
VI. Preservation of Additional
Properties, and Applications

This chapter contains results from three levels of generality: some are

specific consistency results; some are preservation theorems for properties like

"properness + ωω-bounding", and some are general preservation theorems, with

the intention that the reader will be able to plug in suitable parameters to get

the preservation theorem he needs. We do not deal here with "not adding reals"

- we shall return to it later (in VIII §4 and XVIII §1,§2).

Results of the first kind appear in 3.23, §4, §5, §6, §7, §8. In §4 we prove

the consistency of "there is no P-point (a kind of ultrafilter on ω)". We do

this by CS iteration, each time destroying one P-point; but why can't the filter

be completed later to a P-point? (If we add enough Cohen reals it will be

possible.) For this we use the preservation of a property stronger than ωω-

bounding, enjoyed by each iterand.

More delicate is the result of §5 "there is a Ramsey ultrafilter (on ω) but

it is unique, moreover any P-point is above it" (continued in XVΠI §4). Here

we need in addition to preserve "D continues to generate an ultrafilter in each

yP«»

In 3.23 we prove the consistency of $ > b = NI; i.e. for every subalgebra B

of P(ω)/&mte of cardinality KI, there is A C ω which induce on B an ultrafilter

{^/finite: B G B and A C* B}; but there is F C ωω, \F\ = NI with no

g G ωω dominating every / G F. We use a forcing Q providing a "witness"

A for B = (P(ω)/finite)y; not adding g dominating (ωω)v we iterate it (CS).

After ω% steps the first property is O.K., but we need a preservation lemma

to show the second is preserved. The definition of this Q and the proof of its
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relevant properties are delayed to §6. In §7 (i.e. 7.1) we prove the consistency

of α > b. Lastly in §8 (i.e. in 8.2) we prove the consistency of ίj < b = α. On

history concerning §6, §7, §8 see introduction to §6. See relevant references in

the section.

* * *

We now review most of the preservation theorems appearing here for count-

able support iteration of proper forcing; actually this is done for more general

iterations (including RCS, a pure finite/pure countable, FS-finite support), see

0.1 and we can weaken "proper". You can read it being interested only in CS

iteration of proper forcing, ignoring all adjectives "pure" and the properties

"has pure (0χ, ̂ -decidability" (or feeble pure (#ι,^-decidability), so letting

<pr = <

O.A Theorem. For any CS iteration (Pi, Qj : i < δ,j < δ) if for each i < a we

have Ihp. "Qi satisfies X" then PS satisfies X', for each of the following cases:

1) X = "Q is proper and ^-bounding" [Why? By 2.8D, i.e. by 2.3 + 2.8B

4- 2.8C].

2) Let /, p : ω —> ω -f 1 \ {0,1} be functions diverging to infinity [i.e. (Vn <

cj)(3fc < ω)(Vra)(fc < m < ω ̂  f ( π ι ) > n&g(m) > n)} and:

X = "Q is proper and for every i < ω and η € (Πn f(n)^n^)yQ

there is a sequence (un : n < ω) G V such that f\nη(n) G un and

|un| > 1 =» |un| < g(n)1^. [Why? By 2.11F.]

3) X — "Q proper and every dense open A C ω>ω includes an old such set".

[Why? See 2.15D; or see 2.15B(2) for an equivalent formulation, then by

2.15C, 2.3(5) we can apply 2.3(2)].

Remark. Particular cases of O.A(2) are the Sacks property (/ constantly α;, all

#'s), and the Laver property (f,g vary on all legal members of ωω), the names

were chosen for the most natural forcing notions with these properties. Other

pairs /,# e ωω were introduced in and important for [Sh:326 §2]. Concerning

the PP-property and the strong PP-property see 2.12, 3.25-6.
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For some other properties we can prove that in limit stages, violation does

not arise; but leave to the specific iteration the burden for the successor stages.

We say "X is preserved in limit".

O.B Theorem. For CS iteration of proper forcing, Q = (Pα, Qβ : a < δ, β <

5), δ a limit ordinal.

1) If for α < 5, in Vp<* there is no new / G ωω dominating all h e (ωω}v

then this holds for Vp* [see 3.17(1)],

2) If for α < ί, in VPa there is no new / e ωω dominating all h e (ωω}v and

no real which is Cohen over V then this holds for VPδ [see 2.13D(2); more

on Cohen see 2.17].

3) If for α < δ in VPa there is no random real over V then this holds for VPδ

[see 3.18].

* * *

We now turn to the third kind of results.

In §1 we present a general context suitable for something like: for every

η G (ωω)γQ there is a "small" tree T C ω>ω from V such that η <Ξ lim(Γ); so

we assume that the family of small trees has some closure properties. In 2.1 -

2.7 we more specify our context, so that we can get preservation in successor

stages too. In 1.16, 1.17 we deal with a generalization where we have several

kinds of η G ωω (but for simplifying the presentation, we restrict generality in

other directions). A reader who feels our level of generality is too high (or goes

over to this view while reading 2.1-2.8) can prefer a simplified version (which is

[Sh:326, A2 pp 387-399]), so read only 1.16, 1.17 for the case fc* = 1 and then

look at any of 2.9 - 2.17 (each dedicated to a specific property being preserved)

ignoring the undefined notions.

In 3.1 - 3.13 we give another context (tailored for "there is no dominating

reals"). Here for successor stages we use a stronger property (like almost ωω-

bounding). In XVIII §3 we give another such general theorem.

The reader is tuned now to countable support iteration of proper forcing

but we shall later consider other contexts (semiproperness in Chapter X; forc-

ing with additional "partial order <pr" (pr for pure) plus some substitute of
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properness in Chapter XIV, XV). To save repetition, in 0.1 below we describe

the various contexts. The subscript θ has a role only when <pr is present (cases

D-F below) and its meaning is described in 0.1(3). Note that also FS iteration

of c.c.c. forcing is a particular case: <pr is equality and θ — HI (the relevant

results will be presented in §3). Let θ missing mean θ = 1. We may write e.g.

0.10=κ0 rather than 0.1 NO to stress this.

0.10 Iteration Context:

1) We shall use iteration Q = (Pj,Qi : j < OL,I < α) of one of the following

forms:

(A) Countable support iteration of proper forcing (see III). In this case

<pr is the usual order, 1.11 is just III 1.7; "purely" can be omitted;

similarly for (B) (C).

(B) Like (1) but for δ < a limit we weaken "Q§ is proper" to "for

arbitrarily large i < δ,P^ι/Pi+ι is proper or even just E"-proper"

where E C <S<κ0(μ) is a fixed stationary set (we can use similar

variants of the other cases).

(C) RCS iteration which is a semiproper iteration (see Chapter X).

(D) Each forcing notion Qi has also a partial order <pr, ]p <pr q => p < q}\

a minimal element 0g and is purely proper (i.e. ifpζQΓ\N,QeN,

N countable and N -< (H(χ), G, <*), then there is a (JV, Q)-generic

q,P <Pr Q £ P) The iteration is defined as Pi = {p : p a function

with domain a countable subset of i, for j 6 Dom(p) we have: Ihp.

«p(j) G Q/' and {j : not lhP, "0Q, <pr p(j)" } is finite}.

A particular case is FS iteration of c.c.c forcing. This (i.e. clause (D))

is a particular case of Chapter XIV.

(E) The iterations Q which are GRCS as in XV §1 (and see 0.3), such

that: for each a < lg(Q) for some n we have \\-pQ+n "(2Kl) 4- |Pα| is

collapsed to NI" and each Qa is purely semiproper.

(F) The GRCS iterations as in XV §3 (so each Qi satisfies E7P(I,W),

where W C ω\ is stationary.
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(G) The GRCS iteration as in XV §4.

2) We say "P purely adds no / such that (Vx G V)φ(x, /)" z/for every p G P

and P-name /, for some q G P and x G V: p <pr # and q Ih "/ does not

satisfy </?(x, /)".

3) 0 G {l,2,N 0,Nι} and: # = 1 means no demand, θ > K0 means each Qa

(or each Pα, Pa/Pβ+ι) has pure (0,2)-decidability (see Definition 1.9) and

θ = 2 means they have pure (2,2)-decidability (see Definition 1.9).

Remark. We shall concentrate on case F in 0.1(1) as it is the hardest.

0.2 Definition.

1) We say W is absolute if it is a definition (possibly with parameters) of

a set so that if V1 C V2 are extensions of V (but still models of ZFC

with the same ordinals) and x G V1 then: V2 \= "x G W" iff V1 μ

"x G W". Note that a relation is a particular case of a set. It is well

known that Π^ relations on reals and generally ft-Souslin relations are

absolute.

2) We say that a player absolutely wins a game if the definition of legal

move, the outcomes and the strategy (which need not be a function

with a unique outcome) are absolute and its being a winning strategy

is preserved by extensions of V.

3) We can relativize absoluteness to a family of extensions, e.g. for a

given universe V and family K of forcing notions we can look only

at {V® : Q G K}] so for VQo we consider only the extensions

{V® : Qo <£ Q G K}, or even demand Q/Qo has a specified property.

We do not care to state this all the time.

Though Case D is covered by Chapter XIV, (and XV) we may note:

0.3 Theorem. 1) The iteration in case (D) preserves "purely proper".

2) X§2 is generalized to "purely semiproper is preserved" by GRCS iterations.
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§1. A General Preservation Theorem

An important part of many independence proofs using iterated forcing, is to

show that some property X is preserved (if satisfied by each iterand). We have

dealt with such problems in Chapter V (preserving e.g. "ω-properness 4- the
ωu;-bounding property"), [Sh:b] Chapter VI (general context and many exam-

ples), [Sh:207], [Sh:177] (replacing the weak form of ω-proper by proper), Blass

and Shelah [BsSh:242] (preserving ultrafilters which are P-points), [Sh:326]; in

[Sh:b] Chapter X §7 we have dealt with semiproperness. Here we redo [Sh:b]

Chapter VI §1, giving a general context which serves for many examples re-

placing proper by the weaker condition semiproper and even UP and "CS

iteration" by "GRCS iterations" i.e. revised countable/finite support with pu-

rity (and correcting it). You may read this section replacing everywhere: UP

by proper, RCS iteration by countable support iteration, <pr by the usual or-

der, S by the class of regular cardinals, W = ωi, semi-generic by generic, omit

I-suitable, then 1.9, 1.10 are not necessary.

In fact there is more in common between the examples discussed later even

than expressed by the stricter context suggested here (fine covering model) (i.e.,

the use of trees T, TΠ nω finite and absoluteness in the definitions of covering

models) but the saving will not be so large; we shall return to this in §2.

Unfortunately "adding no reals" will require special treatment (as is the

case even if we assume properness). We have dealt with it separately in Chapter

V and will return to it in VIII §4, XVIII §1, §2.

For applications it suffices to read Definitions 1.1 - 1.5 (the fine covering

models and preservation of them); also 1.9 and Theorem 1.12 (on more general

preservation theorems). Another general way to get such preservation theorems

is presented in XVIII §3. A simpler version of the theorem is presented in 1.16,

1.17 here (and see 1.3(10); earlier see [Sh:326, Appendix A2 pp. 387-399] (but

also for a finite sequence of covering models)).

1.1 Definition. We call (D,R) a weak covering model (in V) if:
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a) D a set, R a two place relation on D, xRT implies that T is a closed

subtree of ω>ω (i.e., {) G T, T is closed under initial segments, and

above any η G T there are arbitrarily long members of T),

b) (D,R) covers, i.e. for every η G ωω and x G Dom(.R)(= {x :

(3T)xRT}) there is T G D such that xRT and η G limT, where

limΓ = {η G ωω : η \ k G T for every k < ω}

1.1 A Remark. The intuitive meaning is: xRT means T is a closed tree of

"size" at most x. In Definition 1.2, which exploits more of our intuition, we

have an order on the set of possible x's, x < y, with the intuitive meaning "x

is a smaller size than y" . So it would be natural to demand:

xRT, x < y =ϊ yRT and xRT, T1" C T

However, no need arises. Note also that sometimes x appears trivially (e.g. see

the ωα;-bounding model in 2.8).

1.2 Definition. (1) A fine covering model is (D,R, <) such that:

(a) (D, R) is a weak covering model

(/?) < is a partial order on Dom(.R), such that

(i) (Vy G Dom(#))(3z G Ώom(R))(x < y)

(ii) (Vy,x G Όom(R))(3z G Όom(R))(x <y-+x<z<y)

(Hi) if y < x, yRT then for some T* G D, T C T* and xRT*

(iv) if y < x and for Z = 1,2 yRTi then there is T G D such that:

xRT, TI C Γ and for some n, [z/ G Γ2 & ί̂  f n G TI => ι/ G T]

(7) (a) If x > x f > 2M+1 > yn for n < ω and Γn G D, ynRTn (for n < ω)

then there is T* G D,xRT* and an infinite set w C ω such that:

limT* D {ηiηis'm ωω and for every i G w, 77 \ mm(w \ (i + 1)) G (J 7} U T0}
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(b) if r?, ηn G ωω, η\n = ηn\n for each n < ω and x G Dom(#) then for

some T G -D, xRT, η G limT and ηn G limT for infinitely many n.

(δ) condition (7) continues to hold in any generic extension in which (α)

holds.

(2) For a property X of forcing notions, (D, β, <) is a fine covering model

for X-forcing if Definition 1.2(1) holds when we restrict ourselves in (δ) to

X-forcing notions only.

(3) We say (D,R,<) is a temporarily fine covering model if it satisfies

(α), (β), (7) i.e. is a fine covering model for trivial forcing.

1.3 Remark. 1) In an abuse of notation we do not always distinguish between

(D,R,<) and (D,R).

2) Look carefully at ((5), it is in a sense, meta-mathematical.

3) So if (D, R, <) is a fine covering model and P is a (D, #)-preserving forcing

notion (see Definition 1.5 below) then in Vp the model (D,R, <) is still a

fine covering model. [Why? In Definition 1.2(1) clause (α) holds as P is (£>, R)-

preserving, clause (β) holds as it is absolute, clause (7) holds as in V, (D,R,<)

is a fine covering model by clause (δ) of Definition 1.2(1) and clause (δ) by its

transitive nature.]

4) In (7)(α) of 1.2(1), we can replace "2/nflTn" by x^RTn (by (β) (ii) (iii)).

5) We write in 1.2(l)(/3) (iv)+ if n = 0.

6) If we assume 1.2(l)(0)(iv)+, then in 1.2(l)(7)(α) w.l.o.g. Tn C Tn+ι hence

the conclusion in (7)(α) is:

limT* D {r/ G ωω : for every i G υ;, ry f i G Tmax[(^ni)u{0}]}.

7) We can in (7) add "and 0 G w".

8) A condition stronger than (7) = (7)0 of 1.2(1) is:

(7)1 = (7)+ if x > xf > ΐ/n+i > 2/n forn < α; and Γn G D,ynRTn (for

n < ω) then there is T* G D,xRT* and an infinite set w C ω such that:

limT* 2 {ry : η is in ωω and for every i G w, η \ i G
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(I.e. it implies both (a) and (b) of 1.2(7) (when (D,R) covers, of course).)

If we assume (/3)(iv)+, then in 1.2(1)(7) w.l.o.g. Tn C Γn+1 hence the demand

in (7)+ is limT* D {η eωω : for every i G w, η \ i G TJ.

Why? Let y'n be: y'Q = yQ, y'n+l = yn+2. We choose by induction on n, T'n

such that ynRT'n and TQ = TO, and T'n C T^+1 and for some kn we have

η\kn G T'n & η G |J Tm => 77 G T^+1. Now by clause (7)+ there are an
m<n+l

infinite if/ C w and T* such that xRT* and lim(T*) I> {77 G ωu; : for every i G

wf we have 77 fz G U Tj}. Let i(/ = {rii : i < ω} with n^ < n$+i. Let jf(^)
j < ΐ
j'6if

(£ < ω) be increasing fast enough, i.e. n^+i) > fcnj ( / ) _ι» w = {™?(^) : t < w}-

It is enough to prove that w and T* are as required in clause (7). So assume

η G ωu; belongs to the set on the right hand side of the inclusion in clause (7),

and we shall prove η G limT*. So we are assuming that for every I < ω we

have 77ί^i(£+i) G |J Tnj U TQ. So it is enough to prove that η appears in the
3<t

right side of the inclusion in (7) for w1', (T/ : i < ω). So let i < ω and we

should prove that η\rii G \J T^t (as w' — \Ui : i < ω}, r^ increasing with i).
t<i

Let ^ be such that j(l) < i < j(l + 1), so by the assumption on η we have

η\Ui < η\rij(i+i) G U ^}(m) U TQ. We prove this by induction on i.
m<i

Case 1: η\nj(ί+i) G Γ0

So η\m G To, but T - 0 - T(5 C T' , hence η\m G Γn(<) C (J T' as
v ; ^<i v '

required.

Case 2: There is πi < I such that ryfn^+i) G Tnj.(m)

Necessarily z > j(^) > j(m) so by the induction hypothesis on i we

have η\nj(i)^ G U ^ήfc but Γ^ C T^ so T/Γn^j-i ^ T' l as by
*<jW-ι

assumption rjΓn^+i) G Tnj.(m), m < ,̂ by the choice of T' as j(^ -f 1) >
knjw-i necessarily η\nj(i+l) G Γ .̂(O but Γ^.(£) C Γ^. and n» < nj(^1} hence

t/Γf i i G T'n. < U T^ as required.
t<i

8A) In clause (7) w.l.o.g. Tn C Tn+ι (i.e. this weaker version implies the original

version using (α), (β) of course).

[Why? By 2.4D (note 2.4A, 2.4B, 2.4C, 2.4D do not depend on the intermediate

material).]
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9) Note in 1.2(l)(7)(a), that any infinite wf C w is o.k.

10) In some circumstances clause (b) of 1.2(1)(7) is a too strong demand, e.g.

preservation of P-points. We can overcome this by letting R = V^<fc Rt (k

is finite) and demanding 1.2(7)(a) f°Γ each Rt whereas instead 1.2(7)(b) we

demand

(b)' if r/n, η G ωω, ηn\n — η\n for n < ω, and for some ra < k we have

(Vx G Oom(Rm))(3T)(xRmT & η € limΓ) and

(Vx € Dom(#m)) /\(3T)(xRmT & ηn G limΓ)
n

then for every x € Dom(Λm) for some T we have: xRmT and for infinitely

many n < ω, ηn € lim(Γ).

See more on this in 1.16, 1.17 and §5.

Proof. E.g.

9) Assume η € ωω and

(*)o i e wf => 77|min(w' \ (i -fl)) € (J T., UT0;
jew'jjXt

we have to prove η G lim(Γ*). For this it suffices to prove:

(*)ι i ew =>η\(mm(w \ i - f l ) ) E |J Γ^ UΓo.
j6if,j<i

Let ϊ G w, define zi = i, jι = min(iί;/ \ i), z2 = min(tJί; \ (^ + 1)),

J2 = min(κ;/ \ (jΊ + 1)); so in particular ή < ji G ιy;, ή < i2 < J2, ji < J2

As (*)o holds apply it to jι and get η\j2 G (J Γ^ U TO, hence for some
j€w',j<jι

^o, jo = 0 V (jo < ji & Jo G tyx) and we have η\j2 € Tjo. As ΐ2 < J2 clearly

77^2 € T^0. As ji = min( u/ \ ύ) we know that ή < ji and [ή, ji) n w; = 0 and

thus jo = 0 V (jo < iι & jo 6 i(/) Hence jo = 0 V (jo < ή & jo € w). So

η\i* G TJO C (J Γj UTO, as required. (See more 2.4D.) Dι.3
j€w,j<i

1.4 Convention. If the order < is not specified then <=<dis (see below). Let

<o be such that:

x <o y iff x, y € ωω & x(0) <ό j/(0)
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where (ω, <ό) is isomorphic to (Q, <) (i.e. the rationals). Let <dis be:

x <dis V iff x,y £ ωω, I < x(n) < y(n) for every n

and y(ri)/x(ri), x(ri) diverge to oo.

Let <Jis be: x <3is y iff y <dis x. (Note: in DP^α;) =f {x G ωω : x(n) > 1,

(x(n) : n < ω) diverges to infinity}, <o, <dis and <*dis satisfy clauses (β)(ι)y

(ii), (iii) of Definition 1.2(1)).

1.5 Definition. Let (D,R) be a weak covering model. We say that a forcing

notion P preserves (D, R) or is (D, R)-preserving if lhP "(£>, R) is a weak

covering model". We add "purely" if: for every p G P and / such that p Ih

"/ G ωω" and x G Dom(#), for some q,T we have p <pr q G P^ΉT and q Ih

" / G l i m Γ " .

1.6 Definition. 1) For a weak covering model (D,R) and t/ G Όom(R),

(D,R)\= Vdiβ(l/)M if:

/or every η* G ωω and function F from Dxα; to Rang(Λ) = {Γ: (3x G D)xRT}

such that (Vn)(Vz G Dom(Λ))[zΛF(^,n) and 77* fn G F(z,n)].

ί/iere are T*, yRT* and an infinite set lί; of natural numbers, and ̂  G Dom(^)

for t G w such that:

Γ* 2 {η G α>>α; : there is £ G w such that 77 f t < r?*, and 77 G F(ZΪ, ΐ)}.

Note that the truth value of (D, R) \= "</?dis (?/)" depends on V (remember <

means initial segment).

1 A) For a weak covering model (D, R) and y G Όom(R) we write (D, /Z) |=

Vdis α/r i^
/or et ery 77* G ωα; , and a function F : D x ω —> Rang(.R)} such that

(Vn)(Vz G Dom(JR))>a;ΛF(z,n) and a function # from D x ω into ""a; such

that ry* f n < ff(z, n) G lim F(z, n) (so ry* \ n G F(z, n))

there are T*, y^T* and an infinite w C ω and n^ < ω, and z^ G Dom(JR) for
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lew such that:

T* D {η G ω>ω : there is i G w such that η \ t < η*,

and η \ HI < H(ZI,£) and η G F(ZI,£)}.

(If n^ > £, then "77 f £ < r/*" is not necessary and if nt < I, then 77 \ri£ < H(zt,l)

is not necessary). Note that the truth value of (D, R) \= φ^s(y) depends on V

and ^dίs(y) =^ ^dis (?/) (as in ^dis the se^ °f Ή ^ w>α; whicn we demand to be

in T* is smaller than for φ dis ) .

2) We call (D,R) a covering model if it is a weak covering model and

(c) for every y G Dom(#), (D, Λ) |= <^dis(2/) or at least (D, Λ) |= ^is(2/)

3) For a weak covering model (D,R) and x = (xn : n < ω) and z, where

{xn:n <ω}U {z} C Dom(β) we say that (£>, R) \= -0dis(:r, z) if:

(*) /or every 77* G ^α; and a set {Tnj : n, j < ω} such that xnRTnj for

n,j < α; there are (Ta : a < ω) such that:

(i) Tn C Γn+1 and T° C Tω

(ii) ^^Tω (so Tω G D)

(iii) 77* GlimT 0

(iv) if n,j <ω and v G (limΓnj ) Π (limΓn) Π (limTω), then for some fc:

< P e rnj => p G τn n

4) (D, J?) is a strong covering model if it is a covering model and

(d) For every z G Dom(#) there are xn(n < ω) such that:

(A

1.7 Definition. 1) Let K be a property of weak covering models. We say that

a forcing notion P is .KT-preserving if:

for any (D,R) G V satisfying K, P preserves (D,R). We add "purely" if for

any (D,R) satisfying K, P purely preserves (D,R).

2) We call a covering model (D, #) smooth if:

for any (D,Λ)-preserving forcing notion P, Ihp "(-D, JFZ) is a covering model".



§1. A General Preservation Theorem 259

3) We call a strong covering model (D, R) strongly smooth if:

for any (D, ̂ -preserving forcing notion P we have \\-p "(D, R) is a strong

covering model" .

1.8 Claim. 1) If (D,R, <) is a fine covering model then (D,R) is a strongly

smooth strong covering model.

2) The following is a sufficient condition for (D,R) |= ψ<&s((xn n < ω),z):

(*) for some yn G Όom(R) (for n < ω) :

(a)n ifn<ω, xnRTj for j < ω and ynRT then for some (HJ : j < ω) and T*:

(i) 7/n+ιΛΓ*

(ii) T C Γ*

(iii) ηeTj&η\njeT=>ηeT*

(b) if 2/nΛTn for n < ω, Γn C Γn+1 tfien for some T*, z#T* and Λn T
n C Γ*.

3) For a weak covering model (£), R) we have: if (Z), R) is a strong covering

model then it is a covering model, and strongly smooth implies smooth.

Proof. 1) By 1.2(l)(α) we have: (D, R) is a weak covering model. Now we show

that it is a strong covering model. So by 1.6(2), (4) we have to check conditions

(c), (d) of Definition 1.6.

Proof of (c) We are going to prove that for y G Όom(R) we have (D,R) \=

φ*diS(y)
So suppose 77* G ωα;, F is a function from D x ω to Rang(Λ), and H is a

function from D x ω toωω such that:

(Vn)(Vx G Dom(Ή))[zRF(z,n) & 77* f n

First we use a stronger assumption.

Proof of (c) assuming (7)+ of 1.3(8): So there exist, by (/?) (i) , (ii) of Definition

1.2, yt, xn (for n < ω) such that y > y^ > xn+ι > xn > . . . > XQ (choose y t and

then, inductively on n, xn). Let zt = xt and n^ = ί and let Tn = F(xn,n).

Apply condition (7)+ of Definition 1.2(1) (i.e. 1.3(8)) to get T* and an infinite
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w C ω such that limT* O {η e ωω : for every i G w,η \ i G \Jje™ Tj} and

yRT*. Remember nt > ί.

We shall show that T* and w and (HI : I < ω) are as required in 1.6(1 A).

We have to prove that (for each £ G w and η G ω>ω):

(*) η \ ne < H(zι,l) & η G F(zέ,l) =Φ 77 G Γ*.

(Note: 77 f ^ < 77* follows from η \ i = η \ m < H(ZI,£) because 77* \ i <

H(ZI,£) by the assumptions on if in 1.6(1A).)

So assume η \ HI < H(z^f) and η G F(ZI,£) (so 77 G Γ/), and we have to

prove η G T*. We can choose z/, 77 < i/ G limF(z^), so it suffices to show that

for any i G w we have ^ f i G |J ,<* T,. If i > i, then: z/ \ i G F(z/,£) = T/ C
ie w

\Jj<i TJ and if i < i then: v\i — η \ i = 77* f i < H(zi,ϊ) G limF(zi,i), hence
j€ιu

ί̂  f i G F(zi,ϊ) — Ti C U J < T Tj (remember i G w). So by the conclusion of
j'G u>

(7)+ (in 1.3(8) which we have applied) v G limT* hence 77 G T* is as required;

so we have proved condition (c).

The full proof of (c): Let y^xn be as above. Now we prove (c) using (7) of

1.2(1) only. So we are given 77*, F and H as in the assumptions of 1.6(1 A).

Apply condition (7)(b) of Definition 1.2(1) with x0,?7*,H(xn,n) (for n < ω)

here standing for x, 77, ηn (for n < ω) there, and get an infinite WQ C ω

and TO G Rang(#) such that xQRT0 and /\newo H(xn,ri) G limT0, hence

77* G limT0.

Let WQ — {ki : i < α;}, kg, increasing with ί, of course w.l.o.g. fc^ -f 1 <

fc^ (hence ί + 1 < fo). Applying (/3)(iv) (of 1.2(1)) choose TM_I such that

Xfc£+i^T^+i,vT0 C T^+ι, even T^ C T^+ι, and for some m^ < ω we have:

[pfm^ G To & p G F(xkί,k<>) => p G T£+1]. So by (7)(a) (of 1.2(1)) for

some T* and infinite w\ C α; we have: yRT* and for every 77 G ^ω we

have [/\iewιη\mm(wι \ (i + 1)) G |J .^<ί τj U T0] -Φ ry G T*. We define

w = {ki : i -f 1 G wι} and for i + 1 G w\ let us define n^ as the first

natural number n = n^ such that n&£ > ^, in the interval (£, n^) there are at

least two members of MI, and n^^ > πi£.

We are going to prove that w, (rij : j G tί;) are as required (in 1.6(1 A)).

Remembering that the general members of w have the form ki with ί +1 G w\,
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it suffices to prove that (the replacement of η G ω>ω by v € ωω is as in the

proof above of clause (c) from (7)+ of 1.3(8)):

(*) for any ί and v we have <8> => Θ where

® (A) kι e w (i.e. ί+lewι)

(B) i/ G ωα;

( C ) ι / r f c / < η *

(D) I/ft*, <H(zkί,kt)

(E) ι/€lim(F(zfc£ ,fc/))

θ ί/Glim(T*)

By the choice of T* , for getting 0 it suffices to prove

<8>ι if i = i\ G MI, and 12 = min(tt;ι \ (ή 4- 1)) then z/fo 6 |J 7} U TQ.
^"€^ιj<iι

Note that kι G WQ (see above before choice of the T/s). We split the proof of

<8>ι accordingly to how large i is.

Case 1: -«(3j)[^ < j 6 MI Π ή]

By the choice of nkl we know that in interval (t^n^) there are at least

two members of MI, but ύ < min(iί;ι \ ((, 4- 1)) and 12 = min(wι \ (i\ 4- 1)) so

necessarily ΐ2 < n^ Hence (by the previous sentence, by ®(D), by the choice

of Γ0, and trivially respectively) we have

v\i<ι < v\nkt < H(zkt,kt) e lim(Γ0) and thus ι/|ϊ2 G |J T^ U T0

as required (in <8>ι).

Let i0 — max(iί;ι Π ύ), so by the assumption of the case not only IQ is

well defined but also it is > ί. Looking at the desired conclusion of ®ι and

the definition of i0 it suffices to prove that v\i^ G Tio. But we know that

[n< ω => Tn C Γn+ι] and (by the previous sentence) I < i0, hence Γ^+ι C Tίo,

so it suffices to prove v\i2 G T/+I. For this by the choice of 7>+ι it suffices to

show the following:

(8)2 (A) i / f m / G Γ o

(B) i/^eFίxfc,,^)
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As for clause 02 (B), by the assumption 0(E) it holds. As for clause 02 (A), we

know

v\nkί < H(zkl,kι) G lim(Γ0).

[Why? first < holds as mt < nke by the choice of nktί second < holds by

assumption 0(D), and the last "G" holds as kι G WQ and the choice of TO, WQ.]

So both clauses of 02 hold hence 0ι holds in case 2 hence in general, hence

we have proved (*). Thus we have finished proving clause (c) in the general case.

Having proved condition (c) we shall now prove condition (d).

Proof of (d). Choose x^ and then by induction on n < ω,xn such that

%n < x n+ 1 < ... <x^ < z (they exist by (/?) of Definition 1.2(1)).

So it suffices to prove that (D, R) |= V;dίs((^o, xι, •),*)• Let 77* G ωω and

(Tnj : n, j < ω} be as in (*) of Definition 1.6(3).

For each n < α;, by applying ω times Def 1.2(l)(/?)(ii), we can find xnj (for

j < ω) such that xn < xn$ < xn,ι < ... < xn,ω < %n+i (first choose xn,ω and

then xnjo, #n,i» •)• We now define by induction on n, T^ such that xnRT* and

τn ^ Γn+ι First let Γo be such that xoRT£,η* G limΓ0* (possible by l.l(b)

and 1.2(l)(α)). Second, assuming T* was defined, we can choose by induction

on j trees T^ satisfying: T^ C T .̂+1, Γ 0̂ - T*, xntjKΓ^,η* G li

and such that for some ra = m(n,j) we have

(possible by 1.2(l)(/?)(iv)). Now by (7)(a) of Def 1.2(1) we can find w(n) C <

infinite and T*+l such that xn+ιRT*+l and

T*+1 2 {r? : for every i G w(ri), η \ mm(w(n) \ (i + 1)) G y T'n^ U Γ^}.

