(t;) > 0) there is w’ C int(t]), such that (wUw’, {t, : £ > n}) forces a

value on 7., for m < n (we let max int(t_,) be max(w?U {-1})).

This lemma follows easily from claim 6.14 (see below) (choose by it the t,
by induction on n) and is enough for a proof of Lemma 3.22, which we now

present.

6.13 Proof of Lemma 8.22. By 6.11(2), clause (a) (of 3.22 i.e. Q is proper)
holds (more fully use the last clause of 6.11(1) to get a sequence of conditions
as needed); and by 6.11(3) clause (d) (of 3.22 i.e. inducing an ultrafilter on the
old P(w)) holds; and clause (c) (of 3.22 i.e. |@Q| = 2%0) is trivial. For proving
clause (b) (i.e. @ is almost “w-bounding, see Definition 3.5(1)) let f € “w and
p € Q be given. Let 7, = f(n), apply 6.11(1) to get g and then apply (on
q, Tn (n < w)) 6.12 getting 7 = (wP, {t,, : n < w}) > q. We have to define
g € “w (as required in Definition 3.5(1)). Let g(n) = max{k + 1 : for some
w C [ max(int(t},)) + 1] we have (w,{t, : £ > n) I- “f(n) = k”}. Let A be
any infinite subset of w, and we define p’ = (w?,{t, :n € A}),sop' >r > p.
We have to show that p’ Ibg “for infinitely many n € A4, f(n) < g(n)”. So
it is enough, given ng < w and p?, p’ < p?> € Q to find n € A\ np and p?
such that p? < p3 € Q and p? IFg “f(n) < g(n)”. So assume that no < w and
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p < p?e @, and p? = (W, T?), T? = {t2 : n < w}, and w.l.o.g. for some
i(*) > nq for every n we have min[int(t2)] > max[int(t; )] > sup(w?). As
p? > p/, we can find k <w, iy < -+ < i from A, and t}, > t, such that t3 is
built from t} ,...,t},; by the previous sentence i1 > i(x). By (*) from 6.12 (as
w? C maxlint(t],))] + 1, and i(x) < 11 and r from 6.12 is standard), there is
w” C int(t} ) (hence w” C int(t)) such that p* = (w? Uw”, {t} : j € (ix,w)})
forces a value, say m to f(ix), so by the definition of g clearly m < g(ix). But
clearly p?, p® have a common upper bound: p* = (w2 Uw”, {t2 : n € (n4,w)})

for every n4 < w large enough (really ny = 0 is O.K.!). So we are done. U3 2

6.14 Claim. Let (§,T") be a pure condition, and let W be a family of finite
subsets of cnt(7) so that

(x)  for every (0,T') > (0,T), there is a w C cnt(7”) such that w € W.

Let k < w. Then there is t € Ly appearing in some (§,T") > (0, T) such that:

t'>t = (JweW)wCint(t)].

Proof. Let T* be arbitrary such that (0,7) < (0,7*) € Q, and T* = {t,, :
n < w}. For notational simplicity, without loss of generality let W be closed

upward.

Stage A: There is n such that for every t; >half(t;) (for £ < n) we have
Uecn int(ty) € W. This is because the family of (t} : £ < n), n < w, t, >half(t,)
form an w-tree with finite branching and for every infinite branch (t} : £ < w)
by (*) there is an initial segment (t, : £ < n) with {J,,, int(t;) € W. [Why?
Define (S, H?) € L such that S¢ = S* and H{(A) = H%(A) (and not HY (A)hH
when z € in(S%), A C Sucg,(z), so letting T/ =: {(S*,H?) : £ < w} we
have: lev(S¢, H*) > lev(ty)/2¢ — 1/2 and (0,7*) < (,T’). Now apply (*)

remembering W is upward closed.] By Konig’s lemma we finish.

Stage B: There are n(0) < n(l) < n(2) < ... such that for every m and
t, > half(ty) for n(m) < £ < n(m + 1), the set (J{int(ty) : n(m) < £ <
n(m + 1)} € W. The proof is by repeating stage A (changing T*).
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Stage C: There are m(0) < m(1) < ... such that: if 1 < w, for every function h
with domain [m(i), m(i + 1)) such that A(j) € [n(j),n(j + 1)) and t} > half(t,)
for all relevant £ then U{t;t(j) 1 j € [m(3),m(i + 1))} belongs to W.

The proof is parallel to that of stage B; as there it is enough, assuming m(i*) was
chosen, to find appropriate m(i* +1) > m(i*). The set of branches corresponds

to {(t; : £ € [m(i*),w)) : for some function h € II [nE),nE+1))
Le[m(i*),w)
for every £ € [m(i*),w), t; > half(ty))}. So if the conclusion fails i.e. for

every m > m(:*) if we assign m(i* + 1) = m, for some function h,, with
domain [m(i*),m), h(£) € [n(£),n(£ + 1)) and (t7* : £ € [m(i*),m)), where
t7* > half(t,,, () the desired conclusion fails. So by Kénig’s lemma we can

find h € [T [@),nE+1)), (t, : £ € [m(i*),w)) such that for every
Le[m(i*),w)

m’ € [m(i*),w) for infinitely many m € [m’,w) we have
L€ [m(i*),m') = hm(€) = h(£) & t, =t}

As before using (t;, ) : £ < w) we can contradict the assumption (x).

