
III. Proper Forcing

§0. Introduction

In Sect. 1 we introduce the property "proper" of forcing notions: preserving

stationarity not only of subsets of ω\ but even of any S C <S<κ0(λ). We then

prove its equivalence to another formulation.

In Sect. 2 we give more equivalent formulations of properness, and show

that c.c.c. forcing notions and Ni-complete ones are proper.

In Sect. 3 we prove that countable support iteration preserves properness

(another proof, for a related iteration, found about the same time is given in

IX 2.1; others are given in X §2 (with revised support) and XII §1 (by games)).

Also we give a proof by Martin Goldstern (in §3).

In Sect. 4 it is proved that starting with V with one inaccessible ft, for

some forcing notion P: P is proper of cardinality ft, do satisfy the ft-c.c. and

l^p "if Q is a forcing notion of cardinality NI, not destroying stationarity of

subsets of ω\ and Ti C Q is dense for i < ω\, then for some directed G C ζ),

/\i<ωι G Γ\Ii ^ $". For this we need to give a sufficient condition for LimQ to

satisfy the ft-c.c. (where Q — (Pi, Qi : i < ft) is a CS iteration of proper forcing

such that for each i < ft we have Ihp. "\Qi\ < ft"). For this we show that the

family of hereditarily countable conditions is dense in each P, so i < ft => Pi

has density < ft.
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In sections 5, 6 we present known theorems on speciality of Aronszajn

trees.

In Sect. 7 we prove: for V satisfying CH there is an M2-c.c. proper P such

that Ihp " ifϊoΐ i <ω\, the set AI C ω\ is countable with no last element and

< sup(Ai), then for some club C of u^ we have i < ω\ => sup(CΠ Ai) <

In Sect. 8 we prove the consistency of the Kurepa hypothesis (first proved

by Silver [Si67] and see more Devlin). This is a proof from the author's lecture

in 1987.

§1. Introducing Properness

1.1 Discussion. When we iterate we are faced with the problem of obtaining

for the iteration the good properties of the single steps of iteration. Usually,

in our context, the worst possible vice of a forcing notion is that it collapses

MI. The virtue of not collapsing MI is not inherited by the iteration from its

single components. As we saw, the virtue of the c.c.c. is inherited by the FS

iteration from its components. However in many cases the c.c.c. is too strong

a requirement. We shall look for a weaker requirement which is more naturally

connected to the property of not collapsing MI, and which is inherited by

suitable iterations.

We shall now study a certain generalization of the concepts of a closed un-

bounded and a stationary subset oiω\. They were introduced and investigated

by Jech and Kueker.

1.2 Definition. For A uncountable let SNO(^) = {s : 5 C A, \s\ < M0} Let

W C <SNO (A) be called closed if it is closed under unions of increasing (by C of

course) ω-sequences. W C SNO(A) is called unbounded (in «Sκ0(-A)) if for every

s G Sχ0(A) there is a t G W such that t 2 s. If W C 5«0(A), the closure of W

is cl(W) = { U *n : sn € W and sn C sn+1 for n < ω}, (clearly W C cl(W)
n<ω

and cl(W) is closed).
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1.3 Lemma. The intersection of NO closed unbounded subsets Wί, i < ω, of

< S N A is a closed unbounded subset of

Proof. Since each set Wi is closed, the intersection Πi<ωWi is obviously closed

too. Let us prove now that Γ\i<ωWi is unbounded too. Let s € <Sκ0(yl); we have

to prove the existence of a set t 2 s such that t G Γ\i<ωWi. We shall define

a sequence (sa : a < ω2) of members of <S^0(^4) as follows. Let SQ — s, for

α > 0, a = ω - k + 1 choose sa as an arbitrary member of Wι which includes

Up<aSβ € SNOCA); it exists as Wt is unbounded. We take now t = (Ja<ω2Sa.

Obviously t D SQ = s. For a fixed i < ω and every α < u;2, let α = ω k + <£ then

α < α;(fc -f 1) + z, hence, by the definition of sω(fc+i)+i we have sα C sω(k+i)+i

Therefore t = Uα<α;25α = Uk<ωSω.k+i The sequence (sω.k+i : k < ω) is a C-

increasing ^-sequence of members of Wi, and since Wi is closed also its union

t is in Wi. Thus ί G Γ\<u;Wΐ, which is what we had to prove. Dχ.3

1.4 Definition. By the last lemma we know that the closed unbounded subset

of <Sκ0(A) generate an Ni-complete filter, namely the filter of all subsets of

<SNO (A) which include a closed unbounded set. We denote this filter with DNO (A)

or T><^1(A) or D(A). A subset of Sκ0(A) is called stationary if it meets every

closed unbounded subset of <$N0(yi), i.e., if it meets every member of T>χ0(A).

We shall now present the lemma which says that for \A\ = NI, <S^0(A) and

£>NO (A) do not differ significantly from ω\ and the filter *Dωι generated by the

closed unbounded subsets of ω\ .

1.5 Lemma. A subset of ωι is a closed unbounded subset of ω\ (in the usual

sense of a closed unbounded subset of an ordinal) iff it is a closed unbounded

subset of <SNO(CJI).

Proof. Easy. Πι.5

We shall now introduce a more restricted set of generators for Ί)(A).
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1.6 Definition. M will denote an algebra, with universe A, and with countably

many functions. Let

Sm(M) — {s : s C A, \s\ < NO, s is closed under the operations of M}, i.e.,

Sm(M) is the set of countable subalgebras of M. Now Sπι(M) is obviously a

closed unbounded subset of <Sκ0(A) (even if M is a partial algebra).

A subset of <S<κ0(^4) of the form 5ra(M), is called an Sm-generator of

1.7 Lemma. For every closed unbounded subset W of <Sκ0(A) there is an

algebra M on A such that Sm(M) C W.

Proof. We shall define, for every finite sequence a = (αo, . . . ,αn-ι) of mem-

bers of A, by induction on the length n, a set s(ά) G W such that s(α) D

{αo, . . . , αn_ι} and s(α) 2 s((αθ5 >αn-2)) when n > 1 (of course if n = 1

(αo, . . . ,αn_2) is the empty sequence). This is obviously possible because W

is unbounded. We define now n-place functions F^l < ω, for all n < ω such

that s((α0, . . . , αn_ι)) - {F^n(α0, . . . , αn_ι) : t < ω}. Let M - (A, F?)n<ωj<ω.

Let s = {α0,αι, . . .} be a subalgebra of M. Denote sn = s((α0, . . . ,αn-ι)) =

{F£

n(α0, . - - , αn_ι) : ί < ω}. We have:

a) 5n C 5, since 5 is a subalgebra.

b) sn C 5n+1, by definition of s((α0, . . . , αn».

c) αn G sn+ι> also tne choice of s((α0, . . . , αn_ι))

d) sn G W.

By (a) and (c) we have s = Un<α;sn; by (b) and (d) we get s G W. Thus we

have shown Sm(M) C W. Πι.7

We have now seen that the filter T>κ0(A) is generated by the family of sets

5m(M) where M is an algebra on A as above. We shall now see one use of this

fact.

1.8 Theorem. Let P G V be a forcing notion which satisfies the c.c.c., let λ

be an uncountable cardinal, and let G be a generic subset of P over V. Every
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closed unbounded subset B of ̂ (A)^'^ in V[G] includes the closure of a

set which is a closed unbounded subset of S*0(\}(v} in V. In fact £>N0(λ)(y[G])

is generated by the closures of the 5ra-generators of X>κ0(λ)(y) (for any 5m-

generator (Sm(M)v of T>(X)(V^ in V, its closure in V[C7], is an Sm-generator

of -D(X)(y™ in V[G], as it is (S

Proof. By what we have proved above we have the following in V[G]. There is

an algebra M = (\,F£)n,t<ω such that Sm(M) C B. In V the function F/1

has a name F™ (moreover we have in V the sequence (FJ? : n < ω,l < ω)).

W.l.o.g. Ih "F™ is an ^-place function from λ to λ". Because of the c.c.c., by

Lemma I. 3.6 (ii) for all αo, . . . , αn_ι < λ we know in V that the set of possible

values of Fj?(αo, . . . , αn-ι) is countable and not empty. We define the functions

Fpk for k < ω so that these < N0 values are {F^(α0, . . . ,an-i) '• k < ω}.

So we know, for all n,ί < ω and αo,...,αn«ι < λ that in V[G] we have

F^n(α0,...,αn_ι) G {F^(α0,...,αn_ι) : k < ω}. So N = (X, F£k)ntlιk<ω is

an algebra in V and (in V[G]) every subalgebra of A^ is clearly a subalgebra

of M. We have Sm(ΛO(v) C Sm(N)vW C Sm(M)WGV C B and Sm(N)^

is a closed unbounded subset of ̂ (λ)^) in V, and the closure Sm(N)v in

F[G] is 5m(A^)v[G] C B. Dι.8

A consequence of this theorem is that in a c.c.c. extension V[G] of V every

stationary subset of <Sκ0(λ)(v) in V is also a stationary subset of <SK0(A)(V[G1)

in V[G]\ in short, the extension does not destroy the stationarity of stationary

subsets of «SN0(λ). We shall use this property to define the concept of proper

forcing. While it is a consequence of the fact that P^0(λ)y[Gl is generated by

the closures of the members of T>χ0(X)v is does not seem to require as much.

1.9 Definition. A forcing notion P is called proper if for every (uncountable)

cardinal λ, forcing with P preserves stationarity modulo £>κ0(λ). We shall

denote this condition for λ with CΌnι(λ) (more exactly Conι(λ,P) but we

omit P when, as usual, P is clear from the context). Note that CΌnι(N0) is

meaningless, or trivially true if you like.

Note that proper ness is preserved by equivalence of forcing notions.
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1.10 Theorem. 1) P is proper iff the following condition holds for each

cardinal λ.

Gon2(λ) = Gon2(λ,P) : Assume that {pij : j < α^z < a} C P is

such that α < λ and α^ < λ for i < α, and such that for all i < α the set

{Pij '• J < Oίi} is pre-dense in P. Then for all p G P:

{5 G <SN0(λ) :(3<? € P)[q>p and {p^ : j < α^, j G 5} is pre-dense

above q for any i G s, i < α]} G 2>κ0(λ).

2) Moreover, for any λ > \P\ -f K l 5 Gon^λ) is equivalent to Gon2(λ); and if P

is a complete Boolean algebra without 1 then Conι(X) is equivalent to Gon2(λ)

for every uncountable λ.

Proof. We assume first -ιGon2(λ), i.e., there are α < λ, o^ < λ for i < α,

{Pij '• J < ®i} which is pre-dense in P and p G P such that the set

T = {s G <Sκ0(λ): for no q G P do we have: q > p and {pij : j < α^, j G 5} is

pre-dense above q for any z G s, i < α} is stationary.

Let G C P be a generic subset of P such that p G G. Now G meets every pre-

dense set hence there is in V[G] a function / on α such that P i j ( i ) G G for all i <

a. For the algebra (λ,/) we have 5m((λ,/)) - 5m((λ,/))vtGl G £>κ0(λ)(y[G]).

We shall show that T Π 5m((λ, /)) = 0 thus Γ which is stationary in V is no

longer stationary in V[G\. Assume 5 G TΠ 5m((λ,/)), then, as T G V, clearly

5 G V. Since 5 G 5m((λ,/)) clearly s is closed under / hence V[G] 1= (Vi G 5)

(i < α —> (3j G s)(j < di&εpij G G)), hence some r G G forces this statement.

Since G is directed and p G G there is a # G G such that q > p,r hence

<? Ihp "(Vi G s)(i < a -> (3j G 5) (j < di&zpij G GP))". Therefore for every

i G s, such that i < α we know {pij : j < oti&j G s} is pre-dense above <?

(if this were not the case then for some q* > g, ς* is incompatible with each

member of {pij : j < c^&j G s} for some i G 5, i < α, and for a generic G

which contains <?* we cannot have (3j G s)(j < α^ &pi,j G G)). Thus 5 satisfies

exactly the condition of not belonging to Γ, which is a contradiction.

We have proved that -ιGon2(λ) implies ^Gonι(λ). We shall prove that

Gon2(λ) implies Gonι(λ) for λ > |P| + NI, or for all λ > KI if P is a complete
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Boolean algebra without 1. This suffices to finish the proof of part (2) (of

1.10). It also suffices for part (1) i.e. for proving that (Vλ)CΌn2(λ) implies

(Vλ)CΌnι(λ) since, as we shall now see if λ > μ > NI, Conι(X) implies Conι(μ)

(see 1.13, note that by 2.1 if λ > μ, Con2(λ) implies Cσn,2(μ)) For this purpose

we shall prove the following lemmas (1.11, 1.12, 1.13 and then return to the

proof of 1.10).

1.11 Lemma. For any sets £>, E we denote by DUE the set {x(Jy : x G D & y G

E}. For all disjoint uncountable sets A,B we have: W is a closed unbounded

(or stationary) subset of <ί>N0(^4) iff WUS#0(B) is a closed unbounded (or

stationary) subset of «SNO(A U B).

Proof. We can deal separately with the case any of the sets is empty, easily, so

w.l.o.g. they are not empty. The proof that if W is closed unbounded in S#0 (A)

then WUSχ0(B) is closed unbounded in <Sκ0(^4 U B) is trivial. Now assume

that W is stationary in <Sκ0(j4), and suppose WOS^0(B) is not stationary

in SχQ(A U B). Then there is a model M = (A U B,F£)nj<ω such that

(WUS#0(B)) Π Sm(M) = 0. We can assume, without loss of generality, that

the set of functions {F™ : n,ί < ω} is closed under substitution. We define a

function F™ for n-tuples of members of A as follows:

3 ' " ' ' n l ^ any member of A otherwise

Let M = (A,F'Ί)rιt<ω We shall see that if 5 G Sm(M) then for some t G

SNO(.B), 5 U ί G Sm(M). Let £ be the subalgebra of M generated by 5; we

have to prove that t\s C B. Let b G t \ 5, then since the set {Ff : n,i < ω}

is closed under substitution, b — F£

n(αo,... ,αn-ι) for some n < ω, i < ω

and α 0,. . . ,αn_ι G 5. If 6 G A then by the definition of F™ we know that

Fj?(αo,...,α n_ι) = 6, and since s G 5m(Af), 5 is closed under Fj?, clearly

6 G 5, which cannot be the case since b e t\s. Therefore b £ A, hence 6 G B

and we have proved t\s C .B. We claim that WίΊSV^M) = 0, contradicting our

assumption that W is a stationary subset of <S^0(A). Suppose 5 G WΓ\Sm(M),
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then, as we have shown, for some t € S#0(B) we have sUt e Sm(M). However

s U t G WUSχQ(B) contradicting (WQSχQ(B)) Π Sm(M) = 0.

Thus we have proved the "only if" part. The "if" part can be proved

similarly or by applying the "only if" part to W\ = S#Q(A) \ W. Πi.n

1.12 Claim. (1) If / is a one-to-one function from A into B, then for X C

<SN0(A): X is a stationary subset of <Sκ0(A) iff {α e SχQ(B) : f'l(ά) e X} is a

stationary subset of S#0(B).

