
Chapter IV

κ+-Trees in L and the Fine Structure Theory

In this chapter we shall investigate natural generalisations of the Souslin and
Kurepa hypotheses to cardinals above ω1. In the case of the Souslin hypothesis
this will require some combinatorial properties of L which we shall only be able
to prove by developing the theory of the constructible hierarchy more thoroughly
than hitherto. (This is the so-called "fine-structure theory".)

ί. κ+-Trees

Let K be an infinite cardinal. The concept of a κ-tree was defined in Chapter III.
By a κ-Λronszajn tree we mean a c-tree with no jc-branch. A K-Souslίn tree is a
jc-tree with no antichain of cardinality K. Just as in III. 1.2, every /c-Souslin tree is
jc-Aronszajn. And by arguments as in III. 1.3, if K is regular, then any (K, τc)-tree
with unique limits which has no /c-branch has a subtree which is /c-Aronszajn; if
in addition the original tree has no antichain of cardinality K, it has a subtree
which is 7c-Souslin. The regularity of K is essential here. Indeed, for singular K, the
notion of a /c-tree is somewhat pathalogical. For example, if K is singular there is
a (K, τc)-tree with no κ>branch and no antichain of cardinality K (namely the
disjoint union of the well-ordered sets (τcv, ε), v < cf(κ ), where (κ;v| v < cf(τc)) is
cofinal in κ\ but every κ;-tree has an antichain of cardinality K (an easy exercise).
We therefore restrict our attention to /c-trees for regular K only. Since we shall be
assuming V = L for our main results, GCH will hold, and hence the only regular
limit cardinals are the (strongly) inaccessible cardinals. In this context we may
therefore expect the notion of a κ>tree for K a regular limit cardinal to be bound
up with the notion of large cardinals. As we shall see in Chapter VII, this is in fact
the case. In this chapter we concentrate only upon the successor cardinals.

By a K + -Kurepa tree we mean a/c + -tree with κ++ many K + -branches. (Adopt-
ing a similar definition of a "/c-Kurepa tree" for inaccessible K does not lead to any
interesting notions, as we see in Exercise 3. More care is required in order to define
a reasonable notion of a κ>Kurepa tree in this case.) As in IΠ.2.1, the existence
of a κ + -Kurepa tree can be shown to be equivalent to the existence of a certain
kind of family of subsets of κ +. Moreover, the proof that such a family exists in
L is a straightforward generalisation of the proof for the ω1 case, given in IΠ.2.2.



138 IV. κ+-Trees in L and the Fine Structure Theory

However, when we try to construct a κ + -Souslin tree in L we run into some
difficulties. It turns out to be slightly easier to try to generalise the proof using O
(IΠ.3.2 and III.3.3) rather than the original construction (III. 1.5). Now, the proof
of O generalises from ωγ to any uncountable regular cardinal in a straightforward
manner. Hence the generalised construction of the tree hinges upon a general-
isation of the proof of IΠ.3.3. This is not so easy. For suppose we try to construct
a /c+-Souslin tree by recursion on the levels. Consideration of the proof of III.3.3
tells us that on a stationary set of levels we must be very restrictive in the choice
of branches to extend, in order that all antichains be eventually "killed-off". But
consider now some limit stage α "late" in the construction. We have defined the
tree T \ oc and wish to define Γα. Each point of Tα must extend some α-branch of
T ϊ α. But unless cf (α) = ω, how can we be sure that T \ α has any α-branches? Our
attempts to kill off antichains at earlier limit stages may have resulted in T \ α
having a sort of "Aronszajn property". To overcome this problem we introduce
a combinatorial principle, D κ ("square K"), which enables us to split the construc-
tion of the limit levels of the tree into two cases. At some limit stages we kill off
antichains, using the generalised O principle. At the remaining limit stages we
ensure that enough branches are extended in order that the construction will
never break down. The penalty we must pay in order to be able to do this lies in
the proof of Πκ. This requires a detailed analysis of the levels of the constructible
hierachy (the "fine-structure theory"). This will occupy the later parts of this
chapter.

2. K^'Souslin Trees

We prove that if V = L, then for all infinite cardinals K there is a τc+-Souslin tree.
Our first step is to formulate and prove a generalisation of the combinatorial
principle O.

Let K be any uncountable regular cardinal, E a stationary subset of K. By
OK(E) we mean the following assertion:

There is a sequence (Sa | α e E) such that Sα ^ α for all α and whenever
X c /c, the set {α e E \ X n α = Sα} is stationary in K .

We denote Oκ(
κ) by Oκ Thus Oω i is the same as our original principle O

In order to prove that Oκ(£) is valid in L we require the following simple
lemma.

2.1 Lemma. Let K be an uncountable regular cardinal, λ a limit ordinal greater than
K. Let X c Lλ, \X\ < K. Then there is an N <Lλ such that X c N, \N\ < κ9 and
N CλKEK.