Stage D: We define a partial function H from finite subsets of w to w: let
H(u) > 0 if for every tj > half(t,) (for £ € u) we have (|, int(t;)) € W and
let H(u) > m+1if [u=1u; Uug = H(uy) > mV H(ug) > m)].

We have shown that H([n(:),n(z + 1))) > 0, and H([n(m(i)),n(m(i +
1)))) > 1, (for the later, assuming u = [n(m(i)),n(m(i + 1))) = u1 U uz
we have that: either u; contains an interval [n(j),n(j + 1)) for some j €

[m(i),m(i + 1)) or uz has a member in each such interval so it contains
m(i+1)—1
{h(j) : j € [m(i),m(i + 1))} for some h e [] [n(f),n(£+ 1)); now apply
£=m(i)
stage B to show that in the first case H(u;) > 0 and Stage C to show that in

the second case H(u3) > 0).

It clearly suffices to find u, H(u) > k. [We then define t = (S,H) as
follows: S = Upe, S* U {u}, u is the root with set of immediate successors
being {root(ty) : £ € u}; and the order restricted to S* is as in t,; and for
z € St we have HY = HE*™) and HY(A) L H({e : root(SY) € A}).] We

prove the existence of such u by induction on k, (e.g. simultaneously for all 7",
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(@, 7"y > (8,T)). This is done by repeating the proof above (alternatively, we

just repeat 2% times getting an explicit member of K} in the root). Oe.14

The rest of this section deals with Q[I]. Note that by 6.21(2) below in
the interesting case the set of standard p € Q[I] is dense. For the rest of this

section:

6.15 Notation. 1) Let Q° be the forcing of adding RX; Cohen reals (r; : i < w;),
r; € “w. We usually work in V3 = V@’

2) Let A = {4; : i < a*} denote an infinite family of infinite subsets of w
(usually the members are pairwise almost disjoint).

3) Let I = I4 be the ideal of P(w), including all finite subsets of w but
w ¢ I and generated by AU {[0,n) : n < w}. So I4 depends on the universe
(the interesting case here is A a MAD family in V, of the form {4; : i < w;},

Q[I4] means in V; = VQ). If not said otherwise we assume () ¢ 4.

6.16 Claim. Assume A € V is a family of subsets of w (not necessarily MAD),
and we work in V; = V@’ and I = I4 so Q[I] is from Ve’
1) If p € Q[I] and 7, (n < w) are Q[I]-names of ordinals then there is a pure
standard extension g of p such that: ¢ € Q[I], and letting 79 = {t, : n <
w}, for every n < w and w C [ max int(t,) + 1] let ¢7 = (w,{t;:n < £ <
w}), then (g7 € Q[I], of course, and) for every k < n we have: ¢7 forces a
value on 7 iff some pure extension of 7, in Q[I] forces a value on 7.
2) Q|I] is proper, (moreover a-proper for every a < w; (not used)).
3) oy “{n: (3p € Ggip)n € wP} is an infinite subset of w which is almost
disjoint from every A € I (equivalently A € A).”

Proof. 1) Let X be regular large enough, N a countable elementary submodel of
(H(M), €,V N H(A)) to which I, (r; : i <wi), Q[I], p and (1, : n < w) belong
and N' = NNV €V (remember we are working in V;). Let § = N Nw; (so
0 ¢ N).So N = N'[(r; : i < )] belongs to V[{r; : 1 < 6)].

We define by induction on n < w, ¢" € Q[I]NN, t, and k, < w such that:
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a) each g™ is a pure extension of p.

b) ¢" > ¢t for £ < n and if w C kn, m < n+ 1 and some pure extension

of (w,T9") forces a value on T,,, then (w,T9") does it.

¢) kn > ke and k, > maxint(t,) for £ < n.

d) every £ € cnt(g"*?!) is > ky ie. t € 79" = minlint(t)] > k,..

e) t, >t/ for somet, € T9" and lev(t,) > n and min[int(t,)] is > k,,.
There is no problem in doing this: in stage n, we first choose k,, then ¢" and
at last t,. We want in the end to let T9 = {t, : n < w} (and w? = wP). One
point is missing. Why does ¢ = (wP,T?) belong to Q[I] (not just to Q)? But
we can use some function in V[(r; : i < §)] to choose k,, ¢" and then let t,
be the r5(n)-th member of 79" which satisfies the requirement (in some fixed
well ordering from V of the hereditarily finite sets). As A € V and r5 € “w is
Cohen generic over V[(r; : i < §)], this should be clear.

2) Easy by part (1).
3) Use Definition 6.10 and Fact 6.7. O¢.16

6.17 Claim. Assume A = {4; : i < o*} € V is a MAD family, and in V}
we have that IFg“{A; : i < o*} is a MAD family”. In V;, let I be the ideal
generated by {4, : 1 < o*} and the finite subsets of w. Then: (w, {t, : n < w})
is a [standard] condition in Q'[I] iff

it is a [standard] condition in @ and there are finite (non empty) pairwise
disjoint up C a* (for £ < w) such that for each ¢, for every k for some n < w,
for some t;,, t, > ty, lev(t,) > k and int(t;) C U,c,, 4i iff

as before but there are singletons u, as above.