(2) If / : A — > B is one-to-one onto, then f induces a mapping from P(S#0(B))

onto P(S#0(A)) preserving Boolean operations and stationarity.

(3) If V C Ft are models of ZFC, A,B G V, V N «\A\ = \B\" , then the

stationarity of some X C <SχQ(B)v is destroyed in V^ iff the stationarity of

some X C «S^0(A)V is destroyed in V^ (where X E V of course )

Proof. Note that {α C Sχ0(A U B): if y = /(x) then x e a o y e a } e

-D^(AUB).

The proof is left to the reader. Πι.i2

1.13 Claim. If λ > μ > HI then Conι(λ) implies Con\(μ).

Proof. Let VF be a stationary subset of Sχ0(μ)v . Then, as we have proved in

1.11, <Sκ0(λ \ μ)vOW is a stationary subset of Sχ0(\)v . Since CΌτiι(λ) holds

5H0(λ\μ)vUVF is also a stationary subset of <Sκ0(λ)ylGl in V[G\. We claim that

W is a stationary subset of S^0(μ)v^ in V[G]. If this is not the case then there

is a closed unbounded subset C of Sχ0(μ)vW in V[G\ such that C Π W = 0.

By Lemma 1.11 <Sκ0(λ \ μ)v^OC is a closed unbounded subset of S^λ)^

mV[G\. Since C n W - 0 wehave (S^(\\μ)v^OC) Π (S^0(\\μ)vUW) = 0

contradicting what we got that <Sκ0(λ \ μ)vOW is a stationary subset of

Continuation of the Proof of 1.10. We return now to the proof that CΌn2(λ)

implies Conι(λ) for any uncountable λ > \P\ 4- KI or for all λ > HI if P is a
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complete Boolean algebra without 1. Let T be a stationary subset of <Sκ0(λ) in

V. To prove that T is also a stationary subset of S#0 (λ) in V[G] we have to prove

that for every P-name M = (λ, F?)ιtn<ω of an algebra, 0 lhP 'TnSm(M) ̂  0".

Let p G P, we shall prove that there is a <? > p such that <? Ihp "TίΊ5ra(M) 7^ 0".

Let h : ω>\ —> λ be a one-to-one function. We denote the restriction of h to

n-tuples with hn. Let /ι^, for ^ < α; be a function such that for n > ί we

have ^(/ιn(/?o,...,/3n-ι)) = A- For each i < X if i = Λ(n,£,/30, ,/3n-ι) let

Zi be a maximal antichain of P of conditions which force definite values for

jF7(/?o, - - ,/?n-ι) If 1^1 < ^ then clearly |Z^| < λ. If P is a Boolean algebra

without 1 (and the order inherited from the Boolean algebra, not the inverse, so

"x, y incompatible means N x(Jy = 1), then for each β < λ we can put in Z^ the

minimal condition (equivalently the lub in the Boolean algebra of all conditions)

which force F^(/30,.. •, βn-ι) — β> if there are such conditions and then Z^ will

be a maximal set of conditions which force definite values on F™(/?0, , βn-ι)

and \Ii\ < λ and Z^ is a maximal antichain. We define for i < λ the ordinal

Oίi and the set {pij : j < α^} so that {pij : j < c^} = Ii. Let j(i,j) be

such that p^ Ih αF^(/?0,...,/3n-ι) - 7(*,jT Let M* = (λ,/ιn,/ιn,7^)n<ω,

then 5m(M*) G PNo(λ). Let W d= {s G 5Ho(λ) : (3ςf > p) [{pitj : j G

α^ Π s} is pre-dense over q for all i G s]}; we know that W G ^κ0(λ) by

the assumption Con2(λ). Since T is a stationary subset of <Sκ0(λ) there is an

s G T Π 5m(M*) Π W. Since s e W let q > p be such that {p^ : j G α< Π 5}

is pre-dense above q for each i G 5. Assume /30, . ,/?n-i € 5. By definition of

M* and since 5 G 5m(M*), α; C 5. Thus n,l e s and since 5 is closed under

/ιn+2 also i = /ιn+2(n, £, /? 0 , . . . , βn-ι) £ s. Since {pitj : j G α» Π 5} is pre-dense

over </, every generic filter G which contains <? contains some pij for j G α* Π 5,

and therefore F™(β0,... ,/3n_ι) = 7(1, j) in V[G]. Since i,j £ s and since 5 is

closed under the function 7 we have F™(βo,... ,/?n-ι) € s. Thus we have in

V[G] that VnW(VA),.. . , /3n-ι € 5) [*?(#>,..., /?n-ι) e s], hence 5 G 5m(M).

Since this holds for every G which contains q we have q Ih "5 G 5ra(M)", i.e.,

ςr Ih "TnSra(M) ^ 0" (since 5 G Γ). So Γ is still stationary in Vp, as required.
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1.15 Observations. It can be seen, by means of Con<2(\) that in order that

the forcing P be proper it suffices to require Con2(λ), or Con\(\) for some

λ > 2'pl (see Lemma 2.2). We can also replace, equivalently, α,α^ < λ in

Cori2(X) by a = a.i — λ, and we can replace the pre-dense sets by maximal

antichains and 2'p' by the number of the maximal antichains (see Lemma 2.2

in the next section). DI.IS

1.16 Lemma. If P is a proper forcing then in V[G] every countable set of

ordinals is included in a countable set of ordinals of V (and hence K^ is

uncountable in

Proof. Let a be a countable set of ordinals in V[G], then for some cardinal λ we

have α G <Sκ0(λ)v[Gl; now the set {s G ̂ (A)17^' : s 2 0} is obviously a closed

unbounded subset of <S^0(λ)vIGl in V[G\. But <SN0(λ)v is a stationary subset

of <Sκ0(λ)v in V, hence, since the forcing P is proper, it is also a stationary

subset of <SHo(λ)V[Gl in V[G}. Thus <SHo(λ)v ΓΊ {s G Sχ0(λ)vW : s D α} ^ 0

and λ has a subset countable in V which includes α.

An alternative proof is that if s G 5n0(λ)v[σl, then Wι = {t : s C t G

Sκo(λ)} £ ^Ko(λ) in V[G\, but in V we have WQ = S*0(\)v G Pκ0(λ), so in V

WQ is stationary, hence it is stationary in V[G] hence WQ Π W\ ^ 0 which is

just what we need. ΠI.IG

As a consequence, if a is an ordinal such that cf (α) > HO in V, we have

alsocf(α) > K0 in

§2. More on Proper ness

Discussion. It is worth noticing that one can use for a set of generators of

T>#0(A) not only the set {Sm(M) : M is a model, the universe of M is A and

M is an algebra with NO operations } but also a somewhat wider set {Sπι(M):

M is a model, the universe of M is A and M is a partial algebra with HO

operations }. This can be done since if M is a partial algebra, i.e., an algebra
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whose operations are not necessarily defined for all arguments, then Sm(M) is

also a closed unbounded subset of SNO(A).

2.1 Claim. For μ < λ, CΌn2(λ,P) =» Con2(μ,P).

Proof. To see that let {pij : j < OLi,i < a} be as required by Con2(μ), i.e.,

a < μ and c^ < μ for i < α. Since μ < λ we can apply CΌn2(λ) and obtain

D d= {s G <S*0(λ) : 3q[p < q G P& (Vi € 5 Π α) [{p^ : j G s Π α<} is

pre-dense above q]]} G P«0(λ). Since α^ < μ for i < a and a < μ we have

1} = (D Π Sχ0(μ))USχ0(X \ μ) (where A05 ^ { z U y i x G A & s / G 5}). By

Lemma 1.11 for Γ C S*0(A), if T05No(β) G PKO(^ U B) then T G V*0(A).

Therefore D Π <?κ0(μ) G T>κQ(μ) which establishes Con2(μ) since D Π Sχ0(μ) is

exactly the set required for Con2(μ). U2.ι

2.2 Lemma. Con2(2'p') = >̂ (Vλ > Ho)CΌn2(λ), and hence, since μ < \ and

CΌn2(λ) => Con2(μ), therefore (3σ > (2\p\}(Con2(σ}) & (Vλ)Cron2(λ).

Proof. It clearly suffices (see 2.1) to prove that for λ > 2'pl we have CΌn2(2lpl)

=> Con2(λ). Let p, (p^j : j < 0.1,i < a) be as in Con2(λ). Let 2^ denote the

subset {pij : j < Oίi} of P. Let (Ji : i < 2'pl), be a listing possibly with

repetitions of all pre-dense subsets of P. Let (q^j : j < /%} be a listing of

the members of Ji, then we can have βi < \P\. We define a partial function

F : λ -> 2 |p | by F(i) = the first 7 such that JΊ = Ii, for i < α. We

define also two partial functions G and H on λ x λ, into λ by G(i,j) =

the 7 such that p^ = <?F(i),7» f°r * < α? j < αί? an<3 H(i,j) — the least 7

such that pί)7 = qp(i),ji f°r ^ < α:, j < /?F(I) Since CΌn2(2lp') holds the set

A d= {s G 5H o(2lpl) : (3ςr > p)(Vi G s)({qij : j G 5 Π ft} is pre-dense above

<?)} is in X>^0(2'pl). Therefore there is a partial algebra M with universe 2'p'

such that A 2 Sm(M). Let N be the partial algebra whose universe is λ and

whose partial operations are those of M together with F, G and H (which were

defined above). We shall show that for every 5 G Sπι(N) there is a q > p such

that for alH G s Π α, {pij : j G s Π α^} is pre-dense above q. This will establish
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Cori2(X) since the set which is required by Con<2(\) to be in Ί)^Q(X) has been

shown to include Sm(N) which is in £>κ0(λ).

Let s G 5ra(7V); since TV contains all the partial operations of M we have

5 Π 2'pl G Sra(M). Since Sra(M) C A we have s Π 2'pl G ,4; therefore there is

6 q>p such that

® (Vi G 5 Π 2 |p|)({^j : j G 5 Π βi} is pre-dense above <?).

We shall show that for this q we have (Vi G s Π a)({^j : j G 5 Π α^} is

pre-dense above #), which is all what is left to prove. Let i G s Π α, since 5

is closed under F also F ( i ) G 5 Π 2 |p| (since Rang(F) C 2 |p |) hence, by ®,

{9F(i),j : j G s Π ft} is pre-dense above q. We shall see that {qp(i)j '- j £

s Γ\ βi} = {pij : j G 5 Π OLi} and this will establish that {pij : j G s Π α^} is

pre-dense above q. For j G 5 Π ft we know qp(i)j — Pi,H(ij) by the definition of

#. Since i, j G 5 also ff(i, j) G 5 and H(i,j) < α^ by the definition of #. Thus

<lF(i)j — Pί,H(i,j) € {Pi,j : j G s Π α^}. In the other direction, for j G 5 Π Oίi

Pij = 9F(t),G(t,j) ^ {^F(t) : J € s n A}5 since s is closed under G. D2.2

2.3 Theorem. Let M = (|M|, . . . , ) be a model with countably many relations

and functions, if M is uncountable then:

Proof. Let M+ be an algebra with universe M and with Skolem functions of

M as operations (their choice is not unique, but is immaterial; we can e.g.

expand M by a well ordering <* of its universe, and use all functions definable

in (M,<*)). Then, as is well known, Sm(Aft) C {AT G 5No(|M|) : N ^ M}.

Since Sm(Aft) G P»0(|M|) also {\N\ G ̂ 0(|M|) : N ^ M} e T^0(\M\). D2.3

2.4 Definition. For a cardinal λ we denote with H(X) the set of all sets whose

transitive closure is of cardinality < λ. For a regular uncountable λ we know

that (fί(λ), G) is a model for all axioms of ZFC except maybe for the power

set axiom. If not said otherwise we assume λ is like that, for simplicity.
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2.5 Definition. Let N be an elementary substructure of (#(λ),G) and let

P G N be a forcing notion. For q G P we say that q is (TV, P)-generic, (or

TV-generic if it is clear which P we are dealing with), if for every subset X of P

which is pre-dense and is in TV the set J Π TV is pre-dense above q.

2.6 Lemma. A condition q is (TV, P)-generic z/f for every r which is a name

of an ordinal in the forcing notion P, if r G TV then q \\- "τ G TV" (i.e., if the

name is in TV then q forces the value to be in TV) iff for every P-name τ G TV,

q\\- " i f r € V thenr G TV".

Proof. We prove only the first "iff", the second has the same proof. Assume

that q is TV-generic and let r G TV be a name of an ordinal. Let I = {r G P : r Ih

"r = α", for some ordinal a}. J is obviously pre-dense. J is definable from P

and r in (7J(λ), G), hence T G TV. Since <? is TV-generic, ZΠTV is pre-dense above

</. Let / be the function on I defined by /(r) = that α for which r Ih "r = α",

then / is definable in (ίf(λ), G) from r, hence / G TV. Since JΠ TV is pre-dense

above q, q Ih "GP Π (Γn AT) / 0", i.e., ςr Ih «(3r G JΠ TV)r G GP". Therefore if

G is a subset of P generic over V and q G G then τ[G] = /(r) holds in V[G],

where r G (J Π TV) Π G. Since r G TV, also /(r) G TV (as / G TV) thus r[G] G TV

in F[G]. Therefore ςr Ih "r G N".

Now assume that for every P-name r of an ordinal, if r G TV then ς Ih

"r G TV". Let J G TV be pre-dense in P. There is an / G H(\) which maps |J|

onto J, hence there is such an / in TV. We take τ — Min{i : f ( i ) G Gp}. Since

/, P G TV and r is definable from / and P in (ίf(λ), G), also r G TV, and r

is obviously a P-name of an ordinal. By our assumption q Ih "r G TV", hence

<? Ih "(3i G N ) ( f ( i ) G GP)". Since / maps the members of TV Π \I\ to members

of TV Π J, being in N, we have q Ih "(3r G IΠ TV)(r G GP)". Therefore IΠ TV

is pre-dense above q, which is what we had to prove. U2.6

2.7 Remark. For λ > |P| it does not matter in Gon2(λ) whether we require

that for each i < a the set {pij : j < oti} is pre-dense or whether this set is

pre-dense above p. Why? on the face of it the version where we require the set
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{Pij '. j < &i} to be pre-dense is weaker since it makes a stronger assumption,

but we now prove from it the stronger version. Suppose each {pij : j < α^}

is pre-dense above p. Blow each such set by adding to it all members of P

incompatible with p, to get the set {pij : j < βi}. Since \P\ < λ we know

\βi\ < λ so we can apply the weak version of Con2(λ) (βi may be > λ but since

only the cardinality figures here it is O.K. as long as βi < λ+). We obtain a set

A in T>κ0(X) such that for s G A we have a q > p for which for each i G sΓiα the

set {pij : j G s Π βi} is pre-dense above q. For α* < j < βi, pij is incompatible

with p and hence also with ς, therefore also the set {pij : j G 5 Π α^} is pre-

dense above q which establishes the stronger version of Con^X). For P being

a complete Boolean algebra with 1 omitted it suffice to add -p for p G P, p not

minimal, so λ > NO suffice.

