
Chapter VII

Trees and Large Cardinals in L

In this chapter we concentrate on the notion of a κ>tree in the case where K is an
inaccessible cardinal. In this case, assuming V —L, both the notion of a κ>Souslin
tree and of a /c-Kurepa tree turn out to be closely related to large cardinal
properties. Thus this chapter extends both Chapter IV, where we studied κ + -trees,
and (parts of) Chapter V, where we dealt with large cardinals.

1. Weakly Compact Cardinals and K-Souslin Trees

The notion of a weakly compact cardinal has already been introduced in V.I, and
we refer the reader back there for basic definitions. In particular, V.I.3 gives
several equivalent definitions of weak compactness, and V.I.5 proves the result,
relevant to us here, that if K is a weakly compact cardinal, then \κ is weakly
compact]L.

Assuming V= L, we shall prove that if K is an inaccessible cardinal, then K is
weakly compact iff there is no /c-Souslin tree. This extends V.1.3(viii), which says
that, in ZFC, an inaccessible cardinal K is weakly compact iff there is no
/c-Aronszajn tree. We shall also show that under V= L, V.1.3(ii) may be extended.

We shall require the following characterisation of weak compactness, which is
really just a V= L analogue of Πl-indescribability (V.1.3(iv)).

1.1 Lemma. Assume V= L. Let K be an inaccessible cardinal. Then K is weak-
ly compact iff, whenever φ(U, Al9..., An) is a sentence of the language
g?(U,Au...,An), if Aί9...,An c j κ are such that

then for some cc < /c,

j α ) [ < j α , e , ί / , i 1 n J α , . . . , 4 π J α ) ^ ] . D

There are various ways of proving 1.1. One way is to make minor modifica-
tions to the proof that Π}-indescribability characterises weak compactness in
ZFC (V.1.3(iv)). Another way is to prove that under the assumption V= L, the
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property in 1.1 is actually equivalent to the Πj-indescribability condition, by
noting that if λ is inaccessible, then Jλ = Vλ. (This requires a lemma that the α < K
of 1.1 can always be assumed to be an inaccessible cardinal. The proof of this fact
involves adding a conjunct to the sentence φ which ensures this.) In any event, the
proof of 1.1 is of no direct relevance to our work here, being essentially a part of
large cardinal theory itself, rather than constructibility theory. So we do not give
a full proof.

Now, by V.1.3(viii), if K is a weakly compact cardinal, then there is no
/c-Aronszajn tree, so certainly there can be no /c-Souslin tree. We shall prove that
if V= L, then if K is not weakly compact, there is a κ>Souslin tree. As usual when
dealing with trees, we are assuming that K is regular here. In fact, since we know
from IV.2.4 that (if V= L) there is a jc-Souslin tree whenever K is a successor
cardinal, we need only consider the case where K is inaccessible. Our construction
of a jc-Souslin tree closely resembles that of IV.2.4. Indeed, since OK(E) is valid for
any stationary set E c K (assuming V= L), by examining the proof of IV.2.4 we
see that it is sufficient, in order to show that there is a /c-Souslin tree for inacces-
sible, non-weakly compact K, to prove the following combinatorial result:

1.2 Theorem. Assume V= L. Let K be an inaccessible cardinal which is not weakly
compact. Then there is a stationary set E ^K and a sequence (Cα | α < K A lim(α))
such that:

(i) α e £ - > cf(α) = ω;

(ii) Cα is a club subset of α;

(iii) if α < oc is a limit point of Cα, then α φ E and Q = α n Cα. D

By means of a slightly different argument, depending on VI.6.Γ rather than
VI.6.1, it is possible to prove the following more general form of 1.2.

1.2' Theorem. Assume V= L. Let K be an inaccessible cardinal which is not weakly
compact. Let A^κbe a stationary set of limit ordinals. Then there is a stationary
set E c A and a sequence (Cα | α < K A lim(α)) such that:

(i) Cα is a club subset of α;

(ii) if α < α is a limit point of Cα, then α φ E and Q = ά n Cα. D

(See Exercise 4.)
Before we turn to the proof of 1.2, we obtain some consequences of this result.

1.3 Theorem. Assume V= L. Let K be an inaccessible cardinal. Then the following
are equivalent:

(i) K is weakly compact',

(ii) if E <^κ is stationary in K, then for some regular cardinal λ < K, E n λ is

stationary in λ;

(iii) there is no κ-Souslin tree\

(iv) for all n, λ such that 1 < n < ω and 1 < λ ^ K, the partition property

K ^ [#c]J

(see below) is valid;
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(v) for some λ such that 1 < λ < κ9 the partition property

{see below) is valid.

Proof, (i) -• (ii). This is a simple application of Π}-indescribability, and is left to
the reader. V= L is not required for this implication.

(ii) -> (i). This follows from 1.2. If K is not weakly compact, then the set E c K of
1.2 is stationary in K, but if λ < K is regular, the set of limit points of Cλ is a club
subset of λ which is disjoint from E n λ9 so E n λ is not stationary in λ.

(i) -*• (iii). This is a consequence of V.1.3(viii) (there are no κ>Aronszajn trees). This
part does not require V= L.

(iii) -• (i). If K is not weakly compact, then, using 1.2 we may repeat the argument
ofIV.2.4.

(i) -> (iv). Condition (iv) involves a new partition relation. We write

iff, whenever /: [κf-> λ, there is a set X c K, \χ\ = μ9 such that f"[Xf +
Provided that λ > 2, this would seem to be much weaker than the condition

which requires that the set X satisfy |/"[X] W | = 1. An indeed, it is known that the
two partition relations are not provably equivalent in ZFC. But as the theorem
shows, in L these two relations are equivalent.

Since K -• (κfλ is a consequence of weak compactness (V.1.3(ii)), the implica-
tion (i) -• (iv) is provable in ZFC.

(iv) -> (v). This is trivial, since (v) is a special case of (iv).

(v) -• (i). It suffices to prove —ι (iii) -> —ι (v). So let T = <τc, ζ τ > be a κ>Souslin tree.
By discarding levels of T we may assume that for every x e T the set S(x) of all
immediate successors of x in T has cardinality at least |x|. Let fx be a map from
S{x) onto x( = {y \ y < x}) for each xeΎ. Define /: [κ]2 -• K as follows. If x, y are
incomparable in T, let /({x, y}) = 0. Suppose x,yeΎ are such that x <Ύy. Let y
be the unique predecessor of y in S(x). Let f({x,y}) =fx(y). We show that /
witnesses κ++[κ]l.

Assume that X e [κ]κ and α < K are given. For each x e l - ( α + l), let
yx e S(x) be such that fx(yx) = α. Since T is jc-Souslin, there must be
x , x ' e l - ( α + l) such that yx <Ύyx>. Then by definition, /({x, x'}) = α. The
proof is complete. D
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We turn now to the proof of 1.2. We assume V= L from now on. We fix K an
inaccessible cardinal which is not weakly compact. By 1.1 there is a sentence φ of

, D) and a set B c κ such that

(a)

(b) (Vα < / c ) p c α ) [<Jα, e, 5 n α, D> N ~i φ].

(We have made some simplifications here. In 1.1 we allowed any finite number of
predicate letters in φ. But by using pairing functions we can always replace a finite
number of predicates by a single predicate. Also, we have only considered predi-
cates on ordinals in the above. But since there is a uniformly Jα-definable map
from α onto Jα for all ordinals closed under the Gόdel Pairing Function (see
VI.3.19), and since we can always add a conjunct to φ to ensure that α is closed
under the Godel function, this also causes no loss of generality.)

Our proof of 1.2 depends heavily upon the proof of the global D principle in
VI.6. We begin by recalling the definition of the class E of VI.6.

E is the class of all limit ordinals α such that for some ordinal β > α:

(i) α is regular over Jβ\ and

(ii) there is a p e Jβ such that whenever p e X <Jβ and I n α i s transitive,
thenX = Jβ.

We define E c K to be the set of all limit cardinals (note: cardinals) a < K such
that cce E and for some β > α satisfying (i) and (ii) above, it is the case that:

(iii) B n αe Jβ;

(iv) if D e ^(α) n Jβ9 then <Jα, ε, B n α, D) N φ.