Necessarily Γ^ C T* r
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Then applying (7) (a) of Definition 1.2(1) we can find w C ω infinite and

T£ such that zRT* and:

T* 2 {77 : for every i G w, η \ mm(w \ (i + 1)) G |J T* U Γ0*}.
j«
j'e UJ

As said above Γ^ C Γ^+1 for each n, clearly from the condition above zRT*

and Γ0* C T* and in particular 77* G limΓ0* C limϊ£. So in 1.6(3) (*), (with

T* here for Ta there) conditions (i), (ii), (iii) are satisfied. As for condition

(iv), let v G (limTnJ) Π (limΓ*) Π (limϊ£). Then any k < ω such that:

k > mm{i ew:\iΓ\w\(n + l)\>l} and k > min{i : \i Π w(n) \ (j + 1)| > 1}

and A: > m(n,j) is as required. So T* is as required in 1.6(3), i.e. we have

proved (d) from 1.6(4).

Now why is (D,R) strongly smooth? By remark 1.3(3). Suppose P is

(jD, Λ)-preserving then in Vp still (D, R) is a weak covering model as P is

(D, #)-preserving, hence (α) of Definition 1.2(1) holds in Fp, (β) is trivial,

and (7), (δ) hold by (5). So (D,R, <) is a fine covering model in Vp hence,

by what we already proved it is temporarily a strong covering model. As this

holds for every P we finish.

2) Similar proof.

3) Read the definitions. Di.g

1.9 Definition. A forcing notion Q has pure (#ι,^-decidability if: for every

p G Q and Q-name t < θ\, there are α C #ι, |α| < 62 (but |α| > 0) and r G Q

such that p <pr r, and r Ihg "ί G α" (for #ι = 2, alternatively, t is a truth

value), [if θ = Q\ = #2 we write just θ].

1.9A Remark. 1) If N0 > #2 > 2, pure (#2>2)-decidability is equivalent to

pure (2,2)-decidability.

2) Q purely semiproper implies Q has (Nι,N^-decidability.

3) If Q is purely proper then Q has (λ, N^-decidability for every λ.

4) If <pr=< and Q is proper or Q has the c.c.c. (and we let <pr be equality if

not defined) then Q is purely proper (see 0.1 case D).
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1.10 Lemma. For (θi, 02) 6 .{(2,2), (N0l. 2)} the property "Q has pure

(0ι, 02)-decidability" is preserved by GRCS iteration as 0.1.

Proof. In quoting we refer to case F. We prove it by induction on the length of

the iteration (for all ς, t and generic extension of V). By the distributivity of

the iteration (in case F claim XV 1.7) it suffices to deal with the following five

cases:

Case 1. α < 1 Trivial.

Case 2. a = 2 Easy.

case 3. a = ω\ If there is </ι, q <pr q\ G Pa such that for some β < α, and

P0-name ίi,: q\ G P/3 and </ι lhpα "ί = |ι", then we can use the induction

hypothesis. By XV 3.3 this holds

Case 4- OL strongly inaccessible, α > \Pi\ for i < α: Even easier than the case

a — ω\.

case 5. a = ω: So 02 = 2, and w.l.o.g. p = {pn : n < ω},pn a Pn-name of a

member of Qn We define ςn such that:

(i) qn a Pn-name of a member of Qn

(ϋ) lhpn "pn <pr <7n"

(iii) in VPn, qn decides sn, where:

for Gn+ι C Pn+ι generic over V, sn[Gn+ι] is fe-f 1 iff there is r G Pω/Gn+ι

such that Dom(r) — [nH-l,α;), Pω/Gn+\ \= p \ [n + l,α;) <pr r and r ^pω/on+ι
ut = fc", with k minimal under those conditions; otherwise (i.e. if there is no

such fc) sn = 0. (Actually qn is a Pn-name of a member of Qn[<?n]0 (K ̂ i — ̂ o

- clear, if θ\ = 2 - use Definition 1.9 twice, see 1.9A(1)).

Now q = {</n : n < ω} G Pω,ί> <pr 95 clearly there is r, ς < r G Pω and

ί < 0ι such that r Ih "t = Γ. Also w.l.o.g. for some n(*), [n(*) < n < ω => r \

{n} is pure]; hence r \n(*) lhP n ( Λ ) "Pw/Pn(*) h P f K*),ω) <pr r \ [n(*),ω)υ.

We can prove by downward induction on m < n(*) that for some £ > 0 we

have (r \ m) U {qm} Ih α5m = Γ.

For m — 0 we easily finish (by the definition of sm). DI.IO
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1.10A Claim. Assume that Q is (£), /Z)-preserving, (D,R) a is weak covering

model, Q has pure (0ι,02)-decidability and for some λ and stationary 5 C

<S<N0(λ), the forcing notion Q is purely S-proper (or the parallel for semiproper

and |D| = NI, follows from 0.1(1) in all cases there).

(a) If (0ι, 02) = (No, 2) then Q is purely (D, Λ)-preserving.

(b) If (0ι,02) = (No, NO) and for every x G Dom(#) there is y G Dom(#) such

that for each n < ω:

n n

(VΓ 1 ?..., Tn G Rang(Λ))(3T G Rang(Λ))[/\ yβΓ, -> xΛΓ & f\ T£ C T]
£=1 1=1

then Q is purely (D, β)-preserving.

Proof. Straight. ΠI.IOA

1.11 Claim. 1) Assume Q = (Pn,Qn

 : n < ω) a GRCS iteration with Qn

having pure (N0,2) decidability, as XV 3.1. Then for every p € Pω, p Ih "/ G

ωω" there is g,p <pr q G Pωi such that <? Ih "/(n) = fcn" where kn is a

Pn-name.

2) If we assume in addition: p \\-pω "/ < p", g G ωα;" (and # G V) t/ien we can

replace "having pure (No,2)-decidability" by "having pure (2,2)-decidability".

Proof. Straightforward. D1.11

1.12 Theorem. Suppose (D,R) is a smooth strong covering model, Q =

(Pi, Qi : i < δ) a GRCS iteration as in 0.1, e.g. satisfying (1̂ , λij, μ^ , Sij, W :

(i, j) G W) (as in XV 3.1), I = Uft,,- : (ί, j) G W}, and S C Sid for (i, j> G W,

each Qi with pure (0ι,02)-decidability and

(*) (0ι, 02) € {(Ho,2), (2,2)} andt if (0l502) = (2,2) then for each T, x, fc

there is F G ωα; such that

Vr?[zflT & 77 G ω>u; & (3fc)(τ/(fc) > F(fe)) & r / t f c G T ) = Φ r / G T ]

^ The meaning of this is like 1.11(2), i.e. we are not interested in all ωω just

in {η : η G ωω and η < g (i.e. (Vn)(η(n) < g(n))}.
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and

(**) \D\ < HI or at least every regular uncountable K < \D\ belongs to S.

If Pi is purely (D, #) -preserving for each i < δ (δ a limit ordinal) then P$

is purely (D, ̂ -preserving.

1.12A Remark. If <^=<Qi^ the pure (0ι,02)-decidability is always trivially

true for (No, 2) and even (oo,2).

Proof. By XV 1.7 it is enough to consider only the cases δ — ω,δ = ω\,δ

strongly inaccessible f\i<δ δ > \Pi\. In the last two cases Rv δ = \Ji<δR
v τ so

w.l.o.g. δ = ω.

Suppose p e Pω, f a P^-name, p \\-Pω "/ G ωω" and z € Όom(R).

By 1.11 above (using part (1) if (#ι,#2) = (No, 2) and using part (2) and

(*) if (0ι, 02) — (2, 2)) w.l.o.g /(fc) is a P^-name of a natural number.

For notational simplicity we shall write the members of Pn as (qι : t <

n), \\rpi "qt € Qe" and similarly for Pω. Let p — (qι : I < ω), and let for m < n

(in Vp™) Pn/Pm = Qm * Qm+ι * ... * Qn_!.

Now we define by induction on n < ω, a condition pn G Pn such that

Pn — (<$ 5 » ^n-i)' an<^ ^or eacn m ^ n a Pm-name tn>rn such that:

α) p \ n <pr pn, and pn <pr pn+ι Γ n, moreover

II ίί.~ ^ ~7l ^ _Tl-j-l"
Irp, Qf <pr ̂  <pr ̂

/3) If Gm C Pm is generic (over V) m < n, then in V[Gm] we have

so ίn,n = /(n). Equivalency, (0, 0, . . . , 0, ?» , . . . , ̂ _x) lhPn »/(n) = ίn,m" .

7)^Pm Γ«S,ll-Qm "ίn,m+l=ίn,m"l
L J

This is easily done: define {<$ : i < n < ω) by induction on n, for each n

let ίn,n — /(n) and define ^,ί^,n by downward induction on £ < n.
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Let fm be the Pm-name of a function from ω to ω defined by: for n > m

we have: fm(n) — tm,n and for n < m we have: /m(n) = /(n). So clearly we

have:

ί) (0, . . . , 0, C> ll-pm+ι "/m \n =

By Definition 1.6(4)(d) there are xn(n < ω) such that

(D,R)\=ψdia((xQ,...),z).

Now let x be large enough, and we split our requirement according to the kind

of iteration. (The cases are from 0.1, cases A,B of 0.1 are covered by the later

cases).

Let N be countable (the cases listed cover all possibilities):

Case D or C: N -X (if (χ), G, <*), N is countable such that (*) below holds.

Case E,F,G: Let (Nη : η G (T, I)) be an (I, W)-suitable tree of models,

N = N<> such that

(*) (Pi,Qt : t<ω), P G N, and also (Z?,Λ),/, (<$ : ί<n< ω), (tn,m :

m < n < ω) belong to TV and TV Π ω± e W in cases E, F, G.

Let (Tnj : j ? < ω) enumerate {T G £> Π TV : xnjRT} and 77* be /o (which is a

Po-name, i.e. a function in V). Now let (Ta : α < ω) be as guaranteed in (*)

of 1.6(3).

We now define (in V!) by induction on n conditions rn = (ΓQ, . . . ,rn_ι) G

Pn (so trivially rn = rn+1 f n) such that:

a) p \ n <pr r
n,

b) rn Ih "/n € (limΓn) Π (limΓ^)",

c)Case D: rn is generic for (N,Pn).

Case C: rn is semi-generic for (N,Pn).

Case E,F,G: for some Pn-name ryn, letting Nηn = \Jk<ω Nr,n^k

we have: rn is semi-generic for (Nηn,Pn)

and rn lhPτι "^[Gp^] is (\Jl>n I^)-suitable model for x"
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If we succeed then we easily finish; clearly r^ = (ro,rι, . . . ,rn, . . .) satisfies

P <pr f t ; also for n < ω :

Hence (r* \ n) \\-Pn "f f n G Γn Π Γω" and therefore r* lhPω "/ G lirnΓ" ".

As zRTω (by 1.6(3)(*)(ii)) clearly rt,Tω are as required.

So we have just to carry out the induction. There is no problem for n = 0 (by

the choice of 77*). So we have to do the induction step. Assume rn is defined,

and we shall define r71"1"1.

Note, as Pn+ι purely preserves (D,R) we can deduce:

<g) Qn ( in VPn) purely preserves (D,R).

Let Gn C Pn be generic over V,rn G Gn, so /n+ι becomes a Qn[Gn]-name

/n+ι/Gn of a member of ωu;. But (D, Λ, <) is purely preserved by Pn+ι, hence

for every q G Qn[Gn], and y G Dom(β) there is a condition q^ q <pr q^ (where

tf € Qn[Gn]), such that βt lh9n[Gn] "/n+1/Gn € limTt " for some Γ* e D

satisfying yRT^. Also there are {ς] : ί < ω), and i/ such that:

z/ G limT^ in Qn[Gn] we have q^ <pr ςfj <pr q[ <pr ... and q\ Il-Qn[σni

Vn+i ί t = v \ Γ . [Why? v = /[Gn] can serve.]

We can use choice functions, so let v = F1(q,z) and q\ = F2,£(ς, z) and

T^ = F0(g, z), and ςt = ̂ (ς, z). By our hypotheses (smoothness) in V[Gn] we

know that (D,R) is still a covering model. Note also that w.l.o.g. ίb,Fι,F2^

belong to .N[Gn]. Remember (by (a)) that in Case F N[Gn] is an (\Jέ>rlι)-

suitable model for χ.

So now we apply condition c) of Definition 1.6(2) (the definition of a

covering model) and get that in V[Gn] the statement v?£is(zn+ι) holds. Look

at the definition of φ^is (1.6(1A)) and apply it to η* = fn[Gn] (which is an

actual member of ωω in 7V[Gn]), the function H with domain D x ω, H(z, m) =

Fι(q™,z) and the function F : Dom(Λ) x ω -* D defined by F(z,m) d=

F0(^, z). So we get a tree T£ G D, and an infinite set wn as described there.
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However note: D C V, so though T^ is defined in V[C?n] it is an element of V.

Working in V we have Pn-names T*,wn.

In fact without loss of generality T* G N, hence (by assumption (**) of

1.12 and condition (c) on rn) we have (r0,... ,rn_ι) lhPn "T^ G £> Π TV" so

for some Pn-name j = j(n) (of a natural number) we have (r0,.. - ,rn_ι) lhpn

JTn = Tn/ Now (r0,... ,rn_ι) forces /n G (limΓn) Π (limTω) Π (limΓ*) =

(limΓ*) Π (limΓ") Π (limΓn^(n)).

Hence, working in V[Gn], by the choice of (Ta : a < ω) (see 1.6(3)(iv))

there is k < ω (which depends on /n[G?n]) such that:

(A) fn[Gn] \k<Pe Tnj(n}[Gn] n Γ" => p G Γ"+1 n T».

Now w.l.o.g. we can increase fc, so w.l.o.g. k G ̂ n[Gn] (and k > n); (fc was

defined in F[Gn]). By the choice of q% and the /^'s:

(B) «*n-9n[Gf., "/„[(?„] r*«/ n + Λ
also by the choice of F0, FI, F2, F2^ :

(C) F2,,(^,xn+1)lh9τι[Gτι] «/n+1 r€<Fι(^,xn +ιr and

(D) <£ < F2,,(^,xn+1) G Qn[Gn]nN[Gn], and

(E) ίf(xn+ι,fc) = Fι(ςf*,xn+ι) and F(xn,n) = F0(ς£,xn).

Now by the choice of Γ^ = Γ^.j^j for some i

(F) ff(xn+ι, fc) t / < p G F(xn, n) => p G Tnιί[Gfn]

So together.

(G) F2,z(gn» χn+ι) is a member of Qn[Gn]ΠJV[Gn], it is a pure extension

of pn and it forces /n+ι (really /n+ι[Gn]) to belong to limTn+1 Π limΓ^.

Now we can choose rn,F2,i(ς£,xn+ι) <Pr rn G Qnl^n] to satisfy (c) thus

finishing the induction and the proof. Πι.i2

So e.g.

1.13 Corollary. Suppose

(α) (Pi,Qj : i < aj < α) is a GRCS iteration as in XV 3.1. (i.e. 0.1F)

(β) (D, R) is a fine covering model,
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(7) "~Pt "Qί is purely (£), #)-preserving"

(δ) D has cardinality NI (or just (**) of 1.12)

(ε) each Qi has pure (N0,2)-decidability.

Then Pa is purely (D, #)-preserving.

Proof. We prove by induction on α that lhpα "(D, R) is a smooth strong covering

model" and Pα is purely (JD, Λ)-preserving.

Case 1. a — 0 By 1.8(1) we know (D,R) is a smooth strong covering model.

Case 2. a = β + 1 By the induction hypothesis VFβ \= "(£>, #) is a smooth

strong covering model", as Qβ is (D,^-preserving VFβ (= [Ihg^ "(D,R) is a

weak covering model"], hence (see Definition 1.7(3)):

yp£ |= [\\-Qβ "(D,R) is a strong covering model"].

Let R be a Pα-name of a (D,R)-preserving forcing notion; easily Ihp^

"ζ> * R is (D, Λ)-preserving" so as above Ihp^ "[Ih "Q^Λ (D,R) is a strong

covering model"]" .

So in VPa = (yp/3)" , for every (D,Λ)-preserving forcing notion β,

Ihft "(D, ίϊ) is a strong covering model".

So in VPa, (£), Λ) is a smooth strong covering model. As for "Pα is purely

(D, β)-preserving", by 1.10A it follows by the previous sentence and clause (α).

Case_ 3. a limit The real case, done in 1.12. Πi.is

1.13A Corollary. Suppose:

(α) Q is a countable support iteration of proper forcing

(β) (D, R) is a fine covering model

(7) "-Pi "Qi is (D, ^-preserving "

Then Pa is (D, .R)-preserving.

1.13B Remark. 1) We have parallel conclusions to 1.13 weakening (ε) to

(ε)' "Qi has (2,2)-decidability "

if we add the requirement from 1.12(*) for (61,62) = (2,2).

2) We can have parallel conclusions to 1.13 weakening (ε) to



§1. A General Preservation Theorem 271

(ε)" "Qi has (Ko, ̂ -decidability"

if we add

(C) each Qi is purely ^α;-bounding.

1.14 Definition. 1) A class (= property) K of objects (D, R, <) is a fine class

of covering models if:

(i) each member satisfies (α), (/3), (7) of Definition 1.2.

(ii) if Q is a forcing notion, ^-preserving (i.e. each (D,R, <) G Kv is a weak

covering model even in VQ) then in VQ: each (D,R, <) G Kv is in KγQ

and satisfies (7) of Definition 1.2(1); note that clauses (α), (/?) of 1.2(1)

follows.

2) "K is a (smooth) (strong) class of covering models" are defined similarly.

1.15 Theorem. In 1.12, 1.13 (and 1.13B) we can replace the covering model

by a class of covering models.

1.16 Definition.

1) (D,~R) is a weak covering fc*-model if: ~D = (Dk : k < fc*), ~R = (Rk : k <

A;*}, fc* < ω and

(a) for each k < fc*, Dk is a set, Rk is a two place relation on D^, xRkT

implies T is a closed subtree of ω>ω.

(b) (£>, jR) covers, i.e. for every η G ωω, for some k < fc*, η is of the fc-th

kind which means: for every x € Dom(^) = {x : (3T)xRkT} there

isT <Ξ Dk such that x^^ and η G lim(Γ).

2) (D,Λ,<:) is a fine covering fc*-model if

(α) (D, .R) is a weak covering fc*-model

(/?) <" = {<^: k < fc*), <k is a partial order on Dom(^) such that

(i) (Vy G Όom(Rk))(3x G Dom(Λfc))(x <k y)

(ii) (Vj/,x G Dom(jRfc))(32: G Dom(βfc))(x <k y-> x <k z <k y)

(iii) if y <fc x, yRkT then for some T* G Dk, T C Γ* and
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(iv) if y <k x and for i = 1,2 we have yRkTt then there is T G Dk

such that:

xRkT, Tι C T and for some n, [i/ G Γ2 & v f n G TI => i/ G T]

(7) (a) for each fc < fc* the following holds. If x >& x^ >& τ/n+ι >£ yn for

n<ω and Γn G Dk, ynRkTn (for n < ω) then there is Γ* G Dk, xRkT*

and an infinite set w C ω such that:

limΓ* D {η eωω : for every i G ιy,ry f min(u;\(i + l)) G (̂ J 7}UΓo}

(b) if fc < fc*, {77} U {ηn : n < ω} C ωω, η \ n = ηn \ n and x <fc t/,

and 77, ηn are of the fc-kind (see below), then for some T G Dfc we have

yRkT & 77 G lim(T) and for infinitely many n, ?7n G lim(T).

(5) condition (7) continues to hold in any generic extension in which (α)

holds.

3) For a property X of forcing notions, (£), R,~<) is a fine covering fc*-model

for X-forcing if Definition 1.16(2) holds when in (δ) we restrict ourselves

to X-forcing notions only.

4) We say (D,R,~<) is a temporarily fine covering fc*-model if it satisfies

(α), (/?), (7) i.e. it is a fine covering fc*-model for trivial forcing.

5) We say η G ωω is of (fc, x)-kind (or just the x-th kind when (Όom(Rk) : k <

fc*) are pairwise disjoint) if there is T such that η G lim(T) and xRf~T (note:

(D,R) covers iff for any 77 G ωω and x = (x/, : fc < fc*) G Π Όom(Rk)

for some fc, the sequence η is of the (fc,Xfc)-kind). We say 77 is of the fc-th

kind if it is of the (fc, x)-kind for every x G

For simplicity we restrict ourselves to the fine case (and not the parallel of

smooth strong covering).

1.17 Theorem. Assume (D, #,<) is a fine covering fc*-model.

1) If Q = (Pi, Qj : i < ί, j < δ) is a CS iteration, each Qj preserves (75, β, <")

then so does P$

2) Similarly for other iterations as in 0.1 (with pure preserving).
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Proof. For simplicity Όom(Rk) are pairwise disjoint so let <= \Jk<k* <k We

concentrate on part 1). By V 4.4, if δ is of uncountable cofmality then there is

no problem, as all new reals are added at some earlier point. So we may suppose

that cf (δ) — NO hence by associativity of CS iterations of proper forcing (III)

without loss of generality δ = ω.

We claim that \\-Pω "(D, R, <f) covers." (Note that this suffices for the proof

of the theorem.)

So let p* be a member of Pω and / a Pω-name such that p* \\-pω "/ G ωω" ,

and xk G Dom(Rk) for k < fc*. It suffices to prove that for some fc, Γ, and p

we have: p* < p G Pω, xkRkTk (so Tk G Dk) and p lhPu; "/ G lim(Γfc)". As

we can increase p* w.l.o.g. above p*, for every n, /(n) is a Pn-name. Let χ be

large enough and let TV be a countable elementary submodel of (-ίf(χ), G, <*)

to which {xo, , Z f c * - i » P * » / » <2} belongs.

For clarity think that our universe V is countable in the true universe

or at least ΠadP^D^ is. We let K — {(n,p, G) : n < ω, p G Pω is above

p*, G C Pn is generic over V and pfn G G}. On /f there is a natural order:

(n,p, G) < (n',p', G'} if n < n' , Pω μ p < p' and G C G'. Also for (n,p, G) £ K

and n; G (n,α;) there is Gf such that (n,p, G) < (n',p, G') as Q is an iteration

of proper forcing notions. Also if (n,p, G) G K and p < p' G Pu /G (i.e.

p' G Pα; and p'fn G G) then (n,p,G) < (n,p',G). For (n,p,G) G K let

k(n,p,G) = {g '• g G (ωω)v^ and there is an increasing sequence (pt : i < ω) in

V[G] of conditions in Pω/G, p < p0, such that pt Ih /^ = ̂ ^}. So:

(*)2 (n,p,G)GK^

(*)a 9 £ i(n,P>G) => (/ \n)[G\ =9\n

Note also

(*)4 L(n^p^Qn} is a Pn-name.

(*)5 if (n,p,G) < (n',p',Gf) then Z>(n',p',G') Π V C L(njp)G)

1.17A Fact. There are k < fe* and (n,p,G) G K such that if (n,p,G) <

(n7,!/,^7) G /f Λenfor some (n",p",G") G K, (n1 ,pf ,G') < (n" ,p" ,G"} there

is g G £(n",p",G") which is of the fc'th kind.



274 VI. Preservation of Additional Properties, and Applications

[Why? otherwise choose by induction (ne,pl,Gl) for i < k*, in K, increasing

such that: £(n*+ι,p*+ι,G*+1) nas no members of the £'-kind for i' < i. So

L(nk* ,pk* ,Gk*} — 0) a contradiction.]

So choose k and (n®,p®,G®) G K as in the fact, w.l.o.g. n® = 0.

Remember that f ( n ) is a Pn-name for each n.

1.17B Fact. If (n®,p®,G®} < (n,p,G) G K and x G Dom^) then there is

g G L(n)p5(3) which is of the (fc,x)-kind.

Proo/. By the choice of (n®,p®,G®) there is (n',p',G') G K such that

(n,p, G) < (n',p',Gf) and I/(n',p',G') nas a member # of the /c-th kind. So

there are Γ G Rang(Ήfc) and (p^ : £ < ω) such that # G lim(T), xRkT, p'Q = p',

p'i < Pt+n Pi G PW/G;, p^ lhP ω / σ/ "/Γ^ = 9\F- Note that Γ G V. Prom the

point of view of F[G], all this is just forced by some q G G7, so q forces that

(#g : I < ω), Γ, g are as above. So we can find (qt : i < ω), qt G Pn

f/G, qι

increasing, q < qt and qt forces a value to p'^ say p^; and to g\t and is above

P'i\n'.

And we are done.

1.17C Fact. If T C Rang(βjfe) is countable and x <k y, and (VΓ G T)(3z <fc

x)(zRkT] and T° G T then for some T1 G Rang(Pfc) we have yRkT\ T° C Γ1

and for each T G T for some ra we have:

(Vz/)(z/ G T & v\m G T° =» i/ G T1).

Proof. Let (Tn : n < ω) list T (possibly with repetitions) such that TO = T°.

Let x <k x' <k y, choose inductively xn, x <^ xn <k x n+\ <k %' (possible

by clause (/3)(ii) of Definition 1.16(2)). Choose inductively T'n G rang^) such

that To = TO = Γ° and xnRkT^ T'n C T^+1 and for some kn < ω we have:

v G Γn, v\kn G Γ^ ^> ί/ G T^+1 (possible by clause (/J)(iv) of Definition

1.16(2)). Choose, for each n, Γ^ G Rang(βfc) such that x'RkT^ T'n C Γ^

(possible by clause (/3)(iii) of Definition 1.16(2)). Next use 1.16(l)(7)(a) to find
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an infinite w C ω and T1 G R&ng(Rk) such that yRT1, T0" C T1 and

i G w & i/rmin(w \ (i + 1)) e |J Γ/ U Tg => v G T1.

Check that T1 is as required. Πi.irc

Continuation of the proof of 1.17.

Choose x' < x£ and then inductively on n choose xn such that xn <& x'

Xn <k #n+ι> and choose a countable TV -< (H(χ),e) (with χ = cf(x) >

ΠωdPωD) such that all the elements (xn : n < ω), (Pn,Qn : n < ω), /,

p® belong to N. Now, working in V, we choose by induction on n sequences

(pη:ηe nω}, (fη:ηe nω), (qη : η € nω), and Γn such that

(A) pη is a P^g^-name of a member of Pω Π TV, PQ = p® , ̂  < pη* (i},

Pη\n<qη\n

(B) ^ is (7V,P^g(r7))-generic, ̂  G P^g(77) and [t < lg(ή) ^ qη\i = qηH}.

(C) fη is a P^g^-name of a member of ωω and ̂  H~p£g(τ?) "/»/ G lim(Γn) Π

N\-Gpt&(r,ϊ\ is of the (fc,^3n)-kind and belongs to £(n,pη[ζ?P/,g(τ7)],Gp£g(τ7))"

when η G nω.

(D)

(E) Pη -
Suppose we succeed in this endeavour. By (/3)(iii) of 1.16(1) we can find T'n

such that Tn C T^, x'R^T'n (as #3n <fc x'). Let w and T* be as guaranteed by

clause (τ)(a) of Definition 1.16(1) (for (T^ : n < ω), x7, x) and let (HI \ i < ω)

be the increasing enumeration of w. So xR^T* and: if r/frii+i C y T^. UTg for
j<i

each i < ω then 17 G T*.

Let <?(ΐ) = n^. Let ι/ — (nzj+i : j <ω).

So it is enough to prove that for some q G Pω which is above pΘ, we have

q "~Pω "/ ^ lim(T*)". We choose q G P^ by q\i — g^^, by clause (B) we have:

q G Pω is well defined and above each qv\i and above each p®\i hence above

We just have to prove: g Ih "/K+i G |J T'n. UT^". As gt(i + l)
j<t

by clause (A) we havep^j-^!) < gf(zH-l); by clause (E) letting η — v\i^i — v(ΐ)
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we have q lhPu; "fη\ί = f^(t)\l = f\P, but i = v(ΐ] = n2i+i, so we have

q Ih "/Γ^2i+ι = /ι/rtfa2i+ι"; now by clause (C) applied toη = v\i remembering

Tn C T£ we have ςι Ih "/i/Γt £ lim(^)" hence by the last two statements

? II- "(/|ri2i+ι) € 2V". So, as rij < rij+i, for i = 0 we have q Ih "/fat G T<5",

and for i > 0 we have q Ih "/fa2i+ι G T/ C Γ^.j" and for i > 0 we have

q II- '7fa2i+2 < /fa2;+3 € 2V+1 C 2^" so q Ih "/K+i G \J T'n. U T^" holds
j<*

(check by cases).

Hence we have finished proving lhpω "(D,R) covers ωω". So it suffices to

carry out the induction.

There is no problem for n — 0.

Let us deal with n + 1. By fact 1.17C (above) there are Tn>ΐ G Rang(#fc)

for i < ω such that

(*) (i) Tn,0 = Tn

(ii) Tn,< C

(ill) XSn

(iv) if T G (Rang(jRfc)) Π N and (3z)(2 <k x3n+i & a βfcϊ1) then for some

ra = 77iτ < ω we have ι/ G T & i/fra G Tn^ ^ v G Γn>i+ι.

Let Tn+ι = Tn,3.

Next we define pη

Λ(t), fη~(£)ι qηΛ(£) f°r Ή ^ n c jj ^ < ω. It is enough

to define then in N[Gpn] where Gpn is any generic subset of Pn to which qη

belongs (note that e.g. pη - ̂  is a Pn+ι-name, and if qη φ Gpn the requirements

on it are trivial to satisfy).

Let 77 G nα;, and let Gpn be a subset of Pn generic over V such that

qη G Gpn. So now pη is in (Pω/Gpn)Γ\N[Gpn], and /^ = fη[Gpn] is a member

of ωω of the (fc,X3n)-kind which belongs to L(n}pτ?j(3Pn), moreover /^ G -/V[Gpn].

So in AΓfGp^] there is an increasing sequence (p®* ,^ \ i < k) of members of

Pu/GPn ,Pη=P*η- (o), P° ~ (t) H-pω/Gpn '7^ - /r, Γ^ w.l.o.g. pθη. w \n = Pη \n.

If Gpn+1 C Pn+ι is generic over V extending Gp^ and p^ * ̂  f(n + 1) G Gpn+1

then(n+l,p^w,GPn+1) > (n®,p®,G®) is from #, so by Fact 1.17B there are

/T7,£ £ (ωα;)v''σpτι+1' and an increasing sequence (p^. /^v . : j < ω) of conditions
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from Pω/Gpn+1 starting with p®~ ̂  such that p*- ̂  j Ih "f\j = fηtt\jn and

fη,ι is of the (fc,z3n)-kind, say fηt£ G lim(T^), x3nRkT^£.

Letting Qn = Qn[Gpn] we have Qn-names for these objects so ( f η j : i <

ω) is a Qn-name of an u -sequence of members of ωω of the (fc,xsn)-kind and

T% and (Pη-/t\ j '- j < ω) are Qn-na,mes as above.

W.l.o.g. {(/„,<, 7** (pj- Wj. :j<ω)):l<ω)e N(GPn}.

So we can find ((Pη^τ^£) : I < ω) such that:

jf/ lhgn "Γ^ = Γ^ hence /^^ G lim(Γ^)M

and

Also we can find ̂ , p^^ (£ < ω, j < ω) such that

Pη,ι,j+ι and Pη,ιj "~Pu,/GPrl "/i?^ U = fl'ty^ U" where gηtέ G ωα; necessarily

9*ι\3 € T^ hence ̂ f/ G lim(T^). W.l.o.g. (pj^ : £ < ω, j < ω>, (gηj : I < ω)

belongs to N[Gpn]. So gηj, fη G ωω are of the (fc,x3n)-kind and gη,ι\l = fη\£,

so by clause (τ)(b) of Definition 1.16(2), there is Γ^ G Rang(^) such that

x3nRkTη and B% = {i<ω : gηj G lim(Γ^)} is infinite.

Now as fη G lim(Tn), x3nRkT^ and T^2 G N[GPn] Π Rang(Λ/b) clearly, by

(*) above, for some mη < ω, fη \mη < v G Γ^ =Φ ί/ G Tn+ι. Hence

^ G lim(Γnιι).

As x3n

have

G

G

Π Rang(.Rjfc) clearly for some mηtι G (mη,ω) we

/ G Γ and hence

and

Thus Pr^,mτ7ι, lhQτι "/^^ G lim(Γn>2)". (Note that Sg, Γ^, mn, m^,^ are Pn-

names.)
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Now, at last, we define pη - ̂  for i < ω. So pη - ̂  \n = pη, and we define

pη~(ή(n) in V[G?pJ where qη e Gpn (justified above). Let ί(i) be the £-th

member of B% \ mη, and pη - (i}(n) = Pηti(i)tmriιW and fη - (i} be fη,t(i)).

