Chapter VII
Trees and Large Cardinals in L

In this chapter we concentrate on the notion of a k-tree in the case where x is an
inaccessible cardinal. In this case, assuming ¥ = L, both the notion of a k-Souslin
tree and of a x-Kurepa tree turn out to be closely related to large cardinal
properties. Thus this chapter extends both Chapter IV, where we studied x " -trees,
and (parts of) Chapter V, where we dealt with large cardinals.

1. Weakly Compact Cardinals and k-Souslin Trees

The notion of a weakly compact cardinal has already been introduced in V.1, and
we refer the reader back there for basic definitions. In particular, V.1.3 gives
several equivalent definitions of weak compactness, and V.1.5 proves the result,
relevant to us here, that if x is a weakly compact cardinal, then [k is weakly
compact .

Assuming V = L, we shall prove that if x is an inaccessible cardinal, then x is
weakly compact iff there is no x-Souslin tree. This extends V.1.3(viii), which says
that, in ZFC, an inaccessible cardinal x is weakly compact iff there is no
k-Aronszajn tree. We shall also show that under V = L, V.1.3(ii) may be extended.

We shall require the following characterisation of weak compactness, which is
really just a V= L analogue of I1{-indescribability (V.1.3(iv)).

1.1 Lemma. Assume V= L. Leot K be an inaccessible cardinal. Then k is weak-
ly compact iff, whenever @(U,A,,...,A,) is a sentence of the language
LU, A, ..., A) if Ay, ..., A, < J, are such that

VU = J) [KJe, &, U, Ay, ..., A E @],
then for some a < Kk,
VU< J)[Jpe, U A; N Jdyy..c, Apn I E@]. O
There are various ways of proving 1.1. One way is to make minor modifica-

tions to the proof that IT}-indescribability characterises weak compactness in
ZFC (V.1.3(iv)). Another way is to prove that under the assumption V= L, the
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property in 1.1 is actually equivalent to the IT}j-indescribability condition, by
noting that if A is inaccessible, then J, = V. (This requires a lemma that the a < x
of 1.1 can always be assumed to be an inaccessible cardinal. The proof of this fact
involves adding a conjunct to the sentence ¢ which ensures this.) In any event, the
proof of 1.1 is of no direct relevance to our work here, being essentially a part of
large cardinal theory itself, rather than constructibility theory. So we do not give
a full proof.

Now, by V.1.3(viii), if x is a weakly compact cardinal, then there is no
x-Aronszajn tree, so certainly there can be no x-Souslin tree. We shall prove that
if V= L, then if x is not weakly compact, there is a k-Souslin tree. As usual when
dealing with trees, we are assuming that x is regular here. In fact, since we know
from IV.2.4 that (if V= L) there is a x-Souslin tree whenever x is a successor
cardinal, we need only consider the case where x is inaccessible. Our construction
of a x-Souslin tree closely resembles that of IV.2.4. Indeed, since <, (E) is valid for
any stationary set E < k (assuming V' = L), by examining the proof of IV.2.4 we
see that it is sufficient, in order to show that there is a x-Souslin tree for inacces-
sible, non-weakly compact x, to prove the following combinatorial result:

1.2 Theorem. Assume V = L. Let k be an inaccessible cardinal which is not weakly
compact. Then there is a stationary set E = k and a sequence (C,|a < k A lim(a))
such that:
(i) € E — cf(0) = w;

(ii) C, is a club subset of a;

(iii) if & < a is a limit point of C,, then d ¢ E and C;=a n C,. O

By means of a slightly different argument, depending on VI.6.1' rather than
VI1.6.1, it is possible to prove the following more general form of 1.2.

1.2’ Theorem. Assume V = L. Let k be an inaccessible cardinal which is not weakly
compact. Let A < k be a stationary set of limit ordinals. Then there is a stationary
set E = A and a sequence (C,|o < k A lim(«)) such that:
(i) C, is a club subset of «;
(i1) if & < o is a limit point of C,,then a¢é Eand C;=an C,. O
(See Exercise 4.)
Before we turn to the proof of 1.2, we obtain some consequences of this result.

1.3 Theorem. Assume V = L. Let k be an inaccessible cardinal. Then the following
are equivalent:
(i) x is weakly compact;
(i) if E < K is stationary in k, then for some regular cardinal A < x, E N A is
stationary in A;
(iii) there is no k-Souslin tree;
(iv) for all n, A such that 1 <n < w and 1 < 1 < Kk, the partition property

n

K — [k]}

(see below) is valid,;
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(v) for some A such that 1 < A < k, the partition property
K= [k}

(see below) is valid.

Proof. (i) — (ii). This is a simple application of IT{-indescribability, and is left to
the reader. V= L is not required for this implication.

(ii) — (i). This follows from 1.2. If x is not weakly compact, then the set E < k of
1.2 is stationary in k, but if A < k is regular, the set of limit points of C; is a club
subset of A which is disjoint from E n 4, so E N A is not stationary in A.

(i) = (iii). This is a consequence of V.1.3 (viii) (there are no x-Aronszajn trees). This
part does not require V= L.

(iii) — (i). If x is not weakly compact, then, using 1.2 we may repeat the argument
of IV.24.

(i) — (iv). Condition (iv) involves a new partition relation. We write

e aran

iff, whenever f:[x]"— A, there is a set X =k, |X| =y, such that f"[X]"+ A.
Provided that A > 2, this would seem to be much weaker than the condition

K = ()3,

which requires that the set X satisfy | f”[X]"| = 1. An indeed, it is known that the
two partition relations are not provably equivalent in ZFC. But as the theorem
shows, in L these two relations are equivalent.

Since x — (x)} is a consequence of weak compactness (V.1.3(ii)), the implica-
tion (i) — (iv) is provable in ZFC.

(iv) = (v). This is trivial, since (v) is a special case of (iv).

(v) = (1). It suffices to prove — (iii) — —1 (v). So let T = <{x, <) be a k-Souslin tree.
By discarding levels of T we may assume that for every x € T the set S(x) of all
immediate successors of x in T has cardinality at least |x|. Let f, be a map from
S(x) onto x(= {y|y < x}) for each x € T. Define f: [k]*> — « as follows. If x, y are
incomparable in T, let f({x, y}) = 0. Suppose x, y € T are such that x <y y. Let y
be the unique predecessor of y in S(x). Let f({x, y}) = f.(y). We show that f
witnesses k +> [k]Z.

Assume that X €[] and o < k are given. For each xe X — (« + 1), let
V. €S(x) be such that f,(y,) =a. Since T is x-Souslin, there must be
x,x'€e X — (¢ + 1) such that y, <yy,. Then by definition, f({x, x'}) = «. The
proof is complete. [J
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We turn now to the proof of 1.2. We assume V= L from now on. We fix ¥ an
inaccessible cardinal which is not weakly compact. By 1.1 there is a sentence ¢ of
Z(B, D) and a set B < k such that

(a) (VD = k) [{Js, € B, DY F o];
(b) Va<x)@Dc o) [{J,, e, Bna,DYE— ¢].

(We have made some simplifications here. In 1.1 we allowed any finite number of
predicate letters in ¢. But by using pairing functions we can always replace a finite
number of predicates by a single predicate. Also, we have only considered predi-
cates on ordinals in the above. But since there is a uniformly J,-definable map
from a onto J, for all ordinals closed under the Gédel Pairing Function (see
VI1.3.19), and since we can always add a conjunct to ¢ to ensure that « is closed
under the Godel function, this also causes no loss of generality.)

Our proof of 1.2 depends heavily upon the proof of the global OJ principle in
VI.6. We begin by recalling the definition of the class E of VI.6.

E is the class of all limit ordinals o such that for some ordinal f > a:

(i) « is regular over Jg; and

(i) there is a p € J; such that whenever pe X < J; and X n a is transitive,
then X = J;.