Since £ ^ E, by VI.6.4, cce E implies cf(α) = ω.
By VI.6.3 we know that E n K is stationary in K. By modifying the proof of

VI.6.3 slightly, we prove:

1.4 Lemma. E is stationary in K.

Proof. Let C ^K be club. We prove that E n C φ 0. Since the set of all limit
cardinals α < K is club in K, we may assume that all members of C are limit
cardinals. Much as in VI.6.3, let N be the smallest N <JK+ such that (B, C)e N
and N n K is transitive. Let α = AT n ιc. Let π:Jβ^N. Then π f α = id \ α and
π(α) = JC. Moreover, π(£ nα) = ΰ and π(C n α) = C.

Exactly as in VI.6.3, we may prove that α, β are as in conditions (i) and (ii)
above, with/? = ( ΰ n α , C n α). Moreover, we know that B n α ε Jβ9 so (iii) holds.
Finally, by choice of φ and absoluteness,

Applying π " 1 ,
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So by absoluteness,

(VD e 0>(a) n Jβ) [<Jα, e , β n α , D ) ^ φ].

But α e C (as in VI.6.3), so α is a limit cardinal. Thus α e ί , and s o α e E n C , and
we are done. D

We shall let S, (Cα | α e 5) be as in VI.6. So, in particular, (Cα | α e S) is a 5, Cα

D (E)-sequence. We define a sequence (CJα < TC Λ lim(α)) to satisfy 1.2 for the
stationary set E ^K. That is, we shall define the sets Cα so that Cα is a club subset
of α and whenever α < α is a limit point of Cα, then α φ E and Q = α n Cα. There
are several cases to consider. First a trivial case: set Cω = ω. From now on we
shall assume α > ω.

Case 1. a is not a limit cardinal.
In this case, let τ be the largest limit cardinal less than α, and set

Cα = α — (τ + 1). Since £ consists only of limit cardinals, no limit point of Cα can
be in E. Moreover, if α < α is a limit point of Cα, then T < α < α, so α falls under
Case 1 as well, and Q = α — (τ + 1) = ά n Cα. There is nothing further to check
in this case.

In order to describe the next case we require some preliminary notions.
Let U be the set of all limit cardinals a <κ such that for some β > α: U

(i) α is regular over Jβ;

(ii) B n ae Jβ;

(iii) there i s a D e ^(α) n Jβ such that <Jα, e, B n α, D> N —I φ.

We shall say that any β as above testifies that α e U.

1.5 Lemma. U n E = 0.

Proof. Let α e £ and let /? > α satisfy the definition for α e £ Thus, in particular,

(VD e 9{μ) n J,) [<Jα, e, 5 n α, D> N φ].

Now suppose that oceU, and let /?' > α testify this fact. Thus, in particular,

(3D E 9{p) n Jβ) [Ja, e , ϋ n α , D ) H φ\.

Hence β < β'. But by VI.6.4, α is Σx-singular over J^ + i Hence α is not regular
over Jβ>. Contradiction, since β' testifies aeU. Thus α φ (7, and the lemma is
proved. D

Now let W be the set of all α e U such that if β > α is the least to testify α e I/, W
then whenever /^eJ^ there is an X -< J^ such that p eX and I n α e α .

1.6 Lemma. U — W^E. Moreover, if oceU — W and β > a is the least to testify
αeC/, then β satisfies the definition for α e £ .

Proof Let α, β be as above. Since α φ W there is a p e Jβ such that whenever
X -< J^ is such that /> e X and I n α i s transitive, then X n α = α. Let /? be in
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fact the < j-least such element of Jβ. Since α e U, let D e ^(α) n Jβ be the < j-least
subset of α such that <Jα, e , ΰ n α , D ) H φ . Let q = (p, oc, B n α, D). We prove
the lemma by showing that if q e X •< J^ and I n α i s transitive, then X = Jβ. It
suffices to prove this for the smallest X for which qe X <Jβ and I n α i s transi-
tive.

Let π: X ^ Jp, β ^ β. Since p e X, we have X n α = α, so π f α = id ϊ α,
π(α) = α, π(β n α) = 5 n α, π(D) = Zλ Moreover, since α is regular over Jβ, α is
regular over Jβ. Thus jβ testifies that α e 17. So by the minimality of /?, we have

Suppose now that π(p) e Y< Jβ and Yn α is transitive. Let Y= π ίfΎ Then
Ϋn α = 7 n α, so, as n~ι\Jβ< Jβ, we have /? e F-< Jβ and Ϋn α is transitive.
Thus by choice ofp, Ϋn α = α. Thus 7 n α = α. But 7 was arbitrary here. Hence
π(p) has the same property as/?. So as/? was chosen < j-minimally and π(p) ^dp
(because π is a collapsing map) we have π(/?)=/?. It follows at once that π(q) = q.

Now by choice of X, every element of X is definable from parameters in
a u {q} in J^. (Because the set of all elements of Jβ which are so definable is an
elementary submodel of Jβ containing q which is transitive on α, and X is the
smallest such.) But we have X -< Jβ, π: X ^ Jβ, π \ α = id \ α, π(q) — q. Hence
π = id f X. Thus X = Jβ, and we are done. D

Case 2. aεW.
Let β > α be the least to testify α 6 17, and let D e^(oc) n Jβ be < j-least such

that

Since α e ^ . w e can define submodels Xv-< Jβ9 v < θ (some 0), as follows:

Xo = the smallest X -< J^ such that (α, B noc,D)eX

and I n α i s transitive;

X v + ! = the smallest X <Jβ such that (α, B n α, D, αv) e X

and I n α i s transitive;

χλ= (J χ v 5 if lim(/l) and sup v < A α v < α (otherwise undefined),
v<λ

where for each v we set

αv = Xv n α.

Since α e Wζ the definition proceeds until a limit ordinal θ is reached for which
sup v < θα v = α. Thus the set

Cα = {α v |v<0}

is a club subset of α.
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1.7 Lemma. Let OLEW. Let α < α be a limit point of Cα. Then deW, α e E, and
Q = α n Cα.

Proo/ Let ά = αA, lim(A), and let π:Jβ^Xλ. Thus, π f α = i d t α , π(α) = α,
π(5 n α) = £ n α, π(D n α) = Z) n α. So, as π: Jβ<Jβ, it is immediate that β
testifies that όίeU, and moreover that /Πs the least such ordinal. In particular, by
1.5, we have α φ £ . .

Let /? G J^. Then /? = π(/?) G X λ, s o / ? e l v for some v < λ. Let X = π~ί "X v.
Then p e X <Jβ and X n α = αv < ά. Thus ΰeW.

Define D, (Xv | v < θ\ (αv | v < 9) from α, β just as D, (Xv | v < θ), (αv | v < θ) were
defined from α, β. Thus, in particular, Q = {άv | v < θ}. It is easily seen that θ = λ
and Xv = π"Xx for all v < θ. Hence αv = αv for all v < θ,, and we have
Q = ά n Cα. The lemma is proved. D

That completes the discussion in Case 2. Notice that this case includes all
regular α > ω, since if α is regular, then β = α + testifies α G (7, and α e ί f holds by
regularity. From now on we assume that α > ω does not fall under either of
Cases 1 or 2. Hence α is a singular limit cardinal. We now make use of the
sequences Cα, α e S, from VI.6.

Let C'a be the set of all limit cardinals λ < α which are limit points of Cα. Then C'a
C'a is closed in α, and if cf(α) > ω, Q is also unbounded in α.

Case 3. C« is bounded in a.
Then we must have cf(α) = ω. Let Cα be any ω-sequence cofinal in α. Since Ca

has no limit points, there is nothing to check in this case.

Now, if α G £, then in the definition of Cα in VI.6, α falls under either Case 1
(α < ω x) or else Case 4 (n(α) = 1 and succ(jS(α))), so Cα is an ω-sequence cofinal in
α. Hence C^ = 0 for all α e £ . Thus Cases 1 through 3 above include all α e E. So
by 1.6, Cases 1 through 3 include all α e U - W. So if we assume from now on that
α > ω does not fall under any of cases 1 through 3, then α φ U and Q is un-
bounded in α. We shall take Cα to be a certain club subset of Cα.

In the definition of Cα in VI.6, in Case 1 (α < ωx\ Case 2 (α φ Q), and Case 3
(α G β and sup(β n α) < α), α is not a cardinal, and hence falls under our present
Case 1 above. And in Case 4 of VI.6 (rc(α) = 1 and succ(/?(α))) we have C'Λ = 0. All
of these possibilities are covered by our present Cases 1 through 3. Since we are
assuming now that α does not fall under any of these three cases, it follows that
in the definition of Cα in VI.6, α falls under Case 5. In particular, by VI.6.17, if ά
is a limit point of Cα (a fortiori: of Cα, when it has been defined), then ά φ E, so
α φ £, and hence we need only concern ourselves with the proof that Q = α n Cα.