Lastly let qη - {ί} G Pn+ι be such that qη ~(i)\ = qη,qη~ (»> above pη ~ (i} and

is (TV, Pn+ι)-generic (possible as in the proof of preservation of properness by

iteration. DM?

§2. Examples

In this section we use the machinery from the previous section. First (2.1-2.7)

we try to restate the results in a way easier to apply by putting more of the

common part of the examples in the general results, but you can deal directly

with the examples i.e. you can essentially ignore 2.4-2.5, start with 2.7, and

use 1.15 (instead 2.1 - 2.5) but have to check somewhat more. Then we deal

with several properties which we call: ωcj-bounding property, Sacks property,

Laver property, (/, ̂ -bounding and more. Several have been used (explicitly or

implicitly) and we show that their preservation by countable support iteration

follows from 1.13A (so actually from 1.12; really we use 1.15). We usually

present the "classical" examples of such forcing.

Names (Sacks, Laver) come from the forcing which seems to be "the

example" of a forcing with this property. However as Judah comments, maybe

"Sacks property" is confusing as Sacks's forcing satisfies a stronger condition.

For simplicity:

2.0 Convention. Forcing notions are from the first case of 0.1 (e.g. proper)

and Vt subuniverse of V means, if not said otherwise, V — (V^)^, Q as above.

2.1 General Discussion and Scheme.

For usual notions we have two variants of the preservation theorem. We

first define a family K of candidates for covering models, usually they have all

the same definition, φ but applied in some subuniverse V^ (with the same NI)

and we get φ(V^), and demand that it is a weak covering model (or a family of
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covering models; this restricts the family of V^ we can further restrict ourselves

to the case V = V^ [G] where G is a subset of some forcing notion P G V1" generic

over V). We then write K — Kφ (φ - the definition, possibly with parameters).

Then we prove:

(A) any model from Kφ is actually a temporary fine covering model.

So

(B) if (D, R, <) G (Kφ)
v still covers in Vp then it is (in Vp) still a temporary

fine covering model.

This implies that

(C) if Q = (Pj,Qi ' j < α, i < a) is an iteration as in 0.1, α a limit ordinal,

(£>, jR, <) € Kφ in V and for every β < a we have \\-Pβ "(£>, R, <) still

covers, so it is a weak covering model" then (D,R, <) covers in VPa.

But we may want a nicer preservation theorem in particular dealing with

the composition of two.

2.1A Definition. 1) For a formula φ = φx (possibly with a free parameter

x) defining for any universe V^ which satisfies x G V^ a weak covering model

y?x[Vt] (the definition in V^) and a property Pr of forcing notions, we do the

following. Let

KPr = φpr(V) = {φx[V^\ :Ff a subuniverse of V, V = (Ft)Q for some

forcing notion Q satisfying Pr,x G V^,

covers in V, so Q is φx[V ^-preserving},

so φx[V] is a member of φPr(V). We omit Pr if Q fits into the appropriate

case of 0.1 (see 2.0); for simplicity we concentrate on this case^.

2) A forcing notion P is /{^-preserving or (^-preserving if it preserves each

(£>, β, <) G Kpr. We may add "purely" to all of them.

3) Writing D*, Rφ, <φ we mean φ[V] = (D*, W, <^); if φ has a free parameter

x and a fixed parameter t we write ^[F x], or ^,X[F].

t it is reasonable to deal only with Pr preserved by the relevant iterations,

and everything is similar.
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2.2 Restatement of Definition.

1) φ is a temporarily definition of weak covering models if (each instance

satisfies):

(α) (a) l.l(a)

(b) l.l(b) (i.e. φ[V*] covers in the V^ in which we define)

1A) φ is a temporary fine definition of covering models if (α) (above) and in

addition:

09) 1-2(1)09)

(7) 1.2(1)(7) i.e. φ[Vi] satisfies it in V^

2) φ is a fine definition of covering models if in addition:

(δ) if Q G V is <£(V)-preserving (i.e. each member of φ(V) covers in VQ

i.e. (α)(&) holds also in V®) then in V® still each member of φ(V®)

satisfies 1.2(1) (7).

3) φ is a finer definition of covering models (for simplicity with no free pa-

rameter) if'm addition:

(α)(c) <φ is absolute for (^-preserving extensions i.e. if V1 is a class of

V2,φ(Vl) covers in V2 (remember 2.1A(3) and 2.0), x,y G V1 then:

V1 [= x <* y iff V2 |= x <φ y. Similarly for D*, W.

(ε) if Q is <p(V>preserving, φ[V] \= uy < x", and Γ* G VQ and φ[V^] \=

yRT* then for some Γ** G V we have: Γ* C Γ** and ^[F] (= xβΓ**

moreover

(ε)+ like (ε) above but Q is demanded only to be <^[V]-preserving.

4) φ is a finest definition of covering models if in addition:

(ζ) if Q is (^(V^-preserving, and x £ Dom(JR
v?[F<5]) ί/ien there is a y G

Dom(Λ*[VΊ), such that φ[VQ] \=y <x.

5) the (/^-covering model is φ[V]] a ^-covering model is a </?[V^] for an appro-

priate subuniverse V^ so it belongs to φ(V).

6) (JD,β,<) is 2-directed when: if y < x,yRΓι,yRΓ2 (so x,j/,Tι,Γ2 G D)

ί/ien for some Γ, x#T and TI U T2 C T. We say y? is 2-directed if every

φ[V] is (see 1.2(l)(/3)(iv) and 1.3(5)).
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2.3 Restatement of Theorems.

1) If φ is a fine definition of covering models, Q = (Pi,Qj : i < α, j < a)

is an iteration as in 0.10=κ0

 and Qj is purely (^-preserving for j < a then

Pa is purely (/^-preserving, hence: φ[V] covers and φ is a fine definition of

covering models, even in Vp°.

2) If φ is a finer definition of covering models, Q = (P^, Qj : i < α, j < a) is

as in 0.10=N0 and

(*) each QJ is purely </?[^PJ]-preserving (and (see 0.1) Qj has pure (Ho, 2)-

decidability)

then Pa is purely φ[V]-preserving.

3) In (2) we can weaken (*) to

(*)"" for i < j < α, i non limit we have Pj+ι/Pi is purely </?[VPΐ]-preserving

4) fine <= finer.

5) finer Φ= finest.

6) If φ is a finer definition of covering models, and Q is φ[V]-preserving then

Q is <p(V)-preserving.

7) We can replace pure (tto> 2)-decidability by "pure (2,2)-decidability" if each

φ(V) is as in 1.12(*).

Proof. Straightforward. E.g.

6) Suppose φ[V] = (D',R',<f) G φ(V), so V = (F')Q/, Q' as in 0.1 and

(£>', β7, <7) covers in V too. Suppose further that p € Q and p Ih "/ G ωω" and

x G Dom(D/); choose y G Dom(JR
/), ι/ <' x.

By clause (α)(c) (see 2.2(3)) φ[V] N «j/ < x" (and x,y G Dom(Λ*M) As

Q is purely φ[V]-preserving there are q and 7\ such that: p <pr ^ G Q?

Γi G Dom(^ty]), (^[F] N uyRΓιn and ς Ih "/ G lim(Tι)". By clause (e)+

(see 2.2(3)) there is Γ0 G Rang(.R/) such that χβ7Γ0, TI C Γ0. So g, Γ0 are as

required. Π2.3

We can save somewhat using: (we shall usually use 2.4(2))

2.4 Claim.

1) Suppose (i) (D, R, <) is a temporarily fine covering model in V, and:
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(ii) V is a subuniverse of V^ and (D,R, <) covers in V^ or just V^ —

VQ, Q is (D, R, <)-preserving,

(iii) every countable α C D from V^ is a subset of some countable b e V

(e.g., Q is proper or: Q preserves NI, V |= "\D\ < NI"),

(iv)* there are one-to-one functions hn : ω -+ ω such that /ιnfn = Λ>n+ι ίn>

and (Rang(ftn)) Π (Rang(/ιm)) C Rang(/ιn fMin{n, m}) and: for ev-

ery x G D for some y G D, for every T\ such that yRT\ there is TO,

zβϊb such that: η G limTi implies ( η ( h n ( f ) ) : t < ω) G limΓ0 for

infinitely many n. In fact (hn : n < ω) may depend on x.

Then (D, jR, <) is a temporarily fine covering model in V^ .

2) We can replace (iv)* by

(iv)** there are an infinite w C ω and functions hn : ω —+ ω and a sequence

((9k, fk] k < ω) such that

(α) hn \n = ftn+i fn

(/3) for fc < α; the set vk

 ά= {(n,£) : ί > n - l,n < α; and hn(^) = fc}

is finite, ^fe is a function from (υ f c)cj to α;, /fc — (/^^ : (n,-?) G fjt),

/(n,/) : ω -+ ω SUch that f(no,to)(9k( , ™(n,0» ' ' )(n,/)€t;fc) =
 m(n0Λ)

(7) for every x G DomjR for some T/ G DomjR we have: if yRT\ then there

is ΓQ satisfying xRTo and

(Vry 6 l i m Γ O ^ n W / M M ^ ) ) ) : ^ < ω) € limT0]

3) We can replace (iv)* by

(iv)*** for every x G DonxR for some Borel function B from {(ηa : a < ω)

ηa G ωω and ηω \n = ηn \n} into ωα;, there is y G ΌomR such that:

for every T\ satisfying yRTi there is Γ0 satisfying x^Γ0 such that

(ηa : α < ω) G Dom(B) & B((r/α : α < α;» G limϊi

Remark: Applying 2.4 we may wonder if (iii) is a burden. At first glance, if

yt — γQ ^ Q not proper, this may be so. But actually we need it only for the
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limit cases, and there in the cases of iteration of non-proper forcing notions,

we usually assume that in some earlier stage the cardinality of D becomes NI.

Before proving 2.4, we make some observations of some interest, among them

a proof.

2.4A Observation. If f\nTn C Tn+ι and Tn,T are perfect subtrees of ω>ω

and w is a witness for (*)/τ .n<ω\ T ̂ en u ιs a witness for (*)/τ .n<ω\ τ if ®

holds, where

(*)(Γn:n<ω),r ^n' T perfect trees C ω>ω, Γ0 C T and for some w =

{no, rii,...} (strictly increasing called a witness): η G ω>ω,

0 u C α; is infinite and: if z0 < ή < ^2 are successive members of w then

\u Π (io, ^2)! < 1 and the second member of w is smaller than the second mem-

ber of u.

Proof. Let w = {rii : i < ω}, and u = {nii : i < α;}, both in increasing order.

Assume η G ω>ω and /\i ryfmi+i G Ujxi ^m, U ϊb and it suffices to prove that

Λi^faz+i € U?<i ^Wj U ΓQ. As each Tj is perfect without loss of generality

lg(η) = ?Ίt(*) for some z(*) > 0, and we shall prove by induction on i < ϊ(*)

that η\rii+ι G Uj<i ̂  UT0. For i — i(*) - 1 we will get the desired conclusion

by the choice of w. For i = 0 we have (J,^ Tm. U Γ0 = Γ0 = \Jj<:i Tn . U Γ0 so

as mi > HI the conclusion should be clear.

For i + 1 > 1, as \u Π (n<_ι,n<+ι)| < 1 (holds by 0), if u Π [0,ni_ι] = 0

then by u Π [0,nΐ+ι) has at most one member hence mi > n^+i and we do

as above. So there is j < ω such that mj+i > n^i, m^-i < Ui-\. Now we

know ryfm^+i G U e<jϊmβ

 u ϊb, so if ryίm^ +i G Γ0 then T^fn^i < r/ίmj+i G

TQ C Uε<i Tnε U TO and we are done. So for some ε < j, η\rrij+ι G Tme hence

r/K+i < f/rm^+i G Tmε C Tm._ι C Γn..1 C \Jζ<iTnζ U Γ0 as required. \32ΛA

2.4B Observation. Suppose /ι : ω — > α; is one to one (or just finite to one),

Tn, 5n,T are perfect subtrees of ω>ω, /\nSn C Sn+ι,T0 C 50 and for each n

for some m G [n,α;) we have (*)^h ^ 5^ x holds (see below).
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Then (*)<sn:n<^>,τ => (*)l(τn .n<ω),τ where:

(*)(T n<ω) T Tm T perfect trees C ω>ω, T0 C T and for some w = {n0, πi, . . .}

(strictly increasing): η G ω>ω, ΛJ^N+i G ^Jj<iTnj U T0] => 77 G T,

(*)τι,τ2 τ3

 for some * < ω (the witness) P G TI & pΓ/c G T2 => p G Γ3.

tfemαrfc. Note (*)£. τ* τ* & T[ C Γf & Γ^ C Γ2* & T3* C Γ£ => (*)£, Γ, Γ,1 ' 2 ' 3 1 ' 2 ' 3

Proof. We want to prove (*)(Tn:n<α,),τ>
 so we have to find an appropriate

Let Wι — {rii : i < ω} (the increasing enumeration) witness (*)\sn .n<ω),τ

for j < ω let kj be such that it witnesses (*)^h . ,s.,sm (f°r the nrst possible

ra > n, note that (*)τhω,^.,5m+1

 is preserved by increasing m as 5m C Sm+ι).

By 2. 4 A above without loss of generality

0 Λini e Rang(ft), and kni < n<+ι and (Vfc)(Λ(fc) < n» => fc < ni+ι),

hence n^ < h(πi+\) < rii+z, and also for some m € (ni,ni+ι) we have

(*)τh(ni),sns,sm ̂  get (*)^(ni)f5ni,5ni+1)

Choose m^ = /ι(n4^_f-4). Now we shall prove that w = {πii : i < ω} is

a witness to (*)/yn.n<ω\ T ̂ us finishing the proof of 2.4B. So we assume

η G u;>ω, /^Tyfmi+i G U^ΐ^m,, u ^b and we have to prove that η G T.

As iϋι = {n^ : i < ω} witnesses (*)/sn.n<ω\ τ? it suffices to prove: for each

i < ω we have η\ni+ι G U^<i ̂  U 50.

We prove it by induction on i If n»+ι < mi then as r j f m i G Γ0, Γ0 C 50,

Γ0 is perfect, clearly ryfn i +ι G 50 C \Jj<:iSj U 50. But ni+ι < mi holds if

ftt+i < ft(ns) what implies i < 9. So we assume i > 9. Let 4i(*) -f 2 < i <

4(i(*) 4- 1) -f 2 (so i(*) > 1). So by the assumption ®, we have r/frii+i <

τ?ίMn4(;(*)+i)+4) = ^Nί(*)+ι G Ujx^*)^ UΓ0. Stipulating m_ι = 0, for

somej(*) G {-1,0, . . . ,i(*) - 1} we have η\mi(^+l G Tm.(^. If j(*) - -1,

then η\Πi+ι < ^miW+i G T0 C SQ C \Jj<iSnj U 5o as required. So assume

j(*) G {0, . . . , i(*) - 1}. But we know that (*)2, <, Q ίWhy?
/mj(*)'°r ι 4J (*)+4'0^4j(*) + 5 L

As by the definition m^*) = Λίn^ ̂ )^), and by 0 above], and we want to

apply it to p = ^Γm^/*). i . The first assumption of (*)2, Q QV ;T /J^ (*)'<3^4j(*) + 4'' :>4j(*) + 5

was deduced above: p — r/fra^+i G ̂ mj(^ The second assumption there is
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Sn4j(*}+4 (by the choice of fcn4j(,)+4), now we know j(*) < ϊ(*) and

[Why? First, the equality holds as:

(a) p = η\mi(^+1

(b) fcn4j (#)+4 < rai(*)+ι» because ra^j+i = Λ(n4(i(*)+i)+4) > ™4(i(*)+i)+3

(why? by definition of raφ«)+ι, by φ, arithmetic, as i(*) > j(*),

arithmetic and 0 respectively).

Secondly, the < holds as &n4j>)+4 < n4j (*)+5 by φ.

Finally, the membership holds - by the induction hypothesis on z, and

(Sn : n < ω) being increasing, note the induction hypothesis can be applied

as j(*) < i(*) hence 4j(*) + 5 < 4(i(*) - 1) + 5 = 4i(*) 4- 1 < i].

So we can actually apply (*)^ o <? and get p — η\mi(#\+ι
/ j ί τ r ιj(*)' t : > τ l4j(*) + 4'0τ'-4j(*) + 5 V ̂

belongs to 5n4ί.(O+5. As r/fn^i < ^Γm^j+i = p (see above) and 4j(*) + 5 <

4(i(*) — 1) + 5 < 4ϊ(*) H- 2 < i, really ry \ni+\ G Uj<i ̂  U 5o as required, thus

we have finished. 1^2.45

2.4C Observation. If (*)/τn n<ω) T holds as witnessed by w, and f\nTn C

Tn_|_ι and /ι : α; — > ω is such that Rang(/ι) is infinite, h(0) = 0 and we let

T^ά=Th(n} then (*)JTι:n<ω)|Γ.

Proof. Let u C α; be infinite such that ftfu is one to one (possible as Rang(Λ)

is infinite), h\u is strictly increasing and for i < j in u, h(ί) < j & i < /ι(j),

moreover, |(/ι(z), j) Γ\w\>2. Now u is as required by 2.4A above. ^2.40

2.4D Observation. In 1.2(1) (7) (a) we can add the assumption Tn C Tn+ι

and get an equivalent condition (assuming 1.2(l)(α), (β) of course).

Proof. Of course we only need to assume this apparently weaker version and

prove the original version. Let XQ < . . . < xn < xn+\ < . . . y+ < y, xnRT^

be given. We define by induction on n, T^ such that: T^ C T^+1, T% = T§,

Xn+iRT^ and (*)%,<> TΎ τ^ (possible by 1.2(l)(/3)(iv) which says: if y < x,
ln> Ln> ln+l

then (3Γ)[Γι C Γ & (*)^ Γ τ]) So Γ^ C T^+1 and (as we are assuming
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the weaker version of 1.2(1)(7)(a)) (*)/τn.n<α,\ ^ holds for some T such that

yRT. By 2.4B, (with Sn

 d^ T^ Tn H
f Γ° and A(n) = n) we get (*)|τo:n<ω),Γ

as required. Π2.4D

2.4Έ Observation. If V, V^, (D, R, <) satisfy conditions (z), (ii), (πi) of claim

2.4(1) then (D,R, <) satisfies (j)(a) of 1.2(1) also in V^.

Proof. Let x > x^ > yn+ι > 2/n for n < ω and Tn G V be such that ynRTn

(but the sequence (Tn : n < ω) may be from V^. Let 6 be a countable set

from V such that {Γn : n < ω} C 6 C T/. Let (5° : n < ω) € V enumerate

{T G 6 : (3τ/)(y < x^byRT)}, so {Γn : n < ω} C {5£ : n < α;}. Without loss

of generality S® — T0 and for each n for infinitely many ra we have S^ = S%

By 1.2(l)(/3) we can find in V a sequence (zn,S^kn : n < ω),z^ such that

x* < zn < zn+ι < z^ < x for n < ω (of course S^ £ V), kn < ω such that

znRSl

n, and Ŝ  - Γ0,5^ C 5i+1 and [p G 5« & pf/cn G Ŝ  => p G 5i+1] (choose

them inductively). So (*)|o 51 51 5 now (*)?_ has obvious monotonicity
n' n' τι+1

properties in its variables (see 2.4B), hence no < n < n\ => (*)|o 51 51

Choose by induction on n, h(n) as

min{m : Tn — 5̂  and m> n and ra > sup{/ι(fc) : k < n}},

well defined by the choice of (5^ :m<ω). So we know (*)^0 01 qιύh(nΓ
ύniύ

h(n) + ι

We want to apply 2.4B with (5^ : n < ω), (Tn : n < ω), h here standing

for (Sn : n < α;}, (Tn : n < ω), /ι there; we have here almost all the assumptions

(including /ι is one to one (even strictly increasing) and /\ V (*)^ 51 sι )
n m>n h(τι)' n' Tn+1

but still need to choose T* and prove that xRT* and (*)/5ι.n<ω\ τ*

Apply (7)(a) of 1.2(1) in V (which holds by (i)) with (S* : n < ω), (zn :

n < ω),z^,x here standing for (Tn : n < ω), (yn : n < ω),x^, x there, and get

T* (in VI) such that (*)/5i.n<ω\ T* holds and xRT*. So we can really apply

2.4B hence get that (*)/τ .n<ω\ T* holds, as required. Π2.4#

2.4F Proof of 2.4(1). From definition 2.2(1 A), part (α) and (/?) should be

clear. By 2.4E we know that (7)(a) of 1.2(1) holds, so it suffices to prove (7)(b)
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of 1.2(1).

Given x G Όom(R) and 77, ηn G ωω such that η\n = ηn\n, let y and hn

(n < ω) be as in (iv)*. We can find v G ωω such that: for each n < ω

we have ηn(k) = v(hn(k}) (note that there is such v G ωω because if I =

hm(kι) = ^712(^2) then^ G Rang(/ιnι)ΠRang(/ιn2) hence fci, fc2 < min{nι,n2},

so /ιn2(^2) = hnι(kι) = hn2(k\), but /ιn2 is one to one so fci = fc2). As (D,R, <)

covers we can find TI such that y#Tι and v G lim(Γι). Now let TO be as

guaranteed by (iv)* (of 2.4). D2.4

2.4G Proof of 2.4(2), (3). Similar.

2.5 Claim.

(1) We can get the conclusion of 2.4 and even strengthen it by " in V^ the

model (D,R, <) still satisfies (7)1 (see 1.3(8))" if we replace (iv)* by:

(iv) every / G (ωω)v is dominated by some g G (ωω)v',

(v) (D,R, <) satisfies (7)1 of 1.3(8),

(vi)' (D,R, <) is 2-directed (see 2.2(6)).

(2) In 2.4(1) we can replace (iv)4" by (iv)~, (v)' below and (vi)' above, where

(iv)~ no / G (ωω)v* dominates (ωω)v

(v);(7)2 if y,x,yi,xn,Tn G Dφ[V], XQ < Xι < ... < y] < y, xnRTn,

Tn C Tn+ι (for each n < ω) then for some k < ω and (Tl : I < fc),

(B^ : ^ < n) we have:

(a) ω = U 5£
^<fc

(b) ifneBι,ηe Γn, r/ fn G Γ0 then η e T£

(c) 2/ΉT*.

(3) Assuming (α), (/?) of 2.11 we have (7)3 => (7), (7)3 => (72) where

(7)3 like (7)2 replacing (b) by

(b)+ if t < fc, and (Vn)(η\n G \J{Tm : m < n and m G JB*}) implies

r/Gl imΓ £ .

Remark. Can we phrase a maximal (7)71? Like (7)2 but without Tn.
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Proof. 1) As in the proof in 2.4F, we have (α), (/?), (7) (a) of 1.2(1) and it

suffices to prove (7)(b) and (7)1 of 1.3(8), but the latter implies the former.

So let Vt, (xn : n < ω), #t, x and (Tn : n < ω) be given as there. So xnRTn,

{χΐ,x} C Dom(β), xn < xn+ι < #t < x. As in the proof of 2.4E we can find

((z£,S$) : I < ω) G V such that {(xn,Tn) : n < ω} C {(zn,S°) : n < ω},

and w.l.o.g. n < ω =>• Zn-RS'S & ^n < x^ By the 2-directness we can find a

sequence {(yn, S^) : n < ω) G V such that yn < yn+ι < ̂  and S£ = T0 and

2M#Sn and S^ U 5 * C S*+1 (possible by (vi)' which). Define h G (ωω)v* by

h(n) = min{m : Tn = S^} and choose a strictly increasing function g G (ωω}v

such that [n < ω => /ι(n) < #(n) & n < #(n)]. By (7)1 of 1.3(8) applied to

(Sg,ή : ί < ω) in V there are T* G Rang(β) and infinite w\ C α; such that

(*)ι x#T

(*)2 lim(Γ*) 2 {r? : ry G ωω and i G wι =ϊ η\i G U Sl

g(j}}
j£wι,j<i

Let us prove that T* and w are as required. So we assume

(*)3 η G ωω and

We should prove that η G lim(Γ*), but by (*)2 it suffice to prove:

(*)4 iεwι=*η\iε U sl

g(j)
jGtϋl,J<Z

As Tj C 51/ -N this is immediate.

2) As in the proof of 2.4(1) we can deal with conditions (α), (/?), (7) (a) (the first

two: trivially, the last one by 2.4E). For (7)(b) let r?, ηn G (ωω)v , ηn\n — η\n

and y G Dom(.R) be given and choose χt; (xn : n < ω), (Γn : n < α;), (x = y)

(S^ : n < α;}, xn, y^ as in the proof of 2.5(1), so in particular η £ SQ and

/ι(n) = min{m : m > n and r/n G lim(S£)} are well defined; note 5̂  C 5^+1.

Let g G ωω be strictly increasing, g(ϋ) — 0 such that A — {n : h(n) < g(n)}

is infinite. We can find such g by clause (iv)~ of the assumption. Now apply

(7)2 to yn (n < ω), x* , y, (5^(n) : n < ω), and get k < ω, (Bt ' i < fe>,

(Te : I < k) as there (in particular yRT1). Now for each n G A for some

l(n) < J fc, we have (ι/ G ω>ω) & i / f n G 5 (̂0) & i/ G 5^(n) => i/ G ϊ*<n>. So, if

n e A, ry n fn = r y f n e 50

X - 5i(0), τ/n e ̂ (n) C Sl

g(n) hence ryn G T^ . So for

some ί < /c, {n G A : ί(n) = i} is infinite and we are done. D2.5
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2.6 Definition. TTR = {T Π m^ω : m < ω, T C ω>ω a closed tree and for

every n < ω we have T Π n-ω finite }, where "T is a closed tree" means, as

usual: Γ ^ 0 J r 7 e Γ & ι / < r 7 = Φ i / e Γ ] , [ 7 / € T = * V;<ω *f (*) e Γl Note that

TΓ.R has a natural tree structure: t < s i f t = sΓΊ n-α; for some n. For t €

let ht (t) = min{n : ί C n^ω] and TT#n = {ί € TTR : ht (ί) = n}.

2.6A Notation. DP(ωω) = {x e ωω : x(n) > 1 for every n and (x(n) :

n < ω) diverges to infinity, i.e. for every m < ω for some k < ω, for every

n > k,x(n) > m.}

2.6B Remark. Usually we can replace x by x;, x'(ri) = Min{x(m) : n < m <

α;}, hence without loss of generality x is nondecreasing.

2.7 Fact. Each closed tree Γ C ω^ω such that (Vn)[|Γ Π n^ω\ < N0] induces

a branch {T Π n^ω : n < ω} (in the tree TTR) and is its union. Now TTR is

isomorphic to ω>ω.

* * *

Now we deal with some examples: we do not state the aim - the preservation

theorems by combining with 2.1-2.7 - for each ψi separately but usually we

mention the case of CS iteration of proper forcing.

2. 8 A Definition, [̂ α -bounding]: 1) We define φ = φlm (a definition of

covering models) by letting φ[V] — (D,R) if:

a) D = H(^)v

b) xRT iff x, Γ G D, x G DP(ωω], Γ is a closed tree and (Vn)(ΓfΊ nω

is finite) (so x has really no role)

c) <=<o (see 1.4)

2) A forcing notion P is ^α -bounding (in V) if it is (pfm-preserving (see 2.8C-

equivalent to the definition from V).



290 VI. Preservation of Additional Properties, and Applications

2.8B Claim, φ = φ™ is a finest definition of covering models for proper

forcing, and it is 2-directed.

Remark.

1) Instead of "proper" we can use "forcing Q such that every countable subset

of min{(2H°)vl : φcrn[V1} covers V} from VQ is included in one from V" .

2) We just "forget" to mention the pure version.

Proof. Let us check the conditions in Definition 2.2, the 2-directed should be

clear.

(α) (a) Trivial by a), b) of Definition 2.8A.

(α) (b) Trivial (a tree with one branch).

(α) (c) and (β) are trivial.

(7), (7)+ Let x > y,yRTn (remember 1.3(4)).

Put w d= ω, T* d= {η: for every k < ω, η \ k G IJjXfc τj} and check that

T* is as required.

(δ) By 2.4 for (7), 2.5(1) for (7)+.

(ε)+ Now we use Fact 2.7 applied to Γ*, (i.e. to the branch of TTR which

T* induced). So there is a closed tree C C TTR,C G D,xRC and for every

n, T* Π n>ω e C. Let T** = {77 <E ω>ω: for some t € C, η G ί}. Clearly T** e D

(as C e D, ,D - ίf(Nι),T** is a closed tree C ω>ω), and T* C Γ**. In addition,

for every n

T** Π nω = \J{t Π nω : t e C Π TT.Rn+1},

so, being a finite union of finite sets, Γ** Π nα; is finite.

(C) Easy. D2.8B

2.8C Fact. If V C yt then (^ίm[y] covers in W i/ and on/y i/

and on/y i/

(Vj/ € DP(ω

ω)vt)(3x 6 DP(ωω)v)[ι, <is x]
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if and only if

(Vy G DP (ωω)v*)(3x G DP (ωω)v)[y <dis x].

2.8D Conclusion. For a CS iteration Q = {P»,Qj : * < α,j < α) if Ihp. "Q^

is proper and ωu;-bounded" for each i then Pa is proper and ωα;-bounding.

Proof. By 2.3(2) and 2.8B + 2.8C.

2.9A Definition. [The Sacks property] Define φ — φ™ (a definition of a

covering model) by letting φ[V] = (D, R) be

a) D = tf(Hi)

b) xRT iff x,T G D and x G DP(ωω),T C ω>α; and for every n < ω,

TlΊ nω has at most x(n) elements.

c) <=<dis (see 1.4).

2.9B Claim, φ = φψ1 is a finest definition of covering models.

Proof. Let us check the conditions in Definition 2.2.

(α) (a) Trivial by a), b) of Definition 2.9A.

(α) (b) Trivial.

(α) (c) Trivial.

(β) Trivial, by the definition of the partial order (1.4).

(7)+ Let ynRTn and yn <dis yn+ι <dis xf <dis x (for n < ω). Define nk

inductively as the first n < ω such that t < k => nt < n and for every £,

n < ί < ω, we have (fc + 2) χ+(ί) < x(i). Let w = {nk : k < ω} and

Γ* - {η : n G w => η \ n G (J Γn}.

(5) Immediate by 2.4(1).
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(ε)+ There is by 2.7 a closed tree C C TTR in D, Γ* Π nω G C, 2#C where

z(m) = x(m)/y(πι). Let Ci = {t G C: for every n, |ί Π nω\ < y(ri)} and let

C2 be the maximal closed tree C C\. Clearly C2 G £> and T* Π nu; G C2 for

every n, now Γ** — \J{t : t G C2} € D is as required.

(C) Easy by 2.8C. D2.9B

2.9C Claim.

1) If V C yt, <^™[y] covers in Ft ^for every ^ e ("u;)vt and

there is (a^ : £ < ω) e V, a^ C α;, |α^| < y(ί) and f\eη(£) €

2) If V C Ft and ^[V] covers in yt ^en φ<™[V] covers in

Proo/. Straight.

2.9D Conclusion. For a CS iteration Q = (Pi,Qj : i < α, j < a) if Ihp. "Q^

is proper and has the Sacks property" then Pa is proper and has the Sacks

property.

Proof. By 2.3(2) and 3.9B + 2.9C.

2.10A Definition. [The Laver Property] 1) We define φ = φψ1 by letting

φ[V] = (D, R, <) (the Laver model) be

a) D^H(^)V.

b) xRT iff (x,Γ € D and) x € DP(ωω), T C α;>α; a closed tree and:

(Vn) [the set {η(n) : 77 e T,lg(η) = n + 1, (Vi < 71)77(1) < x(2i)} has

power < x(2n + 1)].

c) x < y iff (x(2n + 1) : n < cj) <dis (y(2n + ΐ):n<ω) (see 1.4B) and

(x(2n) : n < ω) = (t/(2n) : n < ω).