We define E < « to be the set of all limit cardinals (note: cardinals) « < x such
that « € E and for some f > « satisfying (i) and (ii) above, it is the case that:

(iii) B nae Jg;
(@iv) if De Z(x) N Jg, then {J,,€,Bna,D)F ¢.
Since E < E, by V1.6.4, « € E implies cf(x) = w.

By VI1.6.3 we know that E N x is stationary in x. By modifying the proof of
VI1.6.3 slightly, we prove:

1.4 Lemma. E is stationary in k.

Proof. Let C < k be club. We prove that E n C + (. Since the set of all limit
cardinals « < x is club in x, we may assume that all members of C are limit
cardinals. Much as in VI.6.3, let N be the smallest N < J,.+ such that (B, C)e N
and N N k is transitive. Let « = N nx. Let n: J; = N. Then n [ o = id [ « and
n(o) = k. Moreover, (B n a) = B and n(C n a) = C.

Exactly as in V1.6.3, we may prove that «, f§ are as in conditions (i) and (ii)
above, with p = (B n a, C n a). Moreover, we know that B N « € J, so (iii) holds.
Finally, by choice of ¢ and absoluteness,

Fs . (VD < k) [{Js,€ B, DY F ).

Applying 71,

F,(VD c o) [{J,, € B a,D)F o]
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So by absoluteness,
(VD e 2(0) n Jp) [{J,s €& B a, D) F o).

But « € C (as in V1.6.3), so a is a limit cardinal. Thus « € E, and so a € E n C, and
we are done. O

We shall let S, (C,|a€S) be as in VL.6. So, in particular, (C,|ax€S) is a
[J(E)-sequence. We define a sequence (C,|a < k A lim(x)) to satisfy 1.2 for the
stationary set E < k. That is, we shall define the sets C, so that C, is a club subset
of « and whenever & < a is a limit point of C,, then & ¢ E and C; = & n C,. There
are several cases to consider. First a trivial case: set C, = w. From now on we
shall assume o > w.

Case 1. a is not a limit cardinal.

In this case, let 7 be the largest limit cardinal less than o, and set
C, = o — (t + 1). Since E consists only of limit cardinals, no limit point of C, can
be in E. Moreover, if @ < « is a limit point of C,, then 7 < & < «, so & falls under
Case 1 as well, and C; = @ — (t + 1) = @ n C,. There is nothing further to check
in this case.

In order to describe the next case we require some preliminary notions.
Let U be the set of all limit cardinals « < x such that for some f > a:

(i) o is regular over Jg;
(i) Bnaeds;
(iii) there is a D € 2 () N Jg such that {J,,e, BN a, D) F—1 ¢.

We shall say that any f as above testifies that o € U.
1.5 Lemma. U n E = {).

Proof. Let o € E and let B > o satisfy the definition for « € E. Thus, in particular,
(VD e Z(x) N Jp) [{J,, €, BN a, DY E o]

Now suppose that a € U, and let ' > o testify this fact. Thus, in particular,
@DeZ() nJg)[Je, BN, DYF @]

Hence f < f'. But by V1.6.4, « is Z,-singular over J;, ;. Hence a is not regular
over Jy.. Contradiction, since f’ testifies « € U. Thus a ¢ U, and the lemma is
proved. [

Now let W be the set of all « € U such that if f > « is the least to testify « € U,
then whenever p € J; there is an X < Jgsuch that pe X and X naea.

1.6 Lemma. U — W< E. Moreover,if a. € U — W and > a is the least to testify
o € U, then B satisfies the definition for o € E.

Proof. Let «, B be as above. Since a ¢ W there is a p € J; such that whenever
X < Jgis such that pe X and X n o is transitive, then X n o = a. Let p be in

S, C,
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fact the < ;-least such element of J;. Since « € U, let D € Z(x) N J; be the < ;-least
subset of o such that {J,,e,Bn a, D>F—1 ¢. Let g = (p, o, B " o, D). We prove
the lemma by showing that if g e X < Jz and X n a is transitive, then X = J,. It
suffices to prove this for the smallest X for which g € X < J;and X n o is transi-
tive.

Let n: X ~ Jz, B < pB. Since pe X, we have X na=a, so na=id |a,
n(®) = a, (B N a) = B N a, n(D) = D. Moreover, since « is regular over J, o is
regular over Jgz. Thus B testifies that « € U. So by the minimality of f, we have
B =B

Suppose now that n(p) € Y< Jzand Y n ais transitive. Let Y=n"'"Y. Then
Yna=Yna, so,as n~':J;< Js, we have pe Y<J; and Y « is transitive.
Thus by choice of p, YN o = a. Thus Y N « = o. But Y was arbitrary here. Hence
n(p) has the same property as p. So as p was chosen < j-minimally and =(p) <,p
(because 7 is a collapsing map) we have n(p) = p. It follows at once that n(q) = q.

Now by choice of X, every element of X is definable from parameters in
o U {q} in J;. (Because the set of all elements of J; which are so definable is an
elementary submodel of J; containing g which is transitive on «, and X is the
smallest such.) But we have X <J;, m: X = Jg, n o =1id [ «, n(q) = q. Hence
n =id [ X. Thus X = J;, and we are done. [J

Case2. ae W.
Let f > o be the least to testify « € U, and let D € 2(«x) N J; be < ;-least such
that

Jp& Bna,DYET¢.

Since « € W, we can define submodels X, < J;, v < 0 (some 0), as follows:

X, = the smallest X < Jj such that (o, Bna,D)e X

and X N « is transitive;

X, = the smallest X < J; such that (o, BN a, D, a,) € X

and X N o is transitive;
X;=) X,, if lim(4) and sup,.;a, <o (otherwise undefined),
v<i
where for each v we set
o, =X, Na.

Since a € W, the definition proceeds until a limit ordinal 6 is reached for which
sup, <4, = o. Thus the set

C.={a, v <0}

is a club subset of a.
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1.7 Lemma. Let o. € W. Let & < o be a limit point of C,. Then d e W, & € E, and
C,=anC,.

Proof. Let & = a;, lim(4), and let n:Jy= X;. Thus, nfa=id[a 7n(®@) = a,
nBna) = Bnan(Dna)=Dna So, as n: Jy<Jy, it is immediate that B
testifies that & € U, and moreover that f§ is the least such ordinal. In particular, by
1.5, we have a ¢ E..

Let pe Jz. Then p=n(p)e X;,s0 pe X, forsome v < A. Let X =z~ 1" X,.
Then pe X <Jyand X na = a, < & Thus a e W.

Define D, (X, |v < 0),(&,|v < 0) from &, Bjustas D,(X,|v < 0),(«,|v < 0) were
defined from «, B. Thus, in particular, C; = {a,|v < 8}. It is easily seen that § = A
and X,=n"X, for all v<@0. Hence &, =a, for all v<@, and we have
C; = @ n C,. The lemma is proved. [

That completes the discussion in Case 2. Notice that this case includes all
regular o > w, since if o is regular, then § = ™ testifies « € U, and o € W holds by
regularity. From now on we assume that o > w does not fall under either of
Cases 1 or 2. Hence « is a singular limit cardinal. We now make use of the
sequences C,, a € S, from VI.6.

Let C, be the set of all limit cardinals 4 < &« which are limit points of C,. Then
C, is closed in a, and if cf(«) > w, C, is also unbounded in .

Case 3. C, is bounded in a. B B
Then we must have cf(x) = w. Let C, be any w-sequence cofinal in «. Since C,
has no limit points, there is nothing to check in this case.

Now, if « € E, then in the definition of C, in VL6, « falls under either Case 1
(¢ < w,) or else Case 4 (n(«) = 1 and succ(B(®))), so C, is an w-sequence cofinal in
a. Hence C,, = () for all « € E. Thus Cases 1 through 3 above include all « € E. So
by 1.6, Cases 1 through 3 include all« € U — W. So if we assume from now on that
o > w does not fall under any of cases 1 through 3, then a« ¢ U and C, is un-
bounded in «. We shall take C, to be a certain club subset of C,.