Let β = β(oc% n = n(α) be as in VI.6. Let (αv | v < θ) be the monotone enumer- /?, n, θ
ation of Cά, and set βv = β(ocv). If α = αv, then our βv is just the β of VI.6 and we αv, β v

have (VI.6.12) n(αv) = n; moreover there is a m a p π J ^ , , . ! ^ such that
π ί α = id \ α, and, in case ti <β, such that π(α) ̂  α. (See just prior to VI.6.10.) Let
π v denote this embedding. Thus for each v < θ we have an embedding π v

π v : Jβv<n-1J^ such that π v f αv = id \ αv, and in case αv < jSv, πv(αv) ^ α.

1.8 Lemma. Let όί < ocbe a limit point of C'a. Then α does not fall under either of
Cases 1 and 3 above.
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Proof: Since a is a limit cardinal, it cannot fall under Case 1. Since CA = a n CL, 
is a limit point of CA, so a cannot fall under Case 3. 

Case 4. a = B. 
Set Ca = CL in this case. Suppose that a < a is a limit point of CN. Note that 

by 1.8, a cannot fall under either of Cases 1 or 3. For some limit ordinal 1 < 0, we 
have a = a,. If a, < p,, then we would have n,(a,) 2 a, which is impossible since 
a = fi 4 Js 2 ran(n,). (Since a is a cardinal, wa = a, of course, so cop = p.) Thus 
a, = p,, i.e. B(a) = a. It follows that E does not fall under Case 2 above, because 
any > i which would testify a E U would need to be less than p(i) in order for 
a to be regular over JF. Hence as a, = fi,, a falls under Case 4. Thus 

and we are done in this case. 

We assume now that a does not fall under any of Cases 1 through 4. For 
- 1 n,, v < z < 6, set n,, = n, o n,. Thus x,,: Jpy < n - l  JBz and n,, r a, = id r a, for all 

v < z < 0. Clearly, ((Jp,)vc8, (ny,) ,,,,,) is a directed Cn- ,-elementary system. 
(See V.5 for the relevant definitions.) What is its direct limit? We claim that it is 
(JB, (n,),,,). Clearly, what we must prove is that Js = U ran(n,). We do this 

v i 8  

below. 
Q V  Let eV = @(a,) = e;fr1 (v < 0). By VI.6.7(iii), 

Suppose now that v < 6, and let Q =  P,, x = n,. By VI.5.6 we know that 

Now, by definition of p ; ' ,  every element of J Q ; 2  is El-definable from elements 
of J, u {pz-') in (J,;-2, A;-'). SO by (I), 

Repeating the same argument, using (2) in place of (1) and (2)' in place of (1)' now 
yields 
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Continuing in this fashion, we obtain, eventually,

{n-\) \Jπv"Jek = Jtϊ.

(n) [jπv"Jβv = Jβ.
v<θ

This last equality is the one we require.
If λ < θ is a limit ordinal now and we set ά = α λ, β = βλ, and if we define A, α, β

βv, αv, π v , π v τ , for v ^ τ < 0, from α, /ί as β v, αv, π v , π v τ , for v ^ τ < 0, were defined βv, αv, π v ,
from α, β, then (clearly) 0 = λ and for v ίζ τ < 0, /?v = βv, αn = αv, π v = π v λ , π v τ , θ
π v τ = π v τ . We utilise these observations below.

Case 5. B n oce Jβ.
Since Jβ = (J πv"Jβv, we may pick vα to be the least v < 0 such that α,

v<0

β n oceπv"Jβv. Set

Let α < α be a limit point of Cα. Thus oc = ocλ for some limit ordinal
λ, vα < λ < θ. By 1.8, α cannot fall under either of Cases 1 and 3. Moreover, ά
cannot fall under Case 4, since α e π / ' J ^ , which implies that ocλeJβv and
πA(αΛ) = α. (Recall that πλ \ ocλ = id \ αA.) We show that α also cannot fall under
Case 2. Indeed, not only do we have ά φ W, but the stronger condition α φ 17. For
suppose that β > α were to testify that ά e U. Since α must be regular over Jβ, we
have β < βλ. Now, β n α ε J^, so as λ > vα, we must have πλ(B n α) =
B n a. Thus B n ocε Jπχ(β)' Again, we can pick D e ^(d) n Jβ so that
<JS, G, £ n ά, D> N~Ί φ. Let D = πA(D). Since πλ: Jβλ<oJβ, we have D e ^(α) n
Jπλ(^} and <Jα, e, β n α, D>N ~i φ. Thus as πλ(j5) < β, πλ(j5) testifies that α e 17. But
α falls under Case 5, so α φ 17. Contradiction! Hence α does not fall under any of
Cases 1 through 4. But 2 > v α , s o β n ά e J / J ; ι = Jm. Hence α falls under Case 5.
But it is clear from the remarks we made just prior to Case 5, together with the
facts that πλ(α) = α and πλ(B n α) = B n α (which are valid because πλ \ α = id ϊ α
and α, β n α G πλ

ffJβλ\ that vs = vα. Hence

Q = {αv I vα- ^ v < 0} = K I vα ^ v < λ} = ά n Cα.

That completes the proof in this case.

Case 6. Otherwise.
In particular, in this case we have B n α φ J^. Suppose that v < θ were such

that B n αv G J^ V . Then there must be a τ > v such that π v τ (£ n α J Φ ΰ n ατ,
since otherwise we would have

B n α = (J πvτ(f* n αv) = πv(B n αv) e Jβ.
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So we can define a normal sequence (v(ι)\ι < θ), for some θ =ξ θ, as follows.

v(0) = 0;

v(ι + 1) = the least v > v(ι) such that

B n α v ( ϊ ) e Jβv(ι)^πv{ιhv(B n αv( ι)) + B n αv;

v(>l) = supI<Λv(z), if this is less than θ (otherwise undefined),

for li

θ The definition proceeds until an ordinal θ is reached for which sup, < $v(ι) = θ.
(Clearly, lim(θ).) Set

Let ά < α be a limit point of Cα. Thus α = α v ( λ ) for some limit ordinal A < 9".
As in Case 5, 1.8 implies that α cannot fall under Cases 1 and 3, and since
ΰ = αv(λ) < βv(λ) = j8(α), α cannot fall under Case 4. We show that α cannot fall
under Case 2. In fact, as in Case 5 we show that α φ U. Suppose, on the contrary,
that oίeU. Thus, in particular, B n ΰeJβv(λ). (Clearly, the least β> α which
testifies άeU has to be less than jβ(α) = j8v(Λ).) But (as we proved earlier for β)

Λv(A) = U πv(l),v(λ)%v(i)>

so for some κ l , β n α e πv(o,v(λ)%v(ι) Thus β n α = π v ( l ), v U ) (B n αv(I)). But this
implies that πv{ι)jV{ι+1)(B n αv( ι)) = B n α v ( I + 1 ) , contrary to the choice of v(ι + 1).
Hence α does not fall under any of Cases 1 through 4. But the above argument
shows that α does not fall under Case 5 either. Thus α falls under Case 6, and we
have

The proof of 1.2 is complete.

2. Ineffable Cardinals and κ-Kurepa Trees

Ineffability is a large cardinal property which strengthens weak compactness. By
definition, an uncountable, regular cardinal K is said to be weakly compact iff,
whenever /: [κ]2 -> 2, there is an unbounded set X c K such that |/"[X]21 = 1. We
say that an uncountable, regular cardinal K is ineffable iff, whenever /: [κ]2 -> 2,
there is a stationary set I c /c such that | / " [ X ] 2 | = 1.

Clearly, all ineffable cardinals are weakly compact. The converse is not true,
and indeed, as we shall show presently, ineffability is a much stronger notion than
weak compactness. It should be said that the notion of ineffability is a rather
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specialised one, not covered in many of the standard texts dealing with large
cardinals. (For instance, it is not covered in Drake (1974) or Jech (1978).) Conse-
quently we give here a few of the basic results concerning ineffable cardinals.

2.1 Theorem. Let κ> ωbe regular. Then K is ineffable iff whenever (A^ \OL <κ) is
such that Aa c α for all α < /c, there is a set A ^ K such that the set {aeκ\A n a}
is stationary in K.