2.10B Claim, y? = (/?3m is a finest definition of a covering model.
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Proof. It can be proved very similarly to the proof of 2.9B. The proof of (α),

(β) is totally trivial and (δ) follows from (7) by 2.4(1), so we shall prove (7)+.

Let x > y > yn+ι > yn, Tn, be given and ynRTn.

We can choose no < ni < n2 < . . . (by induction) such that: for fc > m,

(ί + 2) x y(2k -I- 1) < z(2fc + 1), and let w = {nt : t < w},

T* = TO U {η : for every i G w, η \ i G (J ,-<* T- }
j€tiί

Γ° = {77 G ω>ω : for every i < lg(ή), η(ι) < x(2i)}

Clearly T* C w>α; is a closed tree, and for any fc, |Γ°nΓ*Π feω| < z(2fc-f 1),

because, letting nt < k < n*+ι, {r/(fc) : -ίgr/ > fc, η e T° Π Γ*}| < \{η(k) : Igη >

k,η 6 τ° n U T n ! < : ft > fc,^ e τ° n rn <

So T* the definition of xRT* is satisfied and Γ* is as required.

(ε)+, (C) left to the reader - similar to the proof of (δ). ^2.105

2.10C Claim. 1) UV C V^ φ^m[V] covers in V* iff for every η G (Un<ω(n+

l))yt and y G DP(ωω)v there is (at : t < ω} G F, α^ C ω, |α^| < y(£) and

Λ^W ^ α^ ^for every / G (JλPCM)v for every y G (DPί^α;))^^ and

^7 £ ( Π /(^))V+ there is (α^ : ^ < ω} G F, |α^| < y(l) and Λ ^W ^ ̂  ̂
n<ω ^<ω

similarly for some /.

2) A forcing notion P has the Sacks property (i.e. is (^-preserving) iff it has

the ωα;-bounding property (i.e. is φ\ m-preserving) , and the Laver property (i.e.

is (/?3m-preserving).

Proof. Easy.

2.10D Conclusion. For a CS iteration Q = {P<, Q^ : i < α, j < α), if lhP. "Q^

is proper and has the Laver property" then Pa is proper and has the Laver

property.

Proof. By 2.3(2) and 2.10B + 2.10C.
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The next example deal with trying to have: every new 77 € Πn<ω f ( n ) belong

to some old Πn<u>α^' (lα^l : n < ω} quite small, where f ( n ) can be finite.

Below we could have used Y = {id}, but in applying it is more convenient to

have Y. See more on this in [Sh:326] and much more in Roslanowski, Shelah

[RoSh:470].

2.11A Definition. Let / denote a one place function, Dom(/) = ω, 1 < f ( n ) <

ω, / diverges to oo and g denote a two place function from ωto{α: : l<α!<u;} ;

both nondecreasing, for clarity. Let Y C DP(ωω) have absolute definition and

<=<y be an absolute dense order on Y with no minimal member, and those

properties are absolute (so Y may be countable, if Y = DP(ωω) we omit it).

Finally, let H denote a family of such pairs (/, g). If H = {(/, g)} we write /, g.

We define φ — φlrγ.H> Dut if V = DP(ωω) we may omit it, by letting for

a universe V, φ[V] be (D, R, <) where

a) D = ίΓ(Nι),

b) Dom(JR) is the set of triples (z,/,#) for z G F, (/,#) € #; more

formally member x € DP(ωω) such that (x(3£ -f i) : ί < ω) codes z when

i = 0, / when i = 1 and # when i — 2; we write x = (zx,fx,gx). We define:

xRT iff x, T G £>, x G Dom(.R), T C ω>ω is a closed tree and for each n

the set {η(n) : 77 G Γ, £g(τ?) = n + l,(Vi < n)ry(i) < /x(i)} has cardinality

< 1 -f gx(n,zx(n)}. (So for #x(n,z*(n)) = ω this means "finite".)

c) <γ is the dense order of Y (e.g. <0 or <dis) and (zl,fl,gl) <

(z2,/2,^2) i f f / 1 - /2, fli =g* and z1 < z2.

We may use also g with positive real (not integer) values, but still algebraic.

Let us note that φ™ (ωω-bounding), φψ1 (Sacks), φψ1 (Laver) are par-

ticular cases of φ^γ.fj'-

2.11B Claim. 1) Let / = ω (i.e. the function with constant value ω), g(n, i) =

ω and Y = DP(ωω). Then for universes V C V^φ^V] covers in V^ iff

ψTf [V] covers in V^ (hence a forcing notion Q is (^fm-preserving iff it is
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2) Let g be g(n,ί) = 1 + i. For universes V C V^φ^V] covers in Ft iff

for every / G DP(ωω)v , φc^} g\Y] covers in V* (hence a forcing notion Q is

</?§m-preserving iff it is ^j^-preserving for every / G DP(ωω)).

Proof. Check.

2. 11C Claim. 1) Assume

(i) H is a family of pairs (/, g) and Y C DP(ωω) (an absolute definition,

dense with no minimal element),

(ii) each (/,#) G Jϊ is as in 2.11A and x <γ y => ( g ( n , y ( n ) ) / g ( n , x ( r i ) ) :

n < ω) diverges to oo,

(iii) for every (/,#) G -H" and y G Y there are x G Y and (/',#') G if

and hn : ω -+ ω one to one, ftnfa = /Wi IX [n < m => Rang(/ιn) n

Rang(Λm) - Rang(Mn)] and g'(hn(t),x(hn(£))) < g ( ί , y ( ί ) ) and

TΛen φ(£γ H is a fine definition of covering models.

2) In part (1) we can replace clause (iii) by

(iii)~ for every (f,g) G H and y G Y there are x G Y and (/',<?') G if and

hn\ω^>ω such that:

(α) /ιn N = hn+ι \n

(β) for every k < ω, letting Wk = {(n,(>) : I > n — I and hn(ί) — k} we

have Π m < /'(*)
(n,^)€u)fc

(T) SM > ί/(rαnW)

3) Assume we replace (iii) by

(iii)* for (/,#) G H,xl < y in Y there are x2 £ DP(ωω], ( f ' , g r ) G fl" such

that: for every n large enough f'(n) > /(n)^^n'Xl^n^ and #(n, y(n)) >

fli(n,xι(n)) x0 7(n, x2(n)).

T/ien φc£γ^H is a finest definition of a family of covering models.

Proof. 1) Let us check the conditions in Definition 2.2. Let (/,#) G # and we

deal with each φc^γj^g\Y] separately (this is enough).

(α) (a) Trivial by definition 2. 11 A.

(α) (b) Trivial.
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(α) (c) Trivial.

(/?) Check.

(7)+ Let y < x, yRTn for n < ω (remember 1.3(4) letting y = x^).

Choose rik by induction on fc such that: f\t<k Uf < nk an(* nk < ω

[πk < £ < ω => k x g(i,y(t)} < g(l,x(t))} (possible by assumption (ii)). Now

w — {nk : k < ω} and T* = {η G ω>ω : for every n G w,η \ n G |J*<™ Ti} are
^e u;

as required.

(δ) By 2.4(1) (for (iv)* use the assumption (iii) of 2.11C(1)) and 2.7.

2) The proof is similar to the proof of part (1) using 2.4(2) instead 2.4(1) in

proving clause (δ).

3) Note that (iii)* => (iii)- easily, so demands (α), (β), (7), (7)+, (δ) hold.

(ε)+ Straightforward (use a tree T, x^RT, to "catch" the T in a narrow

tree C TTR).

(C) Check. D2.uc

2.11D Conclusion. For y, if satisfying (i), (ii), (iii)* of 2.11C, for any CS

iteration Q = (P^Qj : i < α, j < α>, if lhP. "Qi is proper and φc£γ.H[VPi}-

preserving" then Pa is proper, φl^γ.H[V] -preserving.

2.11D Definition. We say that a forcing notion Q is (/, (^-bounding (where

/, g e ω(ω + 1 \ {0, 1})) if for every η G ( Π f(n})γQ there is (an : n < ω) G V
n<u>

such that |αn| < ̂ (n) and η G Π αn.

2.1 IF Conclusion. Assume

(*) /> 9 € ω(ω + 1 \ {°5 1}) are diverging to infinity.

If Q = (P^Qj : i < a,j < α) is a CS iteration such that Q^ is (f9* ,\g]l/l)-

bounding in V Pί for every ί < ω then Pa is proper and (f9 , ̂ )-bounding for

every I < ω.

Proof. We use 2.11C(3) (and 2.11A, 2.11B and 2.3). We let Y = {x G ωω : x

constant }, so we can identify x with z(0), let {αn : n < ω} list the positive
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rationale, define x < y & ax^ < ay^ and let gt(n,x(ri)) = [g(n)aχ(n)/£] (=the

integer part, note: x is constant so x(ri) = x(0)) and fι(n) = /(n)^(n)£].

Lastly let H = {(/*,#) : I < ω}, so φ$$r.H is well defined.

Now we show that φc£γ]H is a finest definition of covering model, to get this

we would like to apply 2.11C(3). Among the three assumptions there, clause

(i) holds by the choice of Y and H. Also the first phrase in clause (ii) holds, as

for the second, if x < y and (/,#) G H, then for some ί, (/,#) = (/£,#), hence

g(n,y(n}}/g(n,x(n)} =

as α2/(0) > αx(0) > 0, this clearly diverges to infinity.

Lastly for clause (iii)*, let (/,#) 6 H (so for some I, (/,#) = ( f t , g i ) ) and

let xι < y in Y. Now choose x^^Y such that ε + #2(0) < t/(0) — xι(0) for some

ε > 0 and choose ra such that axι^j/l < m and let (/',</) = (fέ+mide+m)- Let

us check:

/(n) = /£+m(n) = /(n)^^£+w = (/(n)'<Λ>><Λ>m = Λ(n)^n>m

(the last inequality because ^(n,a;ι(n)) = [g(n)aχ^n^i] and axι^/ί < m)

g(n,y(n)) = gι(n,y(n)) =

> g(n,xι(n))g(n,x2(n))g(n)ε/l - 1 > g(n,x1(n))g(n,x2(n))

(the last inequality: for n large enough).

So really (iii)* of 2.11C(3) holds hence 2.110(3) applies and φc£γ.H is a

finest definition of covering models, so 2.3(2) applies.

Lastly, we can check that by monotonicity

® Q is </?^>;/rpreserving iff Q is (/^, [gl/i] Abounding for every I < ω.
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So by the last two sentences we are done.

2.12A Definition. [The PP property] 1) We define φ = </?§m (a definition

of a covering model) by letting φ[V] = (D, #, <) (the PP model) where:

a) D = ίΓ(Nι)

b) xRT iff z, T G D, x G ̂ ω is strictly increasing, T C ω>α; is a closed

subtree and T Γ\nω is finite for every n and:

(*) for arbitrarily large n there are fc, and n < i(0) < j(0) < i(l) <

j(l) < . . . < i(fc) < j(fc) < ω and for each ί < fc, there are m(£) < ω and

τ?£'°, . . . , ττ* mW G T Π J^α;, such that: j(£) > χ(i(£) + m(l)) and

(Vf? E T Π *ω) '̂m < η.
t,m

C) < is <*dis

Remark: concerning the PP property, there is a strong version ("strong PP-

property" ) proved in 4.4 and 5.6 for the forcing notion there and a weak version

("weak PP-property" ) derived in 2.12D below and used in 4.7 and 5.8 (though

in the statement the "PP-property" appears). See Definition 2.12E.

2.12B Claim. 1) If the forcing notion P is (/^-preserving then it has the ωω-

bounding property; if P has the Sacks property (i.e. is (/^-preserving) then it

is (/?5m-preserving.

2) If (D, β, <) is a Sacks model (i.e. φξm [V]) then

(Vη G ωcj)(Vz)(3Γ G D) [x G (Dom(Λ^m)) n D => xΛ^mr & r? G limT]

3) If (D, β, <) is a PP-model (see 2.2(5)) ί/ien

G "ω)(\/x)(3T e D) [x e (Dom(Λ^ίm)) Π D =» xΛ^ϊmΓ & r? G limT].

Proof. Easy.

2.12C Claim. (/? = (/?5m is a finest definition of a covering model, 2-directed.
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Proof. Let us check the conditions in Definition 2.2.

(α) (a) Trivial by a), b) of Definition 2.12A.

(a) (b) Check.

(α) (c) Check.

(β) Trivial.

(7)(a) So let (£>, R, <) be φ[V]. Let x > y, and yRTn. Let hm : ω -> α; be

such that for any n there are i(0) < j(0) < . . . < j(k),ηιtί (for i < m(£), £ < jfc)

witnessing (*) of Definition 2.12A(l)(b) for yRT^ and n (so n < i(0)) such

that j(fc) < hm(n). Now we define n^ by induction on ϊ,n0 = 0 and ra<+ι is

such that: choose 4,^,... ,^<+1 as follows: 4 = ™*,^+i = Λnj.(^ ) 4- 1, and

rii+i = £<+ι. Let T* - {r? : for every i,η \ nm G U^^nJ i.e. we choose

w = {rii : i < ω}.

So clearly xR^T* is as required.

(7)(b) Easy.

(δ) We use 2.4(2) with hn(ΐ) = i. So let x G Dom(Λ), and we choose y = x.

Now wι = {(n, ί) : £ > n}, gn is any one to one function from nω onto ω, /P ^

is thus determined. Now check.

(ε)+ So we know Q is v?§m[F]-preserving, φ^V] N y < x and T* G FQ,

and </?[VQ] ^ 7/ΛT*. We should find T** G V such that: Γ* C Γ** and

φ[V] \= xRT**. We work in F+ = VQ but (D,R,<) = (^§m[F]. The proof

is straight but still we elaborate. Let ft* : α; —> α; be defined for Γ* as /ιm

was defined for Γm in the proof of clause (7)(a). So by 2.12B(3) there is

/ι** G (Dί~]ωω)v such that Λ** is strictly increasing and (Vn)[/ι*(n) < /ι**(n)].

We now choose 2 such that for every n, there are n = m^ < ray < . . . <

mn+ι»m?+ι = ^**(^F) + m? + 1, and let z(n) = m^+1. Clearly z G .Dy.

So remembering 2.7, we can apply the "covering property" of (D, R) to Γ*

(i.e., the branch T* induces in TTR). Apply it for z and we get an appropriate

closed subtree C G D = #(Nι)y of TTΉ, (so Γ* Π n^α; G C for every n).

Clearly Γ** = (Jί€C ί is a closed subtree of ω>ω, it belongs to D, and there is

no problem to prove Γ* C Γ**. The only point left is why xRT**.

Let Cf be the set of t G C such that if n < ω, h**(n) < ht(t) then for some

k < ht(t] and n < i(0) < j(l) < . . . < i(fe) < j(fc) < Aί(ί) the statement in
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(*) of Definition 2.12 A clause (b) holds (for t and y). Let C" be the maximal

closed tree C tf . It is easy to check that C" G D, and that T* induces a branch

C C", so without loss of generality C - C] = C" .

Now for arbitrarily large n, there are k < ω, and n < i(0) < j(0) <

i(l) < j(l) < . . . < i(k) < j ( k ) < ω, and for each t < k there are m(ί) < ω,

^,o, , **,m(*) £ C Π TTRj(i} such that j(£) > 2(i(-Q 4- m(ί)) and

By the definition of z, there are ξ(£,0) < ... < ξ(£,ra(£) + 1) such that

i(*)+m(*)+l < ξ(*,0) andξ(£,m(£)+l) < j(ί), and h**(ξ(£,m)) < ξ(*,ro+l).

So by the assumption on C(= tf) for each such t < fc, m < m(ί), there

are fc^m, ξ(^,m) < i(0,£,m) < j(0,£,m) < i(l,^,m) < j(l,^,m) < ... <

i(^,mj^^) < j(kt,m,ί,rri) < ξ(ί,m + 1) and n(α,ί,m) (for α < fc^?m) such

that j(α, £, m) > x(i(α, ̂ , m) 4- n(α, £, m)) and r?a,/3^m G (^(α^m)α;) Π t€>m (for

/3 < n(α,£,m)) and (Vi/ G t/,m n«^'m+1) ω)[\Jaιβηa,β < i/].

Now the set of i(α,£,m), j(α,f,m),n(α,f,m) and ηatι,m,β f°r ^ < n(α,^,m)

supplies the required witnesses.

(C) Easy (by 2.8 C). D2.12C

2.12D Claim. Assume V CVr and (/?5m (V) covers in V . Then for every η G

(W2)y/ there is an infinite wCω from V and (fcn, (in(ί\jn(i) : £ < kn) : n e w)

from V such that:

(a) n < in(0) < jn(0) < in(l) < jn(l) < . . < in(fcn) < jn(fcn) < min(υ; \

(n + 1)).

(b) for every n G w for some t < kn we have η(in(£)} = ^O'n(^))-

Remark. Only the x defined by x(£) = 2^ suffices.

Proof. Easy.

2.12E Definition. 1) A forcing notion Q has the PF-property ij^it is v?5m-

preserving.
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2) A forcing notion Q has the weak PP-property if V, VQ satisfies the conclusion

of 2.12D.

3) A forcing notion Q has the strong PP-property if changing φζm to φf^ in

Definition 2.12A by demanding k = 0 in (*), we have: φ[V] covers in VQ.

2.12F Claim. For a forcing notion Q:

1) the strong PP-property implies the PP-property.

2) The PP-property implies the weak PP-property.

2.12G Conclusion. For a CS iteration Q = (Pi, Qj : i < α, j < α), if lhP. "Qt

is proper with the PP-property" then Pa is proper with the PP-property.

Proof. By 2.3(2), by 2.12C.

The following deals with "no Cohen real 4- no real dominates F (C ω>ω, see

§3)".

2.13A Definition. We define φ = φ™ (a definition of a covering model) by

letting φ[V] = (£>, JfZ, <) where

a) D = H(^)

b) xRT iffT is a perfect nowhere dense tree, x e DP (ωω).

c) <=<o

2.13B Observation. Q is φ%m preserving iff Q adds no Cohen real.

2.13C Claim. φ^m is a 2-directed, fine definition of a covering model for

forcing which are ^fm-preservingt (= ^-bounding) or even just not adding a

dominating real^ and are proper (or satisfy UP) (caution: not preserved under

composition).

t Of course as ^α -bounded forcing necessarily add no Cohen reals.
tf On this see 3.17(2),(3).
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Proof, (a) (a), (b), (c) Trivial

(/?) Trivial

(7) Check, even (7)1 (see 1.3(8)) and (7)2 (of 2.5(2)) hold. E.g. concerning

(7)2, given (Tn \ n < ω), nowhere dense trees, choose by induction on i < ω,

Hi < ω as follows: no = 0, rii+ι is minimal n such that n G (ni,ω) and for every

η G ni-(rii + 1) there is v\ η < v G n>n such that v φ (J 1}. Let for £ < 2,
j<n;

T1^ = {77 G ω>ω : for some i = i mod 2, and n G [n^n +i) we have η\n G T0,

and 77 G Γn}.

(5) By 2.5(2). D2.13C

2.13D Conclusion. 1) For a CS iteration Q = (Pi,Qi : i < α,j < α),

if \\-pί "Qi is proper not adding a Cohen real (over VPi)" and Pa adds no

dominating real over V then Pa is proper and adds no Cohen real over V.

2) The property "P purely does not add a Cohen real nor an η G ωω dominating

F" where F C ωω is fixed not dominated in the old universe, is preserved in

limit of iterations as in 0.10=κ0

Remark. 1) Note we have (|D|, Discovering in §1.

2) What if in 0.1 we use (D), <pr is = (so we use FS iterations satisfying the

c.c.c.)? In the limit we add a Cohen real, necessarily the family is empty. We

cannot apply it as for P a c.c.c. forcing, <pr is equality so "P purely preserves

<^om" always fails.

3) Of course we can interchange using/not using F in parts (1) and (2) of

2.13D.

Proof. 1) By 2.3(1) and 2.13C applied to φ^m.

2) Usually using in addition 3.17. U2.ISD
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The following deals with "every new real belongs to some old closed set of

Lebesgue measure zero".

2.14A Definition. We define φψ1 (a definition of a covering model) by letting

φ[V] = (£>,#,<) where

(a) D = H ( K l ) .

(b) xRT means T is a perfect tree, with limT having Lebesgue measure zero.

(c) <=<o

So if Q is y?γm-preserving then Q adds no random real but not inversely.

2.14B Claim, φψ1 is a 2-directed fine definition of a covering model for forcing

which are purely φ™-preserving (= ^u -bounding property) or even just not

adding a dominating real (caution! not preserved under composition.)

Proof.

(a) Trivial

(β) Trivial

(7)+ Check

(5) By 2.5(1). D2.17D

2.14C Conclusion. 1) The property "P purely does not add any real, which

does not belong to any old closed measure zero set from V and is purely ωω-

bounding and has pure (2,2)-decidability" is preserved by limit (for iterations

as in 0.10=2) [but not necessarily composition].

2) The property "P purely does not add any real not belonging to any closed

old set of measure zero from V and adds no real dominating F" is preserved

in limits for iterations as in 0.1, where F C ωω is a fixed undominated family.

Proof. Like the proof of 2.13C. DI2.14C
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The following deals with "every new dense open subset of ω>ω is included in

some old one" .

2.15A Definition. Let (p*t : t < ω) enumerate ω>ω. Let Γ* C ω>ω be a

perfect tree such that for every v G limΓ*, Av = {p^ : ί < ω and z/(2£) = 1}

is open, and p\ Λ££(2^+i) € .̂f (hence Av is dense)}, and such that for every

dense open subset A of ω>ω there is v G limT* such that A = Av.

We define (̂ §m (a definition of a covering model) by letting

(a) D =

(b) xRT means that x G DP (ωω) and Γ C Γ* is perfect satisfying:

Π{A/ : v G limT} is dense open.

(c) <=<o (see 1.4)

2.15B Claim. 1) For A C ω>ω there is a closed Γ = TA C T* such that:

if 77 G limT* then Aη (which is dense open) include A iff η G limTA. So

T G Rang(Λ) iff for some dense open ACω>ω we have T CTΛ

2) A forcing notion Q is </?gm (V)-preserving iff every open dense subset of
ω>ω in F^ include a dense open subset of ω>ω from V iff for some (every)

subuniverse V^ of V such that <^8m(^) covers in V, Q is <p§m(^) preserving.

3) If Qo is <^m(F)-preserving and lhQo

 ίίQl is <^m(yQo)-preserving" then

Qo*Qι

is (/?gm(y)-preserving.

4) If Q is 9?8m-preserving then Q is ^-bounding.

Proof. 1) - 3) Check.

4) For h G (ωω)^Q let Ah = {η G ω>ω : for some n, /\l<nη(ί) = 0, 77(71) ^ 0

and lg(η) >n + h(n) -f 1}. So A^ C ω>ω is dense open, so there is A C ω>α;,

dense open, A £ V,A C Ah. Define g : ω — > α; in V by: p(n) = min{ίg(?7) :

η G A, n = min{^ : τ/(^) > 0}}. Then g : α; -> α;, g G V and (Vτι)ft(τι) < #(n).

2.15C Claim. (^gm is a finest definition of a covering model which is 2-directed.
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Proof, (α), (/?), 2-directed: easy, now we prove more than (7) (see 2.5(3)).

(7)3 Assume yRTn, so for each n there is a dense open An C ω>ω such that

ϊ"n £ ΪΛn We choose by induction on n < α;, fcn < ω such that Λ^<n ̂  < ^n>

and if £ < n there is p G Πm<n ^m suc^ *^a* Pe ^ P^ P ̂  ί^m : m < kn}- Now

let A: = 2, and for z < k let

Bi = {n: for some £ = i mod 2 we have kι < n < A ̂ +i}

and let

Γi - {i/ G T* : if n < ίg(z/) then v\n G (J{TΛm : m < n and m G BJ.

(J) by 2.5(2) (remember that (7)3 =» (7)2 by 2.5(3)).

(ε)+, (C) left to the reader. Eb.isc

Remark, alternatively, instead of 2.15 B,C, look in XVIII §3.

2.15D Conclusion. For CS iteration (Pi,Qj : i < α, j < α), if Ihp. "Qi is

proper and any new open dense subset of ω>ω includes an old one" then Pa

is proper and any dense open subset A G Vp of ω>ω includes a dense open

subset A G V of ω>ω.

Proof. By 2.3(2) and 2.16C (and 2.16B(2)).

2.16 Conclusion. For θ = K0 the property " Q is purely φe[V]-preserving with

pure (θ, 2) decidability" is preserved by iteration as in 0.10 for ί = 1, . . . , 8 (e.g.

by CS iterations of proper forcing). This is true for θ = 2, ί — 1,... ,8 when

(*) of 1.12 holds (recheck).
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The following is an addition from early nineties, inspired by the interest in

"adding no Cohen real". It is dual to 2.13, see 2.17 C(l) below.

2.17A Definition. For Y C DP(ωω) with an absolute definition we define

φ^Y, a definition of a covering model. For a universe V we let φ[V] = (D, R, <)

be:

(a) D = H(Nι).

(b) xRT iff

(i) x= {χ[°],χW,χI2]>,sayx(3n + i) codes χM(n), xM G Y, χW(n + l) >

χW(n) and the difference is a power of 2, χl2'[n] < Iog2[x^(n + 1) —

χM(n)l,

(ii) Γ G ω>α; closed subtree,

77 G ω>ω & r/ fn G Γ & 77(71) > x[0](n) =» 77 G Γ.

(iii) for each n the following holds:

(*)n for any ra < (xW (n +1) — x'1! (n))/2x ^n^ there is a function g = gntΎn

with domain the interval [χW(n)+m'2χ[2](n\χW

x[Ό](£)] and [η G Γ & £g(r?) > χW(n
C-, dβf I I i I , -I—Γ fΠl / Λ \ Π ι

So g. == U #n,m belongs to ll^<ω^1 J(^)> we ca" 9 a witness.
n,m

(c) x < y iff χ[°l - y[°l, χ[χl - y^ and χί2! <dis yί2! (see 1.4).

Explanation. So what is the meaning of xRTl The interesting part of T is

T^ = {η\£ : η G (limT) Π f| x'°l(n)} and T is in a way "explicitly nowhere
n<ω

dense" i.e. for some g G Π x'°](n), for every 77 G lim(T') for every n for many
n<ω

subintervals / of [χW(n),χW(n + 1)) we have g\I ^ η\L

2.17B Claim. Assume V CV+. Then (7) =» (/3) => (α), where:

(α) "for every / G DP(ωα;)v and g G (Π^<ω /(^))y+ there is h G

such that {£ : h(£) = g(£)} is finite.

(β) Ψ^γ[v\ covers in v+ for Y = ΐ)ί)(α;^)

(7) every covering model from ^g^p^jίV') covers in V+.
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2.17C Remark. 1) It is well known that: condition (a) implies there is no

Cohen real over V in F+; and if VQ C V\ C T^, in V\ there is a real / in ωω

dominating (ωω)v and in V^ there is g G Π^<α; fW contradicting (a) then in

F2 there is a Cohen real over VQ.

The preservation theorem below implies a Cohen real is not added in limits.

2) Note that making x'0' smaller makes being in limT, xRT, harder.

3) The absoluteness requirements can be restricted as usual.

4) What we deduce below is complimentary in a sense to 2.13 A-C.

5) Why in 2.17A the 2X ^1 Of course a more general notion will use norms

(see [RoSh:470]).

6) If Y is closed enough then in 2.17B we have (7) <Φ (β).

2.17D Claim. 1) Assume

(i) Y is a subset of DP(ωω),

(ii) for every x G Y there is y £ Y and there are (£* : n < ω) such that:

(a) limί* =00
n

(b) 1 < l*n < ίn+ι> C a power of 2 (for technical reasons)

(c) xW - yW

(d) xM = yt°l

(e) 2/[2](n)=χ[2](n)-log2(C)>0

(iii) for < from 2.17A(c) (y, <) is dense with no minimal member.

Then ψg^iV] is a fine covering model.

2) Assume (i) Y is an absolute definition of a subset of DP(ωω),

(ii) clause (l)(ii) holds absolutely,

(iii) clause (l)(iϋ) holds absolutely.

Then φ^γ is a fine definition of a covering model.

Proof. We check the condition in definition 2.2.

(a) (a)(b)(c) Check.

(β) Check.

(7)+ We check on φffi[V].
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So let xn < xn+ι < xt < y be given, xnRTn. Now any thin enough infinite

w C ω will work as:

® U^<^(*) Ώ satisfies (*)n from (b)(iii) of Definition 2.17A for y if /\£χβT^,

χ[°l - ι/[°], XW = j/M and 2a c l a l<n>/* I a l<»> is > £(*).

(5) We use 2.4(3) (and for checking the demand (iv)*** there we use

assumption (ii)).

Let x G Ώom(R) be given and we shall define y and B as required in

clause (iv)*** of 2.4(3). So let y be as defined by clause (ii) of 2.17D(1). Now

we define the Borel function B; we let B((ηa : α < ω)) — v (where ηa G ωω,

ηa \a = ηω fα, v G ωω) if:

(Θi) Let n< ω, m, (χM(n + 1) - χM(n))/2χl21(n)

(a) (τ/ω(χM(n) + m 2χίal<n> + % ) : % < 2χ[2]^) is equal to (v(y^(n) + m

(b) if fc < £; - 1 ίΛen (τ/fc(x[1](n) + m - 2χ[2] W + i) : i < 2χ[2](n)) is equal

to (ι/(yW(n) + m - 2zl21(n) ̂  + (* + !)• 2a?I21(n> -f i) : i < 2*ί21<n>).

So assume T\ satisfying yRT\ is given and we should define appropriate T\ .

As yJfZΓi, there are functions 0£jm forn < ω, m< (yM(n + l)-yN(ri))/2yl*]W

witnessing it. For n < ω, m < (yW(nH-l) -y[1'(n))/2x ^ we define a function

#n,m as follows. Its domain is of course (x W (n) + m 2X (n) , x^1' (n) -f (m 4- 1)

2*121<n>) and for each fc < £;, we have <£Λ.m+, C ̂ m.

The checking is straight. Π2.17D

Remark. Note that for many pairs (XQ,XI) from TΊ, x\RT\ we can produce

TO, xo-RTo, where TI in a way codes TQ.

2.17E Conclusion. For φffi as in 2.17D(1), for CS iteration Q = (P^Qj :

i < <55 j < ί)» if I^Pi "Qi is proper" and Pi preserve </>9^y[^] for i < δ then PS

preserve <$£y[V].
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§3. Preservation of Unboundedness

3.1 Notation. 1) ψ may denote an absolute definition of a two-place relation

on ωω which we denote β^[V] (so when extending the universe, we reinterpret

β, but we know that the interpretations are compatible). We write xRy instead

of R(x, y). Sometimes ψ is an absolute definition of a three-place relation R on

ωω and then we write xRzy instead of β(x, y, z).

Let R denote (Rn : n < ω) (each Rn as above) so Rm = (R™ : n < ω). We

identify (R : n < ω) with R.

Remember S<K(A) — {B C A : \B\ < K} and if K, is regular uncountable

then T><K(A) is the filter on S<K(A) generated by the sets G(M) = {\N\ : N -<

M, 11N11 < K and N Π K is an ordinal} for M a model with universe A and < K

relations.

3.2 Definition. 1) For F C ωω and a two place relation R on ωα;, we say that

F is Ή-bounding if (V# G ωω)(3/ G F)[gRf}.

2) F Cωω is β-bounding if it is Λn-bounding for each n (where R = (R^ : n <

ω)).

3) For F C ωω, R (each Rn two place) and 5 C 5<«1(F) the pair (F,fl) is

S-nice if:

α) F is jR-bounding.

/3) For any N G 5, for some # G F, for every no, mo < ω player II has a

winning strategy for the following game and, moreover, the strategy is absolute.

The game is defined for each countable set N (but only N Π F is needed) and

it lasts ω moves.

In the fcth move: player I chooses fk € ωω,gk G F Π TV, such that /& f

= jt Γ rn^+i for 0 < ί < fc and fkRnk9k and then player II chooses

> TO* and nfc+ι > n fc.

In the end player II wins if (\Jk<ω fk \ mk} Rnog, (or if player I can't

choose in the fc'th move he lose).