2.8 Theorem. (1) Let λ > 2 |p |, λ regular and assume P G H(X) (this adds

little since H(X) contains an isomorphic copy of P). P is a proper forcing notion

iff for every countable elementary substructure N of (ff(λ),€) satisfying P,

p G N there is a condition q, p < q G P such that q is (N, P)-generic.

(2) For λ > 2l p l , P G H(λ), P is proper ifft {N : TV -« (#(λ), G) is countable

and there is an (AT, P)-generic <? > p } G T>χ0(H(X)) for every p G P.

Proof. (1) We first prove that "if" part, i.e. suppose the condition of the

theorem holds, and we shall prove Con2(2'p') (suffice by 1.10 and 2.2). Let

(pij : i < α,j < Oίi) be as in CΌn2(2 |p|). Let N -< (H(X),e) be such that

P>P> (Pίj '. i < θί,j < Qίi) e N. For i e N,Ii = {pij : j < α4} G N since

it is definable in (ίί(λ),G) from (pί><7 : i < α,j < α^) and i. Let # > p be

(AT, P)-generic; since {PΪJ : j < α^} G N and it is pre-dense we have that

Ji Π N = {pij : j G N Π c^} is pre-dense above </. Therefore to establish

Con2(2lpl) it suffices to prove that the set A = {N Π 2'pl : N -< (H(X) G),

and p,P,(pij : i < α,j < α») G JV, |7V| < H0} is in PKo(2 |P |). The set

A* = {N e S*0(H(X)) : N -< (ff{λ),€) and p,P, (p^ : i < α, j < α<> G TV}

t We do not strictly distinguish between the set of ΛPs and the set of their

universes.
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is in £>κ0(#(λ)) by Theorem 2.3. This implies that also A G £>Ho(2 |P|), by the

technique of using a model with operations closed under composition which we

have already used several times, or more exactly by 1.12(1).

Now we prove the other direction of the theorem, so let p G P, {p, P} C

TV -< (H(\),e), N countable and we shall find q as required. Assume that

P is a proper forcing, i.e., Con2(2 |p|). Since λ > 2 |p| in H(\) there is a

sequence (pij : i < a,j < α^) where α» < |P|, α < 2 |p| such that for

i < a the set Xi = {pij : j < &i} varies over all the pre-dense subset

of P. By Con2(2'pl) there is a partial algebra with universe 2'p' such that

Sm(M) C {s G Sκ0(2 |p|) : (3q > p) (Vi G s Π a)[{pij : j G s Π αj is pre-dense

over q]}', necessarily M G H(\). Since there are such (ptj : i < a,j < α^}

and M in H(\) there are such also in N. N obviously contains all the natural

numbers. Since M is given as a mapping of ω on all partial operations of M, all

these operations belong to TV and hence N is closed under them (if you prefer

to see M as (|M|, F), F a function with domain the vocabulary of M, which is

countable, it works as well). Therefore TV Π 2'p' e Sm(M) and therefore there

is a q > p such that (Vi G TV ΓΊ ά)({pij ' j G TV Π c^} is pre-dense over q). Let I

be any subset of P in TV which is pre-dense in P. Since in (H(λ), G) it is true

that "for every pre-dense subset of P there is an i < a such that X = Ti " (since

this is the way we get (pij : i < a,j < α^} in (ίf(λ),G)) and this sequence

belongs to TV; clearly this is true in TV. Therefore X = Xi for some i G TV Π α.

For this i, if j G TV Π α^ then also pij G TV (since (pί)<7 : j G TV Π α^} can be

taken to be one-to-one, if Pij G TV also j G TV Π c^). Thus {pij : j G TV Π c^} =

te,j : J < <%i} Γ\ N = XiΓ\ N = X Γ\ N and we know that this set is pre-dense

above q ( since i G TV Π α). Thus we have shown q > p to be (TV, P)-generic.

(2) Left to the reader. D2.s

2.9 Discussion. We shall now present another proof of the fact that if P

satisfies c.c.c. then it is proper. We shall prove that if r is a name of an ordinal,

TV -< (#(λ), G) and r G TV then 0 Ih "r G TV". There is a maximal antichain X

of P such that for each p G J, p \\~ "r = α" for a unique α. Because of the c.c.c.

|I| < NO so we can take I = {p< : i < α}, α < α;. The sequence (pi : i < a) is
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in H(X) and its properties can be formulated in (ΐf(λ), G). Therefore there is

such a sequence in N. Since ω C N we have pi G N for every ΐ < ω, and if α^ is

the ordinal such that p$ Ih "r = α*", then α» is defined in (if(λ), G) from P, r

and pi hence α$ G A/". As {p; : z < α} is a maximal antichain in P we conclude

0 Ih "τ G {α* : i G α}", but {α* : i < a} C N (see above) so 0 Ih "r G AT".

So for P satisfying the c.c.c., for λ, p, AT as in 2.8(1), we have: p is (TV, P)-

generic.

2.10 Theorem. If the forcing notion P is Ni-complete then it is proper.

Proof. Let λ be large enough, i.e., λ regular and λ > 2'p', let p, P G N -<

(if (λ), G), |AΓ| = NO- Let (li'Λ < ω) be a list of all pre-dense sets which are in

N. We define the sequence (pn : n < α;} of members of TV Π P by induction on

n: po = p and pn+ι > pnι
rn for some rn G Tn Π A/". There is such a pn+ι G JV

since "pn is compatible with some members of Jn"; Jn being pre-dense in N.

By the NI- completeness of P there is a q such that q > pn for all n < ω. Now

q is (N, P)-generic since for every pre-dense subset In of P in AT, In Π A/" is

pre-dense above <? since q > rn, rn G Jn Π TV. (Remember a set Q is pre-dense

above q if for every p > q there is a member of Q which is compatible with p,

but does not have to be > q). Cb.io

Though the following is simple it has misled some.

2.11 Theorem. Let P G N -< (ίf(λ),€), and let G be a generic subset

of P (over V). Let AΓ[G] = {r[G\ : r is a name &r G AT}. Then we have

JV[G] - (AΓ[G],G) -« (^(y[GD(λ),G) (and AT C N[G\ of course).

Proof. By repeating the Forcing theorems for AT and if (λ), Claim I 5.17 implies

AΓ[G] C if(A)v[Gl - H(X)[G\. Let y?(x,yι , . . . ,yn) be a first order formula. We

shall prove that if (if(λ), G)V'G' N (Ξb)</?(z, t / i , . . . , yn) for some y i , . . . , yn G

AΓ[G] then there is an x G N[Gf\ such that
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Then, by the Tarski-Vaught criterion we shall have N[O\ ~<

Since y ι , . . . ,y n € N[G], let Γι, . . . ,τ n e TV be P-names such that yι =

τι[G],.. . , j/ n =τ n [G]. So

V[G] \= "

By the "existential completeness" of the forcing names (see I 3.1) there is a

P-name σ such that

0 Ih "σ G H(\) and (ίf(λ),G) " N (3z)y?(z,τι,... ,rn) —» y?(σ,τι, - - >Γn)"

By I 5.17 and I 5.13, there is a name r G H(X) such that 0 Ih V = r",

V[G7]
therefore 0 Ih "(ίf(λ),G) " |= (Ξkr) y?(x,τι, . . . ,7-2) —> ^(l,Jι,. • ,Γn)"5

where r G H(X). Forcing statements relativized to HV^(X) can be defined

in (#(λ),G), hence (ff(λ),G) h (3 a P-name r) [0 Ih "(ίf(λ), G)V[C?1 h

[(3x(/?(x, TI, . . . , rn)) —> </?(r, TI, . . . , rn)]" . By the Tarski-Vaught criterion for

TV -< (-H"(λ), G) there is such a name r G TV. Thus V[G] satisfies:

^!^],^^],^

We finish as τt(G\ = yt for t = 1, . . . , n and r[G] e [̂G]. D2.ιι

2. 11 A Remark.

Do we have, in 2.11, also (N[G\,N,e) -< (HvW(\),H(X),e)7 This holds

iff N[G\ Π H(\) = N.

2.12 Theorem. Under the assumptions of the last theorem, the following three

conditions are equivalent.

(a) G Π TV is TV-generic, i.e., for every J G N which is pre-dense in P,

(b) N[G] Π Ord = N Π Ord

(c) N[G\ nV
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(d) replace in (a) pre-dense by dense

(e) replace in (a) pre-dense by maximal antichain

Proof, (a) => (c). Let x e N[G] Π V. We shall prove x G N. Since x e N[G\,

x = τ[G] for some r G N. Let I d= {p e P : (By)(p Ih "r = y (i.e y)") V p Ih

«τ £ F"} - {p G P : (By G #(λ))|p Ih «τ - y») V p Ih "r

(Remember that by Claim I 5.17, if r G H(\) and p Ih "r = y", then

y G if(λ).) J is obviously pre-dense in P. Since I is definable in (if(λ),G)

from r, P and τ, P e N also I e N. By (a) there i s a p G J n W n G . Since

^[G] N "τ[G] G F" we cannot have p Ih "r £ if(λ)", hence for some y G if(λ),

P "~ "l — 2/" and as P7 1
 are in N and τ/ is definable from them, necessarily

yeN, hence x = r[G] = y G N Π jff(λ) C TV Π F.

(c) =» (b) is obvious.

(b) =» (a). Let I G A^ be pre-dense in P. Let J = {q G P: for some p G J

we have p < <?}. Let J^ be a subset of J, an antichain in P and maximal under

those two conditions (for C). As J is pre-dense in P clearly J is dense and open

hence J^ is a maximal antichain of P. By the definition of J, as 1^ C J there

is a function / from Ί^ to J such that for every p G J"1", p > /(p) and /(p) G J.

Since I G N x (if (λ), G), there is such an J1" G TV and so w.l.o.g. (I1" G AT and)

/ G AT, since in if (λ) there is a sequence (̂  : β < a] listing the members of

Zΐ , there is such a sequence in N. Let r be the canonical P-name such that for

β < a we have: r [G] — β if qβ G G (since Jt is a maximal antichain of P there is

one and only one such β). So r is a P-name of an ordinal and r G N. By (b) we

have r[G] G AT. So 7 d= τ[G] G JV. Since (̂  : β < a) G N also ?7 G A/\ Since

τ[G] = 7, g7 G G but <?7 G It so /(ςr7) G J, hence f(qΊ) G N (as <?7, f e N)

and /(ςτ) G G (as <?7 > /(<?7) & <?7 G G) hence clearly /(<?7) G JΠ TV Π G and

so J n AT n G ^ 0.

(e) => (a) => (d) Left to the reader. ^2.12

2.13 Corollary. Assume P is a forcing notion and P G N -< (if(λ),G) and

^ G P, then the following are equivalent:

(a) q in (AT, P)-generic.
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(b) q Ih "ΛΓ[GP] Π Ord = N Π Ord" .

(c) q\\- "N[Gp}nV = NnV".

(d) for every maximal antichain X of P which belongs to N we have

q\\- "NnlnGp ^0".

(e) for every dense open subset X of P which belongs to N we have:

q\\- "

(f) ς r l h "(7V[Gp],JV,G) -< (H(X)Vl9p],H(λ),€)n.

Proof. Each of the present (a) - (e) is equivalent to the statement that the

corresponding condition in the last theorem holds for all generic subsets G of

P which contain q. Eb.is

§3. Preservation of Properness Under
Countable Support Iteration

3.1 Definition. We call Q = (Pi,Qi : i < a) (or (Qi : i < a}} a system

of countable support iterated forcing (or a CS iterated forcing system or a

CS iteration) if the following holds (on canonical names see Definition I 5.12,

Theorem I 5.13):

Pi — {/ : Dom(/) is a countable subset of i and

(Vj e Όom(f))[f(j) is a canonical P^-name

and \\-Pj "/(j) € Qi')}}.

Qi is a P^-name of a forcing notion.

The partial order <i on Pi is defined by

j G Oom(f))\g\j Ih "/(j) <?.

For every j φ Dom(/) we take f(j) to be a name 0^ = 0 .̂ of the minimal

member of Qj. Let Pα be defined like Pi above. We say: the forcing notion

defined by this system is the (partial order) Pα. We say Pα = Lim<^1 (Qj : j <

a) or Pa = Lim<^1|Q|. We may omit the "< NI".

Instead "f(i) is a canonical Pi-name" we can use other variants.
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3.1 A Fact. For Definition 3.1 the parallel of II 2.2A hold (only in part (7)

(Vα < λ)[|α|H° < λ] is needed), i.e. in Definition 3.1:

(1) If i < j < a then Pi C Pj as sets and even as partial orders.

(2) If i < j < a and p G Pj then p\i G P;; moreover Pj \= "p\i < p" and if

p\i < q £ Pi then r = q U p\(j \ ϊ) belong to Pj and is the least upper

bound of ς, p in Pj (actually a least upper bound).

(3) If i < j < a then Pi <$ Pj and q G Pi, p G Pj => Pj N q < p <& P* N q < p\i.

(4) If j < a is a limit ordinal of uncountable cofinality then Pj — \J P^.
i<3

(5) The sequence (Qj : j < a) uniquely determines the sequence ( P j , Q j : j <

α) and vice versa and similarly for (P^, Qj : j < α, and i < α).

(6) If Q'i is a Pi-name, such that Ih "QJ is a dense subset of Q" then P[ —

{/ G Pi\ for every j G Dom(/) we have: lhPi "/(j) G QJ"} is a dense

subset of P^. Moreover we can define and prove by induction on i < α,

P" = {f G Pi : for every j G Dom(/) we have: f ( j ) is a P/'-canonical

name of a member of Q^} is a dense subset of Pi and Q" is a canonical

Pf-name satisfying lhPί "Q? - Q^" and (J^,Q£ : jo < i, ji < i) is a FS

iteration.

(6A) Assume Q^ is a set of canonical P^-names, such that for every P^-name p

for some q G Q , Ihp. "if p G Qi then Q^ N p < f . Then P{ = {f e P*:

for every j G Dom(/) we have: f ( i ) G QJ} is a dense subset of Pi and

(P/,<2i : i < a) satisfies (1) - (4) above.

(7) Moreover we can define and prove by induction on i < α, FΪ, P" such that

/f = {/ 6 PI : for every j € Dom(/), /(j) e Rang(F,, )}

is a dense subset of Pi and F^ is a function with domain the P/'-names of

members of QJ, satisfying: p G QJ => ίi(p) is a canonical P/'-name forced

to be equal to p. So letting QJ7 — {p : p a P/'-name of a member of Q^},

we have: (P",Q" : i < a) is a countable support iteration, P/' C Pj is a

dense subset.
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(8) If Q = (Pi, QJ : i < α, j < a) is a CS iteration, and for i < α, \\-P. "Qi G

H(\i)" and (\i : i < α) is an increasing sequence of regulars satisfying

2λί < λi+i and for limit δ < a => (£ A,)*0 < λ^ then Q G

3. IB The Definition by Induction Theorem, (one can construct Q^s

by a given recursive recipe ). If F is a function and α is an ordinal then

there is a unique CS iterated forcing (Qj : j < a^) such that for all j < αo

QJ = F((Qi : i < j ) ) and either α0 = α or else F((Qi : i < α0)) is not suitable

for Qao, i.e., it is not a name of a forcing notion in the forcing notion Pαo.