Proof (-•) Let (Aa | α < K) be given, Aa c α for all α < K. For each α < K, let
fa: α -• 2 be the characteristic function of ^4α. If we can find a function /: /c -» 2
such that {αeκr|/fα =/α} is stationary, then 1̂ =/~1 / /{l} will be as required.

Let —3 be the lexicographic ordering on the set {/α | α < K:}. Define a function
ft: [jcf-> 2 by

/z{{α,iS}) = 0 i f f / α ^ (α<i8<ιc).

By assumption there is a stationary set X c ^ such that | /z/r [X]21 = 1. Suppose, for
definiteness, that h"[X]2 = {0}. (The other case is similar.) Thus

α, β e X and a < β implies fa—^fβ.

For each v <κ, let αv be the least member of X such that αv ^ v and

By choice of X, this definition is always possible. Let

C = {yeκ | (Vv)(v<y^α v <y}.

Clearly, C is a club subset of K. Thus the set

Y=X nC n {ve

is stationary in K. NOW, if lim(v), αv is the first member of X not less than sup^< vocη.
So, if v G Y, we will have αv = v. Hence

aeY implies (Vj8 e Y) (β ^ a ->fβ \ α =/α).

Define /: /c ̂  2 by

/=u/.

Since 7 ^ {α e /c | / t α =/α}, we are done.

(<-) Let /: [K:]2 -> 2 be given. For α < K, define /α: α -> 2 by

/β(v)=/({v,α}) (v<α).
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By assumption there is a function f:κ-*2 such that the set

X = {aeκ\fa=f\oc}

is stationary in K. (Consider the sets Aa^a for which fa is the characteristic
function.) Now, / i s regressive on X — 2, so by Fodor's Theorem (III.3.1) there is
a stationary set Y^X and an integer ί e 2 such that

For v, α e Y, v < α, we have

/({v, «}) =/«(v) = (/ t α) (v) =/(v) = i.

Hence | / " [ 7 ] 2 | = 1. D

Strengthening the notion of Π}-indescribability, which we have already noted
as being equivalent to weak compactness (V.I.3), is that of Π^-indescribability.
An inaccessible cardinal K is said to be H\-indescrίbable if, whenever
φ(X, tϋu...,Un)is a sentence of i f (X, X Uί9..., Un) and l/ l 9 ...,[/„ c Fκ are
such that

K, e, X, Y9 Ul9..., C/π>

then for some a <κ,

(\/X e Fα)(3 7 ^ Fα) [<Fα,G,X, i; U, n F α , . . . , t/π n Fα>

Clearly, if K: is Π\-indescribable, it must be Π}-indescribable, i.e. weakly compact.
The converse is not true. Indeed, we have:

2.2 Theorem. // K is H\-indescribable, then the set

{λ E K I λ is weakly compact]

is unbounded in K.

Proof. (Sketch) There is a sentence φ(X9 Ϋ) of 5£ (X, Y) such that an ordinal α is
weakly compact iff

(VX <= Fα) (3 Y^ Fα) [<Fα, e, X, 7> N φ(X, t ) ] .

(Simply consider the defining property α -> {OL)\) Given y <κ now, apply
Π2-indescribability for the structure (Vκ,e, X,Y, {y}} and the sentence
φ(X, Ϋ) A 3x(xeU). D
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2.3 Theorem. // K is ineffable, then K is Ii\-indescrϊbable.

Proof Let φ(X, % ϋί9..., Un) be a sentence of &(X9Y9Ui9...9UJ9 and let
tΛ , . . . ,£/„ ^ F be such that

(V* cz Vκ) (3 Ycz Vκ) [<FK, e9X9Y9Ul9...9Un}¥ φ].
Let

C = {λeκ\\Vλ\ = λ}.

Clearly, C is a club subset of K. We claim that for some λ e C,

thereby proving the theorem.
Suppose not. Then for each l e C w e can pick a set Xλ c FΛ such that for all

Since \VK\ = K and | Vλ\ = λ for all λ e C, we may apply ineffability using 2.1 to
conclude that there is a set X c J/ such that the set

is stationary in K.
By assumption, we can find a set Y^ Vκ such that

<yκ9e9X9Y9Uu...9Uny¥φ.
Let

<<VK9e9X9Y9Ul9...9UH}}.

Clearly, E is club in K. Hence we can find a λe E n A. But then we have

<F λ ,e ,X λ , 7 n F λ, ^ n F , , . . . , l/B n Fλ > ¥φ9

contrary to the choice of Xλ.
The theorem is proved. D

We shall show presently that if V= L, then ineffability is closely related to the
Kurepa Hypothesis. Indeed, as we shall see, it plays the same role for Kurepa trees
as does weak compactness for Souslin trees. But first it is of interest (though of no
use to us here) to present the following result, which, it should be emphasised, is
a theorem of ZFC.

2.4 Theorem. // K is an ineffable cardinal, then O* holds.

Proof For each α < /c, let (Sα, Cα) be, if possible, any pair of subsets of α such that
Cα is club in α and (Vy e Cα) (y n Sα φ Sy). In case no such pair exists, define
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Sa = Ca = 0. This defines ((Sα, Cα) | α < K) by recursion. We show that (Sa | α < /c)
is a Oκ-sequence.

Let S ^ K. Suppose that the set

{α e K IS n α = SΛ}

were not stationary in K. Then we could find a club set C c K such that

( V α e C ) ( S n α + Sα).

By the ineffability of K and 2.1, together with some simple coding device, we can
find sets S,C^κ such that the set

A = {oceκ\Snoc = Sa Λ C noc = Ca}

is stationary in K. Pick oc, β e A n C, a < β. Then

(*) Sβ n α = S n α = Sα, and

(**) C/1no( = C n α = ς

Since Cα is club in α is club in β, using (**) we have

α = sup(Cα) = sup(α n Q e C .̂

Thus by choice of (Sβ9 Cβ) we must have OL n Sβ ή= Sa. But this contradicts (*). Thus
the set {α e K: | S n α = Sa} is stationary in K:, and the theorem is proved. D

We turn now to the study of ineffable cardinals in L. As was the case with
weakly compact cardinals (V.1.5), we can prove that ineffability relativises to L.

2.5 Lemma. // K is ineffable, then [K is ineffable]1.

Proof We make use of 2.1. In L, let (Aa\oc < K) be such that Aa c α for all α < K.
By absoluteness, this set is such a sequence in V, so by ineffability using 2.1, there
is a set A c K such that

X = {ocGκ\Aa = A n a}

is stationary in K. NOW, for each α e I , i n α = i α e L . Hence as X is cofinal in
κ9 A n y e L for all y <κ:. But /c is weakly compact, so by V.I.4 this implies that
AeL. Hence I e L as well. But, by absoluteness, in L, X is stationary and
X = {aeκ\Aa = A n a}. Thus by 2.1 applied inside L, we conclude that K is
ineffable in the sense of L. D

We shall prove that if V = L, an inaccessible cardinal K will be ineffable iff there
is no κ>Kureρa tree. But what exactly do we mean by a "/c-Kurepa tree" for
inaccessible κl For if K is inaccessible, the κ:-tree consisting of all binary sequences



2. Ineffable Cardinals and /c-Kurepa Trees 317

of lengths less than K, ordered by inclusion, has 2K many κ:-branches, and we surely
do not want such a trivial example to be a "Kurepa tree". The only reason this
tree is a jc-tree at all is because the inaccessibility of K keeps the cardinality of each
level less than K. A more interesting notion is supplied by the following consider-
ations.

A fc-tree T is said to be slim if | Tα | ^ | α | for all infinite α. By a κ-Kurepa tree
we shall mean a slim /c-tree with at least κ+ many ^-branches. In the case where
K is a successor cardinal, this is at variance with the definition of IV. 1, but the
distinction is clearly unimportant in this case, as it is the cofinal behaviour of trees
that is of interest to us. Let us agree to adopt the new definition for all K from now
on. Likewise for the definition of a "κ>Kurepa family", given below.

The restriction that our trees be slim could also be applied to the notion of a
Λ -Souslin tree. In fact it is easily seen that the Tc-Souslin trees constructed (in L)
in 1.3 and in IV.2.4 are slim. Consequently there would have been no loss if we had
required all of our κ>trees to be slim.