4) We say (F, R) is S/V^Q (F)-nice if: for some C G PKo(F), we have: (F, R) is

(5 Π C)-nice.
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5) We omit S when this holds for some 5 G

3.3 Notation. <* is the partial order on ωω defined as: / <* g iff for all but

finitely many n < ω, f(n) < g(n). In this case we say that g dominates /. We

say that g dominates a family F C ωω if g dominates every / G F.

3.4 Definition. 1) A family F C ωω is dominating if every g G ωω is dominated

by some / G F.

2) A family F C ωω is unbounded (or undominated) if no g G ωω dominates it.

3.5 Definition. 1) A forcing notion P is almost ωu;-bounding if: for every P-

name / of a function from ω to ω and p G P for some g : ω — > ω (from VI) for

every infinite A C ω (again A from V) there is p' ,p < p' G P such that:

pr \\-p "for infinitely many n G A, f(n) < g(n)"

2) A forcing notion P is weakly bounding (or F-weakly bounding, where

F C (ωω)v)) if (ωω)v (or F) is an unbounded family in Vp .

3.6 Claim.

1) If a forcing notion P is weakly bounding, and Q (G Fp) is almost

^-bounding, then their composition P * Q is weakly bounding.

2) If Q is almost ^-bounding, F C ωω an unbounded family (from V)

then F is still an unbounded family in V®.

3) If Q is adding λ Cohens (i.e. Q = {/ : / a partial finite function from

λ to {0, 1}} ordered by inclusion) then Q is almost ωα;-bounding.

Proof. 1) By part (2) (apply it in Vp to F = (ωω)v and the forcing notion Q).

2) Assume p G Q forces that / dominates F and we shall get a contradiction.

Let g G (ωω)v be as in Definition 3.5(1). As in V, F is unbounded, for some

/* G F we have {n < α; : #(n) < f*(n)} (G V) is infinite, so choose this set as

-A, so by Definition 3.5(1) we know that for some p'\

(a) p < p' G Q
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(b) p' \\-Q "for infinitely many n G A, f ( n ) < g(n) (hence by A's definition

f(n)<g(n)<Γ(n)Γ

and this contradicts p \\-Q "/ dominates F" .

3) Easy. Π3.6

3.7 Definition. R^° = ψo(V) is: fRg iff {n : /(n) < g(n)} is infinite.

3.8 Claim. A forcing notion P (in V) is weakly bounding (= adds no domi-

nating real) iff \\-P "F is ^-bounding" where F = (ωω)v , R = R*°. D3.8

3.9 Claim. Let R = R^° and F C ωω be an β-bounding set, such that

(V/o, - - - , /n, - - - € F)(3g G F)[Λn<ω /n <* g]. Then (F, β) is nice.

Proof. We have to describe g and an absolute winning strategy for TV (and

n0,m0). Choose 0 € F such that (V/ G N)[f G F => / <* g]. As for the

strategy, n^ is irrelevant, we just choose m^+i = min{m : there are at least k

numbers i < m such that g(i) > Λ(ΐ)} ^3.9

3.10 Claim. Suppose that P C [ω]^° is a P-filter (i.e. it is a filter containing

the cobounded subsets and for any An G P (n < ώ) for some A* G P we have

(Vn)[,A* Cαe An]) and P has no intersection (i.e. there is no X G [CJ]NO such

that X Cαe A for every A G P; recall that X Cae A means "X \A\s finite").

Let R be:

xRy iff x ^ [ω]*° or y φ [ω]"° or x gαe y.

(We identify x C ω with its characteristic function. The case "y ^ [α;]^0" will

be irrelevant.)

Then

1) (P, R) is nice.

2) Let Q be a proper forcing notion. P is ^-bounding in V® iff Ihg " the filter

P generates is a P-filter with no intersection " (i.e. every q G Q forces one

statement iff it forces the other) .
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Proof. 1) Clause a) of Definition 3.2(3) is obvious as "P has no intersection"

(see above). In (β) choose g = A* eP such that

Again, the least obvious point is the winning strategy; again rik is irrelevant

and player II chooses mk = min{m : fa Π m \ g has power > fc}.

2) Left to the reader. Πa.io

3. 10 A Remark. We can use ω\ instead ωω.

Sometimes we need a more general framework (but the reader may skip it, later

replacing Hz, R
z

n by F, Rn).

3.11 Notation. If if is a set of (ordered) pairs, let Rang(if) = {y :

(3x)[(x,ϊ/) G if]} and Dom(if) = {x : (3y)[(x,y) G ff\},Hx = {y : ( x , y ) G if}.

We shall treat a set F (from e.g. Definition 3.2) as the following set of

pairs: {(Oω,x) : x G F} where Oω is the function with domain ω and constant

value 0 (so e.g. 3.13 applies to 3.2 too).

3.12 Definition. 1) For a set if C ωω x ωω, and R (an ω-sequence of three

place relations written as xRzy) and 5 C 5<^1(if) we say that (if, R) is 5-nice

if:

α) if is ^-bounding which means: for every z G Dom(if ), ίfz is #z-bounding,

i.e. (Vn)(V/ G ωω)(3g G Hz)[fRz

ng] letting R* = (Rz

n : n < ω).

β) For any N G 5, z G Dom(if ΠAΓ) and for every no, mo < ω for some g G if z

and ZQ G Dom(if ) Π TV player II absolutely wins the following game which

lasts ω moves.

In the fcth move: player I chooses /& G ωω,gk G Rang(if Π N) such that

fk \ mt+ι — ft \ mt+ι for 0 < ί < k and fkR^k9k\ then player II chooses

rafc+i > mk,nk+ι > nk and zk+ι G Dom(if Π N).

At the end of play, player II wins iff (\Jk fk
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2) (H, R) is S/VχQ(H)-mce if for some C G V*Q(H) we have: (H, R) is (SίΊC)-

nice.

3.13 Lemma.

1) Suppose

(i) 0 = (Pj, Qi : i < δj < δ) is an iteration as in 0.1, for* I

(ii) S C «S< 1̂ (ff) is stationary in V, and if we are in one of the cases (C),

(E), (F)of0.1, then | f l r | -H 1

(iii) (flr,β)is5/P<^1(H)-nice

(iv) for every i < 5, in FPi we have: if is ^-bounding

(v) all Qi have pure (K0,2)-decidability (see Definition 1.9)

(vi) \HI = NI or at least

(Vα G [Vp*]) [|α| < Ko & α C # => (36 e (5No(ff))v)[α C 6]] .

Then in Fp<5, H is ^-bounding.

2) We can weaken (v) to

(v)~ all Qi has pure (2,2)-decidability

provided that for some fixed /* € ωω, [(3i)[/(i) > f * ( i ) ] =ϊ fRz

ng\ for

any z G Dom(Jϊ) and g £ Hz.

3) Assume .R = {.Rn : n < ω) a decreasing sequence of (absolute definitions

of) three place relations on ωω, F C ωω is R bounding (i.e. we are in the

context of Definition 3.2 not 3.11, 3.12). Assume further (i), (ii), (iii), (iv)

and (vi) from (1), replacing H by F and

(v)/ all Qi have pure feeble (H0,2)-decidability (see Definition 3.14 below).

Then in VPδ, F is ^-bounding.

4) Assume, as in (2) that for some fixed /* G ωω, [(3i)f(ί) > f*(ϊ) => fRng\

for any /, g G ωω. The results of (3) holds if we replace (v)/ by (v)J

meaning replacing there (Ho, 2) by (2,2).

t So the reader may think on CS of proper forcing so <pr=<- The I is from

clause (F) there, so can be ignored for the cases (A)-(E), e.g. the two cases just

mentioned.



314 VI. Preservation of Additional Properties, and Applications

3.13A Remark.

1) You can read the proof with no = 0, F instead H, R instead R^n (see 3.11).

2) The proof gives somewhat more than the lemma, i.e. it applies to more

cases, "ίί is /^-bounding" means that (α) of 3.12 holds.

3) We can weaken 3.12(l)(β) to " in no generic extension of F, no strategy of

player I is a winning strategy"( and 3.13 still holds). The proof is similar,

only we choose the Gk in v^y(*°^P"{).

4) Part (3) (or (4)) of 3.13 is suitable for FS iteration of c.c.c. forcing by

3.16(4) below.

3.14 Definition. 1) A forcing notion Q has pure feeble (#ι, ̂ -decidability if.

for every p G Q and Q-name r satisfying p \\-Q "T < #ι" there are a C 01? |α| <

02 and q,p <pr q G Q such that q weakly decides r G α; where

2) q G Q weakly decides r G α (or any other statement) if no pure extension of

q decides this is false.

3) A forcing notion Q has pure weak (#ι, ̂ -decidability if for each p G Q in

the following game, player II has a winning strategy.

In the n'th move player I chooses rn, a Q-name of an ordinal < θ\ and

player II chooses αn,αn C #ι, |αn| < #2- In the end player II wins the play if

for every n < ω there is qn, p <pr qn G Q, qn weakly decides f\i<n it G α^.

3.15 Proof of 3.13 (1). We speak mainly on cases (A) and (F) of 0.1(1). W.l.o.g.

cf(5) = NO or for every i < δ we have \\-p. "cf(<5) > NO" (by 3.16 below we

have associativity; use a maximal antichain of conditions deciding and restrict

yourselves above one member; then if necessary use renaming.)

If cf(5) > HO, then any real in VPδ belongs to VFj for some j < δ (see

III 4.1B(2), (or X or XIV or XV); hence there is nothing to prove, so we shall

assume cf(ί) = ω. By III, 3.3 or XV 1.7, w.l.o.g. δ = ω.

Suppose p G Pω, z G Dom(#), n0 < ω and \\-Pω "/ G ωω" we shall find r,

P <Pr r € Pω and g G Hz such that r \\-pω

 ufR^Qgn. Let mo < ω. Let TV be a

countable elementary submodel of (H(X), G) (λ regular large enough) to which
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(PjyQi : i < ω,j < ω},p,f,z,S,H belong as well as the parameters involved

the definitions of the Rn's. The set of such N belongs to P<κ1(Jff(λ)), hence

for some such N, N n H G S (and TV is I-suitable for case (F) of 0.1).

By 1.11 w.l.o.g. for each n < ω,f(ri) is a Pn-name, and we let p = (pQ

n :

n < ω) where \\-Pn "p° G <3n" Let g G H z and ZQ G N Π Dom(#) be as in

clause (/?) of Definition 3.12 (for N Π H and z, n0, m0).

We shall now, by induction on k < ω, define qk,pk,gk,zk,mk, nk such that

(a) qk € Pfe is (JV,Pjfe)-generic (for (A) of 0.1(1)) or (N, Pk] -semi-generic

(for (F) of 0.1(1)) and qk lhPfc 'W[GPJ Π H = N Γ] H"

(b) qk ί n = qn for n < k

(c) Pk £ Pω, in fact is a P^-name of a member of Pω

(d) pk \ k <pr ςffc

(e) pfc+i f A: = pk \k and pfe <Pr Pk+i

(f) ^ ll-pjb "Pfe € N[ζ?pJ" i.e. pjfe is a P^-name of a member of N[Gpk] Π

(g) Zk is a Pjfc-name of a member of Dom(#) Π N

(h) mfc < mfc+ι and nk < J}k+ι

(i) ra/c, n/, are P^-names of natural numbers

Note that (a) implies that TV Π H belongs to the club of S<^1 (H) involving
U(H,R) is5/P<Nl(ff)-nicew.

For k = 0 we let qβ = 0,po = P>

For fc+1, we work in V[Gk], Gk a generic subset of P^ satisfying qk € Gk. So

Pfe = Pfc[G/c] G ΛΓ[Gfc] and pfe Γ * ̂  Gfc- In ^[Gfc] we can find an <pr-increasing

sequence of conditions pk,i G Pω/Gk for i < ω, such that pk,o = pk[Gk] and

Pk,i € N[Gk], moreover even (pkίi : i < ω) G N[Gk] and pfc>< forces values

for f ( j ) for j < i. So for some function fk G JV[G;b] we have fk G ^α; and

Pkti *-pu/Pk "/ Γ i - Λ Γ i". As 7V[Gfc] X (H(λ)[Gfc],e) (see III 2.11), for

some gk G N[Gk] Π HZk = N Π #Zfc, we have JV[Gfc] h ΊkRz

n

k

k9k"] '• Now

we use the absolute strategy (from Definition 3.6(2) for N Π H) to choose

t Really n^, 0* are P^-names so we should have written nk[Gk] but ignore

this.
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z/c+ijn/e+ijrafc+i (the strategy's parameters may not be in JV, but the result

is) and we want to have pk+\ = Pk,mk+1 However all this was done in V[Gfc],

so we have only suitable P^-names which is O.K. In the end, let r G Pω be

defined by r \ k = qk Γ fc for each fc; by requirement (b) we know that r is

well defined and belongs to Pω. Suppose r e Gω C Pω,Gω generic over V. As

in the proof of the preservation of properness we can prove by induction on

k that pk <pr r for each k. Then in V^G^] we have made a play of the game

from Definition 3.12(l)(/3), player II using his winning strategy so (((J/fc ί
k ~

k)[Gω])R^Qg holds in V[Gω], but clearly pk,nk <Pr Pk+i <Pr r hence pk,nk £ Gω

hence (/ \ mk)[Gω} = ( f k \ mk)[Gω}. Consequently f[Gω] = (\Jkfk \ k)[Gω]

and f[Gω]Rn0g holds in V[Gω] and r forces the required information .

Proof of 3.13(2): Similar.

Proof of 3.13(3)\ Like 3.13(1). We use freely 3.16 below, but note that no

harm is caused if player II increases ra^, nk (not z/J). A play (or an initial

segment of the play) in which player II do this is said to weakly follow the

strategies. Now the strategy in use is to weakly follow all possible subplays. I.e.

above (in the proof of 3.13(1)) we, by induction on k < ω, choose g/c, pk, gk,

(Uvί^vϊ^υ) : k e v C k + 1): and mjt, n^ such that:

(a) - (f ) and (h) as before

(g)' zv is a P/c-name of a member of Όom(H) Π N

(ί) mv, nυ are P/c-names of natural numbers, and

fc = max(τ ) => mv < mυ\{k} & nv < nv\{k}

(j) rrik = max{mυ -f fc : υ C k -h 1}, nk = m3x{nυ + fc : v C fc 4- 1}.

In the induction step, pk,i (i < ω), fk are chosen such that: pk <pr

pjfe,o, Pk,ι <pr Pfc,t+ι and no pure extension of p^ in Pω/Gk forces f\i /

//c f i . Now for each υ such that fcGfCfc + l w e pretend that the play so

far involve only player I choosing {(/*,#) : I e v) and player II choosing

<(φt;n(£+i),ϊ*t;n(€+i)^t;n(£+i)) : ^ € *> \ {fc}) and player's II given winning

strategy dictates (rnυ,nv,zv). Lastly rrifc+i, n^+i are computed by clause (j).
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We have defined a name for a strategy; we can show that it is forced that

unboundedly often we have made the right move, so moving to the appropriate

subplay we are done.

Proof of 3. 13(4): Similar. Π3.ι3

3.16 Claim. 1) For (0ι,02) € {(2,2),(N0 ,2)} the property "Q has pure feeble

(0ι, 02 )- decidability" is preserved by iteration as in 0.1.

2) Similarly^ for "pure weak" .

3) Q has pure feeble (0ι, 02)-decidability if Q has pure weak decidability.

4) If Q has feeble pure (0*,2)-decidability and 0* is uncountable and <pr is

equality (as we do for FS iteration of c.c.c. forcing) or 0* > 2 and <pr is <Q

(as for CS iteration of proper forcing) then Q has pure feeble (0, 2)-decidability

for every 0.

5) For (0ι, 02) G {(n,2) : 2 < n < ω}, every Q has pure feeble (0ι,02)-

decidability.

Proof. 1) We copy the proof of 1.10, changing (iii) (in the proof of case 5

(a = ω)) to

(iii)' first for n < ω we define a Pn+ι-name sn: for Gn+ι Q PΠ+I generic over

y» §n[Gn+ι] is k + 1 if there is r G Pω/Gn+ι such that Dom(r) = [n + l,ω),

Pω/Gn+ι |= "p Γ [n + l,ω] <pr r" and r weakly decides t = k, i.e. for no

r',r <pr r' G Pω/Gn+ι does p' ll-p^/Gn+i "ί ^ ^"5 ^ t^ιere is no suc^ r'

Second let qn G Qn[^n] be such that pn <pr gn and qn weakly decides the

value of 5n, (i.e. of sn/Gn) (if θ\ = 2, use Definition 3.13A twice).

Also in the end we prove by downward induction on ra < n(*) that

(r f m) U {q m} weakly decides sm — t.

2) Similar proof (using 3.16(1)).

3) Read the definitions.

4) Straight.

Alternatively use XIV §2.
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5) Easy. D3.ι6

We now give some applications. Concerning 3.17 if you want also "no Cohen",

see 2.13.

3.17 Conclusion. 1) The property "P is weakly bounding" i.e. "P does not

add a dominating real over V" is preserved in limit (for iterations as in 0.10=2,

see 0.1(3)) provided that bv = NI in the non-proper case.

2) If F C ωω is not <*-bounded then "P does not add a <*-bound to Fn is

preserved in limit (for iterations as in 0.10=2) provided that e.g. |F| = Nj in

the non proper-cases.

3) In parts (l)+(2) we can use iterations as in 0.1 with pure feeble (N0,2)-

decidability.

Proof. 1), 2) Let Q be such an iteration, F = (ωω)v for 3.17(1), given for

3.17(2) and R is defined by Ί/>O (see Definition 3.7). By 3.9 (F, R) is a nice pair

in V. Even for every i < £g(Q), in VPi the set F is still unbounded and every

countable subset of F in VPί is included in a countable subset of F from V;

hence by 3.9 (F,R) is a nice pair even in VPi. By 3.13(3) this is true also in

FPδ (where <5 = ^g(Q).

3) Similar proof (to that of 3.13(1)) or by 3.13(3)). D3.ι7

3.18 Lemma. The property "Pα purely adds no random real over V" is

preserved under limits for iterations as in 0.10=2 or just by iteration as in

0.1 with every Qi having pure feeble (No,2)-decidability (see 3.16(4)).

Remark. Concerning the successor case see XVIII 3.20(i). Before we prove 3.18

we need some definitions and claims. Now for T C ω>ω, and η G ω>2 we let

T^ = {v : η~v\[eg(η),ω) G T}. Note that Lemma 3.18 includes the case of

FS iterations.
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3.19 Definition. 1) We let ψι be as follows:

xR^y iffy is a perfect subtree of ω>2 with positive Lebesgue measure, x eω2

and (Vn < ω)(Vp G n2)[p~ (x\[n,ω)) i limy].

2) Let HY be {(yi, t/2)
 : 2/ι? 2/2 are perfect subtrees of ω>2 with positive Lebesgue

measure such that: \imy2 ζ {η e ω2 : for some n < ω and p e n2 we have

pΛ(r/r[n,u;)) Glim?/!} }

3.20 Claim. 1) HY is an ^-directed partial order.

2) Suppose V C Vί , and for any countable α C HY from Vί there is a countable

6 C Ff, α C 6 G Vί (and R = R^). The following are equivalent:

(i) no real in V\ is random over V

(ii) Ώom(HY) is ^-bounding in V\

(iii) (Dom(fίι/),β) is nice in V\ (here Definition 3.2(3) is the relevant

one, with Όom(HY) here having the role of F there).

Proof. 1) Easy

2) (i) => (ii): Let x G ("2)^. As x is not random over V there is a Borel

set B G F of Lebesgue measure 0 such that x G B (i.e. x belongs to the V\-

interpretation of B). Without loss of generality B is closed under =* (i.e. if

r?ι,r/2 G ω2 and ηι =* 772 (ΞΞ V m\(n,ω) = τ/2ί[n,u;)) then 171 G B = r?2 G B).
n<ω

There is T C ω>2 perfect, T G V such that limΓ has positive measure and

lim(T) Π B = 0. So it is enough to prove that xRT, i.e. (Vn < ω)[x φ limT<n)]

where T<n> =f {η : for some p G T we have ίg(p) = ^g(ry) and (V^)(n < ί <

Igp -> p(ί) - rj(^))} i.e. x G ω2 \ \Jn<ω lim(T^n>), but this follows from x G B.

(ii) => (iii): Condition (α) of Definition 3.2(3) is clear. For condition (/?) let

N -< (//"(χ),G) be countable, z0 ^ ^ Π DomίfΓi), so for some α we have

NΠHY CαC HY, α eV,V \= \α\ = N0- So there is Γ G Dom(Jfί1

y), such

that ω2 \ Un<α, Γ<n> contains all 2ω \ Un<α; lim(ϊίn>) for T! G TV Π Domiff}"),

hence it contains all Borel measure zero sets from V which are in N.

We have to give the winning strategy for player II.

In stage fc, fk,gk are given fkRQk,9k € JVnDom(ff^), so ̂  is a perfect subtree

of ω>2 of positive Lebesgue measures. Then p^ (fk\[n^ω) φ lim^ for P € n2,
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n < ω and ( ,̂ Γ) G H\\ together with the choice of T we know that for n < ω

and pen2we have p ~ ( f k \ [ n , ω ) ) φ limΓ.

Choose rafc+i > m^ large enough such that: for every n < ra^, p e n2 we

have: pVfc ί [n,rafc+ι) £ Γ.

(iii) => (i): Immediate. Π13.20

3.21 Proof of lemma 3.18

Let F = Όoιrϊ(HY). Let Q be an iteration as in 0.1, £g(Q) = δ, and in

no VPί(i < δ) is there a real random over V. So by the claim 3.20(2) we know

that (F,R) is nice in VPί. Hence by 3.13(3) it is nice in VPδ, hence by claim

3.20(2) in VPδ there is no real random over V. Πa.is

We now give an application of 3.17, taken from [Sh:207], Lemma 3.22 is proved

in §6 (see 6.13). On history see introduction to §6.

3.22 Lemma. There is a forcing notion Q such that

(a) Q is proper

(b) Q is almost ^u -bounding.

(c) IQI = 2«°

(d) In VQ there is an infinite set A* C ω such that for every infinite

B C ω from V we have A* Π B is finite or A* \ B is finite.

3.22A Remark. For 3.23 it is enough to prove 3.22 assuming CH.

3.23 Theorem. Assume V |= CH.

1) For some forcing notion P*, P* is proper, satisfies the fr^-c.c., and

(*) In Vp*, 2^° = ^25 there is an unbounded family of power KI, but no

splitting family (see below) of power HI.

2) We can also demand that in Vp* there is no MAD of power HI (see

Definition 3.24(2)).
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3.24 Definition. 1) P is a splitting family if P C [ω}"° (= the family of

infinite subsets of ω) and for every A G [ω]^° for some B G P we have:

2) A family Λ is MAD (maximal almost disjoint) if:

(a) Λ is a subset of [ω]^°

(b) for any distinct A,BeA the intersection A Π B is finite

(c) .4 is maximal under (a) 4- (b).

3) Let b = min{|F| : F C ωω is not dominated} where "F not dominated"

means that for every g G ωω for some / G F we have -</ <* #. Let T> =

min{|F| : F C ωω is dominating} where "F is dominating" means that for

every g G ωω for some / G F we have # <* /. Let 5 = mind'PI : P C [ω]Ko is a

splitting family (see above)}

Proof of 3.23. 1) We define a countable support iteration of length N2 :

(Pa,Qa '• OL < ω<2) with (direct) limit P* = Pω2. Now each Qa is the Q from

3.22 for Fp«, so Vp<* \= "\Qa\ = 2*°". As V |= CH we can prove by induction

on α < ω2 that \\-Pa "CH" (see III, Theorem 4.1). We also know that P*

satisfies the N2-c.c. (see III, Theorem 4.1). If P is a family of subsets of ω of

power < HI in Vp* then for some a < ω%, V G FPa, and forcing by Qa gives a

set A*a exemplifying P is not a splitting family by clause (d) of 3.22. So from all

the conclusions of 3.23 only the existence of an undominated family of power

NI remains. Now we shall prove that F = (ωω}v is as required. By 3.8 it is

enough to show

(*) lhPu,2 "F is R^Q -bounding" (see Definition 3.7).

Now note: F has power KI as V \= CH. We prove that F is Ή^-bounding in

VPa by induction on α < α;2. For a = 0 this is trivial; a = β + 1 : as Qβ is

almost ^-bounding (see 3.22 clause (b)) and by Fact 3.6(1); if cf(α) > N0 by

Conclusion 3.17(1).

2) Similar. We use a countable support iteration (Pj,Qi '• i < ^2, j < ^2}

such that:

(a) for every i < ω2, and MAD (Aa : α < ωι) G FPί, for some j > i,

either Q^j = adding HI Cohen reals, and QΊJ+I — {p G <2V 2j+ 1 :
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p > Pzj+i} where in VP2J+1 we have P2j+ι H~Q "{A* : OL < ω\) is not

a MAD family"

or QZJ = adding Ki-Cohen reals, QZJ+I — Q[/2j+ι] where /2j+ι is

the ideal (of subsets of ω) which (Aa : a < ωι) and the cofinite sets

generate (on Q[I] see Definition 6.10).

(b) For j even Qj is adding HI Cohen reals.

(c) For j odd, Qj is <2, or {p G Q : p > PJ}, or it is Q[!A] where A is a

Pj-i-name of a MAD family of cardinality HI and VFj 1= [Ihg "̂  is

MAD"]

(d) for K2 ordinals j, Q2j+ι is Q^'+1.

There is no problem to carry out the definition. Each Qj is almost ωω-

bounding by 3.22 (i.e. see 6.13, when Qj = QγPj), by 6.22 (when Qj = Q[/A.]

we can apply it to Vpj~λ as QJ-I is adding HI Cohens so 6.15 applies and the

second possibility in 6.22 fails by clause (c) above) and 3.6(3) (if j is even i.e.

Qj is adding HI Cohens). So as in part (1), Pω2 preserves "(ωω)v unbounded".

Also $ — H2 and 2^° = ^2 are proved as part (1) by clause (d). Lastly assume

A C P(ω) is a MAD family, |^4| = KI, so for some i, A G VPi. So there is j as in

clause (a). Work over VQ = Vp<2j so Q^j is adding HI Cohens. If p lt~Q2.,*Q "A is

not MAD" for somep € Qij*Q thenw.l.o.g. p e Q (as Q^j is homogeneous) and

we use the second possibility in clause (c). If not, we use the third possibility

of clause (c). Ds.23

We add the following in Summer'92 after a question of U. Abraham. In the

proof of the consistency of "there is no P-point" below (§4) we use the "PP-

property" (see 2.12A-F). We actually prove a stronger property called "the

strong PP-property" which implies the "PP-property" which we have proved

is preserved, so Abraham asked whether it itself is preserved. The following

variants would have sufficed for the purpose of §4 which was the reason of

existence.
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3.25 Lemma. Assume that f : ω -> ω + 1 \ {0, 1}, h : ω -> ω \ {0, 1} and

ί1 <Ξ Πf h d= {/ : Dom(/) = ω and /(n) a subset °f f OΌ of cardinality

< h(n), lim (|/(n)|/h(n)) = 0} are such that:
n— »oo v

(*) for any countable Λ C F there is f e F such that /\ (V*ri)[g(ri) C

Let R be defined as: ##/ iff

(a) #, / € Πf h (i e we consider a member of ωω as coding such sequences)

(b) (3*n)S(n) C /(n).

Let 5 C <S<N2(F) be stationary and assume F is ^-bounding.

T/ien (F, R) is S-nice. (Hence, we have a preservation theorem for a limit).

Proo/. Check Definition 3.2(3). Part (α), F is ^-bounding, should be clear. For

clause (/?), given TV G S, let fNeFbe such that / G N Π F => (V*n)[/(n) C

)] (it exists by the assumption (*)). The winning strategy is clear: choose

such that {i < nik+i : fk(i) ζ 9k(ϊ) ^ /ΛΓ(*)} has at least k members.

But of course it is nicer to have also preservation for composition of two forcing

notions.

3.26 Lemma. 1) Let f : ω -> ω + 1 \ {0, 1}, h* : ω -» ω \ {0} for t G Q be such

that for 5 < t (from Q) we have 0 = lim (hs(n)/h t(n)) and for each t G Q the
n— >oo

set Πf,h* satisfies (*) of 3.25. The following property is preserved by iterations

as in 0.10=2 and as in 0.1 with each Qi having pure feeble (2, 2)-decidability:

(*)ι (a) Q is purely ωα;-bounding.

(b) for every s <t from Q, / <Ξ VQ such that / G Πf,h* and fc0 < fci < . . .

(so (ki : i < ω) G V) for some g G V such that g G Πf,h* we have

1A) So e.g. in (1), if Q = (P^Qj : i < a,j < a) is CS iteration, lhP. "Q; is

proper satisfying (*)ι" then Pα is proper satisfying (*)i.

2) We can replace (*)ι, by

(*)2 (a) Q is purely ωα;-bounding
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(b) for every s < t from Q and / G VQ , such that / G []f,h* f°r some

g e V, g e Πf,h* and for every infinite A G ([ω])*°)v, for infinitely

may i G A, f ( ϊ ) C g ( ϊ ) .

3) In (1) we can assume F = (ωω)v/ (for some V C V, a just reasonably

closed) is unbounded Ni-directed by <* and replace (*)ι by

(*)s (a) Q purely preserves "F is unbounded"

(b) like (b) of (*)ι for (A* : i < ω) G F.

Proof. Similarly to the previous Lemma one may deal with limit cases using 3.13

for the respective variant of clause (b) (and by 2.8 for (*)ι(a), (*)2(a), 3.17 for

(*)s(a)). So now it suffices to prove this for iteration of length two: P<2 = Qo*Qι

(so PI = Qo5 PQ is trivial). First we prove part (2). Let / G (Πf hO^2 > s < t

from Q. Choose t' G (s,ί)q. Applying (*)2 to /,$,£', VPl,VF2 we can find

/' £ [Πf h*']^ 1 satisfying the requirements there on #. Next we apply (*)2 on

f,t',t,V,Vpι and get <? G [Πf,ht]
V

Now for any infinite A C ω, A G V, by the choice of # we know that

A' =: {i G A : f ' ( i ) C #(i)} G FQo is infinite. Hence by the choice of /' we

know that A" = {i G A' : f ( i ) C /'(i)} is infinite and clearly it belongs to

yp2. Putting together A" = {i G A : f ( i ) C f ' ( ϊ ) C p(i)} is infinite. So p is as

required.

Now we prove part (1), so we are given s < t from Q and (ki : i <

ω) G V (strictly increasing) and / G (Πfh*) V 2 ^et ^ ^ ( M)Q Applying

(*)ι, to /,s,ί;, ypsyp2,(fc, : i < ω) we get /' G (Πf,hf)yPl satisfying the

requirements on g in (*)χ. So A =: {i : for every t G [fc$, fci+i) we have f(f) C

/;(£)} is infinite. As Qo is ^cj-bounding there is a sequence ί(0) < 1(1) < . . .

(in V) such that An [-ί(i), l(i + 1)) ^ 0 for every i < ω. Let k( = fc^) and apply

(*)ι to f',t',t, V, V, {fc^ : i < α;} and get #, which is as required.

The proof of part (3) is similar.

3.26A Remark. In 3.25 we have the requirement FnΠf h satisfies (*) of 3.25.

We can work as 3.26(2) and weaken it to:
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(*) for any s < t and countable A C Π f h * tnere is / € Π f h * sucn

Λ (Vn)[ff(n) C /(n)].

§4. There May Be No P-Point

We define the forcing notion P(F) (introduced by Gregorief) which, for an

ultrafilter F, adds a set A such that ω \ A, A ^ 0 modF, see definition

4.1. If F is a P-point (see definition 4.2A) this forcing is α-proper for every

α < ωι, and has the PP-property. Our point is that P(F)ω enjoys all these

properties and in addition \\~P(F}" "F cannot be completed to a P-point ".

We will argue in the following way: as we use P(F)ω, we can define a new

subset An of ω such that \\~p(F}" "An G F", where F is an extension of F

to an ultrafilter in the generic extension, but for each g G ωω Π V we have

lhP(F)w "ΓUcuΛ^n U0(n)) = 0 mod F".

We originally (see the presentation in Wimmer [Wi]) use the stronger

version of the PP-property, but there were problems with the preservation

theorem i.e., in that version the essential forcing was not an iteration.