In the definition of C, in VL.6, in Case 1 (x < w,), Case 2 (x ¢ Q), and Case 3
(e € @ and sup(Q N a) < ), a is not a cardinal, and hence falls under our present
Case 1 above. And in Case 4 of VL6 (n(«) = 1 and succ(B(«))) we have C, = 0. All
of these possibilities are covered by our present Cases 1 through 3. Since we are
assuming now that o does not fall under any of these three cases, it follows that
in the definition of C, in VL6, « falls under Case 5. In particular, by V1.6.17, if &
is a limit point of C, (a fortiori: of C,, when it has been defined), then & ¢ E, so
& ¢ E, and hence we need only concern ourselves with the proof that C;, = & n C,.

Let f = B(x), n = n(x) be as in VL.6. Let («, | v < 6) be the monotone enumer-
ation of C,, and set B, = B(«,). If @ = «,, then our B, is just the B of V1.6 and we
have (V1.6.12) n(x,) = n; moreover there is a map #: J; <,_,J; such that
# & =id | & and, in case & < B, such that 7(d&) > . (See just prior to V1.6.10.) Let
n, denote this embedding. Thus for each v <6 we have an embedding
n,: Jp, <n-1Jp such that «, [ o, = id [ «,, and in case «, < f,, 7, () > o.

1.8 Lemma. Let & < o be a limit point of C,. Then & does not fall under either of
Cases 1 and 3 above.



Qv

310 VII. Trees and Large Cardinals in L

Proof. Since & is a limit cardinal, it cannot fall under Case 1. Since C; = & N C,,
& is a limit point of Cj, so & cannot fall under Case 3. [J

Case4. a = p.

Set C, = C, in this case. Suppose that & < o is a limit point of C,. Note that
by 1.8, & cannot fall under either of Cases 1 or 3. For some limit ordinal 4 < 6, we
have & =o,. Ifa; < B;, then we would have 7, (;) > a, which is impossible since

=p¢ Jﬂ 2 ran(m,). (Since o is a cardinal, wo = «, of course, so wf = f.) Thus
oz,1 = B,, i.e. B(&@) = . It follows that & does not fall under Case 2 above, because
any B > & which would testify & € U would need to be less than (@) in order for
& to be regular over Jy. Hence as o; = f;, @ falls under Case 4. Thus

and we are done in this case.

We assume now that a does not fall under any of Cases 1 through 4. For
v<t<6,setn,=mn'on, Thus n,.:Js <,_,Jp and 7, o, =id [ a, for all
v < 1 < 0. Clearly, {(J3,)y<g, (T,c)y<.<oy is a directed X, _,-elementary system.
(See V.5 for the relevant definitions.) What is its direct limit? We claim that it is
{Jg, (m,)y<gp. Clearly, what we must prove is that J; = () ran(zn,). We do this

v<#6
below.
Let o, = g(a,) = @}, * (v < 6). By VL6.7(iii),

(1) U v d,, = J,.

v<6

Suppose now that v < 6, and let § = B,, n = n,. By VL.5.6 we know that
(7[ r‘]gg‘z): <‘]g§_2’ A%_2> <1 <Jgg_2’ A;_2>3
npp ) =pp Y

ay

(21 953): oo Ap> <=2 gy 4B,

n—1)
( n(p§) = P§;
’ 7IIJ5<,,_1J,;,
n
) n(pp) =

Now, by definition of p}~ ', every element of J,»-2 is Z,-definable from elements
of J, U {pj ™'} in {Jpn-2, A5~ 2). So by (1),

(2) UTC"JnZ—an
v<60
Repeating the same argument, using (2) in place of (1) and (2)' in place of (1)’ now
yields
3) U T, J n-3 = =J, n-3.

v<6
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Continuing in this fashion, we obtain, eventually,
(= 1) U m", =Ty
(n) U TL",”Jﬁv = JB‘
v<6

This last equality is the one we require.
If A <6 is a limit ordinal now and we set & = a;, B = B;, and if we define
vy &y, Ty, Ty pp forv < v < 0, from @, Bas B, a,, n,, ©,,, for v < v < 0, were defined
from «, B, then (clearly) § = 4 and for v<t<8, B, =8, &, =a,, &, =7,,,
T, = T,,. We utilise these observations below.

Case5. Bnaels.
Since J; = |J m,"Jp,, we may pick v, to be the least v < such that a,
<0

v
Bnoaemn,"Jg,. Set

C,={o,|v, <v <0}

Let & <o be a limit point of C,. Thus & = «; for some limit ordinal
2, v, < A< 0. By 1.8, @ cannot fall under either of Cases 1 and 3. Moreover, &
cannot fall under Case4, since aem,"Jy , which implies that a;eJ; and
7,(;) = o (Recall that =, [ a; = id | «;.) We show that @ also cannot fall under
Case 2. Indeed, not only do we have & ¢ W, but the stronger condition & ¢ U. For
suppose that § > & were to testify that & € U. Since & must be regular over Jg, we
have f<p;,. Now, BndaelJs so as A>v, we must have n,(Bna)=
Bna Thus Bnoaeld, @ Again, we can pick De?@nJy so that
{Jz, €, Bnd, DyE—1¢. Let D = m;(D). Since 7,: Jg, <,J5, we have D € 2 () N
Jopand {J,, € B N a, DYE—1 . Thus as 7,(B) < B, n,(P) testifies that o € U. But
o falls under Case 5, so « ¢ U. Contradiction! Hence & does not fall under any of
Cases 1 through 4. But 4 > v,, 80 B n @ € J;, = Jy5. Hence & falls under Case 5.
But it is clear from the remarks we made just prior to Case 5, together with the
facts that 7,(x) = a and 7,(B n &) = B N o(which are valid because 7, [& = id [ &
and «, BN aem,;"Jy,), that v; = v,. Hence

Ci={oy|vi<v <O} ={oy|v,<v< i} =anC,.

That completes the proof in this case.

Case 6. Otherwise.

In particular, in this case we have B N a ¢ J;. Suppose that v < 6 were such
that B n «, € J;, . Then there must be a t > v such that n,.(B na,) + B N a,
since otherwise we would have

B('\O(: U nv‘(BmaV)znv(Bmav)eJB.

v<t<@
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So we can define a normal sequence (v(z) |z < ), for some 8 < 0, as follows.

v(0) =0;
v(z + 1) = the least v > v(7) such that

Bn Xy@) € JBV(;)_’ ch(l),v(B N OCV(,)) +Bna,;

v(4) = sup,<,v(1), if this is less than 6 (otherwise undefined),
for lim(4).

0 The definition proceeds until an ordinal  is reached for which sup, _ zv(z) = 6.
(Clearly, lim(6).) Set

(_ja = {av(t)ll < 0-}

Let & < « be a limit point of C,. Thus & = a,;, for some limit ordinal 1 < 6.
As in Case 5, 1.8 implies that @ cannot fall under Cases 1 and 3, and since
& = oy < Byw = B@), & cannot fall under Case 4. We show that & cannot fall
under Case 2. In fact, as in Case 5 we show that & ¢ U. Suppose, on the contrary,
that € U. Thus, in particular, BN a e Jg, . (Clearly, the least § > & which
testifies & € U has to be less than (&) = B, ;) But (as we proved earlier for )

_ "
Jﬂvm - IQA Ty (1), v(A) Jﬁv(-) ’

soforsome: < 4, B na e, ,u'Jp,, Thus BN & =m,y (B N ). But this
implies that 7, 4+ 1)(B N &) = B N &, (1), contrary to the choice of v(z + 1).
Hence & does not fall under any of Cases 1 through 4. But the above argument
shows that & does not fall under Case 5 either. Thus & falls under Case 6, and we
have

Ci={o,pyli<i}=anC,.

The proof of 1.2 is complete.

2. Ineffable Cardinals and k-Kurepa Trees

Ineffability is a large cardinal property which strengthens weak compactness. By
definition, an uncountable, regular cardinal x is said to be weakly compact iff,
whenever f: [K]? — 2, there is an unbounded set X < k such that | f”[X | = 1. We
say that an uncountable, regular cardinal x is ineffable iff, whenever f: k] — 2,
there is a stationary set X < x such that | f"[X ]| = 1.