By a κ-Kurepa family we shall mean a family, ^ of subsets of K such that
13F\ ^ K + but for all infinite α < / c , | { x n α | x e #"} | < | α |. The same argument as
in IΠ.2.1 shows that the existence of a (slim) /c-Kurepa tree is equivalent to the
existence of a /c-Kurepa family.

The following result is a theorem of ZFC.

2.6 Theorem. // K is ineffable, then there is no κ-Kurepa tree.

Proof Let <F ̂  ^(K) be such that \{x n α | x e J^}| ^ |α | for all infinite α < K.
Assuming that K is ineffable, we show that | J^ | ^ /c, so that IF cannot be a
jc-Kurepa family.

For each α ̂  ω, let (/v

α | v < α) enumerate { x n α | x e #"}. Set

Thus Ra ̂  α x α. By ineffability (using 2.1 and a simple coding device) there is a
set R c K x K such that the set

E = {α G K IR n (α x α) = Ra}

is stationary in K. For each v < K, set fv = R"{v}. We shall prove that
^^{fv\v<κ}.

Let fe 3F> and suppose that / φ / v for all v <κ. Since K is regular we can find
a club set C c K such that

α G C -• (Vv < α) ( / n α + / v n α).

Pick α e C n £ . Then for v < α,

f n α + / v n α = a n Λ"{v} = a n K M - { T | T G / ; } = / v

a .
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Hence
/nαφ{/v

α|v<α} = {xnoc\xe^}.

Since / e J ^ this is absurd. This contradiction proves our result. D

Using V= L, we now prove the converse to the above theorem.

2.7 Theorem. Assume V= L. Let K be an uncountable regular cardinal which is not
ineffable. Then there is a κ-Kurepa tree.

Proof. The proof is very similar to that of IV.3.3 (the construction of a κ+-Kurepa
tree). As there, it is more convenient to construct a κ>Kurepa family.

By 2.1, let (Aa | α < K) be the <j-least sequence such that Aa^ oc for all α, and
whenever A c K, the set {α e K | A n α = Aa} is not stationary in K. Notice that
(Aa I α < K) is a definable element of J κ +.

For each α < K, let Mα be the smallest M <JK such that (α + 1) u
{(Av I v < α)} c M, and let σα: Mα ^ J / ( α ) . Notice that for infinite α, |/(α) | = |α|. It
is clear that the function /: K -+ K SO defined is a definable element of Jκ+.

Let
#" = {x c 7c I (Vα < /c) (x n α e J / ( α ))}.

If we can show that | J^ | 5= κ+, then J^ will be a κ>Kurepa family, and we shall be
done. We assume | βF \ ̂  K and derive a contradiction.

Let X = (xv I v < K) be the <j-least enumeration of J*\ Notice that both 3F are
X are definable elements of Jκ+.

By recursion, define submodels AΓV -< Jκ+, for v < K, as follows.

AΓ0 = the smallest N <JK+ such that N n K eκ;

Nv+ί = the smallest N <JK+ such that Nv u {iVv} £ AT and N nκeκ;

Nδ={J NV9 if lim(^).

Set

(xv = Nv n K.

Then (αv I v < TC) is a normal sequence in κ;. Set

x = {αv I v < K A αv φ xv}.

Then x ̂  K: and x φ xv for all v < K, SO X φ J^ We obtain our contradiction by
showing that x n a e Jf(a) for all oc < K. We argue much as in IV.3.3.

Let α < K: be given. Let ?/ be the largest limit ordinal such that ocη < α. Since
x n α differs from x n απ by at most a finite set, in order to show that x n oce Jf{Λ)

it suffices to show that x n ocηe Jf(a }. (The function / is clearly non-decreasing.)
Since x n aη = {αv | v < ?/ Λ αv φ xv}, it is in fact enough to show that

(αv I v < η) and ( x v n α j v < η) are elements of J/ ( α ι l ).
Let π: Λ/̂  ̂  J^. Then π \ocη = id \ocη, π(κ) = ocη, and π(x) = ( x v n α j v < α^).

In particular, (xv n ocη\v < η)e Jβ. And by an argument just as in IV.3.3, we
see that (αv | v < η) is ZF ~ -definable from Jβ. It thus suffices to show that β < f(ocη).



3. Generalised Kurepa Families and the Principles O^,Λ 319

Suppose, on the contrary, that f(aη) ^ β. Since ocη + 1 c M β f | , we have
σ α , ( (^ v I v ^ α,)) = (Λv I v ^ ccη)9 so (Av I v ^ ocη) e JfiΛη) c JΓ̂ . Let

Then E G Jβ. Suppose that

h J / ? "£ is stationary in α,,".

Setting E = π~1 (£) and applying π ~ x : J^ -< J κ + , we get

\=jκ+"E is stationary in K".

Hence E really is stationary in K (by absoluteness). But (Λv \v < κ)e Nη (by defina-
bility), so π~1((AvIv < α )̂) = (Av\v < K). Hence, setting A = π " 1 ^ ^ ) , we have
A c K and

This is contrary to the choice of (Ay \ y < κ\ because the above sentence is abso-
lute. Hence,

tJβ"E is not stationary in a,η".

Thus for some C e Jβ we have

tJβ"C is a club subset of otη and (Vy e C ) ( i y + y n Aβii)
M.

Setting C = π~ x(C) we get, applying π~1:Jβ-<Jκ+,

Njκ+ " C is a club subset of K: and (Vy e C) (̂ 4y φ y n A)".

Since π ~ 1 f ocη = id t α ,̂ we have C r\an = C. Hence as C is unbounded in otη and
C is closed in K (by absoluteness), α̂  e C. Thus ^ α r j φ α ^ n l . But A = π~x (AΛ^
so in fact we do have A n <xη = Aa^ because π " 1 |"α^ = id \ocη. Contradiction!
The proof is complete. D

3. Generalised Kurepa Families and the Principles <0>«\t

The following natural generalisation of the notion of a κ:-Kurepa family was put
forward by C. C. Chang. Let K, λ denote uncountable cardinals, with K regular8

8 The principle KH(/c, K) is of some interest in the case where K is singular. This is considered
in Exercise 3.
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and λ ^ K. We define

The (κ,λ)-Kurepa Hypothesis, KH(/c, λ\ is the assertion that there is a family
^ <^0>{κ) such that \<F\ ^ κ+ and for every x c

Clearly, KH(κ;, /c) implies the existence of a /c-Kurepa family. Hence by 2.6, we
have

3.1 Theorem. // K is ineffable, then KH(τc, K) fails. D

We shall prove that if V= L, the converse to 3.1 holds, a result which strength-
ens 2.7. We shall also prove that V= L implies that KH(/c, λ) holds for all un-
countable regular K and all uncountable λ <κ. We do this by introducing a two
cardinal version of the combinatorial principle <0>£.

We assume throughout that K, λ are as stated at the outset of this section.

θ£x asserts the existence of a function (Sx | x e 0>λ(κ)) such that:

(i) S,<Ξ^(UX);
(ii) |5J ^ |x|;

(iii) i fXcK, then there is an unbounded set £ c K with the property that
whenever x e ^(K:) has no largest element and is such that B n xis cofinal
in x, then X n α, B n α e Sx, where α = (Jx.

3.2 Theorem. OK

+,A im/?fes KH(/c,l).

Proo/. Recall that Hκ is a model of ZF~. Fix some set of skolem functions for Hκ.
Let (Sx I x e ^A(K )) satisfy O ^ ? and for each x e &λ(κ\ let Mx be the smallest (with
respect to the chosen skolem functions) M <HK such that x u {x} c M and
(Vα ^ U χ ) ( ^ n α ^ M). Notice that \MX\ = \x\. Set

#- = {/c K: I (Vx G ̂ (ιc)) (/n x e Mx)}.

In order to prove KH(τc, A), it clearly suffices to show that 13F\ ^ κ + , since in that
case !F will satisfy KH(/c, A). We shall assume that \3F\^κ and derive a contra-
diction. Notice that K e &9 so ^ φ 0.

Let (/v I v < K:) enumerate all unbounded members of J^ (This enumeration
need not be one-one.) For each v < K, let Cv be the set of all limit points of/v. Let
X be the diagonal intersection of the sequence (Cv | v < κ\ i.e.

X = {αG/c|(Vv<α)(αeCv)}.

Each set Cv is club in K, SO X is club in K. For each α e X, α is a limit ordinal and
for any v < α, fv n α is unbounded in α.
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By OK,x> let £ ̂  K be unbounded and such that whenever x e ̂ λ{κ) is such
that α = (J x is a limit point of B n x, then I n α , j B n α e S r Let (αv | v < JC) be
the monotone enumeration of the set

{α e XI α is a limit point of £}.