Note that, we continue to add reals after forcing with P(F)ω, so in fact we

prove the above described argument works with Q instead of P(F)ω provided

P(F)ω <£ Q, Q has the PP-property. So the importance of proving that this

property of Q is preserved is clear. The iteration in the end is standard.

The proof presented in [Wi] uses not exactly P(F)ω. Rather we note that

if Q satisfies the c.c.c. then for any P-point FQ in Vp there is F\ = {A C

ω : A G F, \\-Q "A G F0"} which is a filter enjoying some of the properties of

FO : P(ω)/Fι (in V) is a Boolean algebra satisfying the c.c.c. and (if Q has the
ωα;-bounding property), for every An G FI there is A G FI, /\n<ωA Cae An.

Let {F* : i < H2} (assuming G.C.H.) list all such filters in V. Now the product

P with countable support of all the P(Fi)ω satisfies: in Vp', no F1 can be

extended to a P-point by an argument as mentioned above. However to close

the proof we need "P satisfies the c.c.c. ", which fails. But we replace P by a

subset which satisfies it and still has the desirable other properties. I expect
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that the proof can be modified to have 2^° > ^2 (but this was not carefully

checked), whereas for the present proof we do not know how to do this.

4.1 Definition. For a filter D on a set / (we always assume all co-finite subsets

of / are in D), we define the following forcing notions ordered by inclusion:

1) P(D) = {/ : / is a function from B to {0,1} for some B = 0 modD, i.e.

BCI,I\BeD},

2) pt(D) = {/ € P(D) : f'l({l}) is finite },

P'(D) = {/ : / a function from B to {0,1}, B ^ / mod D},

P"(D] = {fe P'(D] : Γ1({1}) is finite }.

4.1A Remark. Mathias [Mt3] used P"(D) for the filter D of co-finite subsets

of ω\ Silver used P^(D) for the filter D of cofinite subsets of ω and for an

ultrafilter D, Gregorief used P(D) for an ultrafilter D, and proved that it

collapses NI iff it is not a P-point.

4.2 Lemma. If F is a P-point (see below) then Q = P(F)ω is proper (in fact

α-proper for every a. <ω\) and has the PP-property.

Proof. It will follow from 4.3 and 4.4. U4.2

4.2A Definition.

1) A filter F on / is called a P-filter or P-point filter if (it contains all co-

finite subsets of / and) for every An e F (for n < ω) there is A e F such

that ACaeAn for every n. Just "a P-point" means an ultrafilter.

2) We call F fat if for every family of finite pairwise disjoint wn C / (for

n < ω) there is an infinite .S C α; such that Unes ̂ n = 0 mod F. (Clearly

every P-point is fat.)

3) F is a Ramsey ultrafilter (on 7) if for every h : I —> ω there is A G F such

that h\A is a constant or 1 — 1 (and F contains all co-finite subsets of /).

Note that a Ramsey ultrafilter is a P-filter.
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4.3 Fact. Assume F is a fat P-filter on ω. Let F* be {̂ 4 C ω x ω : for every n

for some B G F, A Π ({n} x ω) = {n} x B}. Then F* is a fat P-filter on ω x ω,

and the forcing notion P(F)ω is isomorphic to P(F*).

o/ toe

condition: F* zs a /ϊfter on ω x ω including all co-finite sets. Check.

Second condition: F* ώ a P-filter. Let Afc G F*, then ^ Π ({n} x ω) =

{n} x Bk,n f°r some Bk,n G F. As F is a P-filter there is B* G F, .B* Cae Bk,n

for every fc,n. Let B*n ^ B* Π Π*<» BM and A* ^ Un<.({^} x ̂ )

Clearly jB* G F (as we have assumed that F is a filter), hence A* G F*.

NOW A*\Ahc Un<JM x (BΪ \ BM)] ^ Un<*[M x (^ \ Bfcιn)], but
5* \ Bk,n £ B* \ Bfe>n, hence it is finite. Therefore A* \ A& is finite and hence

A* Cαe ^4fc. But k is arbitrary, so A* is as required.

condition: F* zs /at Let wn C ω x ω be finite and pairwise disjoint for

n < ω. We define by induction on n infinite sets Sn C ω, Sn+ι C 5n such that

{i < ω : (n, i) G Lkesn ̂ } ~ ^ mo(^ ^ ^e can °̂ tn^s w^^ no problem,

and let fc(0) = Min(50), fc(n) = Min(5n \ {fc(0) ...k(n- 1)}). As every cofinite

subset of ω belongs to F, it is easy to check Un<α; wk(n] — 0 modF*.

So we have established the first conclusion of 4.3.

The isomorphism of P(F)ω and P(F*) is trivial, for p = {/0, /i, /2 . . .) G

)-, let H(p) G P(F*) be ff(p)«n, Λ» - /n(fc). Π4.3

So it suffices (for proving Lemma 4.2) to prove:

4.4 Lemma. If F is a fat P-filter on a countable set £/ιen P(F) is proper (in

fact α-proper for every α < α i) and has the PP-property.

4. 4 A Remark. We will really prove the strong PP-property, see remark to

2.12AandDef 2.



328 VI. Preservation of Additional Properties, and Applications

Proof 0/4.4. W.l.o.g. F is a filter on ω. So let p0 e P(F), {po,F} G AT ^

(ίί(λ), G), AT is countable and λ is large enough. Now, before proving proper-

ness, we prove:

4.5 Crucial Fact. For every p G P(F) and every P(F)-name t of an ordinal

and n < ω, there is q G P(-F), p < </, such that ςfra = pfn and for every

g : n — > 2, there is an ordinal α9 such that (q\[n, oo)) U g Ihp(jr) "ί = αp".

Proof. Let ̂  (for i < 2n) be a list of all functions g : n — » 2. We shall define by

induction, an increasing sequence of conditions p^ G P(F) (so p^ < Pi+i), for

i < 2n. Let po = P, and if p^ is defined let

pt = (pir[n,oo))U^.

Clearly p\ G P(-F) hence there are a9i and pf € P(F),pt < ^ such that

P" ll-p(F) "ί = V Let Pi+i = P* UpΠKω). Clearly p< < p<+1 G P(F), and

(Pί-f i Γ[n? ω)) U (ft Ih "t = α^" . So p(2n) is as required from q. So we have proved

Fact 4.5. D4.5

Before we prove 4.4 we also note

4.6. Fact. Assume F is a fat P-filter (on ω). If pn < Pn+i (for n < ω),

pn G P(-F) ίΛen there is ς[ G P(F), g > Po such that g > pn f [n, oo) for infinitely

many n.

Proof of Fact 4.6. Let An be the domain of pn, so An = 0 modF hence

ω \ An G F. As F is a P-filter there is A, ω \ A G F, such that for every

n, (ω \ A) Cae (ω \ An) i.e., An Cae A. Hence there are kn < ω such that

(An \ [0, fcn)) Q A. w.l.o.g. AO = Dom(po) C A and kn > n.

Now we shall choose natural numbers £(0) < t(l) < ί(2) < . . ., and want

to choose them such that

q = PO u U(P*(n) Γ[^(n),ω)) e P(F)
n
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So as q is a function from a subset of ω to 2, (because pn < pn+ι) we only

have to take care of the demand Dom(ς) = 0 mod F. Note that Dom(g) \ A =

) \ A \ [0,%)) = )Jn<ω (Ai(n} \ A \ [0,*(n))) = (Jn(A£(n} n

(remember Λn \ [0, fcn) C A, A0 C A).

Now let wι = [I, kt), (for t < ω) which is a finite set. As Min^) = ί, there

is an infinite 5 C ω such that {w^ : I G 5} is a family of pairwise disjoint sets.

Since F is fat there is an infinite Si C S such that \J{we : I G Si} = 0 mod F.

So let {ί(n) : n < ω} be a list of the members of Si, %) < ί(n + 1). Then

<? G P(F) which proves Fact 4.6. D4.6

Continuation of the Proof of 4-4- Let {TI : i < ω} be a list of all P(F)-names

of ordinals which belong to N. Using the crucial fact 4.5 we can define by

induction on n, pn G P(F) Π TV, pn < pn+\ (po is already defined) such that:

(*) if g : n —> 2 = {0,1} and t < n then for some ordinal α(#, I)

(pn f[n, ω)) U g lhP(F) "r^ - a(g, ί)n.

Applying the Fact 4.6 for the sequence (pn : n < ω) constructed above with

the property (*) we obtain a q G P(F) such that q > po and q > pn\[n,ω) for

infinitely many n. For such an n we have (pnί[^»^)) ^ ̂ ί[0?n) ^ ^? hence q Ih

"for £ <n, τt = a(g, ί) for some function ^ : n —> 2 extending ς f [0, n)". So ςf is

(AT, P(F))-generic, and as ς' > po, we have proved that P(F) is proper. In fact

not only q is (N,P(F))-generic, but even q\[n,ω) for any n < ω is, as every

^UgΓ[n,α;) is, for g : n -> {0,1}.

Let us prove P(F) is α-proper for any countable α, by induction on a.

Let (Ni : i < a) be as in V.3.1, p G P(F) and {p,F} G A^0; we shall prove

that not only is there q > p, (Ni, P(F))-generic for every i < α, but also

q\[n,ω) is (JVί,P(F))-generic (for i < α,n < ω). If α = 0 we have proved

this, if α is a successor use the induction hypothesis. So assume a is limit

and let a — \Jn<ω&nι ®n < <*n+i- By the induction hypothesis we can define

<7n ^ NC^+IJ such that for every i < an and A: < ω we have gnf[fc?oo) is

(JVi,P(F))-generic and g0 > P,
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Apply Fact 4.6 to po, <Zo, <Zι> - and get q as required, remember that as q

is (7Vi,P(F)))-generic for every i < α, it is also (7Vα,P(F))-generic.

^From Lemma 4.4 only the strong PP-property remains to be shown (see

on it 2.12, particularly 2.12E(3); this suffices by 2.12F(1)). So let x € ωω diverge

to infinity, and let TV be as above, / G N be a P(F)-name of a member of ωω,

and w.l.o.g. we can assume that for n < ω, r^n — f(n) where {rn : n < ω}

was a list of the names of ordinals used in the proof of the properness of

P(F). When we define the pn, by induction on n, make one change in (*)

above (in this proof): instead of considering t < n, we consider the i such that

ί < 2x(n + 1 + 2n+1) + 2. So we have:

(*)' if g : n -» 2 and t < 2(x(n + 1 + 2n+1) + 1) then for some ordinal a(g,£),

Now we let kn = 0, mn(0) = 2n, in(0) = n + 1, jn(0) = z(n + 1 + 2n) + 1.

Then, by (*)', we have pn\[n,ω) lhP(F)

 uf\jn G {/ιpjτl : p : n -> 2}", where

hgjn(£) = a(g,2£). Sopn\[n,ω) allows /fjn(0) at most 2n possibilities which is

ran(0). As ς > pnf[n,α;) for infinitely many n, and for each such n, ς "allows"

f\jn less than mn(0)-|-l possibilities, clearly kn = 0,mn(0),zn(0), jn(0) witness

n is as required in 2.12E(3) (i.e. 2.12A(b)(*) with k = 0), so we have finished.

EU.4,4.2

4.7 Lemma. Suppose F is a P-point and P(F)ω <$ P and P has the PP-

property (or just it is ^α -bounding and has the weak PP-property, see Defini-

tion 2.12E).

Then in Vp ', F cannot be extended to a P-point.

Proof. Suppose p G P forces that .E is an extension of F to a P-point (in Vp).

Let (rn : n < ω) be the sequence of reals which P(F)ω introduces (i.e. rn(ϊ) — i

iff for some {/o, /i, . . .) G Gp(F)ω we have /n(0 = ^) Define a P-name:

ft(n) is 1 if {i < ω : rn(i) = 1} G E and

h(n) is 0 if {i < ω : rn(i) = 0} G E.
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So p Ihp "ft G W2". Now as P have the PP-property, by 2.12D (and see 2.12E),

there is p\ > p, (p\ G P), and for each n < ω there are k(n) < ω, in(0) <

jn(0) < in(l) < jn(l) < < in(k(n)) < Jn(k(n}}, and jn(k(n)) < in+ι(0)

such that:

Pi Ihp " for every n < α; for some t < k(n) we have h(in(ί)) = h(jn(l))n.

Now define the following P-names:

4n = {m < ω : for some £ < k(n),rin^(m) = Γjn(^)(m)}

4.7A Fact. pl Ihp "An G E".

This is true because p\ forces that for some ί < k(ri) we have h(in(t)) =

h(jn(i}) and by the definition of h we know:

p Ihp "{m < ω : rin(i](m) = h ( i n ( f ) ) } G E"

p Ihp "{m < ω : rjn(£](m) = h(jn(l))} G E» .

Putting together these three things (and p < Pi) we get pi Ihp "{m < ω : for

some £ < k(n) we have rin^(m) = h(in(ί)) = hj(jn(t)) = rjn(i)(rri)} G E" but

this set is included in An, hence p\ Ih "An G E" . So Fact 4.7A holds. ^4.7^

So pi Ih "{An : n < ω} C ^", but as pi Ih "£ is a P-point" for some g we also

have pl Ihp "̂  G ωω and Πn<u;(^n U [0,^(n)]) G £7". Now as P has the PP-

property by 2.12B(1) (or 2.12F(4)), it has the ^α -bounding property, hence

there is p%, Pi < Pi G P and g G ωω (in V) such that P2 "~p "0(ft) < ̂ (n) for

every n" . Hence

P2 Ihp " f| (An U [0,^(n)]) G JB"

and therefore

(*) P2 Ihp "Πn<u;(^n U [0,0(n)]) ^ 0 mod F.".

As p2 G P and P(F)ω <> P, there is g = (/0,/ι, . . .) G P(F)ω such that p2

is compatible (in P) with any q^q < qϊ G P(F)ω '. As F is a P-point, there
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is A* C ω (in V) such that A* = 0 mod F and Dom(/i) Cαe A* for every i.

Choose, by induction on n < ω, αn < αn+ι < ω, such that αn > </(n) and for

t < k(n):

(Dom(/inW) U Dom(/jτιW)) \ [0,αn) C A*.

Now we shall define ^ = (/] : i < ω), q < q^ G P(F)ω. Let: // (£) =

/tnwUO[anjan+1)\A. and/JnW = /jn(*)Ul[αnϊαn+l)\A. (where Oβ is the function

with domain B and constant value 0 , I B defined similarly.) Otherwise /^ — /m.

Plainly, /^ is a function (by the definition of αn), its domain is the same as

that of fm plus a finite subset of ω, hence Dom(/r^l) C α;, Dom(/r^l) = 0 mod F.

Also fm C /^, hence 9 < gt = (/t,/t, . . . ) G P(F)". Clearly ρt |hp "An is

disjoint to of [αn, αn+ι) \ A*" (by the definition An and /inm»/Jnm)

Also g(n) < αn, hence

9t ll-p "^n U [0,^(n)] \ A* is disjoint to [αn,αn+ι)"

and thus

(An U [0,^(n)] \ A*) is disjoint to (^J[α:n?αn+ι) = [αo,ω)".
n

Consequently (as A* = 0 mod F and [0, αo] is finite)

9f l hP " Π (^n U [0,flf(n)]) = 0 modF ".

By the choice of q we know that p2> ^ are compatible in P so let ps G P be a

common upper bound of p2, ̂ 5 hence pa Ihp " p| (AnU[0,p(n)]) = 0 mod F"
n<ω

which contradicts (*). U4.7

4.8 Theorem. It is consistent with ZFC +2^° = ^2 that there is no P-point.

Proof. It is left to the reader, or see the 5.13, where a similar proof is carried

out. dU.β

n<ω
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4.9 Claim. Assume iteration Q = (Pi,Qj : i < δ, j < δ) is as in 0.1, E is a

non principal ultafilter in V which is a P-point (i.e. if An G E for n < ω then

for some A G E we have A \ An finite for each n < ω) and if Pδ is not proper,

E is generated by < KI sets. If E is (pedantically generates) an ultrafilter in

VPί for each i < δ (and δ is a limit ordinal) then E is a P-point in V Pδ .

Remark. We weaken the assumption on E (in V) to

(*)o E C P(u ) and fil(£) = {A C ω : (3B G £7)4 2 B} is a non principal

ultrafilter on ω, which is a P-point.

Proo/.

We shall use 1.17 (see Definition 1.16, for our family of forcing notions).

Let fc* = 2, Dt = H(χ)v, and

xΛoΓ iff (x € (ωu;) Π D and) for some A = A^ G E for every η G lim(T) we have

{n < ω : 77(71) = 1} 2 A

xR\T iff for some 4 = A^ G £ for every η G lim(T) we have {n < ω : η(ri) =

1}ΓΊA = 0

(so the x's are not important).

Then clearly (D,R) — ((/?o,-Dι), (Ro,Rι)) is a weak covering 2-model, in

particular it covers in V; use the standard <Q. Note

(*)ι (D,R) covers in Vp iffE generates an ultrafilter in Vp

(*)2 if in Vp the family E generates an ultrafilter then E generates a P-point

in Vp (of course provided that P is proper or P preserves KI and \E\ = NI

or Ihp «5<Nl(|E|)v is cofinal in S

We next prove that (D, P, <") is a fine covering 2-model. We check Definition

1.16(2).

Clauses (α), (β) are trivial.

Clause (7) (a): Let k < 2, xRkTn. By symmetry let fc = 0 so xRoTn. So let

4n = Aτn , so 4n G £". We can find B e E such that 5 C 40, ̂  Cαe 4n for each

n. Let T* = {η G ωα; : (Vi G B)η(i) = 1} so the choice A% = B exemplifies

xRkT* (for any x), so it suffices to prove the inclusion from (7) (a). Toward this

let for i < ω let m* G (i, ω) be such that B \ mf C Λ<, and let it; C α; be infinite
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such that if i < ω, j G w, i < max(i(; Π j) then πii < j. Now suppose η G ωω

and i G w => η\(mm(w \ (i + 1)) G U Tj U Γ0, and we are going to prove
j<ij£w

η G lim(T*). This means that we should prove A' = {n < ω : η(n) = 1} 2 B',

so let n G B; if n is smaller than the second member of w, then applying

the assumption for i = the first member of w we get η\(n + 1) 6 Γ0 which

implies the desired conclusion. If not let IQ < i\ < n < i^ where ^o, ή, 12

are successive members of w. So by the assumption η\i^ G (J 1} U TO, now
j<io

if r/ fz2 G TO we are done, so assume η\iz G ϊ}, j < ΪQ, hence raj < i\ < n.

Then Aϋfr Π [7717,00) 2 £ Π [m^ , oo) 2 {n}, hence as η G 1} we get η(ri) = 1 as

required.

Clause (τ)(b): We can find Bi e E such that {n < ω : 77^(71) = A:} D Bi, then

we can find B e E such that β \ Bi is finite say C [0, m^) for i < ω. Choose

(rij : j < ω) as in the proof of (7)(a); by symmetry w.l.o.g. U[n2j?n2j-fi)
j

belongs to the ultrafilter which E generated. So B Π U[n2j> nϊj+1) n {^ : ^W —
j

fc} belongs to this ultrafilter, hence it includes some B1 G E. Consequently,

{i < ω : r?n2j(0 = k} 2 B1 for each j < ω and {i < ω : η(i) — k} 2 -B', as

required.

Clause (5): Straight by (*)ι, (*)2 CU.g

4.10 Remark. 1) Mekler [Mk84] considers the generalizations to finitely addi-

tive measures μ : P(ω) —» [0, I]R, generalizing this proof to prove the con-

sistency of "the parallels of P-points do not existence". Though there the

PP-property fails, he showed that ωα;-bounding suffices. Still we felt the PP-

property is inherently interesting.

2) Baumgartner [B6] was interested in ultrafilters with properties which weaken

"being P-points". Answering his question we prove that if in the iteration above

we use unboundedly often random real then there is no P-point (see above),

and there is a measure zero ultrafilter (see [B6]).

3) The question of whether there are always NWD-ultrafilters (see van Douwen

[vD81], and [B6]) is answered negatively in [Sh:594], generalizing the proof here

(and continuing the "use of J5" from [Sh:407]). There the PP-property is used.
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§5. There May Exist a Unique
Ramsey Ultrafilter

Usually it is significantly harder to prove that there is a unique object than

to prove there is none. The proof is similar to the one in the previous section,

but here we are destroying other Ramsey ultrafilter (in fact "almost" all other

P-points) while preserving our precious Ramsey ultrafilter. By a similar proof

we can construct a forcing notion P such that e.g. in Vp there are exactly two

Ramsey ultrafilters (in both cases up to the equivalence induced by the Rudin

Keisler order) or any other number.

More exactly we shall prove the consistency of "there is a unique Ramsey

ultrafilter FQ on ω, up to permutation of ω, moreover for every P-point P,

F0<RKF".

Note that if there is a unique P-point it should be Ramsey; however,

concerning the question of the existence of a unique P-point we return to it in

XVIII §4.

Our scheme is to start with a universe with a fixed Ramsey ultrafilter FQ,

to preserve its being an ultrafilter and even a Ramsey ultrafilter. Our ultrafilter

will be generated by N! sets. Now in each stage we shall try to destroy a given

P-point F such that F^RKF. The forcing from §4 does not work, but if we

use a version of it in the direction of Sacks forcing it will work.

5.1 Claim.

1) If F is a P-point in F, P is a proper forcing notion and Ihp "F generates

an ultrafilter " then it (more exactly the one it generates) is a P-point in

Vp.

2) If the ultrafilter F is Ramsey in Vί, and P is ωω-bounding, proper and

Ihp "F generates an ultrafilter", then in Vp', F still generates a Ramsey

ultrafilter.

Proof.

I) As for being a P-filter, let p Ihp "{An : n < ω] is included in the ultrafilter
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which F generates ". So w.l.o.g. p \\-p "An G F", and by properness for some

<7> P < Q £ -P> and Anj7n G F (for n,m < ω) we have g Ihp " for each n,

An G {Anjm : m < α;}". As F is a P-point in V and {-An,m : n,ra < u;} C F

belong to V, there is Λ G F which is almost included in every ^4n>m hence in

each An\ (note: e.g., if F is generated by NI sets, then "P does not collapse

NI" is sufficient instead "P is proper").

2) As F generates a P-point in Vp', the following will suffice: let 0 = n0 < ni <

r>2 and p G P; then we can find ^4 G F and <? > p such that # Ih "An [n^n^+i)

has at most one element for each i" (i.e. F is a so called Q-point). Remember

P has the ^α -bounding property. So there are h G ωω Π V, and q > p such that

<? "~p " (Vi)ni < h(iγ. W.l.o.g. Λ is strictly increasing.

Define n* (in V by induction on i): n^ = 0, n*+1 = h(n* + 1) + 1. Now for

no i j j we have Ui[G\ < n^ < n!-+1 < ni+ι[G]. [Why? Assume this holds and,

of course, i < j; as n^ < n^+i, clearly t < nt[G] hence

7Ίj+ι > h(n*j 4-1) > h(rii[G\ + 1) > h(i -f 1) \

(remember h is strictly increasing), a contradiction]. Also F is an ultrafilter

in V[G], by the assumption. As in V, F is a Ramsey ultrafilter and (n* : i <

ω) G F, there is A G F such that A Π [n*,n*+1) has at most one element for

each i. Let G C P be generic over V be such that q G G. Checking carefully

in V[G] we see that for every i we have A Π [fti[G],ni+ι[G]) has at most two

elements and in this case they are necessarily successive members of A. Let

AQ = {k G A : |Λ Π fc| is even}, so either AQ or A \ AQ belong to the ultrafilter

which F generates, and both are as required. D5.ι

5.2 Lemma.

1) "F generates an ultrafilter in VQ which is a P-point, Q is proper" is

preserved by countable support iteration for F a P-point.
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2) "F generates an ultrafilter in V® which is Ramsey -f Q is ^α -bounding

4- Q is proper " is preserved by countable support iteration for F a Ramsey

ultrafilter.

Proof. 1) By 4.9 and see 5.1(1).

2) Combine (1), 5.1(2) and 2.8. D5.2

5.3 Definition. For F a filter on ω, let SP(F) be {Γ : T is a perfect tree

C ω>2 and for some A e F, for every n G A, η G Γ Π n2 implies 77Λ (0) G

T & 77^(1) G T}. The order is the inverse inclusion. We denote the maximal

such A by spt(Γ).

5.3A Remark.

1) So SP(F) is a "mixture" of P(F) and Sacks forcing and SP*(F) (defined

below) is halfway between SP(F) and SP(F)ω.

2) Remember Γ^j ^f {v e T : v < η or η < v} for any η G T and

T[n] def € Γ

5.4 Definition. Let T® =f X^<n(% T® ά= \Jn<ω T® ordered by the being

initial segment, i.e. for / G T® and g G T® we set / < g iff f ( ϊ ) = g(ϊ) for each

i < n. (Note f ( i ) G *2). For a filter F on ω, let SP*(F) be

{T : T is a perfect tree C T® and for every fc < ω we have sptfc(Γ) G F},

where

sptfc(Γ) = {n < ω : for every η G T^(= T Π T®) and i/ G k2 there is

pen<2,η~(p) G T®,.! ΠΓ such that p\k = v}.

The order is the inverse inclusion.

5.5 Claim. Let F be a filter on ω and Q be SP(F) or SP*(F).



338 VI. Preservation of Additional Properties, and Applications

1) If T G <2,T[nl - {T7i , . . . , i fo} (with no repetition), ϋ = T[ηι],τ} G Q,

2ί < T\ (i.e. T/ C ϊ» then T < T^ ά= (jJU Γ* G Q and τt lh "for some

t G {1, . . . , k] we have T\ G GQ".

2) If t is a P-name of an ordinal T G Q and n < ω then there are T"ΐ,

T < Γ* G Q and A such that T* lhg "ί G A" and |A| < |Tln]|, and

^ ̂ f Moreover for each r/ G Tln],T determines ί.

Proof. 1) Observe that spt^Tt) D Πι<^<jbsP^(Ώ) \ (n + 1)

2) For each ry G T^ there is T77, T[η] < Tη such that T7? decides the value ί.

Now amalgamate the Tη together by applying part 1). D5.5

5.6 Lemma. Let F be a P-point ultrafilter on ω. Then

1) SP(F) is proper, in fact α-proper for every α < ωi, and has the strong

PP-property; and so is SP(F)ω

2) SP*(F) is also proper, α-proper for every a < ω\ and has the strong

PP-property.

Proof. Similar to the proof of 4.4. For its proof we shall use the following

theorem, of Galvin and McKenzie, (but later we shall prove a similar theorem

in detail (5.11)); note that we use only the "only if" direction.

5.7 Theorem. Let F be an ultrafilter on ω. Then F is a P-point [Ramsey

ultrafilter] iff in the following game player I has no winning strategy:

in the n-th move:

player I chooses An G F

player II choose wn C An,wn is finite [a singleton].

In the end player II wins if Un<ω ^n G P.

Proof of 5.6 from 5.7. We just have to define a strategy for player I, (in the

game from 5.7): playing on the side with the conditions in the forcing. From the

two forcing listed in the lemma we concentrate on proving only the properness

of SP*(F) (the other have similar proofs and this is the only one we shall use).

Let N -< (#(χ),G,<*) be countable with F G N, so SP*(F) G AT; and let
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T G SP*(F) Π N and let (In : n < ω) be a list of the dense subsets of SP*(F)

which belong to N. We shall define now a strategy for player I. In the n'th

move player I chooses "on the side" condition Tn G SP*(F) Π TV in addition

to choosing An G F and player II chooses finite wn C An. For n = 0, player I

chooses TO = T and AQ = ω.

For n > 0, for the n'th step player I, using 5.5, chooses Tn G SP*(F) Π ΛΓ,

such that Tn-ι < Tn, r£
n] = τlH where kn

 d= max[U{wn' : n7 < n}U{n}] +

n + 1 and (Vry G rJH) ((Γn)M G I). Then player I plays An = sptn(Γn). Note

that whatever are the choices of player II, we have Tn G N and we can let player

I choose Tn as the first one which is as required by the well ordering <* . As F is

a P-point, by 5.7 there is a play in which he uses the strategy described above

and player II wins the play; this will give us the desired sequence of conditions.

Indeed, Γ = Γ\n<ωTn G SP*(F) satisfies sptn(Γ) 2 \J{wk : k G [n,α;)} (for

each n < ω) and hence T belongs to SP*(F). D5.6

Similar argument is carried out in more detail in the proof of 5.12.

5.8 Lemma. 1) If F is a P-point ultrafilter, SP(F)ω <$ Q, and Q has the

PP-property then in V^, F cannot be extended to a P-point ultrafilter.

2) If F is a P-point ultrafilter, SP*(F) <Φ Q, Q has the PP-property then in

V®, F cannot be extended to a P-point ultrafilter.

Proof. The proof is almost identical with the proof of 4.7, so we do not carry

out it in detail. (In fact we get the variant with weaker assumption as proved

in 4.7).

This is particularly true for part (1). For part (2) copy the proof of 4.7,

replacing P(F) by SP*(F) and defining rn as:

Γn(0 =eiffi<n=>e =

T^)(T = T[η] & (

This is done up to and including the choice of p% (i.e. (*) in the proof of 4.7).
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As pi G P and SP*(F) <£ P clearly there is q G SP*(F) such that p2

is compatible in P with any q' satisfying q < q' G SP*(F). For k < α;,

as g G SP*(F) by Definition 5.4 we know that sptA.(ς) G F, so as F is a

P-point there is B* G F such that B* \ sptk(q) is finite for every k < ω.

Choose by induction on n < ω, an < ω such that αn < αn+ι, αn > g(n) and

αn > Jn(fc(n)) and jB*\sptjrι(/c(n)Hl(g) C [0, αn). Define q' d= {η : η e q and for

every m < ω we have: if αn < m < £g(?7), m < αn+ι and m G sptjn(fe(n^+1(^)

then for each i < k(n) we have (r/(m))(zn(^)) = 0 and (η(m))(jn(f)) = 1}.

Now

(a) </' C TΘ is closed under initial segments and {) G q'

[Why? Read the definition of q'\

(b) q1 has no <-maximal element

[Why? Assume η G q' Π T®. If m < QQ then any v G Sucς(?7) belongs to qr .

So let αn < m < αn+ι; if m ^ sptjn(fc(n))+1(g) again any v G Suc^r?) belongs

to q1 ', so assume m G spt,/-ri(/,(n))+1(g), which means

(Vr/ G ςΠΓ^)(Vp G ̂ (fc^)+12)(3ι/)[r7

/Λ(z/) G q & ι/tjn(fc(n)) + 1 =

Apply this for rf and for the p* G ̂ ((fc(n))+12 defined by {£ < jn(k(n)) -h 1 :

p*(^) = 1} = {jn(t) : ^ < fc(n)}, and find v satisfying p* < v and such that

?7Λ(ι/) G Sucς(τ7) and even r/Λ(ι/) G Sucς/(τ?).]

(c) If αn < m < αn+ι, m G sptjn(fc(n))+1(ς) then m G spt^^^')-

[Why? Same proof as of clause (b) noting that for any p\ G ln^2 we can

find p* such that pi < p* G ^WΌH^, such that for m G [in(0)Jn(k(n)) + 1),

we have p*(m) = 1 <Φ m G {jn(£) : £ < fc(n)}]

(d) Let fc < cj, then sptfe(g/) G F.

[Why? Choose n(*) such that k < in(*)(0) Now if m G £* \ αn(*) then

for some n, n(*) < n < α; and αn < m < αn+ι hence m G spt^fc^+i^) and

so by clause (c) we have m G sptiτι(0)(g7). But spt^g') decreases with I and

k < in(*)(0) < ΐn(0), so m G sptk(q') Together B* \ an(*} C sptk(qf), but the

former belongs to F.]

(e) q' ll-sp (F) " Π (4n U [0, g(n))) is disjoint to 5* \ α0"
n<u;
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[Why? Because if an < m < αn+χ and ra G B* then: by the definitions

°f 2X(€)» ΐjn(i) (£ ^ ^(n)) and ^n (which is {a < ω : for some ί < fc(n),

r*n(*)(α) — rjn(t)(a)}) we know m φ An, also m > αn > #(n), together this

suffices.]