Proof. This theorem is an obvious consequence of the standard definition-by-

recursion theorem. ΠS.IB

3.2 Theorem. If (Pi, Qi : i < a) is a countable-support iterated forcing system

and for each i < α, lhp i "Qi is proper" then Pα is proper.

Remark. The reader may look at the alternative proofs presented in the book:

IX §2 (for one using alternative iteration) XII §1 (the one using games) and

another proof later in this section.

Proof. In Theorem 2.8(1) we showed that P is a proper forcing iff for some

λ > 2'p' every countable elementary substructure TV of (ίf(λ),G) such that

P,p G N has a q , p < q G P such that q is TV-generic. As easily seen from the

proof or by 2.8(2) it suffices to require this only for all such N which contain

some fixed member y of H(\).

For our present proof we choose a regular cardinal λ which is large enough

with respect to |Pα|> and the definition of the iteration and we shall show that

Pa is proper by showing that for every countable elementary substructure N

of (/f(λ), G) such that (Pi,Qi : i < a) G N, Pa G N and for all p G Pα Π TV

there is a g, p < q G Pα which is TV-generic. We shall show, by induction on

j < a such that j G TV, a somewhat stronger property:

(*) For all i < j, i G TV and for all p G TV Π P, , and q G P» if <? is (TV, P»)-

generic and </ > pf* then there is an r G Pj such that r is (TV, P^-generic, r > p

and r > q and r \i = q (we could add Dom(r) Π [i, j) — TV Π [i, j)).
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For j = 0 the statement (*) is vacuously true. Now we assume (*) for j

and prove it for j + 1. Since j + 1 G N also j G N. Therefore, since (*) holds

for j we may assume, without loss of generality that i = j. Let Gj be a generic

subset of Pj which contains q. By Theorem 2.11 we have

since Pj G N (because j, (Pi,Qi : i < a) G N and Pj is definable in

(if(λ),e) from j and (Qi : i < α}) and ζ^ G N and hence Qj[Gj] G JVfG^ ].

Remember that Qj[Gj] is a proper forcing in V[Gj]. Since p,j e N also

P(j) = PJ £ N and pj [G ]̂ G Qj[Gj] Π W[Gj]; since λ is still sufficiently

large and Qj[Gj] is proper there is an TJ G Qj[Gj] such that TJ > pj[Gj]

and TJ is ( TV [Gj],Qj[Gj]) -generic. Since the only requirement we had about

the generic subset Gj of Pj was that is contains q, q forces the existence of an

TJ as above. By the existential completeness lemma I 3.1 there is a name TJ

such that q \\-j "TJ G QJ&TJ > PJ&ΓJ is (N[Gj], Q j )-generic" and w.l.o.g.

\\-P. "TJ G Qj\ We set now r = q U { ( j , r j ) } Obviously r G PJ+I and r f j = g.

Also since <? > p f j and q Ih "r^ > PJ" we have r > p. We still have to prove

that r is (AT, Pj+ι)-generic.

By the corollary in 2.13 in order to prove that r is (AT, PJ+1)-generic

it suffices to prove that for all generic subsets G of Pj+i which contain r,

ΛΓ[G]nOrd = ΛΓnOrd. Let Gj be the part of G up to j i.e. GnPj. Since r G G

clearly q G Gj. Since q is (N, Pj)-generic we have N[Gj] Π Ord = N Π Ord. Let

G* C Q j [ G j ] , be the "j-th component" of G. Since r G G clearly r,[G] G G*.

Since r^Gj] is (^[G^^^G^D-generic wehave7V[Gj][G*]nOrd = TVfG^ΠOrd,

and using the equality above we get N[Gj][G*] Π Ord = TV Π Ord. We have

to observe that N[G\ C N[Gj][G*], then we have N[G\ Π Ord = N Π Ord.

For every Pj+i-name r in N there is a name r* G TV as in Lemma II 1.5

(r* is definable from r and Pj+i, and is hence in N). By Lemma II 1.5,

τlG\=τ [Gj][G*}€N[Gi]lG }.

Now we come to deal with the case where j is a limit ordinal. Let (rn : n <

ω) be a sequence of all Pj-names of ordinals which are in N. Note that TV Π j
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is a countable set with no last element, so let i = IQ < i\ < in < , (n < ω),

be a sequence cofinal in it.

For p1 G Pj and qf G Pin such that q1 > p'\ίn let q'ϋpf denote qf U (p'\(j \

in)). Since q' > p'\in, q'Qp' G Pj and q'Up' > pi. For pι,p2 € Pj we write

Pi w p2 for pi < p2 &P2 < Pi-

We define now two sequences (qn : n < ω) and (pn : n < ω) such that

qQ — q, PQ — p and for all n < ω:

(1) ςfn G Pin and #n is (N, Pirl ) -generic

(2) qn+ι \in = qn

(3) pn G Pj and Dom(pn) C TV Π j

(4) qn > pn \in

(5) Pn+i tin - pn ίin and <?nUpn+l > Pn

(6) Qn ^pln "(3s G P, Π TV) (3ςt > ^Jίstin < ̂  &g f G GPiτι

(7) 9nOpn+ι Ihp, "rn G TV"

Let us assume that qn and pn are defined and that they satisfy (1) - (7).

We shall now define pn+ι and qn+ι- Let G be a generic subset of Pin such that

qn G G. We shall see that there are q^ G G,s and 5* such that

(a) ςft > qn and 5 G Pj Π TV, s\in < g f, ^Opn ^ ςftQs.

(b) 5* fin < q^ 5* G PJ Π TV, 5* > 5 and s* decides the value of τn.

By (6) there is an 5 G Pj Π TV and a ςft > gn, φn < ςft such that q^ G G

and ςtQs « gtOpn. The set J0 = {s* : s* > s and s* decides the value of rn}

is obviously a pre-dense subset of Pj above s. This set belongs to TV since it is

definable from the parameters 5 and rn which are in TV. Let X denote the set

which consists of the restrictions of the members of IQ to in, since J0 £ TV and

s G TVίΊPj clearly J G TV and J is a pre-dense subset of Pίτι above s \in. Since <?n

is (TV, Piτι)-generic and 5 \in < qn we have ίΠTV is pre-dense above qn. Therefore

J n T V ( Ί G ^ 0 . L e t r G Z n T V n G , then "r is a restriction to in of a 5* G Pj

such that s* > s and 5* decides rn and s*\in G G" is true in (JH"(λ)vtG', G).

By Tarski-Vaught's criterion there is such an 5* in TV[G], but 5* G Pj C V

and by 2.13(c) (as qn G G, ςfn is (TV, Pin )-generic) we know TV[G] Π V = TV,

together s* G TV. Thus r = 5* \in G G, and we can take gt to be > s* fin. Thus
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ς f t , s * are as required by (a) and (b). Therefore V[G] N α(35*)(3^ G G)(s* and

<?ΐ are as in (a) and (b), and 5* is the first such element in some fixed well

ordering of P j ) " . By the existential completeness lemma there is a P^-name

s* such that qn Ih "(3q* G G) [s*,<^ are as in (a) and (b) and 5* is the least

such]". Since each possible s*[G\ is in TV and it satisfies that |Dom(s*)| < K0 in

(JY(λ), G), it satisfies this also in TV, hence Dom(s*) C N (since an enumeration

of Dom(s*) is in N). We define pn+ι as follows. Let pn+ι\in = Pn\i>n For

7 G j ΓΊ TV \ in let pn+ι(7) be the P7-name of the member of QΊ determined by

5* (i.e., if 5* is a set of pairs of members of Pin and members of Pj Π TV then

pn+1(Ί) = {(r,t) : (3rt <r)(3s) «τ t,β) e β*&(3r" <r)«r",ί) € s(7)))}).

Now let us define qn+ι For each s £ Pj Γ\ N such that s fz n < <?n there

is, by the induction hypothesis an qn+ι(s) G Pin+1 such that qn-\-ι(s)\in — Qn,

tfn+ι(s) > stWi and gn+ι(s) is (N, Pin+1)-generic. We define qn+ι as follows.

The domain of qn+\ is the union of all the domains of the ςn+ι(s)'s for 5 G TV

as above, and since TV is countable the domain of qn+ι is countable. Let

q n+i \in = 9n For in < 7 < in+ι such that 7 G Dom(<?n+ι) if qn G G, and G is a

generic subset of Pin, then V[G\ N (3u)(35 G P/ Π AT) ([ςnU5 w qnΰpn+ι] &u =

gn+ι(s)). By the existential completeness lemma there is a Pίn-name u of a

Pin+1-condition such that qn \\-pin "(3s G Pj Π TV) (gnϋs w ςnϋpn+ι&u =

qn+ι(s))". Now u determines canonically a P7-name of a Q7-condition: ^(7),

which is taken to be the value of qn+i(^}.

We shall not present here the proof that pn+1 and qn+ι thus defined satisfy

(1) - (7).

Now we define r — Un<u;^n. Clearly r belongs to Pj. We claim that for

every n,r > pn. To prove that we have to show that for every 7 G Dom(pn),

r\Ί ^ "Pn(j) < r(τ)" Since 7 € Dom(pn) we have, by (3), 7 G TV. Let k be

minimal such that 7 < ik then, by clause (4) we have q^ > pk f i f e , hence ̂  ί7 "~

uPk(Ί) < QkW By the definition of r, ^[7 = r\Ί,qk(<j) = r(j). Also, by (5)

if n > k then ^(7) = Pn(τ)5 hence r\j \\~PΊ

 αpn(τ) < ^(τ)" So assume n < fc

(hence A: > 0); now for i < /c we have: qe\Jpe+ι\Ί \\~p^ "pt(j) <QΎ ^£4-1(7)"

(by clause (5)) but ^[7 > q£θpt+ι\Ί for £ < k (by clauses (4) and (5)) hence

qk\Ί\^PΊ "Po(7) <Pi(7) < - - . <Pfc(τ)", hence gfe ί7 1̂  "Pn(7) < Pfc(7)", but
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we have proved above qk\Ύ \\~p^ "pk(Ί) < ^(τ)"5 hence qk\j \\-pk "PΠ(Ί) <

qk(lY - However r\j = qk\Ύ and 3^(7) = r ( j ) (as 7 < i^) hence this means

rΓ7 \\~PΊ "pn(7) < r(lY as required. So we have really proved Pj N "pn < r".

Thus, by (7), r Ih "rn € TV" and therefore r is (TV, P/)-generic which finishes

our proof. D3.2

3.3 Alternative proof of 3.2.

3. 3 A Advice to the reader. There are situations where it is enough to un-

derstand and believe the statement of a theorem (as opposed to its proof). For

example, we took this attitude in Chapter 1 when we discussed the fundamental

theorem of forcing.

However, this approach should not be used here. Not only is the preceding

theorem basic for the theory to be developed in the rest of the book, it is (in

the author's opinion) also essential for the reader to understand the proof, since

variations and extensions of this proof will appear throughout the book.

To help the reader understand the proof of the Theorem 3.2 better we now

give a reformulation of this proof which is due to Goldstern [Go] . This version

emphasizes the fact that the conditions pn are in N by constructing the whole

sequence (pn : n < ω) before constructing the generic conditions qn.

N is an elementary submodel of some H(χ) for some large χ containing

3.3B Fact. If β > α, q e Pa, p G Pβ, q >* p\a, then Q+ d= q\Jp\[a,β) is in

Pβ, and g+ >* p (i.e., q+ Ih p e O).

3.3C "Existential Completeness Lemma". For any forcing P, and any

condition p £ P, any formula φ(x):

p Ih 3 x φ(x) iff there is a name r such that p Ih φ(τ).
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Proof. By I 3.1.

3. 3D Preliminary Lemma. (This lemma does not require properness.)

Assume αi < α2 < /?, pi is a Pαι-name for a condition in Pβ. Let T be a dense

open set of Pβ. Then 0ptt2 lhpQ2 3p2<£>(p2), where <^(p2) is the conjunction of

the following clauses:

(1) P 2 G P £ , p 2 > * p ι .

(2) p2 6 J.

(3) If pl \a2 G Gα2 , then p2 k*2 G Gα2 .

3.3E Remark. By the existential completeness lemma there is an α2-name p2

for a condition in Pβ such that \\-pa

3.3F Remark. The Pαι-name p\ corresponds naturally to a P^-name, which

we also call p\.

Proof. Assume not, then there exists a condition r G Pa2 such that

r Ih "there is no p2 satisfying (l)-(3)".

We may assume that r decides what p\ is, (i.e. r \\- pi = pi for some pi G V),

and r also decides whether pi ία2 G Gα2 .

Case ί. r\\- pι\a2 £ Ga2:

But then (3) is true for any p2, so

r Ih "there is no p2 satisfying (l)-(2)"

which is a contradiction since T is a dense open.

Case 2. r Ih pιfα 2 G Gα2, i.e. r >* pιfα 2. Now let r' = r Upιf[α 2 ,/?) >* Pi,

and find r/r G D, r" > r7. Then

r / / fα 2 Ih r" satisfies (l)-(3),

again a contradiction, because r / ;fa2 > r.
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3.3G "Composition Fact", q e Pα+ι is (Pα+ι, A^-generic iff:

q\a is (Pα, 7V)-generic, and q\a Ih uq(ά) is (Qα, AΓ[Gα Π AT])-generic."

Proof. See §2.

3.3H Induction Lemma. For all β £ N Π ε, for all α £ N Π ε, all p £ TV

assume p is a Pα-name for a condition in Pβ, and

(a) q € Pα

(b) <? is (Pα,7V)-generic.

(c) <?lhpQ "pΓαeGαΓUV' .

Then there is a condition q+:

(a)+ g + G P / 3 , g+tα = g

(b)"1" <7+ is Af-generic

(c)+ g+lhp, " p e G ^ Π T V " .

(Note that "q is TV-generic" implies already "q Ih p £ AT"", so the main point of

(c) is to say that q Ih p\a € Gα)

(For α = 0 this shows that Pβ is proper.)

Proof.

The proof is by induction on β.

Successor step.

Let β = β' + 1. Since we can first use the induction hypothesis on α, β" to

extend q to a condition <?' £ P^// satisfying the appropriate version of (a)-(c),

we may simplify the notation by assuming β = a + 1.

Clearly q lhPα "AΓ[Gα] -< #(χ)^]", 9 lhPa "there is a (Qα,JV[Gα])-

generic condition > p(a)n. By "existential completeness", there is a Pα-name

q+ (α) for it. By the "composition fact", we are done.

Limit step.