For v < 7c, set

βv = min(£ - αv).

Notice that

uv^ βγ< α v + 1 .
Set

Then / in an unbounded subset of K. Since /v n α v + x is unbounded in α v + 1 ? but
fn α v + i c jSv + l < α v + x for each v < TC, we have / φ / v for all v < K. We obtain
our contradiction by showing that fe&l

Let x e 0>λ{κ). We prove that fnxeMx. Let /? be the greatest limit point of
fnx. Then

fnx = (fnxnβ)κj(fnx-β)i

where fnx — βis finite. Being a finite subset of x, / n x — β must be an element
of Mx, since x c Mx and M x N ZF ~. So in order to show that / n x e Mx, it suffices
to show that fnxnβe Mx.

Now, j? is a limit point of fn x. But f^B. Thus β is a limit point of
B n(x n β). Hence I n j S , B n βe Sxnβ c Mx. But clearly, / n jβ is
ZF"-definable from X n β, B n β in exactly the same way that / was defined
from X and B. Hence fn β e Mx. Thus fn β n x e Mx, and we are done. D

3.3 Theorem. Assume V= L. If λ < K, then O^A ί S valid.

Proof. For each xe^(/c), let Mx be the smallest M<JK such that Mx

x u {x} u {λ} c M, and set Sx = ̂ (IJx) n Mx. We prove that (Sx\xe&λ{κ)) Sx

satisfies O ,̂λ
Suppose otherwise, and let X c K be the <7-least set such that there is no X

unbounded set B c K as in Oίλ Note that both (S* | x e ̂ ΛW) a n < i ^ a r e defina-
ble from A in Jκ+.

By recursion on v < TC, define a chain of submodels

NO<N1<...<NV<...<JK+ Nv

as follows.

No = the smallest N < Jκ+ such that λe N nκeκ\

Nv+ί = the smallest N <JK+ such that Nv u {AΓV} c AT and N nκeκ;

Nδ=[J JVV, if li
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It is easily seen that this causes no difficulties. In particular, |JVV| < K for all v <κ.
Moreover

v < τ < K -• Nv < Nτ< Jκ+.

For each v <κ, set

α v = Nv n K.

Clearly, (αv | v < K) is a normal sequence in K.
For each v < K, let

Clearly,

σv \ αv = id \ αv, σv(?c) = αv, σv(X) = X n αv.

Set

5 B = {β(v)\v<κ}.

B is an unbounded subset of re. We shall obtain the desired contradiction by
showing that B satisfies the requirements of OκU f° r X-

x Fix x an arbitrary element of 0>λ(κ) such that α = (J x is a limit point of β n x.
We shall show that X n a,B n ote Mx, thereby completing the proof.

For each v < K, we have JVV e Nv+ t<Jκ+, and hence σv, β(v) e Nv+1. But
|JVv|<κ:. Thus jS(v) e Nv+1 n K: = αv + 1 . Also, since σv+1(jc) = α v + 1 we have
α v + ! < β(v + 1). Thus for all v < K we have

(1) β(v)<av+1<β(v+l).

But α is a limit point of B = {β(v) \ v < K). Thus we must have α = aη for some
η limit ordinal η <κ.

Now, as we remarked earlier, X is Jκ+-definable from λ. But

σ " 1 : J , ( l f ) < J κ + , σ-^A) = A, σ " 1 ^ n α,) = X.

Thus I n α^ is J^(/7)-definable from λ.
Similarly, B n oίηis ZF~-definable from Jβiη) and λ in exactly the same way

that B was defined from Jκ+ and λ. (This uses the fact that σ~ι \ocη = id \<xη.)
Since λe Mx and M X NZF~, it follows that in order to prove that X n α,

B n oce Mx it is sufficient to show that (̂77) e Mx. This will take some time, and
requires some considerable extra machinery before we can even motivate the
argument.

To avoid confusion between ordinals and sequences of ordinals, from now on
ft, β ί τ we shall use β to denote (β(v) \ v < κ\ and for any τ < / c w e shall write β \ τ for

(jS(v)|v<τ).
For v < μ < K, set
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Thus

Note that ((Jβ{v))v<κ, ( σ v μ ) v < μ < κ > is a directed elementary system. We write σ for
(σvμ I v < μ < /c), and for any τ < K we write σ fτ for (σv μ | v < μ < τ).

The following result is central to our entire argument.

(2) If y G η n M x , then αy, j8(y), £ K? + 1), ί K? + 1) e M x .

To prove (2), let y e η n M x . Since α = α, is a limit point of B n x we can find
a τ < 7/ such that τ > y and β(τ) e x c M x .

Define a sequence (ΛΓV' | v < 0), for some θ, as follows.

JVJ = the smallest N -< J^(τ) such that λ e N n ocτ e ocτ;

iVv'+! = the smallest JV •< J ^ ^ such that iVv' u {iVv'} c AT and AT n ατ e ατ;

W=\JNV', if li

The definition will break down at some stage 0 when sup( (J AΓV' n ατ) = ατ.
We have v<θ

So by induction on v we see that

v < τ -• Nv is defined and στ~
x" NJ = Nv.

It follows that θ = τ, of course, since supv<τ(JVv' n ατ) = sup v < τ α v = ατ. For each

v < τ, let

<τv: Nv = Jβ'(v)>

Since iV;^iVv (by σ;1 \ Nv*). We have β'(v) = β(v) for all v < τ. Thus
08'(v) I v < τ) = p ϊτ. This shows that yβ Γ τ is ZF"-definable from jβ(τ), /I, ατ. Now,
jS(τ), 2 G Mx. And by (*) above,

αt = [the largest cardinal]J^(τ),

so ατ G M x as well. Thus β \τ e Mx. Since y G M X and y < τ it follows that
βiy) = Φ\τ) (y) 6 M x and 0 \ (y + 1) = (β \ τ) \ (y + 1) e Mx. Also, ay = [the larg-
est cardinal}7"(y) e Mx. It remains to prove that σ \(y + 1) e M x .

Now, in the definition of (iVv | v < κ\ if we replace Jκ+ by Nμ and /c by αμ, we
will obtain the sequence (JVV|v < μ), as is easily seen. So, as σμ:Nμ^ Jβ{μ) and
σμ \ oίμ = id ί αμ, the same definition with parameters J^(μ) and ocμ will produce the
sequence (σμ Nv\v < μ). But it is easily seen that σ~μ is the collapsing isomorphism
for σμNv. Since ocμ = [the largest cardinal]7" ( >̂ for all μ, this shows that
(σv μ I v < μ < τ) is ZF"-definable from /? tτ. But /? f τ G M X . Thus σ tτ G M x and
it follows at once that σ \ (y + 1) G M X . SO (2) is proved.
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Two further results follow easily from the above.

(3) For τ < η9 τe Mx iff β(τ) e Mx.

By (2), if τ e Mx, then β(τ) e Mx. To prove the converse, assume that β(τ) e Mx.
Thus ατ = [the largest cardinal]7^(τ)e Mx. Now, from λ, β(τ), ατ we may define the
sequence (JVV' | v < θ) as in the proof of (2) above. As we observed then, we must
have θ = τ. So this defines τ from λ, β(τ), ατ in a ZF~ fashion. So as λ, β(τ)9 ocτ e MX9

we conclude that τ e MX9 and (3) is proved.

(4) sup(η nMx) = η.

Clearly, supOz n Mx) ^ η. To prove the opposite inequality, let v < η. Then
αv < aη, so as ocη = α = sup (B n x n α), we can find a τ <η such that
αv < β(τ) e x £ M x . By (1), v < τ. By (3), τ e M x . So v ^ sup(ι/ n MJ, and (4)
follows at once.

Now let

π,δ π:Mx^Jδ

and set

η* η* = π"(ηnMx).

By virtue of (2) we may define

$ β U
yeη n Mx

σ* σ*= U π ( ί ί ( y + 1)).'
yer/n M x

Since π is a collapsing isomorphism, the following are easily checked:

(5) η* is an ordinal.

β*(v) (6) /ί* is an f/*-sequence of ordinals, say ft* = (β*(v) \ v < η*).

σ*μ (7) σ* is a system of maps of the form σ* = (σ*μ \ v < μ < η*).