6.17A Remark. Note: if A € V, by 6.17 the standard ¢ € Q[I] are dense in

Q[I], but otherwise we do not know. In the proof it does not matter.

Proof. The third condition implies trivially the second. We shall prove [second
= first] and then [first=>third]. Suppose there are u; (/ < w) as in the second
condition above and we shall prove the first one. So for each £ < w we can

find (t, : n € By), B, C w is infinite, t}, > t,, lev(t,) > |B; N n| and
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; def

int(t;,) C U A;. Wlog (B : £ < w) are pairwise disjoint, so p < p’' = (w, {t}, :
€Uy
n € | Be}) and p’ € Q, so it suffices to show p’ € Q[I]. Now every B € I is

<w
included in ¢,

some £, uyp is disjoint from u, hence B N (Uieu, A;) is finite. We know that for

A;U{0,...,n* —1} for some finite v C w; and n < w. But for

infinitely many n € By, int(t,) C ;c,, 4i and the int(t;) (n < w) are pairwise
disjoint, hence for the infinitely many n < w, int(t,) N B = ), as required in
the first condition.

Lastly assume the first condition and we shall prove the third one. Suppose
p = (w,{t, : n < w}) € Q'[I], see Definition 6.10(2), w.l.o.g. p € Q[I]. We

choose by induction on m a finite u, C o*, disjoint from | J,_,, u¢ such that

B, = {n < w: for some t;, > t, we have lev(t;) > lev(t,)/2 — 1

and int(t,) C U A}

1€UmM

are infinite and moreover u,, is a singleton.
Assume we have arrived to stage m. Let B def {n : int(t,) is disjoint

to U{A4: : ¢ € U wue}}, so B is necessarily infinite (by the Definition of
£<m

Q[I]), moreover p° - (w, {half(t,) : n € B}) belongs to Q[I] and is above
p. Now clearly Q[I] C @, hence p® € Q. By an assumption of 6.17, we know
A= {A; : i < a*} is a MAD family even after forcing by Q, so there are
pl = (w', {t, :n <w}) € Q, p° < p! and iy < " such that

(*)  prI-“{n:(3g€ Go)n € wi} N A;, is infinite”.

Let n* be > sup(4;, N U{4i : ¢ € |J wue}). By 6.7 (more exactly, as in
the proof of 6.16(3)), without loss ofeggrllerality, L<) cnt(t]) C A;, \ n* or

U cnt(t)) N A;, = 0, but the second possibility contradicts (x) so the first

n<w

holds.

But p' > p° (in Q) so for each n < w for some k < w and jno <
«++ < jnk—1 from B, t;, is built from half(t;, ,),...,half(t; ,_,). So for some
y € t, we have (t,)¥ > half(t;, ,), hence clearly (or see 6.20 below) there is
t] >t ., such that int(t] ) C Ai \n* and lev(t] ) > lev(t;, ,)/2. Lastly

In,0 —
let um, = {io} (i.e. all depend on m). Ue.17
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6.18 Claim. Let V;, A, I = I4 be asin 6.16 + 6.17 (so A is a MAD family in
V, Vi and V¥). Assume we are given k* < w, (0,T) = (0, {t, : n < w}) € Q[I],
and a family W of finite subsets of cnt(T") such that

(%) if (0,T) < (0,T") € Q[I] then there is w C cnt(T”) such that w € W.
Then there is t € Li- appearing in some (1”,0) > (T,0) such that:

t' >t= (Jwe W)[w C int(t'))].

Proof. Without loss of generality T is standard (by 6.16(1)) and W upward
closed (check). Moreover we may assume that lev(t,) > 2k* for each n < w.

We know, by 6.17 above, that there is T* = {t, : n < w}, such that
(0,T*) € Q is standard, (0,T) < (0,T*) and for some sequence (jm : M < w)
of pairwise distinct ordinals < a* and partition (B, : m < w) of w to infinite
sets we have:

n € By, = int(t,) C 4;,..
For every finite u C w define

nor(u) = max{m : for every cover (uy: £ < 2™) of u

(ie. up Cuand | ue=u),
2<2m

for some £ < 2™ and for every t; > half(t;)

for i € u, we have: [U int(t;)] € W}.
i€up

If for some finite u C w, nor(u) > k* we can finish. Why? Just as in the end
of the proof of 6.14 we define t = (S, H) as follows: S = (J{S* : £ € u} U {u},
u is the root, its set of (immediate) successor is {root(S%) : £ € u}, the order
is defined by: restricted to S* is as in t, for z € S* we let HE = ;'alf(t‘)
and H! is defined by: for v C u let H},({root(5%) : £ € v}) = nor(v). We know
H,({root(S*) : £ € u}) > k*. This suffices as @; below holds. Clearly by the
definition of nor we have
Do t>t' = (Gwe W)w C int(t)]

Now we have to prove



§6. On the Splitting Number s and Domination Number b and on a 359

@, if v = v1 Uve, nor(v) > m + 1 then: nor(v1) > m or nor(vy) > m.