Clearly, all ineffable cardinals are weakly compact. The converse is not true,
and indeed, as we shall show presently, ineffability is a much stronger notion than
weak compactness. It should be said that the notion of ineffability is a rather
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specialised one, not covered in many of the standard texts dealing with large
cardinals. (For instance, it is not covered in Drake (1974) or Jech (1978).) Conse-
quently we give here a few of the basic results concerning ineffable cardinals.

2.1 Theorem. Let k > w be regular. Then k is ineffable iff, whenever (A, | o < k) is
such that A, < o for all « < K, there is a set A < k such that the set {a e x| A N o}
is stationary in k.

Proof. (—) Let (4,]o < k) be given, A, < a for all « < k. For each « < k, let
Sy o> 2 be the characteristic function of A,. If we can find a function f:x — 2
such that {¢x e k| f| o = f,} is stationary, then A = f ~'”{1} will be as required.

Let — be the lexicographic ordering on the set { f, |« < x}. Define a function
h: [k —2by

hi{o, B}) =0 iff £33/ (x<p <k).

By assumption there is a stationary set X < « such that |h”[X*| = 1. Suppose, for
definiteness, that h”"[X > = {0}. (The other case is similar.) Thus

o, feX and a<p implies f,3f;.

For each v < «, let a, be the least member of X such that «, > v and
(VBeX)(B=Za,~fylv="_, V)

By choice of X, this definition is always possible. Let
C={yex|(VW)(v<y->a, <y}

Clearly, C is a club subset of k. Thus the set
Y=Xn Cn {vek|lim(v)}

is stationary in x. Now, if lim(v), &, is the first member of X not less than sup, <, «,.
So, if v € Y, we will have a, = v. Hence

aeY implies (VeY)(B=a—fyla=f).
Define f:x — 2 by

f=U L

aeY

Since Y< {a ek |f | o« =f,}, we are done.

(«) Let f:[x]*— 2 be given. For o < k, define f,:a — 2 by

) =f{v,a})  (v<a).
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By assumption there is a function f: k¥ — 2 such that the set

X={eex|f,=Fo}

is stationary in x. (Consider the sets 4, < o for which f, is the characteristic
function.) Now, f is regressive on X — 2, so by Fodor’s Theorem (II1.3.1) there is
a stationary set Y= X and an integer i € 2 such that

ae Yo f(a) =1i.
Forv,ae Y, v < a, we have

S, a}) =f,0) =(f1o)(v) =F(v) = .

Hence |f"[Y|=1. O

Strengthening the notion of I1{-indescribability, which we have already noted
as being equivalent to weak compactness (V.1.3), is that of IT}-indescribability.
An inaccessible cardinal x is said to be Ili-indescribable if, whenever
oX, Y, U,,...,U,) is a sentence of LX,Y,U,,...,U) and U,,...,U,c V, are
such that

(VX S I/K)(HYE VK) [<I/x’ &, Xs K Ula-'-a Un>'=(p(AX°a f/’ lo]l’ e ljn):L
then for some a <k,
(VX = V(z)(EIYE V;) [<Va,€sX’ Y; Ul N Vaa"" Un N V;z>
FoX, Y, U,,..., U]

Clearly, if x is IT3-indescribable, it must be IT}-indescribable, i.e. weakly compact.
The converse is not true. Indeed, we have:

2.2 Theorem. If x is I1i-indescribable, then the set
{A ex|4Ais weakly compact}

is unbounded in k.
Proof. (Sketch) There is a sentence (X, Y) of £ (X, Y) such that an ordinal o is
weakly compact iff

VX S V)AYSV)KVpe X, YO Fo(X, 1))

(Simply consider the defining property o — (x)3.) Given y <k now, apply
H;-ingescribability for the structure <(V,,e, X, Y,{y}> and the sentence
X, V) Adx(xeU). O
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2.3 Theorem. If x is ineffable, then x is I1i-indescribable.

Proof. Let o(X, Y, U,,...,U,) be a sentence of £(X,Y,U,,...,U,), and let
U,..., U, = V be such that

(VXE V;()(EYE V;c) [<V;<’€’Xa KU11~7Un>F(p]
Let
C={iex||V;]=4}.

Clearly, C is a club subset of x. We claim that for some 1€ C,
VX <cV)@EAYsV)KV,e X, YUinV,...,U,n VD Fo],

thereby proving the theorem.
Suppose not. Then for each 4 € C we can pick a set X; = V, such that for all
YV,
Ve, X, U nV,,...,.UunV,)F—1 0.

Since |V, | = k and | V| = A for all A € C, we may apply ineffability using 2.1 to
conclude that there is a set X = V, such that the set

A={2.€C|X1=XOVA}

is stationary in .
By assumption, we can find a set Y< ¥, such that

Ve, e, X, Y, Uy, ..., U>E .
Let
E={Aex|V,e XNV, YnV,,UnV,..,UnV)

< <V;(,€,X, Y; Ul,"" Un>}
Clearly, E is club in k. Hence we can find a A € E N A. But then we have
<V}.’E,X/1’ Yn V).a Ul N V;Ia---a Un N Vl > I:(Pa

contrary to the choice of X ;.
The theorem is proved. O

We shall show presently that if V= L, then ineffability is closely related to the
Kurepa Hypothesis. Indeed, as we shall see, it plays the same role for Kurepa trees
as does weak compactness for Souslin trees. But first it is of interest (though of no
use to us here) to present the following result, which, it should be emphasised, is
a theorem of ZFC.

2.4 Theorem. If k is an ineffable cardinal, then <, holds.

Proof. Foreach a < x, let (S,, C,) be, if possible, any pair of subsets of « such that
C, is club in a and (Vye Cp) (y n S, # S,). In case no such pair exists, define
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S, = C, = 0. This defines ((S,, C,) |« < x) by recursion. We show that (S, |« < k)
is a O, -sequence.
Let S = k. Suppose that the set

{aex|Sna=S5,}
were not stationary in x. Then we could find a club set C = k such that
MaeC)(Sna=+S).

By the ineffability of x and 2.1, together with some simple coding device, we can
find sets S, C < x such that the set

A={aex|Sna=85rCna=C,}
is stationary in k. Pick o, f€ A n C, o < . Then
(%) Ssna=Sna=S, and
(%) Cina=Cna=C,.
Since C, is club in o is club in f, using (**) we have
a = sup(C,) = sup(x N Cp) € 4.
Thus by choice of (Sg, Cp) we must have o N S + §,. But this contradicts (x). Thus

the set {x ek |S N o = §,} is stationary in x, and the theorem is proved. [

We turn now to the study of ineffable cardinals in L. As was the case with
weakly compact cardinals (V.1.5), we can prove that ineffability relativises to L.

2.5 Lemma. If « is ineffable, then [« is ineffable]".

Proof. We make use of 2.1.In L, let (4, |« < k) be such that 4, < « for all & < .
By absoluteness, this set is such a sequence in V; so by ineffability using 2.1, there
is a set A < « such that

X ={aex|A,=ANna}

is stationary in x. Now, for each x € X, 4 n oo = 4, € L. Hence as X is cofinal in
k, A nyeL for all y <x. But k is weakly compact, so by V.1.4 this implies that
AeL. Hence X € L as well. But, by absoluteness, in L, X is stationary and
X ={nex|A, = A na}. Thus by 2.1 applied inside L, we conclude that x is
ineffable in the sense of L. [J

We shall prove that if V= L, an inaccessible cardinal x will be ineffable iff there
is no x-Kurepa tree. But what exactly do we mean by a “x-Kurepa tree” for
inaccessible x? For if x is inaccessible, the x-tree consisting of all binary sequences
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of lengths less than «, ordered by inclusion, has 2 many x-branches, and we surely
do not want such a trivial example to be a “Kurepa tree”. The only reason this
tree is a x-tree at all is because the inaccessibility of k keeps the cardinality of each
level less than x. A more interesting notion is supplied by the following consider-
ations.