(8) /J*(v) = πGSίπ"1^))) for all v < η*.

(9) σ*μ = π(σπ-i ( v ),π-i ( ί l )) for all v < μ < j / * .

We know that ((Jβ(V))v<η, (σvμ)v<μ<fj) is a directed elementary system with
direct limit (Jβiη)9 (σvη)v<η). Using (8) and (9) it is easily checked that ({Jβ*iv))v<η*,
(σ*μ)v<μ<η*y is a directed elementary system. Let «[/, £>, (^?)v<^*> be a direct
limit of this system. We may define an embedding
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by letting v range over η* in the following commutative diagram:
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^ J,β(η)

Jβ*{v)

Thus <(/, £> is well-founded, and we may take <£/, E} to be of the form (J^*, e>
for some unique ordinal β*. β*

If v < η*9 then

(σπ-1(v))~ * ° π " x : J r ( v ) -< Jκ+,

so there is an α* < β*(v) such that

αf = [the largest cardinal]J^*(v).
Also,

ση * ° h: Jβ*^Jκ+,

so there is an α* < β* such that

α* = [the largest cardinal]*7^*.

The following result is immediate:

(10) α* = π ( α π i ( v ) ) and σf (α*) = α* for all v < η*, and /ι(α*) = ocη.

Moreover, as we show next:

(11) σv* K* = id \(x* for all v < η*.

Since < J r , (σ*)v<^*> is the transitive direct limit of Φβ*{v))v<η*, (σ*μ) v < μ < 1 |*>, it
suffices to prove that σ*μ ία* = id f αf for all v < μ < η*. But this follows easily
from (9) and the properties of the system σ.

(12) α* = supv < ί 7*α*.

Since σ*(αj) = α* for all v < η*, we have supv < f 7*α* ^ α*. To prove the op-
posite inequality, suppose y < α*. Pick v < η* so that 7 = σ*(y) for some 7. Since
σ*(α*) = α*, we have 7 < α*. So by (11), 7 = σ*(γ) = 7. Thus 7 < α*. This proves
that α* ^ supv <^*α*, and completes the proof of (12).

We are now able to indicate the purpose of the above considerations. It is
easily seen that /ί* and σ* are ZF"-definable from /?*, α*, and λ in the same way
that β and σ were defined from κ+,κ, and λ. (See, in particular, the proof of (2)
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above and the definitions of /?*, σ*, /?*, α*.) Since α* = [the largest cardinal ]J/Ϊ*, this
means that β* and σ* are ZF~-definable from β*9 λ.

Assume for the time being that β*eJδ. Since Jδ \= Zf" (because Mx N ZF~), it
follows that /?*, σ * e J δ . Thus π~ *0*) and π~ *(σ*) are defined. Since π: Mx^ Jδ

is a collapsing isomorphism and η* = π"(τ/ n M J , it is a routine consequence of
(6), (7), (8), (9) and the definition of /?* and σ* that

$\η = π-'φη \η and σ\η = π " 1 ^ * ) \η.

Suppose first that π~10*) = jβ \η. Since Jβ* is the unique transitive limit of
the system ((Jβ*{v))v<η*, (σ*μ)v<μ<,,•>, it follows that Jπ-iiβ*) is the unique transi-
tive limit of the system <XJβ{v))v<η, {σvμ)v<μ<η}. Thus π~ι(β*) = β(η). Hence
β(η) G ranίπ" 1 ) = MX9 and we are done.

Otherwise, π~10*) is a proper end-extension of /? \η. Thus the directed ele-
mentary system determined by π ~ 1 0 * ) , π ~* (<?*) is an end-extension of <(Jβ ( v ) ) v < ,,
(<7vμ)v<μ<η> So J π - i ( ^ ) ( a } is the transitive direct limit of φβiv))v<η9 (σγμ)v<μ<η},
which means that π " 1 ^ * ) ^ ) = β(η). It follows that β(η) is ZF"-definable from
π~10*) and α as the unique element γ of ran(π~10*)) such that α = [the largest
cardinal]77. (By (1), each β(v) has a unique αv associated with it, so the same will
be true for the members of π~10*). Since π~10*) (η) = β(η), the relevant " α v "
here is otη = α.) But α = (Jx and x e M x , so α e M r Also, π~10*)e
r a n ( π - 1 ) = M x . Hence β(η) e Mx, as required.

So we see that the proof boils down to showing that (as was assumed for the
above discussion) β* e Jδ. As a first step we prove:

(13) <?(<*,) n M x $ J , ( l | ) .

We know that x e ^((Xη) n MX9 so it suffices to show that x φ Jβiη). Well, we
have |x | < λ < α0 < ocη. Since λ is a cardinal, |x|J^ ( η ) < A. But sup(x) = ctη. Hence
)FJβ(rι)"(xη is singular". But this is a contradiction, since σ " 1 : Jβ(V) <Jκ+ and
σ^~x (α^) = κ- This proves (13). (Incidentally, this is the only point were we need the
fact that λ < K)

We complete the proof by showing that if δ ^ /?*, then, contrary to the above,
0>{cίη) r\Mx<^ Jβ{η). First two results which do not require this assumption.

(14) If z e 0>(ocη) n Mx, then π(z) e ^(α*) n J δ .

Since π(z) = {π(ξ) | £ e z n Mx}, in order to prove (14) it suffices to show that
if ξeznMx, then π(ξ)eα*. Suppose ξeznMx. Then ξ < <xη. Now,
ocη = sup v < / 7α v, so by (4) we can find a v eη n Mx such that ξ < αv. By (10),
π(ξ) < π(αv) = α* (v). But π(v) < η*. So by (12), π(ξ) < α*. This proves (14).

(15) If z e Jβ* and z is a bounded subset of α*, then h(z) = π~ι{z).

Since z is a bounded subset of α*, (12) tells us that we can pick v < η* sufficient-
ly large so that z c α*. Since z e Jβ*, we can assume that v is chosen here so that
z = σ*(z) for some z ς α v * . B y (11) and (10), σ* f α* = id fα* and σ*(α*) = α*, so
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z = z n α v * = σv*"z = z. Thus z e Jβ*(v) and σ*(z) = z. Since z e J^*^, π" 1(z) is
defined. We have π~1(z) c π~1(α*), so by (10), π" 1(z) c α ,̂ where v = π " 1 ^ ) .
Now, σ^η |"α^ = id \OLV9 SO σ^"π~1(z) = π~1(z). But by choosing v large enough
below η* we may assume that z is a bounded subset of α*, and hence that π~1(z)
is a bounded subset of α .̂ Thus σ^(π~1(z)) = σ^"π~1(z) = π~1(z). By definition
of h now, we have

h(z) = σv-, o π - 1 o σ * - i ( z ) = σ - v o π - i ( z ) = π - i ( z ) s

which proves (15).
To complete the proof of the theorem we now have:

(16) If δ < /?*, then ^(α,) n M x ^ J^(ί/).

Let z G ̂ (α,,) n Mx. Let z = π(z). By (14), z e ̂ (α*) n J 5 . Since (5 < β*, z e Jβ*.
Thus h(z) e Jβiη). It suffices, therefore, to prove that h(z) = z.

Now, z c α *, so, using (10), Λ(z) £ ft(α*) = α,,. But by (4), o^ = s u p v e ^ n M χ α v .
Thus

h(z)= U [ k ( z ) n α j .

Likewise

z= U [znαj.
veηn Mx

So we have

h(z)=
Mx

= \J [h(z) n απ-i ( v )] (by definition of ?/*)
v<ι/*

= U [h(z)nπ-ι(oί*)] (by (10))
v<ί;*

= U [Λ(z) n h(α*)] (by (15) applied to α*)
v<ι/*

= (J [/ι(z n α*)] (since ft is an isomorphism)
v<η*

= U [π~1 (z n α*)] (by (15) applied to z n α*)
v<ι/*

= (J [π-1(z) n π - 1(αj)] (since π " 1 is an isomorphism)
v<η*

= [j [z n απ-1 (v)] (since π(z) = z and by (10), respectively)
V<f/*

= (J [z n αv] (by definition of */*)
ve//n M x

= Z.

We are done. D



328 VII. Trees and Large Cardinals in L

By 3.2 and 3.3, if V= L, then KH(τc, λ) is valid whenever λ < K. By virtue of
3.1 and 3.2, our next result shows that if V= L, then KH(/c, K) iff K is not ineffable.