Proof of ®;. If nor(v1) # m, then there is a cover (v} : £ < 2™) of v such that:

(¥); for every £ < 2™ for some t], > half(t,) (for m € v}) we have
Unesy nt(t))] ¢ W.

Similarly, if nor(ve) # m then there is a cover (v? : £ < 2™) of v such that:

(%)2 for every £ < 2™ for some t/, > half(t,) (for m € v}) we have

U int(t],) ¢ W
mev?

Define for 7 < 2m+1:

) if i<2m
YT\ w2 gm  if i€ [2m,2mih),

So if the conclusion fails then (v; : i < 2™*!) exemplifies nor(v) ¥ m+ 1, a
contradiction.

We can conclude from all this that, toward contradiction we can assume that

® u C w finite = nor(u) 2 k*.
So
®; for every n = {0,...,n — 1}, nor(n) # k* so there is a cover (v} : £ < 2¥°)
of n such that:
int(t))] ¢ W.

By Konig's lemma there is a sequence (vy : £ < 2%7) of subsets of w such

@ for every £ for some t; > half(t;) (for i € v}}) we have [Uie);,
that for every m < w for some n = n(m) > m we have vp N m = v} Nm.

Now for some £ = £(x) < 2*" for infinitely many m < w for infinitely
many n € B, we have n € v (on the B,,’s, see beginning of the proof of 6.18),
so by 6.17 we know that (@, {t; : i € vg}) € Q[I] (and of course is > (0,T)).
(Alternatively, for some £ < 2", for every A € I4, for infinitely many n € vp
we have int(t,) C w \ A. If not then for each £ some A, € I4 fails it. So let

A= |J A€ I4 and we get contradiction to (0, {t; : i < w}) € Q[I].) Now
£<2k"
for every k letting n = n(k) be such that vy, Nk = Vg Nk, we apply &.

So there are t; > half(t;) (for i € vj,)) such that UiEv;‘(‘) int(t]) ¢ W, and
by monotonicity Uiew(.)nk int(t;) ¢ W. By Konig’s lemma (as W is upward
closed) there is (t} : i € vpx)), t; > half(t;) such that for every n we have
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Uie"nvl(*) int(t}) ¢ W. So (again as in the proof of 6.14, see 6.20 below) choose
(St H%) € L such that int(S%) = int(t}) and lev(S¢ HY) > lev(ty)/2, ie.
St = S%, Hi(v) = min{[lev(t)/2], H%(v)} (when v C Sucge(x)). So clearly
0, T*) < (0,{(S% H®) : £ < w}) € Q[I] (see 6.10A(2)) and we apply (*) from

the assumption and we get a contradiction, so finishing the proof of 6.18. (g 15

6.19 Claim. Let A, I = I4 be as in 6.18. Let ¢, 7, be as in 6.16(1). Then

for some pure standard extension 7 € Q[I] of g, letting T = {t], : n < w},

(standard (see Definition 6.8(4)) so lev(t),) strictly increasing, of course) the

following holds:

() For every n < w, w C [ max(int(t,,_,)) + 1], and t// > t, (so we ask
only lev(t)) > 0) there is w’ C int(t]}), such that the condition (w U w’,
{te : £ > n}) forces a value on 7, for m < n (we let max int(t’ ;) be

max(w? U {—1})).

Proof. Like the proof of 6.16(1) but using as the induction step claim 6.18.
Us.19

6.20 Fact. If t; > half(tg), then for some t; > to we have int(tz) = int(ty),
lev(ty) > lev(to)/2.

Proof. Included in earlier proof: 6.14. Ose.20

6.21 Conclusion. Let V;, A, I = I4 be as in 6.18.

1)Ifp e Q[I]andw = |J A, where k < w then for some p’, p < p' € Q[I]
and for some £ < k we hav:<c];1t(Tp) C Ay.

2) The set of standard p € Q[I] is dense, in fact for any p € Q[I] there is
a standard ¢, p < q € Q[I], w? = wP and T9 C T".

Proof. 1) By repeated use w.l.o.g. k = 2. Let p € Q[I] and TP = {t,, : n < w}.
For each n apply 6.7 to find t/, > t,, such that int(t,,) C A or int(t;) Cw\ 4
and lev(t)) > lev(t,) — 1. Let Yo = {n : int(t,,) C A}, Y1 = w \ Yo, so for some
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£ € {0,1} we have: for every X € I the set {n € Yz : int(t}) N X = 0} is infinite.
[Why? If X, contradict the demand for £ = {0, 1} then X, U X; € I contradict
p € Q[I] by Definition 6.10.] So (w?,{t], : n € Yz}) € Q[I] is above p, and it
forces J{w" : r € Gqn} \ wP is included in Ae.