Let β E N be a limit ordinal, β G N = \J αn, α0 = α, αn £ N. Let (Jn : n < ω)

enumerate all dense subsets of Pβ that are in N.
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First we will define a sequence (pn : n < ω), pn G N such that in N the

following will hold:

(0) pn is a Pατι-name for a condition in Pβ

W lh^+1 ?n+l >* Pn

(2) lhPατι+ι ?n+1 € In

(3) ll~^τι+1 "If PnΓαn+ι G Gan+l then pn+ι ίαn+ι G Gttn+1".

For each n we thus get a name pn that is in N. For each n we can use the

"preliminary lemma" (and Remark 3.3E before its proof) in N to obtain pn+ι-

Now we define a sequence (qn : n < ω), qn G Pttrι, and gn satisfies (a), (b), (c)

(if we write qn for g, pn for p, and αn for α).

<?n+ι = <?n can be obtained by the induction hypothesis, applied to αn, αn+ι,

and ί>nΓ<*n+ι By (c)+ we know

Hence, by (3) and the genericity of ςn+1 we have

<7n+ι IHp^^ "(Pn+ι[Gαn+1])rαn+1 € G0n+1 Γ\N".

Since gn-i-i \&n — Qn, Q — limς'n exists and is > qn for all n.

We have to show that q Ih p G G0 Π AT and that g is generic. Let Gβ

be a generic filter containing q. We will write pn for pn[Gαn]. (Note that

pn G AT, because ςn was A^-generic and qn G Gf

αn.) Since gn G G/j, we have

pn fα G Gατι Π AΓ and AT N pn >* pn_ι >*. . .>* p0 Hence pfαn G Gαn Π AT for

all n, and therefore p G G/j Π N. Similarly, pn G G^ for all n.

Consider a dense set In C P^. Since gn_j_ι Ih pn+ι e Xn, we have pn+ι G

G^ Π Jn Π JV. Hence g is generic. D3.3

More advice to the reader. It may also be helpful to look at the proof in Chapter

XII, §1, which uses games. (Chapter XII, §1 can be read independently of

chapters IV to XL)
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3.4 The General Associativity Theorem. Suppose (Pi,Qi : i < a) is a CS

iterated forcing system each Qi proper then the parallel to II 2.4 holds.

Proof. Left to the reader. Ds.4

3.5 Theorem. Suppose (Qj : j < a) is a (< /ί)-support iterated forcing,

If Ihp. "Qj <e Q],Qj a dense subset of QJ" and PJ = Lim{Qt : i < j),

t/ien Pj <£ PJ is a dense subset of Pj.

Remark. By Lemma I 5.1 (a), we can replace Qj by any equivalent Qj (just

use 3.5 a few times).

Proof. Left to the reader. DS.S

§4. Martin's Axiom Revisited

Why is c.c.c. forcing so popular? I think the main reason is that such forcing

notions preserve cardinalities and cofinalities, so why shall we not be interested

in the property "P does not collapse cardinals " instead "P satisfies the c.c.c. " .

In particular Magidor and Stavi had wondered on the role of the c.c.c. mainly

in MA and asked:

"Is it consistent that for any forcing notion P of power NI not collapsing

cardinals (i.e., NI) and dense Ii C P (for i < NI) there is a directed G C P,

such that G Π Z< ^ 0 for i < NI?"

In particular Baumgartner, Harrington and Kleinberg [BHK] proved that

if 5 C ω\ is stationary co-stationary, and CH holds, then there is a forcing

notion PS = {C : C a countable closed subset of S} with the order C\ < C-2

iff C\ = C<2 Π (SupCi -f 1) which does not change cardinalities and cofinalities

and which collapse 5 ( i.e., collapse its stationarity, i.e., !hps "5 C ω\ is not

stationary " .
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So why not include such forcing in MA? Because we can find pairwise

disjoint stationary sets Sn C ω\,ω\ — Un<α,5n. If we make each Sn in turn

not stationary, ω\ must be collapsed. More exactly, if we try to iterate the

forcings Psn, after ω steps HI collapses, no matter how the limit is taken. It

does not matter if we look at the desired version of MA, in some V and let

J£ = {C € PSn : sup(C) > α}. Thus if G Π J£ ^ 0 for n < α;,α < ωi, then in

V, each 5n is not stationary.

You can still argue that CH is the cause of the problem but we shall prove

in Theorem 4.4 that even 2H° > Hι,S C ω\ stationary co-stationary there is

a forcing notion P of power HI, not changing cardinalities and cofinalities but

still collapsing S.

So it is natural to change the question to "P of power HI, not collapsing

stationary subsets of HI", and we shall answer it positively, assuming there is

a model V of ZFC with a strongly inaccessible cardinal.

The natural scheme is to iterate (by CS iteration) proper forcing of power

HI, in an iteration of length ω%. However to prove the consistency of almost

anything by iterating proper forcing we usually have to prove the ft-chain

condition is satisfied, where K will be the new H2 and the length of the iteration.

We have a problem even if \P\ = HI, Ihp "|Q| = HI", P * Q have a large power

because of the many names. We can overcome this either by using K strongly

inaccessible, or showing that the set of names which are essentially hereditarily

countable is dense.

Another problem is that "not destroying stationary subsets of ω\n is not

the same as "proper". However we shall prove that if P is not proper, then

'^Levy(H1,2ipi) "^ destroys a stationary subset of ω\". So instead of "honestly"

dealing with a candidate P i.e., a forcing notion which does not destroy sta-

tionary subsets of α i, but is not proper we cheat and make it to destroy a

stationary subset of ω\.

4.1 Theorem. Suppose Q = (Pi,Qi : i < K) is a CS iteration Ihp. "Qi is a

proper forcing notion which has power < «", « is regular and (Vμ < κ)μ*° < K.



§4. Martin's Axiom Revisited 119

Then PK = limQ satisfies the ft-c.c., and each Pi(i < ft) even has a dense subset

of power < ft. Hence for i < ft, Ihp. "2*° < A C " .

Proof. Easily (twice use 3.4), w.l.o.g. the set of elements of Qi is a cardinal

μi < ft; (i.e., μ* is a P^-name of a cardinal < ft).

4.1 A Definition. For a forcing notion P and P-name Q of a forcing notion

with set of elements μ (a P-name of cardinal) with minimal element 0g (can

demand it to be 0) we define a hereditary countable P-name of a member of Q:

it is the closure of the set of ordinals < μ (see (*) below) by the two operations

(a) and (b) (see below):

(*) the names ά for a < μ or more exactly for an ordinal α the P-name

τa is such that τa[G] = a if α < μ[Gp] and τa[G] — 0g[Gp] if

α > μ[Gp]. Of course we can restrict to τa such that l/p α > μ. Also

if μ = μ we can use just ά, α < μ

(a) if rn(n < ω) are such names, and pn G P (for n < α;) ίften let r be

the rn for the least n satisfying pn G Gp, and 0g if there is no such

n.

(b) if rn>m(n < α;, m < ω) are such names, let r be the least ordinal a < μ

such that for every n, {τn>m : m < ω} is pre-dense over r (in Q); and

0g if there is no such α. (Remember: the members of Q are ordinals

<μ).

We shall prove by induction on ξ < K that Pξ satisfies the tt-chain condi-

tion.

Suppose this holds for every ζ < £, so for ζ < ξ by Claim I 3.7 clause (ii)

we have < K possible values for μ^, each is < K so

μc

 d=f sup{μ : I/P( "μ ^ μc"}

is < ft (as ft is regular). So for C < ζ w.l.o.g. μ^ = μ^ (as we can add to Qζ

the ordinals i, μ^ < i < μζ such that i is w to the minimal element 0gJ. Let

us define by induction on C, Pj = {/ : / a function with domain a countable
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subset of ζ, f ( ϊ ) is a hereditarily countable P/-name of an ordinal < μ;}. Let

Pξ C Pξ inherit its order. We now can prove by induction on ζ < ξ, that Pί

is a dense subset of Pζ, using the proof that properness is preserved by CS

iteration. It is clear that |P^| < \ξ\*°, so for ξ < /ς, Pξ has a dense subset of

power < ft. So we finish.

For ξ = ft, if pi e PK for i < «, clearly S = {i < K : cί(i) = NI} is

stationary, f ( ϊ ) = Sup[i Π Dom(pi)] < i is a pressing down function, hence by

Fodor Lemma on some stationary 5ι C 5, h has a constant value 7. There is

a closed unbounded C C K such that: if β G C, α < β, then Dom(pα) C /?. So

5χ Π C is still stationary, hence has power K and for α,/3 e C Π S\,pa,pβ are

compatible iff Pαf7,ί>/3t7 are compatible (in P7 or Pκ, does not matter). But

we have proved that P7 satisfies the K-chain condition, so we finish. U4.ι

We have proved

4.IB Claim. For Q = (Pi,Qi : i < α), a CS iteration of proper forcing, such

that for each i < a it is forced that Qi is with set of elements C Ord, we have,

for i < a:

1) PI = {/ G Pi', for j e Dom(/), f ( j ) is a hereditarily countable Pj-name}

is a dense subset of P^, and i < j < a and / G P ^ f\i G P/

2) If / is a Pa-name of a function from ω to Ord and cf (α) > NO Λen for a

dense open set of q G Pα, for some β < a and P^-name # of a function

from ω to Ord, q \\-Pa "f = g".

4.2 Theorem. Suppose P is not proper, then there is an Ni-complete forcing

notion Q, in fact Q - Levy(K!,2lpl) will do, such that |Q| < 2'pl and \\-Q "P

collapses some stationary 5 C ω\".

Proof. As P is not proper, there is a stationary 5 C <S^0(μ) which P destroys,

NO < μ < 2'pl. So there are P-names F^ of n-place functions from μ to μ, such

that ll-p "Sm((μ, Fg,...)) Π 5 = 0". Let Q - Levy(Nι,μ) - {/ : / a function

from some α < ω\ into μ}.
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Fact A. \\~Q "S is a stationary subset of SχQ(μ)n .

This is because Q is HI -complete hence, by 2.10, proper.

Fact B. The statement Ihp "5 C Sχ0(μ) is not stationary " is absolute, i.e., if

it holds in V it holds in VQ.

We just have to check that the P-names FL

U continue to satisfy the suitable

requirement (and Q adds no new member to P and no new member to 5).

Fact C. \\-Q " the ordinal μ has power HI".

This is trivial.

Fact D. If forcing by P destroys a stationary subset of Sχ0(A)(A = μ in our

case ), A of power H1 ? then forcing by P destroys some stationary subset of ω\.

(follows from Lemma 1.5 and 1.12(3)). U4.2

4.3 Theorem. Suppose ZFC has a model with a strongly inaccessible cardinal

K. Then ZFC has a model in which 2*° = H2 and

(*) If P is a forcing notion of power HI not destroying stationary subsets of

α i, and Ti C P is dense for i < ω\ then there is a directed G C P satisfying

Q toτi<ωl.

Proof. Notice that ΐ / V N "« > H 0&κ< / ς = κ& |P| < «&(3λ < /ς)[P has the

λ-c.c.]" then Vp N "*;<* = Aί&« > H0".

This is proved exactly as the parallel fact in Theorem II 3.4. Now let

{Sa : a < /ς} be a partition of K to K sets such that β G Sa => β > α,

and |5α| = K. Define by induction on i < K a CS iterated forcing system

(Pi, Qi : i < K). Let (<ξ : ξ G 5α) be a list of the canonical P^-names of partial

orders on ω\. The induction hypothesis for i < K is:

(1) Qj is proper for j < i.

(2) the density of Pj is < K (i.e. it has a dense subset of cardinality < «).
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Assuming (Pj, Qj : j < i) is already defined, let

_ ί (ωi, <i> if Il-Pi "(ωi, <i) is proper"

\ Levy(Nι, 2*1) otherwise

where Levy (Hi, 2H l) means "2Nl and the Levy collapse are interpreted in VPί",

so are P^-names. Clearly Pi is proper (by Theorem 3.2 and remembering that

Levy(Nι,2Kl) is Ni-complete hence by Theorem 2.10 proper). We still have to

check that density(Pi) < K but it is easy, note that we use Theorem 4.1. Finally

also Pκ is proper by 3.2 and (again by Theorem 4.1 ) satisfy the ft-c.c. which

makes it possible to prove VPκ N (*) exactly as in the proof of Theorem II 3.4,

but using 4.2 above. U4.3

Note that in view of Theorem 4.1 we have a parallel of MA for proper

forcing without assuming an inaccessible. We now return to a promise.

4.4 Theorem. Suppose 5 C ω\ is stationary co-stationary (i.e., also ω\\S

is stationary too). Then there is a forcing notion PS which shoots a closed

unbounded CCS (i.e., add such a set ) without collapsing cardinals (or

changing cofinalities).

Remark. So we cannot answer Magidor, Stavi's question positively in the orig-

inal version.

Remark. Assuming CH this was done by Baumgartner, Harrington, Kleinberg

[BHK]. Without CH, Abraham [A] and Baumgartner [B3] introduce forcing

notions which add a new closed unbounded subset of ω\ (for different purposes).

We can adapt each for proving 4.4., and will use a forcing similar to Abraham's.

Proof. Let P = Levy(N0> < NI) So P is essentially adding N! Cohen reals. If

Gp C P is (directed and ) generic over V, then Gp is also generic over L (the

constructible universe) as P € L and also over L[S\. By Theorem I 6.7 the

forcing P satisfies the countable chain condition and H^ p^ = ̂

and V, V[Gp] have the same cardinals and cofinalities. Let
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Q = {G : C a closed bounded subset of 5 which belongs to L[S, Gp}}

GI < G2 iff GI = C2 Π (Max(CΊ) + 1)

Clearly Q is a forcing notion of power NI, so it cannot collapse cardinals or

regularity of cardinals except possibly KI (all finite subsets of S belong to Q).

So we shall prove that P* Q does not collapse NI. So let (in V) N -< (H(X), G),

TV countable, (p, q) G P * Q G N, (p, q) G TV, 5 = N Γ\ ωι e S and suppose

Gp C P is generic over V and p G Gp. Note that as S is a stationary subset

of ωι, there is such N (in V). So it is enough to find (qr,p') > (q,p) which is

(N, P * Q)-generic. As P satisfies the countable chain condition, p is (TV, P)-

generic (by 2.9), hence N[GP] Π V = N. Clearly Q[GP] G L[S,GP] C V[GP],

now N[Gp] does not necessarily belongs to L[S, Gp], but N[Gp] Π L[S, Gp] is

N[GΊ] Π L5[5, Gp] = Lδ[S, Gp] G L[5, GP] and is a countable set in L[5, GP].