3.4 Theorem. Assume V= L. Then OκU ΛoMs ίjff K is not ineffable.

Proof. If K is ineffable, then by 3.1, —i KH(JC, K\ SO by 3.2, —i OKU
Conversely, suppose K is not ineffable. We prove Oκ,κ by means of an argu-

ment very similar to that used in 3.3 above. Because of this similarity, we simply
describe the changes that must be made to the proof in the present case. The idea
is to modify the definition of the models Mx so that an analogue of (13) may be
proved, since this is the only point in the proof of 3.3 where we made use of the
fact that λ < K. (At all other points where λ was mentioned, we may now simply
omit all mention of λ, and everything proceeds as before.)

Let (Aa I α < K) be the < j-least sequence such that Aa^ a for all α < K, but for
any A ^ K, the set {oceκ\AOL = a n A} is not stationary in K. (Such a sequence
exists by 2.1.) For each xe£Pκ(κ\ let Mx be the smallest M<JK such that
x u {x} u {^ux} c M. Now define 5X, x e £Pκ{κ\ as before, and proceed exactly as
in 3.3 except for the verification of (13). At this point we argue as follows.

We wish to prove that ^((xη) n Mx φ Jβ{η). We assume otherwise and derive
a contradiction. By definition, we have AΛηe M x , so by our assumption, Aaηe Jβ(η).

Now, (AγIy < K) is Jκ + -definable, so (Aγ\γ < κ)e No ̂  Nη, so (Aγ | γ < η) =
ση((Ay\y <κ))eJβiη). Thus

X = {yeotη\Ay = γn Aaη} e Jβ{η).

Suppose that

\=Jβ(η)"X is stationary in α,".

Set X = σ~1 (X). Since σ~1: Jβ{η)-< Jκ +, we have

f=J+"X is stationary in /c".

Thus X really is stationary in K. (Because ϊ?(κ) c J κ + .)
Again, by absoluteness,

So if we set A = σ ~x (^4α^), we have, since σ~x: Jβ {η) -< J κ +,

^ " ϊ = {ye/c|iτ = yni}" .

Thus it really is the case that

X = {y e K I Ay = y n A).

But we assumed that no ̂ 4 exists for which such a set X is stationary. This
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contradiction proves that

¥jβM"X is not stationary in 0Lη".

So there is a set C e Jβ{η) such that

ϊJβJ'C is club in α, and (Vy e C) μ y Φ y n 4 J " .

Let C = σ" x (C). By σ " x : J ^ -< J κ + , we get

N J + "C is club in K and (Vy e C ) ( i y Φ y e 4 ) "

By absoluteness, C is thus a club subset of K: such that ( V y e C ) ( i y φ y π i ) .
Now, C n α ^ C (because σ ~ι \ ccη = id \ ocη and σ~* (<xη) = k) and, by abso-

luteness from Jβ(η), C is club in aη, so as C is closed in /c, we have ocη e G. Thus
Aaη + θίη n A. But α̂  n A = ^(^4) = ^α^ (by the two properties of σ~1 just men-
tioned), so we have a contradiction. The proof is complete. D

Exercises

ί. Weakly Compact Cardinals and Set mappings

A set mapping is (for our purposes) a function /: [τc]M -• K (for some neω) such that
f(σ) φ σ for all σ e [K]1. A set X ^ /c is said to be /ree for such a set mapping if
f"[XJ n X = 0. We write (JC, n) ^ λ if every set mapping /: [κ]n -> K has a free set
of cardinality λ.

1 A. Prove that if K is weakly compact, then (κ9 n)^κ for all neω.

1B. Prove that if V = L, then K: is weakly compact iff K is uncountable and regular
and either (K, 2) -> K: or else (JC, n) -• K for all n e ω .

2. Weakly Compact Cardinals and Colourings of Graphs

A graph is a structure ^ = <G, £>, where G is a non-empty set, called the set of
vertices of ^, and £ is a set of pairs from G, called the set of edges of CS. If {x, y} G E,
we say that x and y are joined in ^ . A subgraph of ^ is a substructure of ^ in the
usual sense. If H c G, ^ f H denotes the subgraph of ^ with domain H. We say
<S \H is small iϊ \H\ < |G|.

Let 9 = <G, £> be a graph, μ a cardinal. A mapping h: G -> μ is called a
μ-colouring if /ι(x) φ /ί(y) whenever x and y are joined in ^ . The least μ for which
^ has a μ-colouring is called the chromatic number of (S.

A basic question of graph theory is: how is the chromatic number of a graph
^ effected by the chromatic number of its small subgraphs? By P{κ\ let us mean
the following assertion: if ^ is a graph of cardinality K, all of whose small sub-
graphs have countable chromatic number, then ^ has countable chromatic num-
ber.
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2 A. Prove that if K is weakly compact, then P(κ) holds.

We shall prove that if V= L, then for uncountable regular K, the converse to
the above result is valid. Assume V= L from now on. Let K be an uncountable
regular cardinal, not weakly compact. Let E c K be stationary and such that
E n λ is not stationary in λ for all limit ordinals λ < K, with cf(α) = ω for all α e £ .
Assume that β + ω < α whenever /? < α e E. Let (B% \ n < ω) be a partition of α,
for each α e £ , such that whenever (Bn\n< ω) is a partition of K, the set

{aeE\cf(α) = ω Λ (VH e ω)(Bπ n α = BJ)}

is stationary in K. For α e £ , let Aa be a cofinal ω-sequence in α, chosen so that

unbounded in α -• 4 α n BJ φ 0] .

Let ^ be the graph with domain K, in which two points v < α are joined iff α G £
and v e Aa.

2B. Prove that ^ has chromatic number at least ω1.

2C. Prove that, for any λ < κ9 there is an enumeration (xv\v < θ) of λ such that
the set of all η < v for which x^ is joined to xv is finite for all v < θ, and use this
to deduce that ^ \ λ has countable chromatic number.

3. KH(/c, K) for Singular K

3 A. Assume GCH. Prove that if K is singular and cf(K) > ω, then whenever
& c 0>(κ) is such that the set {λ e K \ \ {fn λ\ fe ̂ } | ̂  λ} is stationary in K, then
\!F\^κ. (Hint: Work on a club subset of K of order-type cf(κ) and use Fodor's
Theorem.)

By the above, assuming GCH, KH(κ,κ) fails for all singular cardinals K of
uncountable cofinality. The following exercises show that if V= L, KH(/c, K) is
valid for all singular cardinals K of cofinality ω. We fix K a singular cardinal of
cofinality ω from now on.

3 B. Assume GCH. Show that if ^ is a set of ω-sequences cofinal in K, then for
any uncountable set X c K.

\{fnX\fe&}\<\X\.

By virtue of the above, in order to prove KH(/c, K) assuming V— L, it suffices
to construct (from V= L) a family J^ of τc+ many ω-sequences cofinal in K such
that | { / n X\fe ^}\ ^ ω for all countable sets X <^κ. Assume V= L from now
on. For each x e ^κ{κ\ let Mx be the smallest M such that x u {x} ^ M -< J κ +. Let

& = {/<= /c|otp(/) = ω ά sup(/) - K: & (Vxe^ ω i ( ιc))[/n x e M J } .

The aim is to prove that 13F\ = κ + , which at once establishes KH(κ:, κ\ of course.
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Let (κn I n < ω) be the <j-least ω-sequence of cardinals cofinal in K such
that κ0 > ω. For each n < ω, let Nn be the smallest N < Jκ+ + such that κn c jV,
and let AT = | J ΛΓn.

3C. Prove that No < Nx <...< Nn < . .. -< N < Jκ+ +.

3D. Prove that K C JV and that AT n κ + eκ + .

Let

and for each n < ω, set

3E. Prove that N0<Nί<... <Nn <...< Jρ.

Let

and set

R = {ρn\n<ω}.

3 F. Show that R φ AT. (Hint: We know that (#cπ | n < ω) e N. Then iϊReN, we get

<(«Un<ω, On °7m 1)m<n<ω> e ^ . Thus Jρ E N, a contadictίon.)

Now assume, by way of contadiction, that 12F\ ^K.

3G. Show that (under the above assumption) 3F e Jρ and 3F c J ρ .

3 H. Obtain a contradiction with 3 F by proving that Re ϊF. (This is the challeng-
ing part of the exercise, and you are on your own from now on. Good luck!)

4. More on Weak Compactness in L

Prove Theorem 1.2'. (See Exercise VI.4.)