We give also an alternative proof, which can be applied for more general
question. Let p = (w, {t,, : n < w}) € Q[I]. By the proof of [first condition =
third condition] in 6.17, there are pairwise distinct j, < w; (for m < w) such

that for each m the set

B ® {n <w: there is t, > half(t,) such that int(t’,) C A}
is infinite. So we can find B,, C B,, for m < w such that: (B}, : m < w)
is a sequence of infinite pairwise disjoint sets. For each m < w, n € B,
choose t], > half(t,) such that int(t,) C A; . Let t > t, be such that
int(t) = int(t},) and lev(t)) > lev(t,)/2.

If lev(t!”) > k, let t2 > t! be such that lev(t3) > lev(t!) — k (really
> lev(t)) — [1 + logy(k)] suffices) and for some £ = £(n), int(t3) C Ay(,. For
each m < w, for some £, the set Bl = {n € By, : lev(t3) > k,£(n) = £,,}
is infinite and for some £(*) < k the set {m < w : £, = £(x)} is infinite. Now

p % (wP, {t3 : for some m we have £, = £(x), and n € B!}) is as required.
2) Left to the reader (or see 6.16(1)). Oe.21
Now we pay a debt needed for the proof of 3.23(2).

6.22 Claim. Assume V;, A, I = I4 are as in 6.18. Then Q[!] is almost “w-
bounding or for some p € Q we have p kg “{A4; : i < R*} is not a MAD.”

Proof. Assume the second possibility fails. So let p € Q[I] and f be a Q[I]-name
of a function from w to w. Let 7, = f(n), and apply 6.16(1) and get g as there.
Next apply 6.19 to those g, 7, and get r which satisfies () from 6.19.

By 6.17, 6.21(2) and we can find r; = (w?,{t), : n < w}), a standard

member of Q[I] such that r < r; and for some pairwise distinct j, < w; the sets
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B, ¥ {n < w :int(t)) C A, .} are infinite. Clearly also r; satisfies (x) of 6.19.

Choose pairwise distinct n(m, £) for m < £ < w such that n(m,¢) € B, \ {0}

and min int(t;, ., ,) > £. Now we define a function g : w — w (in V1) by

9(€) = max{{€+1} U {k : for some m < £ and w C [0, max int(t, (1n 0)-1)]
and w; C int(t,,,, ») we have

(wP Uwy, {t, : n > n(m,0)}) ko “f(0) =K’} }.

So g € (“w)"1, and let A Cw (A4 € V}) be infinite, and let ps = (w?, {tome
m < £ and £ € A}). Now clearly r; < pa € Q, pa standard and even p4 € Q[I]
because still for each m < w the set {n : t;, € T4 and int(t),) C A; } is
infinite: it includes {n : n = n(m, £) for some £ € A\ (m + 1)}. Now one can

easily finish the proof. Os.16
A trivial remark is

6.23 Fact. Cohen forcing and even the forcing for adding A Cohen reals (by

finite information) is almost “w-bounding.

§7.0ns >b=a

See background in §6.

7.1 Theorem. Assume V |= CH. Then for some forcing notion P*, P* is

proper, satisfies the Rs-c.c., is weakly bounding and:

(*) In VP" we have 2% = Xy, there is an unbounded family of “w of power
R; (i.e. b = R;) and also a MAD family of power R; i.e. a = Ry, but there

is no splitting family of power R; i.e. § > Ry (so s = Ny).

Proof. The forcing (Pa, Qo : @ < wa), P* = P,, are as in the proof of 3.23(1).

So the only new point is the construction of a MAD of power R;. This will
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be done in V; the proof of its being MAD will be done directly rather than
through a preservation theorem (though the proof is similar).

Let {(B! : n < w) : i < Ry} enumerate (in V) all sequences (B, : n < w) of
finite nonempty subsets of w (remember CH holds in V). Next choose a MAD
family (A4 : @ < Nq) such that
(*x) for each infinite ordinal o < w; and i < a: iffor every k < w, ay,...,0f <

a for every m for some (equivalently infinitely many) n < w, min(B}) > m

and B N(Ag, U...UAy,) =0

then

(a) for infinitely many n < w, B!, C A4,

(b) for any k < w and ay,...,ax < o for infinitely many n < w we have

k
Bin (U 4a,) = 0.
=1

[How? let A, = {k® + n: k € (n,w)}, and then choose A, for a € [w,w;) by
induction on o as required in (*x).]
Let A be a regular large enough cardinal, & < ws. For a generic G, C P,,
a model N < (H(MA)[Ga], €) is called good if it is countable, Go, (P;,Q; : i <
a,j < a), (A i <w), ((BY :n <w):i<w)€ N and for every set
{Br : n < w} € N of finite nonempty subsets of w, letting § = N Nw; we have
if
®1 (Ym,k < w)(Vai,...,ax < 0)(T*'n < w)[Bp N (Ag, U... U Ay,) =
0 & min(B,) > m|
then (3*n)[B, C As) (remember 3*n stands for “for infinitely many”).
Note that in the definition of goodness, we have that ®; is equivalent to
®2 (Vm,k < w)(Vay,...,ax < w1)(Fn < w)[Bp N (Agy--- U Ay,) =
0 & min(B,) > m|
(as N < (H())[Gal, €))-

We shall prove by induction on a < ws, that:
(®)a for every B < a, a countable N < (H(X),€) to which (P;,Q; : i <
a,j < a), and «a, B belong and generic Gg C Pg if N[Gg) Nw; =

NnNuw; (so N[Gg] NV = N), N[Gg] is good (in V[Gp| of course) and
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p € N[Gg]NP,/Gp then thereis ¢ € P,/Gg, ¢ > p, Dom(g)\a = NNB\a,
q is (N[Gg], Po/Gpg)-generic and: if G, C P, is generic, Gg C Gy, q € G,
then N[G,] is good.