Now g', p<2 are compatible members of P (see the choice of q and remember

g < q' € SP*(F)), so let p3 e P be such that p2 < Pa, #' < Pa So by clause

(e) the condition ^3, being above g', forces that p| (An U [0,p(n))) is disjoint
n<ω

to a member of F. So as p2 < P3 clearly p2 cannot force P) (An U [0, #(n))) ̂
n<ω

0 mod F. But this contradicts the choice of p%. DS.S

We now state some well known basic facts on the Rudin-Keisler order on

ultrafilters.

5.9 Definition.

1) Let FI, F<2 be ultrafilters on /i, /2, respectively. We say FI <RK F^ if. there

is a function / from /2 to I\ such that /(/2) = {/(O : i £ h} £ FI and:

AeFliSf~l(A)eF2

2) In this case we say FI = /(F2), if |/ι| < |/2| we can assume w.l.o.g. / is

onto 11.

5.9A Remark. We shall use only ultrafilters on α;, which are not principal,

i.e. in β(ώ) \ ω in topological notation.

It is known (see e.g. [J])

5.10 Theorem.

1) <RK is a quasi-order.

2) An ultrafilter F on α; is minimal iff it is Ramsey (minimal means

Ff <RK F => F <RK Ff (see part (4)).

3) If F is a P-point, F^ <RK F then Ff is a P-point.

4) If F1 <RK F2 <RK F1, ίften there is a permutation / of ω such that
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Proof. Well known. Πs.io

5.11 Lemma. Suppose F0,Fι are ultrafilters on ω. Then the condition (A)

and condition (B) below are equivalent.

(A) FI is a P- point, FQ is a Ramsey ultrafilter, and not FO <RK F\.

(B) in the following game player I has no winning strategy:

in the n-th move, n even:

player I chooses An e FQ

player II chooses kn G An

in the n-th move, n odd:

player I chooses An G FI

player II chooses a finite set wn C An

In the end player II wins if

{kn : n < α even} G FQ and M{wn '• n < ω odd } G F\.

Proof. -ι(A)=» -"(B): If FI is not a P-point or F0 is not Ramsey then player I can

win by 5.7. (I.e., if FI is not a P-point, then are Bn G FI for n < ω such that

for no B G FI do we have B\Bn is finite for every n, now player I has a strategy

guaranteeing: for n odd, An = p| Bt\ (sup(J{i(^ : ί < n odd) -f 1), this
€<(n-l)/2

is a winning strategy. If F0 is not a Ramsey ultrafilter there are Bn G F0 for

n < ω such that for no kn G Bn (for n < ω) do we have {kn : n < ω} G F0,

now player I has a strategy guaranteeing A2n = Bn, this is a winning strategy.)

So we can assume FI is a P-point and FQ is Ramsey, so by ~ι(A) necessarily

FO <RK FI, hence some h : ω —> ω witnesses FQ <RK FI. Then player I can

play such that \J{h~l(kn) '. n e ω} and \J{wn : n G ω} will be disjoint. So one

of them is not in FI , thus player I wins.

(A)=>(B): Suppose H is a wining strategy of player I. Let λ be big enough,

N -< (H(X), G), {FO, FI, H} G N and N is countable. As F^ is a P-point there

is AI G Fi such that A\ Cae B for every B G FI Π N.
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Now we can find an increasing sequence (Mn : n < ω) of finite subsets of

N,N = \Jn<ω Mn such that it increases rapidly enough; more exactly:

a) #, FO,FI G M0,Mn G Mn+ι; also can demand x e Mn & x finite => x C

Mn; also Mn Π ω is an initial segment of ω,

β) if ^(x,α0, . . .) is a formula of length < 1000 + |Afn | with parameters from

Mn U {Mn} satisfied by some x e N, then it is satisfied by some x G Afn+ι,

7) for £ = 0, 1 if 5 G Ft Π AT, £ e Mn then £ U Mn+ι D 4J,

5) MO Π ω = 0.

Let un+ι = (Mn+ι \ Mn) Π ω. So (iίn : n < ω) forms a partition of ω.

As F^ is an ultrafilter, there are Si C ω such that \J{un : n G St} G F^, and

n < m &: {n, m} C Ŝ  => m — n > 10.

Can we demand also n G So, m G Si implies the absolute value of n — m

is > 5? For the SQ, #1 we have, for each n G So there is at most one m € Si

such that |n — ra| < 4 and vice versa. So in the bad case there are S^ C 5^,

/ : S^ -> S\ one to one and onto, n - 4 < /(n) < n -h 4, U{un : n G SJ} € F^

for I = 0, 1; moreover, for any S% C 5],

: n G S0*} G F0 iff

provided that S* = /(So). Also as F0 is a Ramsey ultrafilter, there are kn G un

(for n G So) such that {fcn : n G S^} G F0. So the function f*:ω-^ω defined

by /*(£) = fcn for t G w/(n)> n ^ 5 ,̂ and /*(ί) = 0 otherwise, exemplifies

FO <RK FI, contradiction.

So without loss of generality

(*) for n G So, m G Si we have n — m has absolute value > 5,

(**) there are fc* G un Π^Q (for n € so) sucn tnat ikn : n G ^0} € F0 (because

FO is Ramsey.)

It is also clear that by (7) above, as Λ* G FI:
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(* * *) For n G Si let vn =f un Π f|{4 : A G FI Π Mn_2}. Then

also h\ G f|{^ : A G FO Π MnJ.

[Simply note un Π A* C υn and w.l.o.g. min(5£) > 2].

Now there is no problem to define by induction on I < ω, Ui < ω and

an initial segment ? of length ί of a play of the game (both increasing) such

that: the initial segment belong to Mnι] and every fc* will appear among the

fc's which player II have chosen in the play if n < n^ n G 50; and every vn will

appear among the w's player II have chosen in the play if n < n^ n G S\\ and

Πi has the form n* + 2 with n* G 50 U 5ι; and player I uses his strategy. But

in the play we produce player II wins, contradiction. DS.II

5.12 Main Lemma. Suppose FQ is a Ramsey ultrafilter (on ω), F is a P-point,

and Q = SP*(F), and Ih0 "F0 is not an ultrafilter" then F0 <RK F.

Proof. Let Γ0 G Q, A be a Q-name, T0 Ihg "A C ω and ω \ A, A ^ 0 mod F0" ,

and w.l.o.g. \\-Q "A C ω", (such Γ0, ̂ 4 exists as after forcing with Q? ^o will no

longer generate an ultrafilter). Note that by the choice of T0, A for any T > Γ0:

{n : for some Tf > Γ, Γf lhQ "n G ,4" and for some Γf > T, Γf lhQ "n ^ A"}

belongs to FQ.

Now we use the game defined in Lemma 5.11. We shall describe a winning

strategy for player I. During the play, player I in his moves defines also Tn G Q

preserving the following:

(*) (a) Tn+1 > Tn

(b) Tn lhQ "k£ G A" for I even, I < n

(c) T^ft01 = Γ,lm(n)1 where m(n) - 1 + max[|J{^ : ̂  odd, ί < n} U {n}]

(d) for ί < n odd we have: wt C spt^(Tn) (see Definition 5.4)
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(e) for n even, for the play from 5.7 player I chooses

(f) for n odd, for the play from 5.7 player I chooses An = sptm(n)(Tn).

More exactly, player I chooses Tn+ 1 in the n-th move after player IΓs move (see

below more).

This is enough, as if in the end \J{wt : t < ω odd } G F, then T ά=

Γ\nTn e Q, because for each ί < ω, we have n > i => spt^(Tn+ι) C spt^(Γn)

and spt^+1(Tn) C spt^(Tn) so by clauses (c)-f(d)

(*) ί < m < k => wk C sptχrm).

Hence spt^(T) D Γ)m>^sP^(^™) - \Jm>ew™> ^ F (as all cofinite subsets of ω

belong to F). Now T forces {ki : i < ω even } C A (remember clause (b)),

so {hi : I < ω even } φ FQ by the hypothesis on TO, A (as {k^ : t < ω} £ F,

and TO < T, T lhP "{fy : ^ < ω} C A" so {fc^ : ί < ω} e F0 implies:

T Ihg "ω\ A = 0 mod F", a contradiction). So the strategy defined above is a

winning strategy for player I hence by Lemma 5.11, FQ <RK F. So it remains

to show that player I can carry out the strategy i.e. can preserve (*). Note that

TO is defined.

Case 1: n even > 0: Player I lets m(n) < ω be max[|J{ιι^ : t < n odd}U{n}] +

1, and let TU = {770, . . . ,τ?s(n)} wrtn no repetition. For each ηt (I < s(n))

clearly (Tn)[ηt] is > T0 and belongs to Q, hence

A? = {k< ω: there are T[^T^k > (Tn)[ηι], such that T^k \\-Q "k e A\ and

belong to FQ.

Now: player I plays An — Π^<s(n) ̂ ί which is clearly a legal move.

Player II chooses some kn G An.

Player I ("on the side") lets Tn+ι = |J T'tk (it is as required in (*)).
ί<s(n]

Case 2: n odd: Player I lets An = sptm(n)(Tn) (note Q - SP*(F)). Note Tn

has just been chosen.
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Player II chooses a finite wn ζj An and player I lets on the side Tn+ι = Tn.

Π5.12

5.13 Theorem. It is consistent with ZFC +2H° = N2 that, up to a permutation

on ω, there is a unique Ramsey ultrafilter on ω. Moreover any P-point is above

it (in the Rudin-Keisler order).

Proof. We start with a universe satisfying 2^° = HI -f 2Hl = ^2 and

0{<5<N2:Cf (£)=*<!}• There is a Ramsey ultrafilter F in V. We shall use a CS

iterated forcing (Pi,Qi : i < ω^) such that each Qι is proper, has the PP-

property (hence is ωω-bounding), has cardinality continuum and forces that F

still generates an ultrafilter. So by 5.1, 5.2, F remains a Ramsey ultrafilter in

VPi for i < ω-2 and also we can show by induction on i < ω^ that in VPi, CH

holds and Pi has cardinality HI; so by VIII §2 below Pω2 satisfies the N2-chain

condition. If FI £ V[GW2] (G C Pω2 generic) is a P-point, not above F, then

there is a p £ PU2 forcing FI is a name of such ultrafilter, and for a closed

unbounded set of δ < »2, cf (δ) = NI implies that F\ d= Fl Π P(ω)γPδ e Vp*

and p forces that F\ is a P-point not above F (in VPδ).

Now, by the diamond 0{δ<κ2:cf(<5)=Kι} we can assume that for some such

δ, Qδ = SP*(FJ).

Now by 5.12 forcing with Q§ (over VPδ) preserves "F (generates) an

ultrafilter", by 5.6(2) Qδ has the PP-property hence (by 2.12B) Qδ is ωω-

bounding and trivially Q$ has cardinality continuum; so Qi is as required. Now

as each Qj (i < j < ω z) has the PP-property, Pω2/Pδ has the PP-property (by

2.12C+2.3). So by lemma 5.12 we know Fj cannot be completed to a P-point

inFP ω2. Π5.ι3

§6. On the Splitting Number s and Domination
Number b and on α

For a survey on this area, see van Douwen [D] and Balcar and Simon [BS].
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Nyikos has asked us whether there may be (in our terms) an undominated

family C ωω of power HI while there is no splitting family C [ω]^° of power NI.

He observed that it seems necessary to prove, assuming CH, the existence of a

P-point without a Ramsey ultrafilter below it (in the Rudin-Keisler order).

In the third section we have proved a preservation lemma for countable

support iterations whose first motivation is that no new / £ ωω dominates all

old ones, and prove (3.23(1)) the consistency of ZFC+2*0 = ^~\-D=$>b

where ϊ> is the minimal power of a dominating subfamily of ωω (see 3.24(3)),

and s is the minimal power of splitting subfamily of [ω]^° (see Def 3.24(1))

and b is the minimal power of an undominated subfamily of ωω (see Definition

3.24(2)).

However one point was left out in Sect. 3: the definition of the forcing we

iterate, and the proof of its relevant properties: that it adds a subset r of ω

such that {A € V : A C α;,r C* A} is an ultrafilter of the Boolean algebra

P(ω)v\ but in a strong sense it does not add a function / G ωω dominating all

old members of ωω\ this was promised in 3.22. Note that Mathias forcing adds

a subset r of ω as required above, but also adds an undesirable /. This is done

here; its definition takes some space. This forcing notion makes the "old" [ω]^°

an unsplitting family. The proof of this is quite easy, but we have more trouble

proving the "old" ωω is not dominated. </,From the forcing notion (and, in fact,

using a simpler version), we can construct a P-point as above.

Then A. Miller told us he is more interested in having in this model "no

MAD of power < NI" (MAD stands for "a maximal almost disjoint family

of infinite subsets of ω") (i.e. 5, α > NI = b). A variant of our forcing can

"kill" a MAD family and the forcing has the desired properties if we first add

KI Cohen reals (see 3.23(2), 6.16). We also like to prove the consistency of

ZFC+2"0 - 2*1 - N2 + N2 - * > α - b - NI, where α - min{μ| : A a

maximal family of almost disjoint subsets of ω} (see Definition 3.24(2)). In the

seventh section we show that in the model we have constructed (in the proof of

3.23(1)) there is a MAD (maximal family of pairwise disjoint infinite subsets of

ω) of power NI (hence α = NI). This answers a question of Balcar and Simon:



348 VI. Preservation of Additional Properties, and Applications

they defined

as = rmnd^tl :Λ is a maximal family of almost disjoint subsets of ω x ω,

which are graphs of partial functions from ω to ω}.

They have proved $ < as and α < as < 2^° , so our result implies that α < as

is consistent.

In the eighth section we prove the consistency (with ZFC +2K° = 2Hl = ^2)

o f N ι = f ) < α = b = N2 (where ϊ) is the minimal cardinal K for which

P(u;)/nnite is a (/ς, 2^° )-distributive Boolean algebra).

The relations between the cardinals above are described by the following

diagram.
s — > D - > 2H°

ΐ ΐ ΐ
KI — > t) — > b -> α -» αs

(where arrow means "< is provable is ZFC") (see [D] and [Sh:207] for results not

mentioned above, and two other cardinal invariants); sections 6, 7, 8 represent

material from [Sh:207] (revised).

* * *

Now we turn to the definition of the forcing we iterate and the proof of

its relevant properties: that it adds a subset r of ω such that {A € V : A C

ω, r Cae A} is an ultrafilter in the Boolean algebra P(ω)v\ but in a strong sense

(that is, almost ^ω-bounding) it does not add a function / e ωω dominating

all old members of ωω.

More on such forcing notions see [RoSh:470].

6.1 Definition. 1) Let Kn be the family of pairs (s, ft), s a finite set, ft a

partial function from P(s) (you can think of h(t) when not defined as -1) to

n + l such that:

(a) h(s) — n

(b) if h(t) = ί + l (sot C s),t = ί 1Ut 2thenΛ(ίι) > ̂  or ft(t2) > ^ and |ί| > 1.

We may add



§6. On the Splitting Number s and Domination Number b and on α 349

(c) if ti C £2 are in Dom(/ι) then h(tι) < h(t<2).

2) K>n,K<n,Kn,m are defined similarly, and K = \J Kn.
n<ω

We call s the domain of (s, h) and write a G (5, /ι) instead of α G s. We call

(s, /ι) standard if s is a finite subset of the family of hereditarily finite sets. We

use the letter t to denote such pairs. We call (s,h) simple if h(t) — [Iog2(|ί|)]

for t C 5. If t — (s, h) G K, let lev(ί) = lev(s, h) be the unique n < ω such that

6.2 Definition. 1) Suppose (s^hi) G lfs^) for £ G {0,1}. We say (s0,M <d

(sι,Λι) (or (sι,Λι) refines (so,M) it

50 = 5ι and [tι C £2 C s0 & ftι(ίι) < ftι(ί2) =* Λι(ίι) < Λ0(ίι) < /lofe)] (so

lev(so,/io) ^ lev(sι,/iι) and Dom(/iι) C Dom(/io))

2) We say (50,M <e (sι,/iι) if for some 4 G Dom(Λ0), (sό>ΛoΓ^(sό)) =

(5ι, ΛI)

3) We say (s0,M < (5ι,Λι) if for some (s',ti], (s0,h0) <e (s',hf) <d (s^hi).

6.3 Fact. The relations <d, <e, < are partial orders of K. D6.3

6.4 Definition.

1) Let Ln be the family of pairs (5, H) such that:

a) S is a finite tree with a root called root (5).

b) H is a function whose domain is in(5) =the set of non-maximal points

of S and with values Hx for x G in(5).

c) For x G in(5), (Sucs(x),ifx) G /f>n> where Suc^(x) is the set of

immediate successors of xinS, so Hx(Sucs(x)) > n.

2) We say (5°, H°) < (S^H1) if 5° D S\ they have the same root, m(Sl) =

S1Π m(SQ) and for every x G intS1), (Suc5o(x),^) < (Suc5ι(x),fli) and

of course Suc£i(x) = Suc5o(x) Π 51.

3) Let int(S) d= S\ in(5), lev(5,H) - max{n : (S,H) G Ln}, x G (S,H)

means x e S. A member of Ln is standard if int(5) C ω and in(5) consists

of hereditarily finite sets not in ω. Let for x G 5, (5, H)W = (S

where S& is S\{y G 5 : 5 \= x <s y}.
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4) For t G Ln let t = (S1, Hl) and let lev(t) = max{n : t G Ln}

5) We say t1,!2 G (jn<ω Ln are disjoint if. S*1 Π S*2 = 0.

6) Let int(t) = i

7) Let L = U Ln
n<ω

6.5 Fact. The relation < is a partial order of L = \Jn Ln. D6.5

d6.6 Fact. If (S, H) e Ln then (S', H') = half(S, #) belongs to L[(n+1)/2] and

(5, if) < (£',#') where S' - 5, H'X(A) = [HX(A) - lev(5,ff)/2] where [x] is

the largest integer < x and Dom(^) = {A : fΓx(A) > lev (5, H)/2}. D6.6

6.7 Fact. If (5, H) G Ln+ι, int(S) = A0(JAl then there is (S\Hl) > (5, ff),

<E Ln such that [intί^1) C A0 or int(51) C AI}.

Proof. Easy by induction on the height of the tree (using clause (b) of Def

6-1(1)). D6.7

6.8 Definition. We define the forcing notion Q:

1) p G Q ifp = (w, T) where w is a finite subset of ω, T is a countable (infinite)

set of pairwise disjoint standard members of L and TΓ\Ln is finite for each

n, moreover for simplicity the convex hulls of the int(t) for t G T are

pairwise disjoint; let cnt(T) and cnt(p) mean \J,H 5xeτint(5, H). Writing

T = {tn : n < ω] we mean (min(int(tn)) : n < ω) strictly increasing.

2) Given ti = (Sι,/ίι), ...,tk = (Sk,Hk) all from L such that S* Π 5 j = 0

(i ^ j), and given t = (5, H) from L, we say t is built from ti, . . . , t& if:

there are incomparable nodes αi, . . . , α& of S such that every node of S is

comparable with some α i } and such that, letting 5(α») = {6 G S : 6 >s α^}

we have (5,,̂ ,) - (S(ai),H\S(ai)).

3) (w*,T°) < (wl,Tl) iff: w° C wl C w° U cnt(T°), and, letting Γ° =

{t§,t5, . . .}, T1 = {tj,tι . . .}, there are finite, nonempty pairwise disjoint

subsets of ω, J3o, Bι> j an(l there are t< > t? for all i G (Jj Bj sucn tnat
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for each n only finitely many of the t^ are inside Ln and such that for each

j, letting BJ = { I I , . . . , ik}> t) is built from tiχ , . . . , tifc .

4) We call (w,T) standard if Γ = {tn : n < ω}, max(w) < min[int(tn)],

max[int(tn)] < min[int(tn+ι)] and lev(tn) is strictly increasing (and writ-

ing T = {tn : n < ω} we mean this).

6.9 Definition. For p = (w, T) we write w — wp, T = Tp. We say q is a pure

extension of p (p <pr q) if q > p, wq — wp. We say p is pure if wp = 0, and

p <* q means omitting finitely many members of Tq makes q > p.

The following generalization will be used later.

6.10 Definition. 1) For an ideal / of P(ω) (which includes all finite sets)

let Q[I] be the set of p G Q such that for every A G /, for infinitely many

t G Tp, int(t) Π A = 0. The main case is / = family of finite subsets of ω (then

Q[I\ = Q).
2) Let Q'[I\ be {p G Q : there is q such that Q \= p < q and q G Q[I]} (so

<2[7], Q'[I] are equivalent).

6.10A Remark. 1) So if p = (w, {tn : n < ω}) <E Q[I] then p < (w, {half(tn) :

2) More generally if p — (w, {tn : n < ω}) G Q[I] and h : ω — > ω is a function

from ω to ω going to oo (i.e. lim inf h(n) — oc) and t^ > tn, or even \!n > tlfn'

and lev(t ) > /ι(lev(tn)) then (tι;, {t'n : n< ω}) G

6.11 Fact. 0) Q is a partial order.

1) If p G Q and τn (for n < α;) are Q-names of ordinals, then there is a pure

standard extension q of p such that: letting Tq = {t^ : ί < ω}, for every n < ω

and w C max[int(tn)] 4-1, if we let ςζ = (it;, {t^ : I > n}), then for k < n:

q1^ forces a value on r^ ΐjff some pure extension of q^ forces a value on τ\~.
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Moreover if Tp = {t^ : n < ω}, we can demand /\ tι = t$ but then the
£<n*

demand on n, w above is for n > n* — 1 only.

2) Q is proper (in fact α-proper for every α < ω\}.

3) Ihg "{n : (3p G (?g)[n G if37]} is an infinite subset of ω which ^(α;)^ does

not split."

Proof. Easy (for (3) use 6.7, see more in 6.16(3)). D6.n

6.12 Lemma. Let g, τn be as in 6.11(1). Then for some pure standard extension

r of ς, letting Tr = {t'n : n < α;}, (lev(t^) strictly increasing, of course and)

the following holds.

(*) For every n < ω, w C [ max(int(t^_1)) 4-1], and \!^ > \!n (so we ask only

lev(t^) > 0) there is wf C int(t^), such that (w U w', {t^ : i > n}} forces a

value on τm for m <n (we let max int^t^) be max(κ;ρ U {—!})).

This lemma follows easily from claim 6.14 (see below) (choose by it the \!n

by induction on n) and is enough for a proof of Lemma 3.22, which we now

present.

6.13 Proof of Lemma 3.22. By 6.11(2), clause (a) (of 3.22 i.e. Q is proper)

holds (more fully use the last clause of 6.11(1) to get a sequence of conditions

as needed); and by 6.11(3) clause (d) (of 3.22 i.e. inducing an ultrafilter on the

old P(ω)) holds; and clause (c) (of 3.22 i.e. |Q| = 2K°) is trivial. For proving

clause (b) (i.e. Q is almost ^α -bounding, see Definition 3.5(1)) let / e ωω and

p e Q be given. Let τn = /(n), apply 6.11(1) to get q and then apply (on

<2S In (n < ω)) 6.12 getting r = (wp,{\!n : n < ω}) > q. We have to define

g G ωω (as required in Definition 3.5(1)). Let g(n) = max{/c + 1 : for some

w C [ max(int(t^)) + 1] we have (w,{\!t : I > n) Ih "/(n) = /c"}. Let A be

any infinite subset of ω, and we define p1 = (wp, {t'n : n G A}), so p' > r > p.

We have to show that p' \\-Q "for infinitely many n G A, f(n) < g(n)". So

it is enough, given ΠQ < ω and p2, p' < p2 G Q to find n G A \ no and p3

such that p2 < p3 G Q and p3 Ihg "/(n) < #(n)". So assume that n0 < ω and
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p' < P2 € Q, and p2 = (w2,T2), T2 = {t2 : n < α;}, and w.l.o.g. for some

*(*) > fto for every n we have min[int(t2)] > max[int(t^))] > sup(iί;2). As

P2 > P' ' j we can find k < ω, i\ < - < ik from A, and t*£ > \!it such that t j is

built from t*l? . . . ,t*fc; by the previous sentence i\ > i(*). By (*) from 6.12 (as

w2 C max[int(t^ χ ) j 4- 1, and i(*) < iι and r from 6.12 is standard), there is

w" C int(t*J (hence w" C int(tg)) such that p3 = (w2 U w" , {tj : j G (ifc,ω)})

forces a value, say m to /(i/c), so by the definition of g clearly m < g(ik) But

clearly p2, p3 have a common upper bound: p4 = (it;2 U ID", {t2 : n G (714, ω)})

for every 714 < ω large enough (really n± = 0 is O.K.!). So we are done. D3.22

6.14 Claim. Let (0,T) be a pure condition, and let W be a family of finite

subsets of cnt(Γ) so that

(*) for every (0,T') > (0,Γ), there is a w C cnt(T') such that w eW.

Let k < ω. Then there is t G L/C appearing in some (0,T") > (0,Γ) such that:

t' > t => (3tι; G W) [ιy C int(t')] .

Proo/. Let T* be arbitrary such that (0,T) < (0,Γ*) G Q, and Γ* = {tn :

n < ω}. For notational simplicity, without loss of generality let W be closed

upward.

Stage A: There is n such that for every \!t >half(fy) (for i < n) we have

(Jt<n int(ti) G W- This is because the family of (tj : -ί < n), n < ω, tj >half(t*)

form an α -tree with finite branching and for every infinite branch (tg : I < ω)

by (*) there is an initial segment (t'£ : ί < n) with U^<n ήιt(t^) G W. [Why?

Define (S*, ff^) G L such that 5^ - S^ and H$(A) = H*f (A) (and not H% (A)\)

when x G in(S'), A C Suc,s£(x), so letting T1 =: {(S£,H1} : ί < ω} we

have: lev(S£,H£) > lev(t£)/2£ - 1/2 and (0,Γ*) < (0,Γ'). Now apply (*)

remembering W is upward closed.] By Kόnig's lemma we finish.

Stage B: There are n(0) < n(l) < n(2) < . . . such that for every m and

tj > half(t^) for n(m) < ί < n(m + 1), the set U{int(t^) : n(m) < ^ <

n(m -f 1)} G W. The proof is by repeating stage A (changing T*).
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Stage C: There are ra(0) < m(l) < . . . such that: if i < tα, for every function h

with domain [m(i), m(i +1)) such that h(j) G [n(j), n(j +1)) and tj > half(t^)

for all relevant t then Uί^m : 3 ̂  [m(i),m(i 4-1))} belongs to W.

The proof is parallel to that of stage B; as there it is enough, assuming m(i*) was

chosen, to find appropriate m(i* +1) > m(Γ). The set of branches corresponds

to {(t'έ : ί G [m(i*),α;)> : for some function he fl [n(ί),n(ί + 1))
*e[m(i*),ω)

for every £ G [ra(ί*),ω), tj > half(t/l(^))}. So if the conclusion fails i.e. for

every m > m(i*) if we assign m(i* -f 1) = m, for some function hm with

domain [ra(i*),m), Λ(^) G [n(£),n(£ + 1)) and (t̂ 1 : ^ G [m(i*),m)), where

t™ > half(t/lm(^)) the desired conclusion fails. So by Kόnig's lemma we can

find h G Π [n(t),n(e+ 1)), (tj : ^ G [ra(i*),ω)) such that for every
£e[m(i*),u;)

m' G [ra(i* ),(*;) for infinitely many m G [ra',0;) we have

t G [m(i*),ro') => hm(£) - h(ΐ) & tj = t?1.

As before using (t^€x : I < ω) we can contradict the assumption (*).

Stage D: We define a partial function H from finite subsets of ω to ω: let

H(u) > 0 if for every tj > half (t^) (for £ G u) we have (U^€n int(t^)) G W and

let H(u) > m + 1 if [u = ui U u2 => ff(uι) > m V if(τx2) > m].

We have shown that H((n(ϊ),n(i -h 1))) > 0, and ίf([n(m(i)),n(m(i 4-

1)))) > 1, (for the later, assuming u = [n(m(ΐ)),n(m(ΐ -f 1))) = ui U ̂ 2

we have that: either u\ contains an interval [n(j),n(j -h 1)) for some j G

[m(i),m(i -h 1)) or U2 has a member in each such interval so it contains
m(i+l)-l

{h(j) '• j € [m(i),m(i -f 1))} for some h G Π [n(^),n(^ + 1)); now apply
*=m(i)

stage B to show that in the first case H(u\) > 0 and Stage C to show that in

the second case H(u%) > 0).

It clearly suffices to find u, H(u) > k. [We then define t = (5,ff) as

follows: 5 — \JeeuS
tl U {u}, u is the root with set of immediate successors

being (root(t^) : i G u\\ and the order restricted to Stl is as in t^; and for

x G S^ we have flj - #£alf(t£) and fζ(A) d= H({i : root(S^) G A}).] We

prove the existence of such u by induction on fc, (e.g. simultaneously for all T',
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(0,T") > (0,T)). This is done by repeating the proof above (alternatively, we

just repeat 2k times getting an explicit member of Kk in the root). Πβ.i4

The rest of this section deals with Q[I\. Note that by 6.21(2) below in

the interesting case the set of standard p e Q[I] is dense. For the rest of this

section:

6.15 Notation. 1) Let <2° De the forcing of adding HI Cohen reals (r^ : i < α i),

Ti € ωω. We usually work in V\ = V® .

2) Let A — {Ai : i < α*} denote an infinite family of infinite subsets of ω

(usually the members are pairwise almost disjoint).

3) Let / = I A be the ideal of P(ω), including all finite subsets of ω but

ω $. I and generated by A U {[0,n) : n < ω}. So /4 depends on the universe

(the interesting case here is A a MAD family in V, of the form {Ai : i < ω\},

Q[IA] means in V\ — VQ ). If not said otherwise we assume 0 φ IA

6.16 Claim. Assume A £ V is a family of subsets of ω (not necessarily MAD),

and we work in V\ — VQ , and / = I A so Q[Γ\ is from V® :

1) If p G Q[I] and rn (n < ω) are (3[7]-names of ordinals then there is a pure

standard extension q of p such that: q € Q[7], and letting Tq = {tn : n <

ω}, for every n < ω and w C [ max int(tn) + 1] let q™ = (w, {tt : n < ί <

ω}), then (q™ G Q[7], of course, and) for every fc < n we have: q™ forces a

value on r^ iff some pure extension of q^ in Q[I] forces a value on τκ.

2) Q[7] is proper, (moreover α-proper for every α < ω\ (not used)).

3) "~Q[/] "{n : (^P ^ GQ[i])n ^ wP} is an infinite subset of α; which is almost

disjoint from every A G / (equivalently Λ G >t)."

/. 1) Let λ be regular large enough, TV a countable elementary submodel of

(-ff(λ), G, V Π if (λ)) to which 7, (r< : i < α i), Q[7], p and (rn : n < ω) belong

and TV' = TV Π V G V (remember we are working in Vί). Let 5 = ΛΓ Π ω\ (so

δ <£N).So N = N'[(ri : i < δ)} belongs to V[(τi : i < δ)}.

We define by induction on n < ω, qn G Q[I] ΠJV, tn and kn < ω such that:
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a) each qn is a pure extension of p.

b) qn > qf' for ί < n and if w C fcn, m < n + 1 and some pure extension

of (w,Tqn) forces a value on rm, then (w,Tqn) does it.

c) kn > kϋ and kn > maxint(t^) for I < n.

d) every ί G cnt(gn+1) is > fcn i.e. t G T9"4"1 => min[int(t)] > fcn.

e) tn > t'n for some t^ G Tqn and lev(tn) > n and min[int(tn)] is > fcn.

There is no problem in doing this: in stage n, we first choose fcn, then qn and

at last tn. We want in the end to let Tq — {tn : n < ω} (and wq = wp). One

point is missing. Why does q — (wp,Tq) belong to Q[I] (not just to Q}1 But

we can use some function in V{(ri : i < δ)] to choose fcn, q
n and then let tn

be the r§(ri)-ih member of Tqn which satisfies the requirement (in some fixed

well ordering from V of the hereditarily finite sets). As A G V and r^ G ωω is

Cohen generic over V[(ri : i < δ)], this should be clear.

2) Easy by part (1).