In LfίS, Gp] we have an enumeration of Q[Gp] Π 7V[Gp] (of length ω), say

(ςn : n < c«;} (but not of the set of dense subsets ); in fact we have it even

in L[S, Gp \(δ + 1)] (and as we use Levy(Ho, < NI) not Levy(^o? < ^) even in

L[5, GP \δ]). Now in L[5, GP] there is a Cohen generic real over V[GP \(δ + 1)]

say r* G ωω and we use it to construct a sequence G — (Cn : n < ω) such

that Cn G Q[Gp] in L[5, Gp] i.e. C £ L[S, Gp], e.g. we choose Cn by induction

on n; we let GO = q[GP] and we let Gn+ι be ςm(n) where m(n) is the first

natural number m such that: m > r*(n) and Q[Gp] |= "Gn < qm

n. Let G =

{q : ςf G Q[GP], and q G AΓ[GP] and for some n, Q[GP] |= q < Cn}. Clearly

G' C 7V[Gp]nQ[Gp] is generic over V[GP\(δ+l)}. So qi = {JnCnU{δ} G Q[GP]

is (AΓ[Gp],(3[Gp])-generic. Going to names we finish. D4>4

Remark. Also N in V[Gp] is O.K. as it still belongs to some V[Gp \a] for some

a <ω\.

§5. On Aronszajn Trees

5.1 Definition. 1) A cardinal K, is said to have the tree property if every tree

of height K in which every level has < K, members has a branch of length AC. A
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tree which is a counterexample to the tree property of K is called a K- Aronszajn

tree. By the Kόnig infinity lemma H0 has the tree property.

2) A ft- Aronszajn tree in which every antichain is of cardinality < K is

called a κ-Souslin tree. An Hi-Aronszajn tree, and an Ni-Souslin tree are called

an Aronszajn and a Souslin tree, respectively. A λ+-Aronszajn tree is said

to be special if it is the union of λ antichains, if λ = NO we may omit it. A

special Aronszajn tree cannot be Souslin, since in a Souslin tree every antichain

is countable, hence the tree, being uncountable, cannot be the union of N0

antichains. A λ-wide Aronszajn tree is a tree with ω\ levels, λ nodes and no

5.1 A Remark. It is easy to show that an Aronszajn tree T is special iff there

is a function / : T — > Q which is order preserving. A A~*~-tree which is special

is a λ+-Aronszajn tree. The following was proved by Aronszajn, [Ku35] (and

5.3 is a well known generalization).

5.2 Theorem. There is a special Aronszajn tree T.

Proof. The members of the α-th level Ta of T will be increasing bounded

sequences of rational numbers (of length α) with < as the tree relation. When

we come to define Ta we assume that for all β < 7 < α and for all x G Tβ

and every rational q > Sup(Rang(x)) there is a y G TΊ such that x < y and

Sup(Rang(i/)) = q, and \Tβ\ = N0 If α = 0 take Ta = {<>}. If a = 7 + 1

take Ta = {z~ < q >: z G TΊ&q G Q&g > Sup(Rang(z))}, where Q is the

set of all rational numbers. Obviously \Ta\ = \Tβ\ N0 = NO- The induction

hypothesis holds also for β < α, as easily seen. If α is a limit ordinal then

for every x G Uβ<olTβ and every q > Sup(Rang(x)) we shall construct a

sequence y of length α which extends x such that Sup(Rang(y)) = q. Let

(βn : n < ω) be a (strictly) increasing sequence such that x G Tβ0 and

Sup{/3n : n < ω} = a. Let (qn : n < ω) be an increasing sequence of rationale

such that <?o > Sup(Rang(x)) and Supn<ωqn = q. We define now a member

xn G Tβn such that Sup (Rang (xn)) = qn as follows: x0 = x Assume xn G Tβn is
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defined; Sup(Rang(zn)) = qn < qn+ι then by the induction hypothesis there is

an zn+ι G T0n+l such that xn < xn+l and Sup(Rang(zn+ι)) = gn+ι Take

y = Un<u;χn, then the length of y is Un<ωβn = a and Sup(Rang(y)) =

Sup(Rang(xn)) = Supn<ωqn = q. As y was chosen for x and # we let y = y^.

Lastly let Tα = {yx,g: x £ \Jβ<aTa and Sup(Rang(x)) < q e Q}. Since we

introduced one such y for each x e U^<αΓ/3 and q > Sup(Rang(x)) and there

are only K0 such pairs clearly |Γα| < K0.

T has no branch of length ω\ since if S is such a branch then U5 is an

increasing sequence of rationale of length ω\, which is impossible.

By our construction of T, for every x G T we know Sup(Rang(x)) is a

rational number. Therefore T = UgeQ{χ ^ -̂  : Sup(Rang(z)) = #}, and each

set {x E T : Sup(Rang(x)) = q} is clearly an antichain. Thus the tree T is a

special Aronszajn tree. U5.2

When we want to construct a ft+ Aronszajn tree we use, instead of the

rationale, the set Qκ of all sequences of ordinals < K of length K which are

eventually 0, ordered lexicographically. We can proceed as in the construction

of the Ni-Aronszajn tree, but when we construct Tα, for a limit ordinal a such

that cf (a) < K, we have to put in Ta all the increasing sequences y of members

of QΛ of length a such that y\β € Tβ for every β < a. Otherwise we have no

assurance that we can carry out the construction of Ta for a limit ordinal a

such that cf(α) = AC. In order to be sure that \Ta\ < /£, for every a < κ+ we

need that κ<κ = Σμ<κ ̂  ~ κ> since this will enable us to prove that if for

a limit ordinal α with cf (a) < K, we construct Tα as mentioned above we still

have |Tα| < K.

So we have presented a proof of the well known:

5.3 Theorem. If K = κ<Kt then there is a ft+-Aronszajn tree.

If the continuum hypothesis holds then Hj 0 = HI and therefore there is

an H2-Aronszajn tree. Therefore, if we look for a model with no N2-Aronszajn

tree, the continuum hypothesis should fail to hold in such a model. There is

a theorem which says that in such a model N2 is a weakly compact cardinal

in L, hence the consistency of the inexistence of K2-Aronszajn trees is at least
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as strong as the consistency of the existence of a weakly compact cardinal; we

shall see that these two consistency assumptions are equivalent. Mitchell had

proved this theorem, and Baumgartner gave a simpler proof by proper forcing.

The following theorem is due to Baumgartner, Malitz and Reinhart [BMR].

5.4 Theorem. For every tree T of height ω\ with no branch of length ω\ (no

restrictions on its cardinality) there is a c.c.c. forcing notion P such that in the

generic extension of V by P the tree T is special. If \T\ < 2H° then by Martin's

axiom it follows that T is special.

As a consequence, if we assume Martin's axiom and 2^° > NI, then all

Aronszajn trees are special and hence there are no Souslin trees.

Proof. Let P be the set of all finite functions p from T into ω such that if

p(x) — p(y) then x and y are incomparable. For every x € T the set Xx of all

members of P whose domain contains x is obviously dense in P, hence if G is

a generic subset of P, F = UG is defined on all of T and if F(x) — F(y) then x

and y are incomparable. If we have Martin's axiom and \T\ < 2^° then there are

< 2N° dense sets Ix and the directed set G can be taken to intersect all of them,

and F = UG is as above, i.e., it specializes T since T — Un{x : F(x) = n}.

We still have to prove that P satisfies the c.c.c. Suppose there is an un-

countable subset W of P whose members are pairwise incompatible. Without

loss of generality we can assume that all members of W have the same car-

dinality, that their domains form a Δ-system with the heart s and that for

all p G W,p\s is the same function. Denote W = {pa : a < ω\} and let

Dom(pα) \ s = {x t t fi,... ,£α,n} Let a,β < ωi, pa and pβ are incompatible,

hence pa Upβ φ P. Since pa and pβ coincide on s and the rest of their domains

are disjoint we must have for some 1 < k,l < n, pa(xajk) = Pβfaβj) while xa^

and Xβtt are comparable. Let Ya,k,ι = {β < ωι '• β ¥" α>Pα(χα,/c) = pβ(xβιι)

and xα >fc and Xβj are comparable }. As we saw Uι<k,e<n Ya,k,t — ωι \ {α}

Let E be a uniform ultrafilter on α i, then for every α there are k and I such

that Ya,k,e £ E, let fc(α) and ί(a) be such. Therefore for an uncountable sub-

set A of ωι,fc(α) = k and i(a) = £ for α G A. Let a,β € A then YQ^,



§6. Maybe There Is No N2-Aronszajn Tree 127

y/3,fc,£ G E hence Yα,;^ Π 10,*,* G £ and therefore |yα,/fe^ Π y/j.fc,*! = NI. Let

7 € y^^Γiy^M then x«,/c and Xβtk are comparable with XΊJ. Now £7/s with

different 7 G Ya,k,t Π 10,/c,.£ are different, and since there are only countably

many members of T below xa,k or below Xβ^ (in T's sense) there must be

some 7 G Ya,k,e n ^/3,M sucn that xτ,^ is greater than both xa^ and x/^ (in

T's sense) and since Γ is a tree, xa^ is comparable with Xβ^ This holds for all

α, β € ^4 hence Γ has a linearly ordered subset of cardinality KI: {xα,fc ' & G -A},

and therefore a branch of length cji, contradicting our assumption. D5.4

§6. Maybe There Is No N2-Aronszajn Tree

Toward this we mention (see for history, 6.2 below):

6.1 Lemma. 1) Assume V \= "2H° > tti&T is an N2-Aronszajn tree." Let P

be an Hi-complete forcing notion. Then V[P] N= "Γ has no cofinal branches".

(#2 may become of cardinality NI in V[P] so it does not have to stay an ^2-

Aronszajn tree.)

2) Assume:

(a) T is a tree with 5* levels such that cf(<5*) > NO

(b) for no limit δ < 5* of cofinality N0 can we find pairwise distinct xη G T§

for η G ω2 such that: [α < δ => {xη \a : η G ω2} is finite] (χη \a is the

unique y <τ xη, y G Tα)

(c) P is an Hi-complete.

Γften forcing by P add no new £*-branch to Γ.

Proof. 1) Assume that po N~ "-B is a cofinal branch in Γ". We shall define in V

two functions F : ω>el — > Γfα for some α < ω2 and 5 : ω>2 — > P such that:

(i) F(<>) = the root of Γ, 5(<>) = p0

(ii) for all x G 2<ω we have 5(x) Ih uF(x) G β".

(iii) x < y =» 5(χ) <P 5(y), F(x) <τ F(j/), and

(iv) F(χΛ < 0 >) and F(χΛ < 1 >) are incomparable in Γ.
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F(η) and 5(77) are defined by induction on the length of 77. Assume 5(77),

F(η) are defined we shall define S(τf (£}), F(τf (£)) for I = 0,1. Since 5(77) >P

po, S(η) has, for every β < ω^, an extension which forces some member of Tβ

(i.e., the set of vertices of height β in the tree) to be in B. If {t : F(η) <τ t and

there is p >p S(ή) such that p Ih "£ G B"} was a set of pairwise comparable

members of T then they would be a branch of T in V, contradicting our

hypothesis. Therefore there are two incomparable £'s in this set, take one to

be F(η~ < 0 >) and the other to be F(η~ < 1 >) and choose S(η~ < 0 >)

and 5(77Λ < 1 >) as conditions > S(η) such that S(η~ < ί >) Ih "F(rf < i >

) G B" for I G {0,1}. Since the range of F is countable it is included in some

T\OL for some a < ω<2. Since P is HI -complete, for every 77 G 2ω,P contains a

condition pη which is an upper bound of {5(77 fn) : n < ω}. Since pη > PQ there

is a ̂  > pη and a tη G Tα such that ς^ Ih % G B". Let ^ ̂  77, and i/, 77 G 2ω.

Let n be the least such that v\n φ 77fn, then by requirement (iv) above we have

that F(v\n) and F(η\n) are incomparable in Γ. Now P |= "̂  > pη > S(ηfn)",

hence also ̂  Ih "F(η\n) G B". Since ̂  forces that β is a branch of Γ and that

^,^(77fn) G B clearly tη and F(nfn) are comparable in T. Since the height

of F(η\ri) is < a and the height of tη is α we have F(η\ri) <τ tη Similarly

also F(v\n) <τ tι> and since F(nfn) and F(v\ri) are <τ-incomparable also tη

and tv are <τ-incomparable and hence different. Thus Ta contains 2K° > HI

different members tη, contradicting the assumption that T is an K2-Aronszajn

tree.

2) Similar proof. Πβ.i

6.2 Theorem. If ZFC is consistent with the existence of a weakly compact

cardinal then ZFC is consistent with 2^° = ^2 and the non-existence of N2-

Aronszajn trees.

Remark. By what was mentioned in the last section we have "iff" in this

theorem. Mitchell had proved the theorem and Baumgartner [B3] gave a simpler

proof by proper forcing.
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Proof. Let K be a weakly compact cardinal. We shall use a system (P^, Qi : i <

K) of iterated forcing with countable support. Qi will be the composition of two

forcing notions Q^o and Qi,ι Now Q^o will be the forcing notion of countable

functions from ω\ into ω2 (in V[Pi]) which collapses N2 i.e. Levy(Nι,N2). Now

Qito is obviously Hi-complete. VfPijfQ^o] contains wide trees of cardinality

KI and ω\ levels with no ωi-branches (e.g., {(α,/?) : β < a < ω\} with

(a,β) <τ (α1,/^) iff α = at&/3 < /3 f). Let W be the disjoint union of all

such trees (up to isomorphisms), as a single tree with at most 2**1 roots ( we

take all the trees to be ω\ x {i} with some partial orderings). The tree have

ω\ levels, < 2**1 nodes and no α i-branch. By Theorem 5.4 there is a c.c.c.

forcing Q^i which makes this tree special, and hence makes every fti-wide tree

of cardinality NI special, provided it has no ω\- branch.

Note that in VPί, Qi,o has cardinality < 2H l, and Q^\ in V has

cardinality < 2**1. Let us notice that these descriptions of Q^Q in V[P»] and

Qitι in V[Pi][Qi5o] = V[Pί * Qΐ,o] really yield corresponding names Qί>0

 and

Qi,ι by the Lemma of the existential completeness which we proved.

Since Q^Q is tti-complete over V[Pi] and since <3i,ι satisfies the c.c.c. over

V[Pt][Qi,o], both are proper, hence Q^Q * (5i,ι is proper and therefore also each

PΪ,Z < K, is proper. Thus HI is not collapsed even in V[PK] (by 3.2). Let λ be

an inaccessible cardinal, λ < «. Our construction of Pi and Q^ are such that for

i < X we have \Qι\ < λ, hence each Pi has a dense subset of cardinality < λ.

Therefore, as we proved in 4.1 also PΛ satisfies the λ-c.c. and therefore λ is not

collapsed in V[Pχ] and thus V[Pχ] \= "λ > K2" (since NI too is not collapsed).

Before finishing we prove two lemmas.

6.3 Lemma. V[P\] N " there are at least λ real numbers " for every λ < K.

Proof. It suffices to prove that for every i < X there is a real in V[P$+i] \

V[Pi][Qϊ,o] We shall see that a forcing notion such as Q^i introduces a Cohen

real over the previous universe. Let us simplify the notation by writing V^ for

V[Pi][Qi}o]j and Q f°r Qί,ι and T f°r tne tree in V^ which Q makes special.