This is proved by induction. The case & = ws, 8 = 0 gives the desired
conclusion.
[Why? If not for some p € P* = P,, and a P,,-name B = {k, : n < w}

we have

plrp,, “B is an infinite subset of w, moreover k, < kny1 <w for n < w,

and B N A, is finite for every a < w;”.

Let N < (H(A, €) be countable such that (Py,Qq : @ < wp), P* = P,,, p,

B, (kn : n < w) belong to N, and let § = N nw,. Clearly N N {(Bi : n <
w) i <w}={(B::n<w):i< 8}, so by the choice of the A,’s (see (x*)
above), N is good (in V = V). Hence there is q € P,,, such that p < g, q is
(N, P,,)-generic and q I-p,, “N[G.,] is good”. Let G C P,, be generic over
V, q € G, (hence p € G) so N[G] is good, N[G]Nw; = § and ({kx[G]} : n < w)
belongs to N[G]. Hence by the definition of good, (3*m) [k [G] € As], but this
means As N B[G] is infinite, contradicting the choice of p (as p € G).]

The case o = 0 is trivial (saying nothing) and the case a limit is similar
to the proof of 3.13. In the case a successor, by using the induction hypothesis
we can assume a = 3 + 1.

By renaming V[Gg|, N[Gg] as V, N we see that it is enough to prove that
for any good N and p € QN N (remember Qg = QV[G/’]) there is ¢ > p which
is (N, @)-generic and q IFo “N[G] is good”.

Let § = NNwi, and let § = {y(¢) : £ < w}. Let {7, : £ < w} be a list of
all Q-names of ordinals which belong to N, and {{B% : n < w) : £ < w} be a
list of all Q-names of w-sequences of nonempty finite subsets of w which belong

to N, and which are forced to satisfy ®, each appearing infinitely often. For
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notational simplicity only, assume p is pure. We shall define by induction on
¢ < w pure pg = (0, TP¢) = (B,{t}, : n < w}) such that:
a) p¢ € N, pg standard (so maxint(t}) < minint(té,,)),
b) po = p, pes1 > pe,
c) tt =t5 for n < £ and lev(t)) > ¢,
d) for any finite w C w and finite 7" C T?*+* we have (w, TP+ \ T') Ikq
“re € Cp” for some countable set of ordinals C; which belongs to N,
e) for every wo C (max[int(ty)] + 1), m < £, and t > tﬁi} there is
wi C int(t) such that the condition (wo U wy, {tf*’1 H+1<i<w})
forces that
“(37)[min(B7*) > £ and BY* C As]”.

Below we shall let p7* = (0, {t&™ : n < w}). Let pp = p.

Suppose p; is defined. By 6.12 there is a pure p > p, in N such that
tf’o = tf for ¢ < ¢, and for any finite w C w and finite 77 C T?? we have
(w, P! \T") = pd I+ “ry € C};” for some countable set of ordinals C; from N
[why? read (x) of 6.12].

Given pY we define:

B = {B: B C w is finite, min(B) > ¢, and there is standard

p* = (0,{t; : n < w}) > pY such that /\t’{ =t
i<e
(so lev(tyy,) > £+ 1) and:
for every wo C max int(tj) + 1 and t > t},, and m < £, for some

w; C int(t), the condition (wp Uws,{t] :¢>£+1and i <w})

forces ¢ for some j < w we have B* C B"}.

Clearly

(A) BeN

(B) B satisfies (®1) from the definition of good.

[Why? Let k < w, ai,...,04 < 0. By the assumption, IFq “for each m < ¥4,
the sequence (B} : j < w) satisfies ®2" hence I~ “ for every m < £ for some

n = n(m) we have min(B?) > £ and B} N (Ao, U ... Aq,) = 0. Hence there
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is standard q = (0, {s¢+1,Se42,---}) € Q, ¢ > (0, {t[+1,te+2, .}) such that
lev(sg+1) > £+ 1 and:
@ if wg C max(int(t‘“’)) +1, m < £, t > spyq then for some wy C int(t) and

No,w, < w and C% - we have

(@) (woUwy, {Sey+1:Sequy42---}) I “Bim = O )7

(B) Cit vy € w\¢, and CF , is nonempty finite disjoint to Ag,U. . .UA4, .
So necessarily J{C ,, : wo C max(int(tj))+1 and t > sg11, and wy C int(t)
and Cy ,, is well defined and m < £} € B is as required finishing the proof
of clause (B). We could have demand in & above for one w; to be O.K. for all
m < £.]
(C) We can define pgy;.
[Why? As B € N satisfies (®1) and N is good necessarily there is B € B,
B C Ajs. For this B there is p* as in the definition of B. Let t5+! = t¢ for n < ¢,
til =t for n > £ So pey1 = (0, {t5! : n < w}) is defined.]