3) Use Definition 6.10 and Fact 6.7. D6.ιβ

6.17 Claim. Assume A = {Ai : i < α*} G V is a MAD family, and in Vι

we have that \\-Q"{Ai : i < a*} is a MAD family". In Vί, let / be the ideal

generated by {Ai : i < a*} and the finite subsets of ω. Then: (w, {tn : n < ω})

is a [standard] condition in Q'[I] iff

it is a [standard] condition in Q and there are finite (non empty) pairwise

disjoint HI C a* (for I < ω) such that for each ί, for every fc for some n < ω,

for some t^, t^ > tn, lev(t^) > fc and int(t^) C Uί€u, Ai iff

as before but there are singletons HI as above.

6.17A Remark. Note: if A G V, by 6.17 the standard <? G Q[I\ are dense in

], but otherwise we do not know. In the proof it does not matter.

Proof. The third condition implies trivially the second. We shall prove [second

=> first] and then [first=>third] . Suppose there are uι (i < ω) as in the second

condition above and we shall prove the first one. So for each I < ω we can

find (t^ : n G BI), BI C ω is infinite, t'n > tn, lev(t^) > \Bt Π n\ and
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int(t^) G (J Ai. Wlog (Bf.i< ω) are pairwise disjoint, so p < p' ά= (w, {\.'n :
ί£uι

n £ U Bi}} and P' ^ Qi so it suffices to show p1 G Q[I\. Now every B G / is
i<ω

included in \J^U Ai U {0, . . . , n* — 1} for some finite ?/ C ωi and n < ω. But for

some ,̂ ι̂  is disjoint from u, hence £? Π (Uieu* ^*) ^s finite- We know that for

infinitely many n G £ ,̂ int(t^) C |Ji€u£ Ai and the int(t^) (n < α;) are pairwise

disjoint, hence for the infinitely many n < ω, int(tn) Π B = 0, as required in

the first condition.

Lastly assume the first condition and we shall prove the third one. Suppose

p = (w,{tn : n < ω}) G Q'[I\, see Definition 6.10(2), w.l.o.g. p G Q[I\. We

choose by induction on m a finite um C α*, disjoint from U£<m

 ut sucn

5m = {n < ω : for some \!n > tn we have lev(t^) > lev(tn)/2 — 1

and int(tn) C (J ^}
i€um

are infinite and moreover um is a singleton.

Assume we have arrived to stage m. Let B = {n : int(tn) is disjoint

to (J{Ai : i £ U u^}}, so J5 is necessarily infinite (by the Definition of
Km

Q[/]), moreover p° = (w, {half (tn) : n G 5}) belongs to Q[I] and is above

p. Now clearly Q[/j C ζ), hence p° G Q. By an assumption of 6.17, we know

.4 = {Ai : i < α*} is a MAD family even after forcing by ζ), so there are

p1 = (w

r, {\!n : n < ω}) G Q, p° < p1 and i0 < α* such that

(*) p1 Ih "{n : (3ς G GQ)[n G ̂ 9]} Π Aio is infinite".

Let n* be > sup(^0 Π (J{Ai : i G U uι}). By 6.7 (more exactly, as in
£<m

the proof of 6.16(3)), without loss of generality, (J cnt(t^) C Aio \ n* or
n<ω

U cnt(t^) Π A^0 = 0, but the second possibility contradicts (*) so the first
n<ω
holds.

But p1 > p° (in Q) so for each n < ω for some k < ω and jn$ <

< jn,k-ι from β, t^ is built from half(tjn 0), . . . ,half(t jn k _ 1 ) . So for some

y G \!n we have (t^)^' > half(tjτι 0), hence clearly (or see 6.20 below) there is

t£|0 > t jVt i0, such that int(t^o) C Aio \n* and lev(t^ J > lev(t,-τiι0)/2. Lastly

let um = {ZQ} (i.e. all depend on m). Eki?
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6.18 Claim. Let Vi, A, I = I A be as in 6.16 4- 6.17 (so A is a MAD family in

V, V i and VQ). Assume we are given fc* < ω, (0,Γ) = (0, {tn : n < ω}) G <2[/],

and a family W of finite subsets of cnt(T) such that

(*) if (0,Γ) < (0,T') G Q[/] then there is w C cnt(T') such that w eW.

Then there is t G Z/&* appearing in some (T", 0) > (T, 0) such that:

t' > t =» (3w G W)[κ; C int(t7)].

Proof. Without loss of generality T is standard (by 6.16(1)) and W upward

closed (check). Moreover we may assume that lev(tn) > 2fc* for each n < ω.

We know, by 6.17 above, that there is T* = {tn : n < ω}, such that

(0,T*) G Q is standard, (0,Γ) < (0,Γ*) and for some sequence (jm : m < ω)

of pairwise distinct ordinals < α* and partition (Bm : m < ω) of ω to infinite

sets we have:

neBm=ϊmt(tn)CAjrn.

For every finite u C ω define

nor(w) = max{m : for every cover (ut : I < 2m) of u

(i.e. Ui C u and U ^ = u)>
^<2m

for some £ < 2m and for every t > half (ti)

for i G u^ we have: [ (J int(tj)] G W}.

If for some finite u C ω, nor(u) > fc* we can finish. Why? Just as in the end

of the proof of 6.14 we define t = (5, if) as follows: S = (Jί^ : ^ G u} U {u},

u is the root, its set of (immediate) successor is (root(S't£) : ί G u}, the order

is defined by: restricted to Stl is as in t^, for x G Slί we let ίζ - #£alf(t£)

and #£ is defined by: for υ C u let H^({τoot(Stl) : £ G υ}) = nor(υ). We know

#n({root(5t£) : € G u}) > fc*. This suffices as Θi below holds. Clearly by the

definition of nor we have

θo t > t' =» (3w; G W)[iϋ C int(t')]

Now we have to prove
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0ι if υ = vι U ^2, nor(τ ) > ra + 1 then: nor(vι) > m or nor^) > m.

Proof 0/01. If nor(fi) ^ m, then there is a cover (v\ : i < 2m) of ̂ i such that:

(*)ι for every ί < 2m for some t^ > half(tm) (for m G υj) we have

[\Jm€vlmt(t'm))]iW.

Similarly, if nor(^2) ^ m then there is a cover (v\ : £ < 2m) of t^ such that:

(*)2 for every £ < 2m for some t^ > half(tm) (for m G ι>f) we have

U to&WJiw
uί

Define for i < 2m+1:

1 if i < 2m
j LJ I <^ Δ

2 ?7 ? P f2m 2m"f"1>li—2rn ij * *z [A , A ).

So if the conclusion fails then (vi : i < 2m+1) exemplifies nor(t ) ^ ra + 1, a

contradiction.

We can conclude from all this that, toward contradiction we can assume that

0 u C ω finite => nor(u) ^ &*•

So

0ι for every n = {0,..., n — 1}, nor(n) ^ fc* so there is a cover (υf : i < 2 fc*}

of n such that:

0 for every ί for some \!i > half(t^) (for i G vf) we have [Uieυ

n ^(^ί)] ^ ̂

By Kόnig's lemma there is a sequence (v^ : i < 2^*) of subsets of α; such

that for every m < ω for some n = n(m) > m we have i^ Π m = v^1 Π m.

Now for some t — £(*) < 2^*, for infinitely many m < α; for infinitely

many n G 5m we have n e V£ (on the βm's, see beginning of the proof of 6.18),

so by 6.17 we know that (0, {t; : i G t>*(*)}) G Q[/] (and of course is > (0,Γ)).

(Alternatively, for some f < 2 f c*, for every A G /4, for infinitely many n G ^

we have int(tn) C α; \ -A. If not then for each ί some ̂  G 1Ά fails it. So let

A— \J AI e IA and we get contradiction to (0, {t^ : i < ω}) G Q[/].) Now

for every fc letting n = n(fc) be such that v^(^ Π k = v^,^ Π fc, we apply 0.

So there are t^ > half(t^) (for i G ^7(*))) sucn tnat \Jiev

n ^nt(tO ^ ^> anc^
£(*)

by monotonicity Uiev/ „ nfc ^W) ^ ̂  ^y Kόnig's lemma (as W is upward

closed) there is (t* : i G V£(*)), t* > half(ti) such that for every n we have
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U-iennt;^) "^(t ΐ ) ^ ̂  S° (agaui as llί tne proof of 6.14, see 6.20 below) choose

(Sl,Hl) € L such that int(S*) = int(tj) and lev(S*,fΓ*) > lev(t/)/2, i.e.

S* - Stί, fl*(t;) - min{[lev(t)/2],fl£(τ;)} (when υ C Suc5<(z)). So clearly

(0,Γ*) < (0, {(£*,#*) : £ < ω}) € Q[7] (see 6.10A(2)) and we apply (*) from

the assumption and we get a contradiction, so finishing the proof of 6.18. DG.IS

6.19 Claim. Let A, I = IΛ be as in 6.18. Let ς, rn be as in 6.16(1). Then

for some pure standard extension r G Q[I] of g, letting Tr = {t'n : n < ω},

(standard (see Definition 6.8(4)) so lev(t^) strictly increasing, of course) the

following holds:

(*) For every n < ω, w C [ max(int(t^_1)) -f 1], and t^ > t^ (so we ask

only lev(t^) > 0) there is w' C int(t^), such that the condition (w U w1',

{t^ : £ > n}) forces a value on τm for m < n (we let max iut^^ be
9 U -

Proof. Like the proof of 6.16(1) but using as the induction step claim 6.18.

Πβ.19

6.20 Fact. If ti > half(t0), then for some t2 > to we have int(t2) = int(tι),

Iev(t2) > lev(t0)/2.

Proof. Included in earlier proof: 6.14. Πe.20

6.21 Conclusion. Let Vί, A, I = I A be as in 6.18.

1) If p e Q[I] and ω = \J AI where k < ω then for some p1', p <pr p' e Q[I\

and for some I < k we have cnt(Γp) C AI.

2) The set of standard p G Q[ί] is dense, in fact for any p G Q[ΐ\ there is

a standard g, p < q G Q[/], wq = wp and Γ9 C Tp.

Proof. 1) By repeated use w.l.o.g. k = 2. Let p <G Q[/] and Tp = {tn : n < ω}.

For each n apply 6.7 to find t'n > tn such that int(t^) C A or int(t^) C ω \ A

and lev(t^) > lev(tn) - 1. Let YQ = {n : int(t^) C A}, YI - α; \ y0, so for some
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I G {0, 1} we have: for every X G / the set {n G Ύt : int(t^) ΠX = 0} is infinite.

[Why? If Xt contradict the demand for ί = {0, 1} then XQ U Xλ G / contradict

p G Q[/j by Definition 6.10.] So (wp, {\!n : n G Yt}) G <?[/] is above p, and it

forces (J{υ;r : r G (?Q[/]| \ wp is included in A£.

We give also an alternative proof, which can be applied for more general

question. Let p = (w, {tn : n < ω}) G Q[I}. By the proof of [first condition =>

third condition] in 6.17, there are pairwise distinct jm < ω\ (for m < ω) such

that for each m the set

Bm = {n < ω : there is \!n > half(tn) such that int(t^) C Ajm}

is infinite. So we can find B'm C Bm for m < ω such that: (B'm : m < ω)

is a sequence of infinite pairwise disjoint sets. For each m < <j, n G .Bm

choose t^ > half(tn) such that int(t^) C Ajm. Let t£ > tn be such that

int(t£) - int(t^) and lev(t^) > lev(tn)/2.

If lev(t^) > k, let t^ > t^ be such that lev(t^) > lev(t^) - k (really

> lev(tJί) - [1 + Iog2(fc)] suffices) and for some £ = £(n), int(t^) C Ai(nγ For

each m < ω, for some £m the set B'ή = {n £ Bm : lev(t^) > k,ί(n) = £m}

is infinite and for some £(*) < fc the set {m < α; : tm = £(*)} is infinite. Now

p = (wp, {t^ : for some m we have £m = £(*), and n G #^J) is as required.

2) Left to the reader (or see 6.16(1)). D6.2ι

Now we pay a debt needed for the proof of 3.23(2).

6.22 Claim. Assume Vί, A, I = /A are as in 6.18. Then Q[I\ is almost "ω-

bounding or for some p G Q we have p Ihg "{A; : z < K*} is not a MAD."

Proof. Assume the second possibility fails. So let p G Q[I] and / be a Q[/]-name

of a function from ω to ω. Let rn = /(τι), and apply 6.16(1) and get q as there.

Next apply 6.19 to those q, rn and get r which satisfies (*) from 6.19.

By 6.17, 6.21(2) and we can find ri = (wp, {t'n : n < ω}), a standard

member of Q[I] such that r < r\ and for some pairwise distinct jm < ω\ the sets
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Bm = {n < ω : int(t^) C Ajm} are infinite. Clearly also r\ satisfies (*) of 6.19.

Choose pairwise distinct n(m, £) for m < I < ω such that n(m, ί) G Bm \ {0}

and min int(t^/m ^) > I. Now we define a function g : ω —> ω (in Vί) by

#(.£) = max{{^ + 1} U {fc : for some m < t and tu C [0, max int^^^.J]

and MI C int(t^m^) we have

KU^,{t; : n > n(rM)}) lhg[/] «/(*) - fc"}}.

So # G ("u;)^1, and let A C ω (A G Vί) be infinite, and let pA = (wp, {t'n(m^ :

m < f. and I G A}). Now clearly 7*1 < p^ G Q, p^ standard and even p^ G Q[I]

because still for each m < ω the set {n : \!n G TPA and int(t^) C Ajm} is

infinite: it includes {n : n — n(ra,£) for some I G A \ (m + 1)}. Now one can

easily finish the proof. ΠΘ.IG

A trivial remark is

6.23 Fact. Cohen forcing and even the forcing for adding λ Cohen reals (by

finite information) is almost ^α -bounding.

§7. On $ > b = a

See background in §6.

7.1 Theorem. Assume V \= CH. Then for some forcing notion P*, P* is

proper, satisfies the ^2-c.c., is weakly bounding and:

(*) In Vp* we have 2^° = ^2, there is an unbounded family of ωω of power

NI (i.e. b = NI) and also a MAD family of power ̂  i.e. α = NI, but there

is no splitting family of power NI i.e. $ > NI (so $ — N2).

Proof. The forcing (Pα,<2α : α < ω2), P* = Pω2 are as in the proof of 3.23(1).

So the only new point is the construction of a MAD of power NI. This will
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be done in V\ the proof of its being MAD will be done directly rather than

through a preservation theorem (though the proof is similar).

Let {(B^ : n < ω) : i < KI} enumerate (in V) all sequences (Bn : n < ω) of

finite nonempty subsets of α; (remember CH holds in V). Next choose a MAD

family (Aa : a < KI) such that

(**) for each infinite ordinal α < ω\ and i < a: iffoτ every k < ω, αi, . . . , α^ <

a for every m for some (equivalently infinitely many) n < ω, min(J5^) > ra

and Bl

n Π (Aaι U . . . U Aak) = 0

then

(a) for infinitely many n < ω, Bl

n C Aa

(b) for any k < ω and αi, . . . , α& < α for infinitely many n < ω we have

β;n(LM«£) = 0.
*=1

[How? let -An = {fc2 + n : k G (n,ω)}, and then choose Aα for a G [ω,ωι) by

induction on α as required in (**).]

Let λ be a regular large enough cardinal, a < ω^. For a generic Ga C Pα,

a model TV X (ff(λ)[Gα], G) is called ^ood if it is countable, Gα, (Pj,Qi : ϊ <

«:, j < α), (Ai : i < α i), {{β^ : n < α;) : i < ωi) G N and for every set

{Bn : n < ω} G N of finite nonempty subsets of ω, letting 5 = TV Πα i we have

®! (Vm,fc < ω)(Vαι,...,o f c < <5)(3*n < ω)[Bn Γ\ (Aa, U . . . U Aa J =

0 & min(βn) > m]

ί/ien (3*n)[βn C Λ^] (remember 3*n stands for "for infinitely many").

Note that in the definition of goodness, we have that <8>ι is equivalent to

<8>2 (Vm,fc < ω)(Vaι,...,ak < ωι)(3*n < ω)[Bn n (AQl . . . U Aak) =

0 & min(βn) > m]

We shall prove by induction on α < ω^ that:

for every β < α, a countable AT ^ (ίf(λ),G) to which (Pj,Qi : i <

ot,j < α), and α, /? belong and generic Gβ C P^ i/ A^fG^] Π α i =

Λ Γ Π ωι (so ΛΓ^] Π V = N), N[G(3] is good (in V[Gβ] of course) and
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pe N[Gβ]nPa/Gβ then there is q G Pa/Gβ,q >p,Όom(q)\a = Nnβ\a,

q is (N[Gβ], Pα/G0)-generic and: if Ga C Pα is generic, Gβ C Gα, q G Gα,

then N[Ga] is good.

This is proved by induction. The case α — ω<2, β = 0 gives the desired

conclusion.

[Why? If not for some p G P* = Pω2 and a P^-name J3 = {kn : n < ω}

we have

p ll~pα,2 "JB is an infinite subset of α;, moreover fcn < fcn+ι < ω for n < ω,

and B ΓiAa is finite for every α < ω\" .

Let AT X (if(λ,€) be countable such that (Pa,Qa : α < ω2), ^* = ̂ 2, P,

β, (fcn : n < ω) belong to AT, and let £ d= TV Π ωι. Clearly AT Π {(Bl

n : n <

ω) : i < ωι} = {(β^ : n < ω} : i < 5}, so by the choice of the Aα's (see (**)

above), N is good (in V = Vp°). Hence there is g G Pu,2 such that p < ς, g is

(ΛΓ, Pω2)-generic and ς Ihpω2 "-/V[GW2] is good". Let G C PW2 be generic over

y, g € G, (hence p € G) so W[G] is good, Λ^[G] Πωi - 5 and ({A:n[G]} : n < ω)

belongs to N[G]. Hence by the definition of good, (3*m)[fcm[G] G -4$], but this

means A§ Π B[G] is infinite, contradicting the choice of p (as p G G).]

The case α = 0 is trivial (saying nothing) and the case α limit is similar

to the proof of 3.13. In the case a successor, by using the induction hypothesis

we can assume α = β + 1.

By renaming V[G^], N[Gβ] as V, N we see that it is enough to prove that

for any good N and p e Q Γ\ N (remember Qβ = QV^G^) there is q > p which

is (AT, Q)-generic and q lhQ "N[G\ is good".

Let δ = N Π cji, and let δ = {^(l) : t < ω}. Let {r^ : I < ω} be a list of

all Q-names of ordinals which belong to A/", and {(B^ : n < ω) : i < ω} be a

list of all Q-names of ω-sequences of nonempty finite subsets of ω which belong

to A/", and which are forced to satisfy 02 » eacn appearing infinitely often. For
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notational simplicity only, assume p is pure. We shall define by induction on

t < ω pure pt = (0, Tpί) = (0, {t£ : n < ω}) such that:

a) pi e TV, pi standard (so maxint(t^) < minint(t£+1)),

b) Po =P,pι+ι >pt,

c) t£ - t£+1 f o r n < t and lev(t|) > f,

d) for any finite w C ω and finite T' C T^1 we have (w,Tp£+1 \T") Ihg

"it £ C£" for some countable set of ordinals C£ which belongs to TV,

e) for every WQ C (max[int(t|)] -1-1), m < t, and t > t^} there is

κ;ι C int(t) such that the condition (WQ U wι, {tf+1 : i 4-1 < i < ω})

forces that

"(aj)[min(£™) > £ and £™ C Aδ]
n.

Below we shall let pf = (0, {4'm : n < ω}). Let pQ = p.

Suppose pi is defined. By 6.12 there is a pure p® > pi in N such that

tf ° = tf for z < I, and for any finite w C ω and finite T' C Γp° we have

(tί;,Tp° \ T') = p$ Ih "r^ G C;" for some countable set of ordinals CJ from AT

[why? read (*) of 6.12].

Given p\ we define:

B = {B : B C α; is finite, min(β) > ,̂ and there is standard

p* = (0, {t; : n < ω}) > pj such that /\ t* - tf
i<i

(solev(tj+1) >ί + l) and:

for every WQ S max int(t|) -f 1 and t > tj+1 and m < £, for some

^i C int(t), the condition (WQ U ίi i, {t* : i > I + 1 and i < ω})

forces " for some j < ω we have -B^1 C 5"}../ ~ j — j

Clearly

(A) B G TV

(B) B satisfies (<g>ι) from the definition of good.

[Why? Let k < ω, α i , . . . ,(*& < 5. By the assumption, Ihg "for each m < I,

the sequence (B^1 : j < ω) satisfies (8)2" hence Ih " for every m < t for some

n = n(m) we have min(5^) > t and 5^ Π (Aαι U . . . Aak) = 0. Hence there
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is standard q = (0, {s*+ι,s*+2, •}) € Q> 9 > (0> {*£+!> ^+2* •}) such that

lev(s^+ι) > l+l and:

0 if wo C max(int(t|)) 4-1, m < £, t > s^+i then for some w\ C int(t) and

fCo.u i < ω and C™o,™ι We have

(α) (ιι;oUtί;ι,{s/(1)+1,Sφ)+2,...}) Ih "B^^ = C™ | W l ' '.

0s) GJJhun £ "V> and CZ,™ι is nonempty finite disjoint to Aα oU.. .\jAak.

So necessarily Ul^^o,™! : w° - πιax(int(t|)) +1 and t > s^+i, and w\ C int(t)

and C™QίWl is well defined and m < 1} € B is as required finishing the proof

of clause (B). We could have demand in Θ above for one w\ to be O.K. for all

m <L]

(C) We can define p^+i

[Why? As B G N satisfies (<8>ι) and JV is good necessarily there is B 6 B,

B C Aξ. For this .B there is p* as in the definition of B. Let t^4"1 = t^ for n < I,

t^1 = t; for n > £ So pm - (0, {t£+1 : n < α;}) is defined.]

So we have defined pι+\ satisfying (a)-(e). So we can define pi for £ < ω

and now q = (0, {t£ : n < ω}) is as required. Dγ.i

§8. On ϊ) < s = b

See background in §6. We first recall well known definitions.

8.1 Definition. 1) Let f) be the minimal cardinal λ such that there is a tree

T with λ levels (not normal!) and At G [ω]*° for t G T such that [t < s =>

As Cae At] and (VB G M*°)(3ί G T)[At Cae B] and if t,s G Γ are <τ-

incomparable then As Π At is finite. See Balcar, Pelant and Simon [BPS] on it

(and in particular why it exists which was for long an open problem).

2) Let Qd = {(n, /) : n < ω, f G ωω} with the order defined by

(ni, /i) <(n2, /2) if and only if

ni < n2,/1rm - /2Γm and /! < /2



§8. On ϊ) < 5 = b 367

This forcing adds a dominating real and it satisfies c.c.c. This is called Hechler

forcing or dominating real forcing.

8.2 Theorem. Assume V \= CH.

For some proper forcing P of power ^2 satisfying the N2-c.c., in Vp', ϊ) = NI,

b=s = K2 (and 2*° = 2*1 = N2).

Proof. We shall use the direct limit P of the CS iteration (Pi,Qi : i < ω2)

where:

A) letting i = (ωι)37+j, j < (ωi)3, if j ^ ω^ω^ + 1 then Qi is Cohen forcing;

if j = (Jjl then Qi is Q from Definition 6.8 (in Vp*) and if j = ω\ 4-1 then

<2i is Qd (see Definition 8.1(2), also other nicely definable forcing notions

are O.K.).

B) We use the presentation of countable support defined in III, proof of

Theorem 4.1, i.e. using only hereditarily countable names. We let r^ be

the generic real of Qi.

Clearly |P| = ^2, P satisfies the ^2-c.c. and is proper (see III §3, §4), hence

forcing by P preserves cardinals. Clearly in Vp', $ > #2 (because for unbound-

edly many i < ^2? Qi = Q (from Definition 6.6, and 6.11(3)) and b > ^2

(because for unboundedly many i < N2, Qi = Qd) and 2K° = ^2- Hence in Vp

we have $ = b = ^2 (so D = K2) and always f) > NI. So the only point left is

Vp |= "t> < Kj" .

We define by induction on i < ω% (an ordinal a(i) and) Pα^)-names ηiΊ Ai

such that

(a) α(t) = (α;1)
3(t + l),

(b) rji e \Jβ<ωι

 β+l(ω2) \ {TJJ : j < i} and for every successor β < tg(ηi)

we have η^β G {ηj : j < i}) (i.e. those things are forced),

(c) ηj <3 r\i => Ai Cαe AJ (for j < i) and ̂  is an infinite subset of ω,

(d) if A C ω is infinite and A G Vp^' then for some i < j +ωι, AC AJ,

(e) Ai includes no infinite set from VPt*w when j < i, and moreover is a

subset of the generic real of
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(f) if 77i, r\j are <-incomparable then Ai Π Aj is finite (i.e. this is forced).

There is no problem to do this if you know the known way to build trees

exemplifying the definition of f) (by Balcar, Pelant and Simon [BPS]), provided

that no ωi-branch has an intersection. I.e. for no η G ωι(ωz) and B G [ω]H°

(in Vp^} do we have B Cae Aia where η\(a + 1) = ηia for a < ω\\ by

clause (e) above necessarily ia is strictly increasing. Let i(*) = \J iΊ and
7<ωι

α(*) — U7<α;ι α(^y)> m VPa(*} there is no intersection by clause (e) (even in

the case η φ Fp<*(*)). So it is enough to prove this for a fixed i(*) hence also

α(*).

We can look, in yp«(*), at the iteration Q' = (P'β,QΊ : α(*) < 7 < ω2,

α(*) < β < α;2>, where P^ =f Pβ/Pa(*). Let GI C PαH be generic, Vι = V(Gl\.

Note that every element of P^2 can be represented by a countable function from

ordinals (< ω2) to hereditarily countable sets (built from ordinals < u^)- The

set of elements of P'ω<2 as well as its partial order are definable from ordinal

parameters only (all this in V[Gι]). Suppose p e P 2̂ forces B (a P^2-name of

a subset of ω) and iΊ (for 7 < ω\) to be as above (so with limit i(*)). W.l.o.g.

for each n < ω there is an antichain (gn>^ : ί < ω) which is predense above p,

such that qnj Ih "n € B ifftn,t"ι tn>^ a truth value. So for some j(*) < α(*)

we have p, ((qUtt : I < ω) : n < ω) G F[GX n P^*)].

There is pi, p < pi G P 2̂ such that pi Ih "iΊ = i" for some 7,1 such

that j(*) < (ωι)3i < α(*) so pi Ih "B C rω3ί+3" where rwsi+3 is the generic

real that the set GI Π Qω3i+3 gives (see the end of clause (e)). Now using

automorphisms of the forcing P«(*)/P;(*) we see that there is p2, p < P2 £ P 2̂

such that p2 Ih "I? is almost disjoint from rω3ΐ+3". Prom this we can conclude

that p Ih " U7<α;ι Vi y & ^[^i]" (otherwise some po > P forces a particular value

and repeat the argument above for po). Hence it suffices to prove by induction

on β G [α(*),α;2] that forcing with Pβ adds no new α i-branches to the tree

T G Vι where T = {ry»[Gι] : i < i(*)}, ordered by <, (i.e. all are on Vp<*(*)}.

Let ϊ]i — 77i[GI] for i < i(*).

We prove by induction on β G [α(*),α;2] that

no new î'̂ 12111^ to T G V"ι.
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So assume po € Pβ is such that po "~ "(ίΛγ '• 7 < ωi) is a new ωi-branch of

fa:i<i(*)}eVΛ

In Vi choose a sequence {7Vm : m < ω) of countable elementary submodels

of (H(χ), e, <*) such that 0, <>', P, JB € ΛΓ0, JVm e JVm+1, Nω = |J JVm. Let
m<ω

δm = Nm Π ωi, and let

-4m = {J7 = (^7 : 7 < <W : ^ £ Nm+ι and for every 7 < Jm, Pf7 € Nm}.

So {Am : m < ω) € Vi, and we can list Am = {Pm>* : έ < ω}, ((vm^ : i <

ω) : m < ω) e Vι. The real r^*) is a Cohen real over VΊ (as (iΊ : 7 < α i) is

strictly increasing with limit «(*)), and we can interpret <3ΐ(*) as ω>ω, so let

Γt(*) = (Im : m <α;).

Clearly for proving (*)^ it is enough to find q such that:

(*)2 ^ € P^, Po < q, q is (JVm, P^)-generic for each m < ω and <? Ih^/ u(ι/7 :

m,^m7 < δm) ^ (VΊ : 7 < ίm}" for each m.

The proof splits to cases, the first four cases give (*)^ directly, the last

three do it through (*)2

Case 1: For β = ω^ no new branches appear (by ^2-c.c.).

Case 2: For β = ΐ(*) trivial.

Case 3: For β = α + 1, Qα Cohen: use "Qα is the union of NO directed sets" (and

such forcing notions do not add a new α i-branch to any old tree).

Case 4- For β = a 4-1, Qa = Qd: similarly, as

Qd = \J{{(n,f) :feωω&εf\n = η}:n<ω,ηe nω}.
n

Case 5: For β — a. + 1, Q& — Q- so for some 7 we have α = 0^7 -f α i, shortly
p;

3

we shall work in the universe V ωιΊ. Let qr G P£ be (AΓm,P^)-generic for each

m < α;, po ί̂  ^ ί' (such ς'' exists as all those forcing notions are α -proper and

ω-properness is preserved by CS iteration by V §3). Let G'a C P^ be generic

over Vi such that q' G G"α, and we work in V2 = Vι[G'a}. Let N'm = Wm[G^],

iϋ = wpo(°0 (a finite subset of ω, actually it is WPQ(OL^G'^).
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We choose by induction on m < u;, qm = (w, Tm) G Qα, Tm = (t™ : n < ω)

such that:

(a) qm e N!^ Π Qα, gm < ςfm+ι, [n < m => t™ - t™+1], p0(α) < <?o,

(b) ςm+ι is (7V^,Qα)-generic

(c) gm+1 Ih "<z,7 : 7 < δm) ϊ (v™*™ : 7 < <U"

This clearly suffices and for the induction step, clauses (a), (b) are possible

by the proof of "Qα is proper" (in §6), and reflecting on the proof there also

clause (c) [in more details given qm, let (τm^ : k < ω) list the Q-names of

ordinals which belong to 7Vm, now we choose by induction on fc < ω, qm^ =

(w,Tm,k) and 7m,fc, Tm?fc = {t™'* : n < α;} standard, {9m,fc,7m,fc} e Nm,

Qm = ςfm.o, 9m,fe < ςfm.fc+i, [n < m -f fc => t^1^ = t̂ ], and for every

WQ C max[int(t^^fc)] + 1 and t > t^^fe+1, for some w\ C int(t) we have

(WQ U wι, {C^fc+2, C^+3,...}) force z/7m k = p, p ̂  v™*™ and forces a value

to ii^\ for the induction step get a candidate for all ^ <ω\ and use Δ-system

(and "the branch is new" i.e. not from Vp*).}

Case 6: β > α(*) is a limit ordinal; cf(β) = K0

Quite straightforward as in the proof of the preservation of α -properness

(of course we could work in V rather than in V\ and use the induction hypoth-

esis). Choose (βn : n < ω) such that β = \J βn, i(*) = /30, βn < βn+ι < β,
n<ω

and βn G NQ. We choose by induction on n, #n, pn such that:

(a) qn G P'βn, Dom(<?n) = ( \J Nk) n [α(*),/3n)
/c<ω

(b) ςn is (ΛΓ

i,P/3τι)-generic for each i < ω

(c) pn is a P0n-name of a member of Pβ Π AΓn

(d) Pn\βn < qn, qn+l\βn = ^n

(e) pn < Pn+1

(f) pn+ι is (AΓ

n,P/5)-generic (i.e. forced to be)

(g) Qn U (pnΓ[/?n,/?)) I^P, "(^ : 7 < «0> / (^ ' Ί < ^θ)".

The induction should be clear and q = \Jqn = U(<?n+ιί[/?n,βn+ι)) is as
n n

required.

Case 7: β > α(*) a limit ordinal, cf (β) > N0

Like case 6, but βn = sup(AΓn Π ̂ 9). D8.2
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Concluding Remark. The proof of "no new ω\-branch" has little to do with the

specific problem. More on definable forcing notions see [Sh:630].