A x-tree T is said to be slim if | T,| < |«| for all infinite o. By a k-Kurepa tree
we shall mean a slim x-tree with at least k™ many x-branches. In the case where
x is a successor cardinal, this is at variance with the definition of IV.1, but the
distinction is clearly unimportant in this case, as it is the cofinal behaviour of trees
that is of interest to us. Let us agree to adopt the new definition for all « from now
on. Likewise for the definition of a “x-Kurepa family”, given below.

The restriction that our trees be slim could also be applied to the notion of a
k-Souslin tree. In fact it is easily seen that the x-Souslin trees constructed (in L)
in 1.3 and in IV.2.4 are slim. Consequently there would have been no loss if we had
required all of our x-trees to be slim.

By a x-Kurepa family we shall mean a family, &, of subsets of x such that
|Z | = k™ but for all infinite a < x, |{x N a|x € F}| < |a|. The same argument as
in I11.2.1 shows that the existence of a (slim) x-Kurepa tree is equivalent to the
existence of a x-Kurepa family.

The following result is a theorem of ZFC.

2.6 Theorem. If « is ineffable, then there is no k-Kurepa tree.
Proof. Let & <= 2(k) be such that |{x N a|x € F}| < |a| for all infinite o < k.
Assuming that x is ineffable, we show that |#| <k, so that & cannot be a

x-Kurepa family.
For each o > o, let (f#|v < «) enumerate {x N o|x € F}. Set

R, = {(x,v) 7 Efva}'

Thus R, € a x «. By ineffability (using 2.1 and a simple coding device) there is a
set R = k x x such that the set

E={aex|Rn(xxa)=R,}

is stationary in x. For each v <k, set f, = R"{v}. We shall prove that
F < {f,|v <k}

Let fe %, and suppose that f = f, for all v < «. Since « is regular we can find
a club set C < « such that

aeCo>NVv<a)(fooaxfna).
Pick « € C n E. Then for v < a,

fooaxfna= anR"{v} =an R;{v} ={t|tef)} =1
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Hence
fnad{filv<al={xnoa|xeF}.

Since fe %, this is absurd. This contradiction proves our result. [J
Using V= L, we now prove the converse to the above theorem.

2.7 Theorem. Assume V = L. Let k be an uncountable regular cardinal which is not
ineffable. Then there is a k-Kurepa tree.

Proof. The proofis very similar to that of IV.3.3 (the construction of a « *-Kurepa
tree). As there, it is more convenient to construct a k-Kurepa family.

By 2.1, let (4, |« < k) be the <-least sequence such that 4, < « for all &, and
whenever 4 < k, the set {a ex |4 N a = A,} is not stationary in x. Notice that
(A, |« < k) is a definable element of J, - .

For each o <k, let M, be the smallest M <J, such that (x+ 1)u
{(4,|v < @)} = M, and let 6,: M, = J,). Notice that for infinite o, | f ()| = |oc]|. It
is clear that the function f: k — k so defined is a definable element of J,. .

Let

F=xck|Vae<r)(x nae;y)}.

If we can show that |# | > «*, then & will be a k-Kurepa family, and we shall be
done. We assume |# | < k and derive a contradiction.

Let X = (x,|v < k) be the <-least enumeration of & . Notice that both & are
X are definable elements of J, - .

By recursion, define submodels N, < J, +, for v < k, as follows.

N, = the smallest N < J,+ such that N n k € k;
N, ., = the smallest N <J,+ such that N, u {N,} = N and N n k € k;
N;=1{J N,, if lim(9).
v<4

Set
o, =N, N K.

Then (o, |v < k) is a normal sequence in . Set
x={a,|v<kAaé&x,}.

Then x = x and x =+ x, for all v < «, so x ¢ # We obtain our contradiction by
showing that x N a € J;, for all « < x. We argue much as in IV.3.3.

Let o < k be given. Let # be the largest limit ordinal such that «, < a. Since
x N o differs from x N a, by at most a finite set, in order to show that x N a € J;(,
it suffices to show that x N «, € J;,,). (The function f is clearly non-decreasing.)

Since x Nna, = {a,|v <y Aa,¢x,}, it is in fact enough to show that
(x,|v <m)and (x, N a,|v < n) are elements of J;, .

Let n: N, = Jy. Then n [ o, = id [, m(x) = &, and 7(x) = (x, N o, |V < a,).
In particular, (x, na,|v <n)eJ;. And by an argument just as in IV.3.3, we
see that («, | v < 1) is ZF ™ -definable from J,. It thus suffices to show that f < f ().
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Suppose, on the contrary, that f(x,) < pf. Since a, + 1 €M, , we have
0q, (4, 1V < o)) = (4, ]v < o), 50 (A, |v < o) €T,y S Jl, Let

E={yeq|d4,=ynA4,}.
Then E € J;. Suppose that
Fj, “E is stationary in a,”.
Setting £ = n~!(E) and applying n™!: J; < J,+, we get
F ,K“‘E is stationary in x”.
Hence E really is stationary in « (by absoluteness). But (4, |v < k) € N, (by defina-

bility), so 7~ *((4,|v < «,)) = (4, |v < k). Hence, setting 4 = = 1(A ), we have
A Sk and

F,K"‘E= {yexlAy=yr\/T}”.

This is contrary to the choice of (4, |y < k), because the above sentence is abso-
lute. Hence,

Fj,“E is not stationary in a,”
Thus for some C e J; we have
Fj,“C is a club subset of o, and (Vy e C) (4, + y n 4,,)".
Setting € = n~'(C) we get, applying n~*: J; < J,+,
F=Jx+“(,~‘ is a club subset of x and (Vy € C) (A4,#yn A)”.
Since n ™! |'a, = id I, we have Cn a, = C. Hence as C is unbounded in «, and
C is closed in x (by absoluteness) o, € C Thus 4,, + «, N A But 4 = ﬂ_l(Aa,,)

so in fact we do have 4 N o, = Aa , because © -1 I, =1id [ a,. Contradiction!
The proof is complete. [

3. Generalised Kurepa Families and the Principles<> ],

The following natural generalisation of the notion of a x-Kurepa family was put
forward by C. C. Chang. Let x, A denote uncountable cardinals, with x regular®

8 The principle KH (x, x) is of some interest in the case where « is singular. This is considered
in Exercise 3.
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and A < k. We define
Pk)={xck|o<|x| < 4i}.

The (x, A)-Kurepa Hypothesis, KH(x, 1), is the assertion that there is a family
F < P(k) such that |F| > k* and for every x = Z,(x),

{fnx|feF} < Ix|

Clearly, KH (k, ) implies the existence of a k-Kurepa family. Hence by 2.6, we
have

3.1 Theorem. If x is ineffable, then KH(x, ) fails. O

We shall prove that if V = L, the converse to 3.1 holds, a result which strength-
ens 2.7. We shall also prove that V= L implies that KH(x, 4) holds for all un-
countable regular x and all uncountable A < x. We do this by introducing a two
cardinal version of the combinatorial principle < .

We assume throughout that k, 4 are as stated at the outset of this section.

On; asserts the existence of a function (S, | x € 2,(k)) such that:

@) S. = 2(Ux);
(i) S, < Ix[;
(iii) if X < «, then there is an unbounded set B < k with the property that
whenever x € 2, (k) has no largest element and is such that B n x is cofinal
in x, then X na, BN o€ S,, where o =  Jx.

3.2 Theorem. &, ; implies KH(x, A).

Proof. Recall that H, is a model of ZF ~. Fix some set of skolem functions for H,.
Let (S, | x € 2,(k)) satisfy O ;, and for each x € 2, (k), let M, be the smallest (with
respect to the chosen skolem functions) M < H, such that x U {x} =€ M and
(Vo < | JX) (Sx~a S M). Notice that M, | = |x]|. Set

F ={fskl(VxeZK) (fnxeM}.