Let (a,j : j < ω) be an ascending sequence in T in V^ (i.e., j < k < ω —>
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dj <τ α/c) Now Q introduces a function F on T into ω such that if α, b G T

and F(a) = F(b) then α and b are <τ-incomparable. For j < ω let t, — 0 if

F(cij) is even and tj = I if F(α^) is odd. We shall see that t — (tj : j < ω)

is a Cohen real over V^ i.e., for every dense subset I of ω><2 in V^,t\n G J

for some n < ω. For p G Q let p* = {{j, s) : j < ω and α^ G Dom(p) and

([5 = 0&p(αj) is even] or [s = I &εp(a,j) is odd] )}. Let Qx = {p G Q : p* G J};

we shall see that Qx is a dense subset of Q in V^. Clearly Qx G V"l" since

it is defined in V^ . For q G Q let r > <?*,r G T; there is such an r since

I is dense in ω>2. Let n be a strict upper bound of the range of q. Let

p = q U {{α^ , 2n + 2j + r(j)) : j G Dom(r) &α, £ Dom(ςr)}. Obviously p G Q,

and p* = r G J hence p G Qj. Since p>q we know Qj is dense. Let G be the

generic subset of Q then there is a p G G Π Qj such that p* G J, and for some

n < ω,p* G n2 (as p* G Q = ω>2). Since p C F[G] we have t[G\ \n = p*, hence

t[G\ \n G J, which establishes that t is a Cohen real. D6.3

6.4 Lemma. For every inaccessible λ < «, V[Pλ] ^ "λ

Proof. Let G be a generic subset of Pλ. We saw already that V[G] \= "λ > N2".

Suppose now that V[G\ \= "N2 = μ", where μ < λ. Let F G V[G\ be a function

on μ x ωi such that for all 0 < α < μ we have {F(α,/J) : /? < α i} = α, i.e.,

F(α, — ) is a mapping of ωi on α. Let F be a name of F and let po € G force

that F is as we described. For each α < μ and /? < ω\ let Jα^ be a maximal

antichain of members of P\ which are > po and which give definite values to

F(α,/3). Since as we saw, PΛ satisfies the λ-c.c. condition, clearly \Iaίβ\ < λ.

Let J = Uα<μ>/3<ωιIα>/3. Since λ is regular \I\ < λ. Since each member of

JU {po} is a countable function on λ there is a 7 < λ such that JU {po} ζ Pγ

Let GΊ = G Π P7, then clearly F G V[G7] (since we define F(α, β) in V[G7] to

be that 7 for which there is a ςf G I0iβ^GΊ such that g Ih "F(α, β) = 7"). Then

V[G7] N μ < «2, but since V[G] N "μ = ^2" we have V[GΊ] N "μ - N2". But

since we force above V[GΊ] with QΊ$[GΊ} which collapses the H2 of V[G7], we

have V[GΊ][GΊfl] N "μ < H2" hence V[G\ N "μ < K2", which is a contradiction.
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Continuation of the Proof of Theorem 6.2. Now let us go on with the proof

of the theorem. Assume that there is a PQ G Pκ such that PQ lhpκ " there is

an K2-Aronszajn tree," i.e., po "~pκ " there is a ft-Aronszajn tree T on ft and

a function F on ft such that for a < ft, F(α) is the rank of a in T, (since by

the lemma V[PK] \= "K2 — ft"), i.e. po "~PK " there is a transitive relation T

on ft such that for all a,β, 7 G ft we have: [αT7&/3T7 => αT7] and there is a

function F from ft into ft such that for all α,/3 < ft: if αT/3 then F(α) < F(/3),

for all a G ft and 7 < F(a) there is a βTa such that F(/3) = 7, and for all

7 € ft there is a /? G ft such that for all α G ft if F(α) = 7 then α < /?, and for

all £ C ft there are a, β G 5 such that a ^ β Λ -ιαTβ Λ --/?Tα, or else there is

a β < ft such that β C /J". This implies, by the existential completeness that

there are canonical names of T and F of relations on ft such that:

(*) Po "~ "T is a transitive relation on ft and (Vα,/3,7 < ^(aTj&εβTj —»

αT7) and (Vα,^,7 < /c) [α = /? V αΓ/3 V /3Tα] and (3F : ft -̂  κ)(Va,β < ft)

[(αΓ/3 -> F(α) < F(^)) & (/3 < F(α) -̂  (37 < ft)(7Tα Λ F(-γ) = β))} and

(V7 < ft)(Ξ/3 < ft)(Vα < ft)(F(α) = 7 -* α < /?)"

and for every canonical name B of a subset of ft

(**) Po IK* "(3α, /? G B)(α 7^ /? Λ -παΓ/3 Λ -ι/3Γα) V(3/3 G κ)(B C β)".

Now a name X of a subset of ft x ft (like T) or ft (like B) or even a subset of

H(κ)v, we can assume the name is canonical (see Definition 15.12 and Theorem

I 5.13). So X is a subset of {(p, x) : p G P« and x G #(«)}, so a subset of ίΓ(ft)

and even assume that for each x G H(κ) the set Jχ>x == {p : (p, x) G X} is

an antichain of Pκ. But PΛ satisfies the ft.c.c. hence x G #(ft) => \Zχ,x\ < ^,

hence E = {μ < ft : μ strong limit singular, and [j < μ => Qίj G H(/x)] and

x G #(μ) =» Xχ,x G H(μ)} is a club of ft. So for μ G F, XΓ\H(μ) is a Pμ-name.

Consider now the structure (#(ft), G,Γ, F). The statement (*) is a first

order statement about this structure, and that (**) holds for every B as

mentioned is a ΐl\ statement about this structure i.e. a statement of the form:

for every subset X of the model some first model sentence holds. We now use

one of the equivalent forms of the definition of weakly compact (can be read

from the proof, or see e.g. [J]). Since ft is weakly compact and therefore ΐl\-
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indescribable there is an inaccessible cardinal λ < ft, from E such that (H(λ), G

, TfΊλxλ, FΠλxλ) is an elementary substructure of (H(κ), G, T, F) and satisfies

the I!* statement mentioned above. P« and lhpκ are definable in (H(κ), G, T, F)

and the same definitions give Pχ and lhPλ in (ίf(λ), G , T n λ x λ , F ( Ί λ x λ ) .

Therefore (TΠλ x λ)[Gλ] is a λ-Aronszajn tree in V[G\] (where G is the generic

subset of Pκ over V and GΛ = G Π Pλ). We claim that (T Π λ x λ)[Gλ] is the

part of the tree T[G] up to level λ. Let (α, β) G (T Π λ x λ)[Gχ] then α, β < X

and for some p G Gλ, p lt-pλ {α,/?} G (Γ Π λ x λ), hence p \\-PK "(α,/3) G Γ"

(by the relation between the two above mentioned structures), hence, since

p G G, (a,β) G T[G], shows that (ΓΠλ x λ)[Gλ] is included in the part of Γ[G]

up to level λ. The proof of the equality of these two trees will be completed

once we show that in T[G] all the ordinals in the levels below λ are < λ. Let

μ < X then, since (*) holds for the structure (if(λ),...) there is a p G G\ and

an ordinal β < λ such that p lhPλ (Vα G λ) (F Π λ x λ)(α) = μ -» α < /?),

therefore p lhPκ (Vα G ft) (F(α) = μ —> α < /?), and since p G G we have in

V[G] that all the ordinals in the level μ are < β < X.

Thus in V[P\] we know T Π (λ x λ) is a λ-Aronszajn tree, i.e., an ^2-

Aronszajn tree. Now we saw that in V[P\] there are at least λ real numbers,

i.e., 2^° > ^2 m ^"[-Pλ] an<i we know Qλ,o is an ^i-complete forcing notion

in V[Pλ], therefore, by Lemma 6.1 T Π (λ x λ) still has no cofinal branch in

y[P\][Qλ,o] Since in ^[P\][Qλ,o] we have |λ| = HI there is a subset α of λ

of order-type ω\. Let b be the set of all the ordinals in Γ Π λ whose level is

in α, so T Π b is an Ni-tree with no cofinal branch in ^[Pχ][Qλ,o] Now Qλ,ι

makes this tree special (dealing with a tree isomorphic to it). Thus the tree

T\{t : F(t) G α} is a special Ni-tree in V[Pλ+ι] an<i therefore it stays so also

in V[PΛ] since the function which makes it special is in V[P\+ι] and hence also

in V[PK]. Thus in V^[P^] we have T\X is a tree which has no cofinal branch

and {t G T : F(t) G α} is (in VPi+l) an Hi-wide Aronszajn tree, but this is a

contradiction since T Π (λ x λ) is the part up to level λ of the ft-tree T and as

such it must have branches of length λ. D6.2

We used a weakly compact ft to obtain a generic extension in which there

are no ^-Aronszajn trees. If all we want is to obtain an extension of V in
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which there are no special ^2-Aronszajn trees ( i.e., trees which are the union

of NI antichains ) then it suffices to use a Mahlo cardinal K (see [B3] on this).

§7. Closed Unbounded Subsets of ωι Can Run
Away from Many Sets

Baumgartner [B3] has proved the consistency of the following with ZFC+2^° =

N2: if Ai C ωι, for i < α i, is infinite countable then there is a closed unbounded

C C ω\ such that Ai £ C for every i < ω\. We prove a somewhat stronger

assertion.

7.1 Theorem. ZFC + 2H° = N2 is consistent with:

(*) if Ai C α i has no last element and is nonempty and has order type

< SupAi, for i < ωι, then there is a closed unbounded subset C of ωi, such

that C Π ^4i is bounded in ̂  for every i

Remark. Abraham improved Baumgartner's result to:

ZFC + 2K° = anything +

(**) there are N2 closed unbounded subsets of KI, the intersection of any KI of

them is finite.

Galvin proved previously that CH implies (*) fail. Our proof is similar to

[Sh80 §4].

Proof. We start with a model V satisfying CH, and use CS iterated forcing of

length u;2, such that in the intermediate stages CH still holds. So by 4.1, it

suffices to prove.

7.2 Lemma. Suppose V satisfies CH. There is a proper forcing notion of power

NI which adds a closed unbounded subset of C of ωι and Sup[C Π A] < Sup A

for any infinite A C ω\ with no last element and order type < Sup(^4), which

belongs to V.
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Discussion. A plausible forcing to exemplify 7.2 is:

Q = {C :C a closed countable subset of ω\ so that if A G V is a set

of ordinals < ω\, δ = Sup(A) is a limit ordinal, A has order

type < <J, then Sup [A Π C] < δ}

(so if δ > sup(C) this holds trivially), with the order

CΊ < C2 iff C2 Π [(MaxCi) + 1] = Ci.

So the elements of Q are approximations to the required C. It is clear that a

generic subset of Q gives a C as required, provided that N! is not collapsed;

hence the main point is to prove the properness of Q. Unfortunately it seems

Q is not proper, in fact has no infinite members. However if we want to add

a C G Q which is (AT, Q)-generic for some TV -< (ίf(λ),G) a c.c.c., forcing is

enough. So we could first force with some P, |P| = ^2?^ satisfies the c.c.c.

such that

Ihp "2*° = N2 and MA holds".

Then we define Q in V[Gp] for Gp C P generic over V; similar to the definition

above but members of the forcing notion are from V[Gp] whereas the A for

which we demand sup(C) Π A < sup(A) are from V. So

Q = {C € V[G]: C a closed countable subset of ω\, and if A G V is

infinite with no last element and (order type A) < SupA < MaxC, then

Sup(CnA) < SupA}.

Now Q is proper, and adds a C as required, so P*ζ) adds a C as required.

Unfortunately P* Q also collapses ^2, so if we are willing to use some strongly

inaccessible K, > NO> there is no problem. Otherwise, we use a restricted version

of MA, which is consistent with 2K° = NI, so 7.3, 7.4, 7.5 below prove Lemma

7.2 hence Theorem 7.1. Throughout we use the order < on Q defined above.

7.3 Claim. Suppose

(a) V satisfies CH, P is a forcing notion of power HI satisfying the c.c.c.

and G C P is generic over V.
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(b) δ < ωι is a limit ordinal, (Vα,/3 < δ)[a + β < δ], R e V[G\ is a

countable family of closed bounded subsets of δ, ordered by C\ < C2

iff Cι = C2 Π (MaxCΊ + 1)

(c) Define (in V[G\):

Q = QR d= {(C,{(Ai,ai) : i < n}) : C G R,n < ω, for each

i < n, Ai G V is a subset of δ of order type < J, and C Π A* C α< and

a.i is an ordinal < 5},

the order is

(CMί^αJ) : i < n1}) < (C2,{(A2,α2) : t < n2}) itfC1 < C2,n* <

n2 and for every i < n1 for some j < n2 we have (A\,a\) = (Λ?,α?)

and C2 \ C1 is disjoint to A\.

Then

1) QR satisfies the c.c.c.

2) if for every C G fl, {/? < ί : C U {/?} G R] has order type 5 then

"~Q " UCGGQ C' is an unbounded subset of ί".

Proof. 1) Trivial, as any two conditions with the same first coordinate are com-

patible, and there are only countably many possibilities for the first coordinate.

(2) Trivial, because if A ι , . . . , A n are subsets of & of order type < 5,

their union has order type < δ by Dushnik, Miller [DM]. So for every p =

(C, {(At, at):ί< n}) G Q the set

Bp = {β < a : p < (C U {β}, {(At, a€) : £ < n}) G Q and β > max(C)}

has order type δ because

Bp = {0:C\J{β}eR}\(\jAt\J( maxC-f 1))
t<n

and the first set has order type δ (by an assumption) whereas the second has

order type < δ (by the previous sentence as otp(A^) < δ by the definition of

Q, and otp([0, maxC + 1)) < δ by the assumption on R). Now Bp C δ being

of order type 5, necessarily is unbounded in 6 and we are done. Dγ.s
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7.4 Claim. Suppose V satisfies CH. There is a forcing notion P of power HI

satisfying the c.c.c., such that the following statement is forced:

(*) Suppose δ < ω\ is limit, (Vα,/3 < δ) [a + β < δ] (equivalently <5 is an

ordinal power of ω) and R is a countable family of closed bounded subsets of

δ such that (VG G Λ)(V/3) (MaxC < β < δ -> C U {/?} € Λ) and for n < ω we

have: Zn is a dense open subset of R such that X\ = {(C, 0) : C G Tn} C Qβ

is pre-dense in Qβ (where QR is from 7.3 clause (c)). Then there are Cn G Λ,

such that Cn < Cn+ι, SupnMaxGn = 5, Cn+ι G In and for every A G V, A C 5

of order type < 5, Sup[A Π (UnCn)] < 5; moreover we can choose CQ e R

arbitrarily.

Proof. We can use an FS iteration (Pi, Qi : i < ω\) of forcing notions satisfying

the c.c.c., such that for every possible R and δ (which are in V or appear in

VPί for some i < ω) for uncountably many j < ω\ in Vp* we have Qj = QR.