So we have defined py+; satisfying (a)-(e). So we can define p; for £ < w
and now ¢ & (9, {t" : n < w}) is as required. Or1

§8.0nh<s=b>b

See background in §6. We first recall well known definitions.

8.1 Definition. 1) Let § be the minimal cardinal A such that there is a tree
T with A levels (not normal!) and A; € [w|®° for ¢t € T such that [t < s =
As Cae 4] and (VB € [w]?0)(3t € T)[A; Coe B) and if t,s € T are <p-
incomparable then A; N A; is finite. See Balcar, Pelant and Simon [BPS] on it
(and in particular why it exists which was for long an open problem).

2) Let Q% = {(n, f) : n < w, f € “w} with the order defined by

(n1, f1) <(n2, f2) if and only if
ny; < n27f1 [nl = f2[n1 and f1 < f2( ie. /\fl(E) < f2(e))
¢
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This forcing adds a dominating real and it satisfies c.c.c. This is called Hechler

forcing or dominating real forcing.

8.2 Theorem. Assume V = CH.
For some proper forcing P of power R, satisfying the Np-c.c., in VP =Ny,

b=s= Nz (and 2N° = 2N1 = Nz)

Proof. We shall use the direct limit P of the CS iteration (F;,Q; : 1 < wa)
where:
A) letting i = (w1)3y+7,7 < (w1)?, if j # w1, w1 +1 then Q; is Cohen forcing;
if j = wy then Q; is Q from Definition 6.8 (in V*7) and if j = w1 + 1 then
Qi is Q% (see Definition 8.1(2), also other nicely definable forcing notions
are 0.K.).
B) We use the presentation of countable support defined in III, proof of
Theorem 4.1, i.e. using only hereditarily countable names. We let r; be
the generic real of Q;.
Clearly |P| = N, P satisfies the Rp-c.c. and is proper (see III §3, §4), hence
forcing by P preserves cardinals. Clearly in V', s > R, (because for unbound-
edly many i < R, @Q; = Q (from Definition 6.6, and 6.11(3)) and b > R
(because for unboundedly many i < Rg, @; = Q%) and 2% = R,. Hence in VF
we have s = b = Ny (so @ = Ry) and always § > R;. So the only point left is
VP E “h <Ny,
We define by induction on i < w; (an ordinal a(i) and) Py;)-names N4, Ai
such that
(a) a(i) = (w1)(i +1),
() 7 € Upcu, A+l(wy) \ {n; : j < i} and for every successor 8 < £g(7;)
we have n;[3 € {n; : j < i}) (i.e. those things are forced),
(¢) M5 < i = Ai Cae 4 (for j < i) and A, is an infinite subset of w,
(d) if A C w is infinite and A € Vi then for some i < j + w1, A C 4j,
(e) A; includes no infinite set from V = when j < i, and moreover is a

subset of the generic real of Q,3;,3,
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(f) if 9;, 9, are <-incomparable then A; N A; is finite (i.e. this is forced).
There is no problem to do this if you know the known way to build trees
exemplifying the definition of f (by Balcar, Pelant and Simon [BPS]), provided
that no wi-branch has an intersection. Le. for no n € “!(wz) and B € [w]?°
(in VPe2) do we have B C, A;, where nf(a + 1) = 5, for a < wy; by

clause (e) above necessarily i, is strictly increasing. Let i(x) = |J i, and
Y<wi
a(*x) = U, <., a(iy), in VP there is no intersection by clause (e) (even in

the case n ¢ VFa). So it is enough to prove this for a fixed i(*) hence also
o).

We can look, in VP« at the iteration Q' = (Pg,Qy : a(x) < v < wy,

a(*) < B < ws), where P def Pp/Py(xy- Let G1 C Pyy be generic, V; = V[G;].
Note that every element of P,,, can be represented by a countable function from
ordinals (< ws) to hereditarily countable sets (built from ordinals < ws). The
set of elements of P, as well as its partial order are definable from ordinal
parameters only (all this in V[G)]). Suppose p € P, forces B (a P,,-name of
a subset of w) and 1., (for ¥ < wy) to be as above (so with limit i(x)). W.lL.o.g.
for each n < w there is an antichain (gn ¢ : £ < w) which is predense above p,
such that g, ¢ IF “n € B iff t, 0", ty ¢ a truth value. So for some J(x) < a(*)
we have p, ((gn,e : £ <w) :n <w) € V[G1 N Pyl

There is p;, p < p1 € P,, such that p; I- “, = 4" for some 7, such
that j(*) < (w1)% < a(*) so p1 I+ “B C gw§i+3” where 7,313 is the generic
real that the set G1 N Q3;43 gives (see the end of clause (e)). Now using
automorphisms of the forcing P, (x)/Pj(x) We see that there is pp, p < pz € F.,
such that p, I- “B is almost disjoint from r,2,,3”. From this we can conclude
that p - “U, ., 75, ¢ V[G1]” (otherwise some po > p forces a particular value
and repeat the argument above for po). Hence it suffices to prove by induction
on B € [a(*),ws] that forcing with Pj adds no new wi-branches to the tree
T € Vi where T = {1;[G1] : i < i(*)}, ordered by <, (i.e. all are on VFa).
Let 7; = n4[G1] for 1 <i(x).