In order to prove KH (k, A), it clearly suffices to show that [# | > k¥, since in that
case & will satisfy KH(x, ). We shall assume that | % | < k and derive a contra-
diction. Notice that k € &, so % % 0.

Let (f,|v < k) enumerate all unbounded members of % (This enumeration
need not be one-one.) For each v < k, let C, be the set of all limit points of f,. Let
X be the diagonal intersection of the sequence (C, |v < k), i.e.

X ={aex|(Vv<a)(eeC,)}.

Each set C, is club in «, so X is club in x. For each « € X, a is a limit ordinal and
for any v < a, f, N o is unbounded in o.



3. Generalised Kurepa Families and the Principles <, 321

By ©.f;, let B < k be unbounded and such that whenever x € 2, (k) is such
that o = ( Jx is a limit point of B N x, then X na, B N« € S,. Let («,|v < k) be
the monotone enumeration of the set

{o e X |a is a limit point of B}.
For v < k, set

B, = min(B — a,).
Notice that

av< .Bv < %ytq.
Set

f={B,Iv<x}.

Then f in an unbounded subset of «. Since f, N a, ., is unbounded in «,, ;, but
foa, ,=p,+1<a,,.,foreach v <k, we have f + f, for all v < x. We obtain
our contradiction by showing that fe &

Let x € 2,(x). We prove that f n x € M,. Let 8 be the greatest limit point of
fn x. Then

fox=(foxnpou(fox—p),

where f N x — fis finite. Being a finite subset of x, f N x —  must be an element
of M,,since x = M, and M, F ZF . So in order to show that f n x € M,, it suffices
to show that fnx N fe M,.

Now, f is a limit point of fn x. But f< B. Thus f is a limit point of
Bn(xnp). Hence Xnp, BnPeS, =M, But clearly, fnp is
ZF " -definable from X n B, B n B in exactly the same way that f was defined
from X and B. Hence fn f e M,. Thus fn f nxe M,, and we are done. [

3.3 Theorem. Assume V= L. If A <k, then O ; is valid.

Proof. For each xe%(kx), let M, be the smallest M<J, such that M,
x U {x} U {A} = M, and set S, = (| Jx) " M,. We prove that (S;|xe€ Z (k) S,
satisfies O, ;.

Suppose otherwise, and let X = x be the <j-least set such that there is no X
unbounded set B < k as in O, ;. Note that both (S, | x € Z,(x)) and X are defina-
ble from 4 in J,.+.

By recursion on v < «, define a chain of submodels

Ng<N;<...<N,<...<J+ N,
as follows.
N, = the smallest N < J,.+ such that le N nkek;

N, ., = the smallest N <J,+ such that N, U {N,} € N and N n k e k;
Ns=|J N,, if lim(J).
v<9
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It is easily seen that this causes no difficulties. In particular, |N,| < x for all v < .
Moreover

VST<K->N<N<J+.
For each v < «, set
a, = N, N K.

Clearly, («,|v < k) is a normal sequence in x.
For each v <k, let

o,: N, = Jgy.
Clearly,
o,la,=1d la,, o,K=0a, 0oX)=Xna,.
Set
B = {B(v)|v <x}.

B is an unbounded subset of x. We shall obtain the desired contradiction by
showing that B satisfies the requirements of &, ; for X.

Fix x an arbitrary element of %, (k) such that o = () x is a limit point of B N x.
We shall show that X n a, B n o € M, thereby completing the proof.

For each v < k, we have N, e N, ,, <J,+, and hence o,, f(v)e N,,,. But
IN,| < k. Thus B(v)eN,,; "k =a,,,. Also, since o,,,(x) =0a,,; we have
o,+1 < B(v + 1). Thus for all v < k we have

(1) BOv) <o,y < B+ 1).

But « is a limit point of B = {(v)|v < «}. Thus we must have « = «, for some
limit ordinal 5 < x.
Now, as we remarked earlier, X is J,+-definable from A. But

oy iy <Jer, o' =1, o' (Xna)=X.

Thus X N a, is J4,-definable from A.

Similarly, B N a,, is ZF ~-definable from Jj,, and 4 in exactly the same way
that B was defined from J, . and A. (This uses the fact that o, ' l'o, = id [ a,.)

Since 1€ M, and M, FZF ", it follows that in order to prove that X n ¢,
B n o e M, it is sufficient to show that B(y) € M,. This will take some time, and
requires some considerable extra machinery before we can even motivate the
argument.

To avoid confusion between ordinals and sequences of ordinals, from now on
we shall use £ to denote (8(v)|v < ), and for any 7 < x we shall write f | 7 for

By <.

Forv < u <k, set

Oy =0,°0, "
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Thus
Oy J/’(V) < Jﬂ(u)'

Note that {(Jp)y<x> (Fyu)v<pu<x is a directed elementary system. We write ¢ for
(0,,]v < u <k),and for any © < k we write 6 [t for (o,,|v < u <1).
The following result is central to our entire argument.

) If yenn M,, then a, B(), f1(+ 1,611 +1)eM,.

To prove (2), let y e n N M,. Since « = o, is a limit point of B N x we can find
a 7 < 7 such that t >y and f(r) e x = M,.
Define a sequence (N, | v < 6), for some 0, as follows.

Ny = the smallest N < J;(, such that Ae N na, € a;;
N, = the smallest N < Js, such that N, U {N;} = Nand N n o, € a;
=N/, if lim(d).
v<d

The definition will break down at some stage 6 when sup( U N/ na,) = a,.
We have

(*) O-t_I:Jﬂ(r)'<Jk+’ o‘t—l(i)zl’ O-t_l(at)zka ot_l f“f=idf°fz-
So by induction on v we see that
v < 17— N, is defined and o, '”N, = N,.

It follows that 8 = 1, of course, since sup, < (N, N &) = sup, <., = a,. For each
v<T1,let

o, N,/ = Jg ).

Since Ny =N, (by o LT N)). We_have p'(v) = p(v) for all v<rt. Thus
(B'(v)|v < 1) = B | 7. This shows that f | 7 is ZF ~-definable from B(z), 4, «,. Now,
B(z), A€ M,. And by (*) above,

a, = [the largest cardinal}#®

so a,€ M, as well. Thus ﬁ[reM Since ye M, and y < t it follows that
B =B 7)) eMeand fI(y+1)=(F 1) [y + 1) e M,. Also, a, = [the larg-
est cardmal]’ﬂ‘v’ € M,. It remains to prove that ¢ [ (y + 1) e M,.

Now, in the definition of (N, |v < k), if we replace J,+ by N, and « by «,, we
will obtain the sequence (N, |v < p), as is easily seen. So, as g,: N, = J;,, and

o, [a, =id [ a,, the same definition with parameters Jsw and a, will produce the
sequence (o, N,|v < p). Butitiseasily seen that ;" is the collapsing isomorphism
for o) N,. Slnce o, = [the largest cardmal]""“’ for all u, this shows that
(awlv <pu<n)is ZF ~-definable from f 1. But flte M, Thusé }te M, and
it follows at once that & [ (y + 1) € M,. So (2) is proved.

Qi
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Two further results follow easily from the above.
3 For 1<y, 1eM, iff f(r)e M,.

By (2),ift € M,, then (1) € M,. To prove the converse, assume that (z) e M,.
Thus «, = [the largest cardinal’*® e M,.. Now, from 4, B(z), &, we may define the
sequence (N, |v < 6) as in the proof of (2) above. As we observed then, we must
have 6 = 1. So this defines 7 from 4, f(z), o, in a ZF ~ fashion. So as 4, (), o, € M,
we conclude that t € M, and (3) is proved.

4 sup(n N M,) = 1.

Clearly, sup(n N M,) < . To prove the opposite inequality, let v < . Then
a, <o, so as a,=o=sup(Bnxna), we can find a 7 <#n such that
o, < B(r)ex = M,. By (1), v<1. By (3), te M,. So v < sup(y »n M,), and (4)
follows at once.

Now let

M, =J;
and set
n*=n"(n 0 M,).