7.5 Claim. Suppose V satisfies CH, P is as in 7.4, and Q = {C : C G Vp

a closed bounded subset of ω\, such that for every infinite countable A G V,

A C cji with no last element, and (order type of A) < supΛ, if SupA < MaxC

then Sup(A Π C) < Sup A} ordered by: C\ < C2 iff C\ = C2 Π ( maxC + 1).

T/ien Q is proper (i.e., Ihp "Q is proper ") and has cardinality < HI.

Proof. Let G C P be generic over V, λ be regular big enough and let in V[G]

S d= {N : N x (ff(λ),€),P G TV, #(N2)V G TV, G G AT, and there is a

sequence (Ni : i < δ) such that A^ X AT, (A^ : j < i) G A^+i, A^ = Ui<$Wi and

(5 = AT Π α i (automatically Q[G] £ N)}

It is easy to check the following facts, and by 2.8 they imply Q is proper,

so we finish the proof of 7.2, hence 7.1.

Fact A. S G Γ>κ0((/f(λ)) (in V[G], remember we do not distinguish strictly

between A/' and its set of elements).
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Fact B. In V[G\: if N G 5, δ = N Γ] ω^ R d= Q[G] Π TV, and J G TV is a dense

open subset of Q[G],

(a) {(C, {(Ai,a.i) : i < n}) e QR : C eIΓ\R} is a, dense subset of QR and

{(C, 0) : C G IΓ\ R} is a pre-dense subset of QR.

(b) For every C G Q[G] Π AT there is C*, C < C* G Q[G] and C* is (Q[G\,N)-

generic.

Proof. Let (A^ : i < 5} be as in the definition of 5. Let pQ = (CO,

<£ < n}) G Qβ and let J G Af be a dense open subset of Q[G], so for some i < δ

we have J, p G A^. Let <^ be A^ Π ωι. Let ̂  = {j < δ : A{ Π [δj, δj+ι) ^ 0},

so otp(^) < otp(Aι) < δ. hence as in the proof of 7.3 there is j G (i, δ) which

does not belong to A'£ for t < ω. Now pi = (CO U {(̂  },{(^,α^) : £ < n})

belongs to R and is > p. There is C2 G Q[G] Π Γ[G] such that C U {^} < C2

(in Q[G]), hence there is such C% in A^-+ι (as relevant parameters belong to it).

Now p2 = (C-2, {( ,̂ θίt}\i< n}) belongs to Q[G] Π N and is > pi > pQ. This

proves clause (a).

Let (In : n < ω) list the dense open subsets of Q[G] which belong to Af

and C G Q[G] Π AT, and let Jn = Ί^ Π AT, and let β = Q[G\ Π AT with the

inherited order. Trivially C G R & max(C) < /? < AT Π α i => C <Λ C U {/?},

and the other assumption in (*) of 7.4 holds by the previous paragraph, so

there is (Cn : n < ω) as guaranteed there (with C < CQ).

Now C* = U Cn U {AΓΠα i} belongs to Q[G], Cn < C* and Cn+ι G Tn C
n<ω

Z^, so as Jn was open, C* G Tn. So we have proved clause (b) too. 07.5,7.2,7.1

§8. The Consistency of SH + CH + There Are
No Kurepa Trees

8.1 Definition. For any regular ft, a ft-Kurepa tree is a ft-tree such that

the number of its ^-branches is > K. Let the ft-Kurepa Hypothesis (in short

K— KH) be the statement "there exists ft-Kurepa tree". We may write "KH"
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instead of ωi-KH. (Be careful: KH says "there are Kurepa trees", but SH says

"there are no Souslin trees"!)

Solovay proved that Kurepa trees exist if V = L, more generally Jensen

[Jn] proved the existence of ft-Kurepa's trees follows from Jensen's <0+, which

holds in L for every regular uncountable ft which is not "too large" . But -<KH

is consistent with of ZFC -f GCH, which was first shown by Silver in [Si67],

starting from a strongly inaccessible ft. The method of his proof is as follows:

collapse every λ, ω\ < X < ft using Levy's collapse Levy(Nι, < ft) — {p : \p\ <

NI & p is a function with Dom(p) C K x ωι Λ V{α,ξ) G Όom(p)(p(a,ξ) e a)}.

Now Levy(Nι,< ft) can be viewed as an iteration of length ft, and satisfied

the ft-c.c. on the one hand, and Ni-completeness on the other hand. Therefore

NI does not get collapsed, as well as any cardinal ^a > ft. Suppose now that

T e Vp is an α i-tree. So it has appeared already at an earlier stage along the

iteration, say T € Fp/, where Vp is obtained from Vp> by an Ni-complete

forcing. In Vp the tree T has at most 2**1 branches, and this is less than ft.

Note that by 6.1(2) the tree T can have no new ωi-branches in Vp . So T is

not a Kurepa tree in Vp.

Devlin in [Del] and [De2] has shown, starting from a strongly inaccessible,

the consistency of GCH + SH -f ->KH. For a proof by iteration see Baumgartner

[B3].

8.2 Remark. In both proofs the inaccessible cardinal is necessary, for

implies that ^2 is an inaccessible cardinal of L.

The main point in Silver's proof, is the fact that Ki-complete forcing

notions do not add new branches to ωi-trees. In this section we prove that

the property of not adding branches is preserved under CS iterations and use

this to give another proof of CON(SH + ->KH) from the consistency of "(3ft) ft

inaccessible". This serve as a prelude and motivation to Chapter V (and even

more Chapter VI), which deals with preservation of such properties. In chapter

V we will show that moreover the iteration we construct here does not add

reals, so (since we start from a model of CH) we will get a model of "CH + SH

+ -KH".
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8.3 Definition. A forcing notion Q is good for an ωi-tree T (so the α-th level

of T is TO, etc.), if for any countable elementary submodel N -< H(χ, G), for

X large enough, with T, Q G TV, and every condition p G N Γ\ Q, there exists

an (AT, Q)—generic condition q > p such that if τ G AT is a name, </ Ih "either

χ[Gp] is an old branch of T or τ[Gp] Π T<«5N is not a branch of T<(5N with a

bound x G T$N", where SN denotes N Π ω\ = sup(N Π α i).

8.4 Fact. Q is good for an ωi-tree Γ iff Q is proper and Q does not add a new

branch to T.

Proof. =>: Suppose Q is good for T. The properness of Q follows trivially.

Let p \\-Q "τ is a new branch of T", and we shall derive a contradiction; let

{T,p, Q} G AT -< (ίf(χ), G), x large enough and AT countable. So let g > P be

as in the definition of good.

If τ[G] is an old branch — we are done. If not, τ[G] Π T<$N ^ Bx = {y :

y <τ x] for all x G T$N. But this implies that τ[G] being linearly ordered by

<τ has no member of level > £#, so it cannot be a ωi-branch of T.

Conversely, suppose that Q is proper and does not add a new ω\ -branch to

T. Let τ,p G AT be as in the definition, and pick q > p which is (A/", Q)-generic,

and a generic subset G of P over V with ςι G G. So τ[G] G W[G] X H(χ, G)[G],

and r[G] is either an old ωi-branch, or is not an ωi-branch at all. In the first

case we are done. Now if r[G] is not an α i-branch, then either (3α)τ[G](ΊTα = 0

or 3α;,y G τ[G] such that x, y are not comparable in T. By elementaricity of

Af[G], such an a or such x, y exist also in N[G\. So q forces what is required by

the definition. Dg.4

8.5 Theorem. If Γ is an ωi-tree and Q — (Pi,Qi : i < a) is a countable

support iteration such that for all i the forcing notion Qi (is forced to be) good

for Γ, then also Pa — Lim(Q) is good for Γ.

Proof. We break here the proof into two parts. The first part is nothing more

than another proof of the preservation of properness under countable support

iteration. It is meant to help those readers who find the proof in III 3.2 hard
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to follow. In the second part we show how to extend the first part in order to

get a full proof of the theorem.

Let Q = (Pi,Qj : i < a,j < a) be a countable support iteration such that

\\-P. "Qj is proper" for all j < a. We fix some regular χ which is large enough

for what we need. As in III 3.2 we prove by induction on j < a the condition

(*)j, which is stronger than the proper ness of PJ:

(*)j Pj is good for T, and

(a) forcing with Pj add no ωi-branches to T and:

(b) for all i < j and countable N -< (#(χ), G) such that i, j, Q e N and

p G PJ ΠTV and an (TV, P^)- generic q G Pi which satisfies q > p\i there

is r such that:

(i) r e Pj

(ii) r\i = q

(iiΐ) r is (TV, Pj)-generic

(iv) p < r

(v) Όom(q)n[iJ) = NΠ[iJ).

The proof is split to cases. Note that though in the statement (*)j(b) we

say "for i < j" it holds for i = j too.

Case 1. j = 0

Trivial.

Case 2. j a successor ordinal

Let j — jι + 1, now (a) of (*)^ holds as (a) of (*)J 1 holds and Qi is good for T,

so we shall deal with (b) of (*)^. So by the induction hypothesis applied to j\

and i (see remark above) w.l.o.g. i = j\ and continue as in the proof of III 3.2.

Case 3. j a limit ordinal

We first look at a case of clause (b) of (*)j and/or of clause (b) of (*) j (by 8.4

this suffice) so i, N, p, q are given as there.

As TV is countable, we can pick a sequence of ordinals of order type ω,

(in : n < ω) which is cofinal in TV Πj and such that io = i and in G TV for all n.

Let (Tn : n < ω), enumerate all the dense sets of Pj in TV. Let ((τn, xn) : n < ω)
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enumerate the pairs (τ, x) where r is a P^-name from N and x G TδN where

c def A r _
ό^y — YV Πu;ι.

We define by induction on n a condition gn and a P^-name of conditions pn

such that:

(a) gn G Pίn is (W,P<n)-generic.

(b) qo = q

(c) gn+ι Γzn = ςn, Dom(^n) = Dom(<?o) U ([i0, in) Π AT)

(d) PQ = p and pn is a P^-name of a member of Pj

(e) <7nlhPίrι ' K G P n J n Π Λ P '

(0 9nlHp,n "pfίneGp,/

(g) <7n I^Pin "Pn < Pn+l"

(h) if GJ C P^ is generic over V and qn G G^ Π Pίn and pn[Gj Γ\ Pin] G G?PJ.

then either (3α < ^)(lin[G'j] Π Γα g {ί : t <τ xn} or Γ Π rίn[Gj] is an

ω\ -branch of T from V.

Let us carry the induction. For n = 0 there is no problem.

Suppose now that we have defined qn >Pn and let us define pn+ 1, qn+ι> Pick

a generic subset Gpίn of Pin such that #n G Gin. So by clause (e) we have

Pn[Gin] G Pj Π JV, let p; d= pn[Gin]. Define, in y, the set Jn = {u G P<n :

(3r)[p* < r & r G J n & u = rfin]} G V. As pn[Gin] belongs to N, so does Jn.

Clearly, Jn is dense above pn[Gin] \in. Define jfn = Jn U {IΛ : u is incompatible

with p^Γ^n} £ V. So Jn e N is & dense subset of Pίτι. By the genericity of

gn, the set Jn Π A/" is predense above <?n, and as a consequence there exists a

condition u0 G JnΓ\NΓ\Girι . As by clause (f) we have p* fin = pn[Gin] \in € Gίn ,

clearly WQ cannot be incompatible with it, but UQ G Jn so by the definition of

Jn necessarily UQ G Jn. There is, therefore, a condition r0 G In such that

UQ = r0 Nn By elementaricity of TV, we can assume that ΓQ G N.
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In V[Gin], for any p e Pj/Gin = {p € Pj : p\in e Gin} let B% = 5£[GJ =

{t G T : p \Yp.jGi "^ ^ In"}> equivalently {£ G T : for some p satisfying

p < p' G Pj/Gin we have p' Ih "£ G τn"} We now choose p^+1, αn such that:

(i) Pfc+i € P, /Gίn

(ϋ) ro <P, p°+1 € N(Gin]

(iii) one of the following occurs

(a) Bς[Gin]nTan£{t:t<τxn}

(b) Pn+i lhP,/Gίτι

 α^Πrn is an ωi-branch of T".

Why is this possible? If for some r, r0 < r G Pj/Gin and £?™[GiJ is disjoint

from some Tα then there are such r, αn G Af[GiJ and p^+1 = r is as required.

If for some α < α i, β 0̂ [C?in] Π Tα has at least two members, then there is such

oi-n < ωi j and so there is ίn G 5^0[Gin] Π Γατι C JV such that -ι(£n <τ a:n). By

the definition of β^o[Gίτι] there is p°+1 satisfying r0 < p^+1 G Pj/Gin such that

Pn+i '^~PJ "^n ^ In") and Pn+i? αn5 ^n are as required. Again by elementaricity

w.l.o.g. p°+1 G 7V[G,J so ̂ +l G jv (as JV[G<n] Π V = N).

Define now pn+ι? a Pin-name by cases. Let pn_|_ι[G^J be pntG^] if qn is not

in the generic set G^, and equals pn+1 as described above otherwise. For

the definition of qn+ι we utilize the induction hypotheses (*)*„. We have just

given a prescription, i.e. a name, for pn+ι We can choose a maximal antichain

JΓ = {u™ : ζ < Cn(*)} of Pin of conditions which decide this name, namely

u™ Ih "pn+i = p?+1" for some p?"1"1, and u^ > ̂ n or u^ is incompatible with

tfin

For each ζ < ("(*) we can apply the induction hypothesis (*)in+1 holds so

apply (*)in+ι clause (b) with in, zn+ι, JV, u^, p^"1"1 here standing for i, j, AT,

g, p there and get q™*1 G Pin+ι as guaranteed there. Define qn+ι as follows:

Dom(gn+i) = (Dom(gn))U(7Vn[zn,zn+ι)), for 7 G Dom(^n+i): if 7 G Dom(<?n)

then ςfn+ι(7) = ςfn(τ)ί if 7 ^ ^ Π [in,in+ι) then ρn+ι(7) is a P7-name: if

C < Cn(*) and u™ G Gp^ then it is p£+1(7) Check that qn+\ is as required.

So we have succeed to carry the induction. Let q — (J </n, clearly ς' G Pj
n<ω

and ^izn = qn. As in the proof of III 3.2 we can show that:
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(*) if GJ C PJ is generic over V and q G Gj then pn[Gj Π P$J G Gj.

So g is (TV, Pj)-generic and as

clearly q is above p. This show that q is as required in clause (b) of (*)J . But

by the choice of p^+ι (and the list {(τn,xn) : n < ω)) necessarily q Ih "for

every r G -/V[Gj], if r is not an old ωi-branch of T then r Π N[Gj] is not of the

form {t :t <τ #}, for x G T^N". So ^ is as required in clause (b) of (*)J and in

Definition 8.3. Dg.5

8.6 Theorem. If CON(ZFC + « is inaccessible) then CON(ZFC + GCH

+SH + -.KH).

Proof. Described in 8.1, using 8.5. For CH we need to use the results from

chapter V, sections 6 and 7.