We prove by induction on 8 € [a(x),ws] that
(¥)§ P adds no new w;-branch to T' € V1.
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So assume pg € P[’, is such that po IF “(v, : ¥ < w1) is a new wy-branch of
{ni:i<i(x)} e 1.

In Vi choose a sequence (N, : m < w) of countable elementary submodels
of (H(x), €, <}) such that 8, Q', P, B € No, Ny € Nyny1, Ny = (J Npn. Let

m<w

O0m = Ny Nwi, and let
Ap ={0 = (Vy:7 <0m) : 7 € Npy1 and for every v < 0, 7[y € N }.

So (Am : m < w) € V4, and we can list Ay, = {F™¢ : £ < w}, ((I™¢ 1 € <
w) : m < w) € Vy. The real ;. is a Cohen real over V; (as (i : v < wy) is
strictly increasing with limit i(x)), and we can interpret Q;(.) as “”w, so let
Tigr) = (Im 1M < w).

Clearly for proving (*)}3 it is enough to find ¢ such that:
(*)2 ¢ € Py, po < g, q is (Nm, Pp)-generic for each m < w and ¢ ”_P,’, “(vy :

V< b)) # (u,:ny'lm 1y < )" for each m.

The proof splits to cases, the first four cases give (*)[17 directly, the last
three do it through (*)a.
Case 1: For 3 = wy no new branches appear (by Na-c.c.).
Case 2: For (3 = i(x) trivial.
Case 3: For B = a+1, Qo Cohen: use “Q is the union of Xy directed sets” (and
such forcing notions do not add a new wj-branch to any old tree).

Case 4: For B =a+ 1, Q, = Q% similarly, as

Q"=J{{(n.f): fe“w & fin=n} :n <w,n € "w}.

Case 5: For B = a+ 1, Qo = Q: so for some vy we have a = w}7y + wy, shortly
we shall work in the universe VP‘:‘i". Let ¢' € P., be (N, P.)-generic for each
m < w, pola < ¢' (such ¢’ exists as all those forcing notions are w-proper and
w-properness is preserved by CS iteration by V §3). Let G, C P, be generic
over V; such that ¢’ € G, and we work in V2 = V41[GL]. Let N, = N, [GL],

w = wP(® (a finite subset of w, actually it is w?o(®Gal),
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We choose by induction on m < w, gm = (W, Trm) € Qa, T = (1 : 0 < w)
such that:
(a) gm € N, N Qas Gm < gm+1, [0 <m =t =t7 ], po(a) < qgo,
(b) gm+1 is (Ny,, Qa)-generic
(©) Gm1lF vy 7 <Om) # (Ui iy < 6m)”.
This clearly suffices and for the induction step, clauses (a), (b) are possible
by the proof of “Q, is proper” (in §6), and reflecting on the proof there also
clause (c) [in more details given gm, let (Tmk : k < w) list the Q-names of
ordinals which belong to Ny, now we choose by induction on k < w, g =
(w, T k) and Ymk, Tk = {t™F 1 n < w} standard, {gm i, Ymr} € Nm,
Gm = @m0, Gmk < Gmis1, [0 < Mk =tk = tn+1] and for every
wo C max[1nt(tm+k)] +1landt > tm+k+1, for some w; C int(t) we have
(wo Uwy, {tm’+k+2, tmfkw’ ...}) force vy, , = p, p # V7' and forces a value
to 7; x; for the induction step get a candidate for all v < w; and use A-system
(and “the branch is new” i.e. not from V7).
Case 6: 8 > a(x) is a limit ordinal; cf(8) = Ro

Quite straightforward as in the proof of the preservation of w-properness
(of course we could work in V rather than in V; and use the induction hypoth-
esis). Choose (B, : n < w) such that 3 = |J Bn, i(*) = Bo, Bn < Bns1 < B,
and B, € Ny. We choose by induction on n7,l q:, Prn such that:
(@) 4. € Py, Dom(ga) = (U No) 1 fa(=), )
(b) gn is (IVi, Pg, )-generic for each i < w
(c) pn is a Pg,-name of a member of PgN N,
(d) PnlBn < an, Gn+1lBn = an
(€) Prn < Pnt1
(f) Pnt1 is (Nn, Pg)-generic (i.e. forced to be)
(€) ¢n U (PnllBn, B)) IFpy “uy 1y < Go) # (Vb 1y < b0)”.
The induction should be clear and ¢ def Uan = U@n+11[Bn, Bn+1)) is as
required. " "
Case 7: B > a(*) a limit ordinal, cf(8) > Ro

Like case 6, but 3, = sup(N, N B). Osg.o
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Concluding Remark. The proof of “no new w;-branch” has little to do with the

specific problem. More on definable forcing notions see [Sh:630].