By virtue of (2) we may define

fr="U =B+,

yena My

¢*= ) m(@l@y+1).

YENOMx

Since 7 is a collapsing isomorphism, the following are easily checked:

(5) n* is an ordinal.
(6) B* is an n*-sequence of ordinals, say f* = (B*(v)|v < n*).
7 6* is a system of maps of the form ¢* = (o, |v < u < 7n*).

8) B*(v) = n(B(n 1 (v)) for all v < n*.
) 0¥y =T(0p-14yn-1¢qy) forall v<pu<ny*

We know that {(Jp«)y<ys (0,,)y<u<,» is a directed elementary system with
direct limit {J;,, (0, ,)y<,>- Using (8) and (9) it is easily checked that {(Jz(,)), <>

(0%)y<u<p> is a directed elementary system. Let (U, E), (6¥),<,+» be a direct
limit of this system. We may define an embedding

h: KU, E> < {Jgy, €
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by letting v range over #* in the following commutative diagram:

Orn-1(v),n
Sy I

n1 h
o¥
Jﬂ*(v) — (U, E)

Thus (U, E) is well-founded, and we may take (U, E) to be of the form {Jg, €)
for some unique ordinal f*. B*
If v < #*, then

(O',,—n(v))_l ° ﬂ_llJl;*(‘,)<JK+,
so there is an o < $*(v) such that
o¥ = [the largest cardinal]’s*™,
Also,
0',,—1 ° h: Jﬂ*< JK+,
so there is an a* < f* such that
o* = [the largest cardinal]’s*. ok
The following result is immediate:
(10) a¥ = n(ty-1(y) and o¥(af) = o* forall v<n*  and h(e*) = a,.
Moreover, as we show next:
(11) o¥la¥f =id Ja¥ for all v < py*.

Since {Jg, (65F), <+ s the trapsitive direct limit of {(Jg«(y))y < yrs (O y << ,,*>3 it
suffices to prove that o, [ =id o for all v < pu < u*. But this follows easily
from (9) and the properties of the system 6.

(12) o = sup, < oy

Since 0¥ (a¥) = o* for all v < n*, we have sup, . »af < a*. To prove the op-
posite inequality, suppose y < a*. Pick v < #* so that y = ¢¥(}) for some 7. Since
o¥(a*) = a*, we have § < a¥. So by (11), y = 6¥(§) = 7. Thus y < a¥. This proves
that o* < sup, <,~a¥, and completes the proof of (12).

We are now able to indicate the purpose of the above considerations. It is

easily seen that f* and ¢* are ZF ~-definable from f*, «*, and A in the same way
that f and ¢ were defined from x*, x, and A. (See, in particular, the proof of (2)
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above and the definitions of f*, %, f*, a*.) Since o* = [the largest cardinal ' #*, this
means that f* and é* are ZF ~-definable from B*, 1.

Assume for the time being that §* € J;. Since J; F Zf~ (because M FZF ™), it
follows that f*, 6* e J;. Thus n~!(f*) and n~'(6*) are defined. Since n: M, =~ J;
is a collapsing isomorphism and n* = n"(n N M,), it is a routine consequence of
(6), (7), (8), (9) and the definition of f* and é* that

Btn=n""(F*tn and éln=n"(*"In.

Suppose first that 7~ (f*) = f | 5. Since Jg« is the unique transitive limit of
the system {(Jps(y))y <y (00 <p< e, it follows that J, - 4 is the unique transi-
tive limit of the system {(Jpq))y<ys (04 )y<u<qy- Thus m~'(B*) = B(n). Hence
B(n) e ran(n~ ') = M, and we are done.

Otherwise, =~ (B*) is a proper end-extension of § | #. Thus the directed ele-
mentary system determined by ! (§*), n ~ ! (6*) is an end-extension of {(Jj )y <
(v v<p<ny SO Jo-1gw y is the transitive direct limit of {(Js)y<y> (0y)y<u<yds
which means that 7~ Y(B*) (n) = B(n). It follows that B(y) is ZF ~-definable from
7~ 1(B*) and « as the unique element y of ran(z ~ !(f*)) such that o = [the largest
cardinal}. (By (1), each B(v) has a unique o, associated with it, so the same will
be true for the members of 7~ !(f*). Since 7~ *(f*) () = B(n), the relevant “o,”
here is «,=a) But a=(Jx and xeM,, so aeM,. Also, n '(f*¥)e
ran(n ') = M,. Hence B(n) € M,, as required.

So we see that the proof boils down to showing that (as was assumed for the
above discussion) f* € J;. As a first step we prove:

(13) Py) N My & Jy)-

We know that x € 2(a,) N M,, so it suffices to show that x ¢ Jg,,. Well, we
have |x| < A < ay < a,. Since 4 is a cardinal, |x|’#e < A. But sup(x) = a,. Hence
Frp {m “a, is singular”. But this is a contradiction, since o, ': Js, < J.+ and
o, '(a,) = x. This proves (13). (Incidentally, this is the only point were we need the
fact that A < x.)

We complete the proof by showing that if & < f*, then, contrary to the above,
P(a,) N M, = Jg,. First two results which do not require this assumption.

(14) If ze Z(,) N M, then n(z) e Z(a*) N Js.

Since 7(z) = {n(&)| € € z n M.}, in order to prove (14) it suffices to show that
if ¢ezn M,, then =n({)ea*. Suppose {ezn M, Then ¢ <ga, Now,
a, = SUp,<,&,, so by (4) we can find a ven n M, such that ¢ <«,. By (10),
n(¢) < n(a,) = a¥,). But 7(v) < n*. So by (12), n(&) < o*. This proves (14).

(15) If z € J; and z is a bounded subset of o*, then h(z) = ™' (2).
Since z is a bounded subset of a*, (12) tells us that we can pick v < n* sufficient-

ly large so that z < a}. Since z € Jj., we can assume that v is chosen here so that
z = () for some z < a*. By (11) and (10), ¢ [ o = id [ o} and o¥(a¥) = a*, so
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z=znay=0}"zZ=17 Thus z € Jg, and o¥(z) = z. Since z € Jpu,),
defined. We have n71(z) = n~!(a¥), so by (10),

n1(z) is

n~1(z) < a;, where vV =~ 1 (v).

Now, gy, [ ¢; = id a5, s0 65,"n~ ' (z) = ™ !(z). But by choosing v large enough

below n* we may assume that z is a bounded subset of o}, and hence that

n'(2)

is a bounded subset of a;. Thus o, (n™!(2)) = 6;,"n~ ' (z) = n~ ! (z). By definition

of h now, we have
h(z) = o5,

which proves (15).

077;_1 og"!‘_l(z)zo"?ﬂo

@) =11,

To complete the proof of the theorem we now have:

16)  If 8 < B*,

then 2(a,) N M, =

Jﬁ(ﬂ)'

Letze Z(x,) N M,.Letz = n(2). By (14), z € Z(¢*) n J5. Since 6 < fp*,z € Jp.
Thus h(z) € Jg,. It suffices, therefore, to prove that h(z) = Z.
Now, z = a*, so, using (10), h(z) = h(a*) = «,. But by (4), @, = sup,c, -, %,-

Thus
hzy)= |

venn My

[h(z) N a,].

Likewise

Ny

Z oyl
venn Mx
So we have

hz)= U

venn My

= [h(2) N o1 (y)

v<n*

= | [h@) n (@]

v<n*

= U [h(z) ~ h(a)]

v<n*

[h(z) N a,]

[h(z A )]

v<*

=

[n7(z A )]

*

[n7(@) Nt (o)

*

v<

=

v<

Q [Z—ﬁ o vl(v)]

=

v *

= | [Ena)]

venn My

Ny

We are done. [

(by definition of *)

(by (10))

(by (15) applied to o)
(since h is an isomorphism)
(by (15) applied to z N a¥)
(since =~ ! is an isomorphism)

(since n(Z) = z and by (10), respectively)

(by definition of n*)
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By 3.2 and 3.3, if V= L, then KH(k, 4) is valid whenever A < k. By virtue of
3.1 and 3.2, our next result shows that if V= L, then KH(x, «) iff x is not ineffable.

3.4 Theorem. Assume V= L. Then [, holds iff k is not ineffable.

Proof. 1f k is ineffable, then by 3.1, 7 KH(xk, k), so by 3.2, 71 & .

Conversely, suppose x is not ineffable. We prove <, by means of an argu-
ment very similar to that used in 3.3 above. Because of this similarity, we simply
describe the changes that must be made to the proof in the present case. The idea
is to modify the definition of the models M, so that an analogue of (13) may be
proved, since this is the only point in the proof of 3.3 where we made use of the
fact that 4 < x. (At all other points where 4 was mentioned, we may now simply
omit all mention of 4, and everything proceeds as before.)

Let (4, |« < k) be the < -least sequence such that A, < o for all « < «, but for
any A < k, the set {a e x| A, = a N A} is not stationary in «. (Such a sequence
exists by 2.1.) For each x e Z.(«x), let M, be the smallest M < J, such that
x U {x} u {4,,} = M. Now define S,, x € Z,(x), as before, and proceed exactly as
in 3.3 except for the verification of (13). At this point we argue as follows.

We wish to prove that 2(a,) N M, & Jg,). We assume otherwise and derive
a contradiction. By definition, we have 4, € M,, so by our assumption, 4, € Js-

Now, (4, |y < k) is J,+-definable, so (4,|y <k)e Ny = N,, so (4,]|y <n) =
0,((4,|y <x)) € Jg,. Thus

X={eold,=ynA,}elsu.
Suppose that
Flsen X 18 stationary in a,”.
Set X = o, '(X). Since g, ': Jpy < J,+, wWe have
F,.“X is stationary in x”.

Thus X really is stationary in x. (Because 2(x) < J,.+.)
Again, by absoluteness,

Frpy X ={veE0 |4, =7y N A4,}".

So if we set A4 = 6, '(4,,), we have, since g, ': Jy i < Jic+»
FL X ={yex|d,=yn A}"

Thus it really is the case that
X={yek|A,=yn A4}

But we assumed that no A exists for which such a set X is stationary. This
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contradiction proves that
s X 18 not stationary in o, ”.
So there is a set C € Jg, such that
Fisen Cisclubin a, and (Vy e C) (4, 7 N0 4,,)".
Let C =0, '(C). By 0, 't Jg(,) < J,c+, We get
F,.“Cisclubinx and (Yye C) (4, +ye A)”

By absoluteness, C is thus a club subset of x such that (Vy e C) (4, %y N A).

Now, C n a, = C (because g, ' o, =id 'a, and ¢, *(a,) = x) and, by abso-
luteness from Jy,, C is club in «,, so as C is closed in x, we have a, € C. Thus
A,, * o, N A. Buta, 0 A = g,(A4) = A4,, (by the two properties of o, ! just men-
tioned), so we have a contradiction. The proof is complete. [J

Exercises

1. Weakly Compact Cardinals and Set mappings

A set mapping is (for our purposes) a function f: [k]' — k (for some n € w) such that
f(o)goforall ge[k]" A set X <k is said to be free for such a set mapping if
f"[XT'n X = 0. We write (k, n) > A if every set mapping f: [k]' - x has a free set
of cardinality A.

1 A. Prove that if x is weakly compact, then (x, n) — « for all n € w.

1B. Prove thatif V= L, then x is weakly compact iff x is uncountable and regular
and either (x, 2) — k or else (k, n) >« for all n € w.

2. Weakly Compact Cardinals and Colourings of Graphs

A graph is a structure ¥ = {G, E), where G is a non-empty set, called the set of
vertices of 4, and E is a set of pairs from G, called the set of edges of 4. If {x, y} € E,
we say that x and y are joined in 9. A subgraph of % is a substructure of 4 in the
usual sense. If H = G, 4 | H denotes the subgraph of ¥ with domain H. We say
Y | H is small if |H| < |G|

Let 4 = (G, E) be a graph, u a cardinal. A mapping h: G — u is called a
u-colouring if h(x) + h(y) whenever x and y are joined in 4. The least x for which
% has a u-colouring is called the chromatic number of 4.

A basic question of graph theory is: how is the chromatic number of a graph
@ effected by the chromatic number of its small subgraphs? By P(x), let us mean
the following assertion: if ¢ is a graph of cardinality x, all of whose small sub-
graphs have countable chromatic number, then ¢ has countable chromatic num-
ber.
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2A. Prove that if k is weakly compact, then P(x) holds.

We shall prove that if V= L, then for uncountable regular x, the converse to
the above result is valid. Assume V= L from now on. Let ¥ be an uncountable
regular cardinal, not weakly compact. Let E = x be stationary and such that
E n Aisnot stationary in A for all limit ordinals A < #, with cf(«) = w for all « € E.
Assume that f + o < o whenever § < « € E. Let (B%|n < w) be a partition of a,
for each o € E, such that whenever (B, |n < w) is a partition of x, the set

{aeEfcf(0) =w A (Vne w) (B, n o= B%)}
is stationary in x. For o € E, let A, be a cofinal w-sequence in «, chosen so that

Vn[B% unbounded in « —» 4, N B % 0] .

Let ¢ be the graph with domain «, in which two points v < « are joined iff x € E
and ve 4,.

2B. Prove that ¢ has chromatic number at least w,.

2C. Prove that, for any 1 < k, there is an enumeration (x, |v < 6) of A such that
the set of all n < v for which x,, is joined to x, is finite for all v < 6, and use this
to deduce that ¢ | A has countable chromatic number.

3. KH(x, ) for Singular x

3A. Assume GCH. Prove that if x is singular and cf(x) > w, then whenever
F < P(k)is such that theset {1 ek ||{fn A| fe F}| < A} is stationary in «, then
|# | < k. (Hint: Work on a club subset of k of order-type cf(x) and use Fodor’s
Theorem.)

By the above, assuming GCH, KH(x, ) fails for all singular cardinals x of
uncountable cofinality. The following exercises show that if V= L, KH(x, x) is
valid for all singular cardinals x of cofinality . We fix x a singular cardinal of
cofinality w from now on.

3B. Assume GCH. Show that if & is a set of w-sequences cofinal in «, then for
any uncountable set X < k.

Hfo Xl feF} <I|X|

By virtue of the above, in order to prove KH(k, x) assuming V = L, it suffices
to construct (from V= L) a family & of k™ many w-sequences cofinal in x such
that |{fn X| fe #}| < o for all countable sets X = k. Assume V' = L from now
on. For each x € Z,(k), let M, be the smallest M such that x U {x} = M <J, .. Let

F ={fcxklotp(f)=w & sup(f)=x & (Vxe P, (k) [fn xeM,]}.

The aim is to prove that | % | = k", which at once establishes KH(x, x), of course.
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Let (x,|n < w) be the < -least w-sequence of cardinals cofinal in x such
that k, > w. For each n < w, let N, be the smallest N < J, .+ + such that x, = N,
and let N = (J N,.

3C. Prove that Ny< N; < ... <N, <...<N<J ++.
3D. Prove that xk = N and that N nxTex™.
Let
JiN=J,,
and for each n < w, set

N, =j'N,.

3E. Prove that Ny< N; <... <N, < ... < J,.
Let

and set
R = {g0,|n < w}.

3F. Show that R ¢ N.(Hint: We know that (x,|n < w) € N. Thenif R € N, we get
(g )n<w> Un °Jm Im<n<wy € N. Thus J, € N, a contadiction.)

Now assume, by way of contadiction, that |# | < k.
3G. Show that (under the above assumption) & € J, and & < J,.
3H. Obtain a contradiction with 3 F by proving that R € & (This is the challeng-
ing part of the exercise, and you are on your own from now on. Good luck!)
4. More on Weak Compactness in L

Prove Theorem 1.2'. (See Exercise VI1.4.)