Proof. Let JV0 be the smallest N <Lλ such that X c AT, and set

α0 = sup(Nonκ).
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Since |JV0| = max(|X|, ω) < K, and K is regular, we have α0 < K. Proceeding re-
cursively now, let Nn+ί be the smallest N <Lλ such that Nnuan^ N, and set

ocn+ί = sup(JVn +

If I JVM| < K and an < /c, then

|JVB+1| = max( | iVJ, |α π | )<κ: ,

so as K is regular, α n + 1 < K.
Let
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we have N r\κ = α. But /c is regular. Thus \N\<κ and α < /c, so we are done. D

2.2 Theorem. Assume V = L. Let K be any uncountable regular cardinal, E a
stationary subset ofκ. Then OK(E) is valid.

Proof. By recursion o n α e £ , define (Sα, Cα) to be the <L-least pair of subsets of
α such that Cα is club in α and

provided lim (α) and such a pair exists, and define Sa = Cα = 0 in all other cases.
We show that ( S J α e £ ) satisfies 0K(E).

Suppose that (Sα | α e £) is not a Oκ (E)-sequence. Let (5, C) be the <L-least pair
of subsets of K such that C is club in K and
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Now, the sequence ((Sα, Cα)|α e E) is clearly definable from E in Lκ +. (The defini-
tion given above is absolute for Lκ+.) Hence (S, C) is also definable from E in Lκ+.
Using 2.1, we now define a sequence of submodels Nv^Lκ+(v < κ\ by the follow-
ing recursion:

No = the smallest N < Lκ+ such that |JV| < K, N n K e K, and E e N;

Nv+! = the smallest N < Lκ+ such that | JV| < K, N n K e K, and
AΓvu{AΓv}cAΓ;

Nλ= U Nv, if lim(/l). (Clearly, |AΓA| < Λ: and Nλnκeκ here also.)
v<λ

Set

αv = Nvnκ (v < K).

Then (αv| v < K) is a normal sequence in K, SO the set

Z = {αv|αv = v}

is club in K. Hence

EnZnC + φ.

Let αv G E r\Z nC. Let

Then,

π ϊ L v = idfL v, π(κ) = v, π(£) = E n v ,

π((Sβ, CJIαeE)) = ((Sβ, Q | α e £ n v), π((S, C)) = (Sn v, C n v).

Since π~ι\ Lβ -< Lκ +, (S n v, C n v) is the <L-least pair of subsets of v such that
C n v is club in v and

y e (C n v) n (£ n v) -»(S n v) n y + S r

Hence (Snv,Cnv) = (Sv, Cv), and in particular S n v = Sv. But v e C n £ , s o this
contradicts the choice of (S, C), and we are done. D

Using Oκ+ (E) for a suitable set £, in the case where K is regular it is quite easy
to construct a /c+-Souslin tree in L. We take

E = {oceκ+\d(ot) = κ},

and construct the tree by recursion on the levels, following the pattern of IΠ.3.3.
At limit stages α e £ w e extend branches to "kill off" Sa9 if Sa happens to be a
maximal antichain of T \ α. At all other limit stages α we extend all α-branches of
T \ α, noting that as cf (α) < K in such cases, there are at most κcΐ (α) = K (by GCH)
such branches, so that Ta will not be too big. We leave the details to the reader (see
Exercise 2).
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If K is singular, however, the above idea will not work. It is in order to handle
this case that we need to introduce the combinatorial principle OK(E). Using
• K(E), we shall give a construction of a τc+-Souslin tree which works in all cases.

Let K be an infinite cardinal, E a subset of K + . By D κ (E) we mean the following
assertion:

There is a sequence (Cα | α < κ+ A lim(α)) such that:

(i) Cα is club in α;
(ii) cf (α) < K -> otp (Cβ) < κ;

(iii) if 6L < a is a limit point of Ca9 then α φ E and Ca = ΰn Ca.

Notice that by virtue of condition (iii), condition (ii) can be extended to give the
implication

(ii)' cf(α) = κ->otp(Cα) = κ;.

Notice also that if K is singular, we shall have cf (α) < K for all relevant α, so
otp(Cα) < K for all α.

For any set E c coί9 Πω(E) is a theorem of ZFC, since for each limit ordinal
α < ω x we can take Cα to be any ω-sequence cofinal in α. But already Πωί(E) is
a significant proposition, not provable in ZFC alone.

We shall write D κ in place of Πκ(0).
In 2.10 we shall prove that if D κ , then there is a stationary set E c κ+ such

that ΠK(E). And then in section 5 we shall prove the following theorem.

2.3 Theorem. Assume V = L. Lei K: be an infinite cardinal. Then D κ zs va/id. D

We are now ready to construct a τc + -Souslin tree in L.

2.4 Theorem. Assume V = L. Let K be an infinite cardinal. Then there is a κ + -
Souslin tree.

Proof. By 2.3 and 2.10, let E ^κ+ be stationary and let (CJα < κ+ A lim(α))
satisfy D κ(£). By 2.2, let (SJ α e E) satisfy Oκ+ (^) We shall construct a κ + -Souslin
tree, T, by recursion on the levels, ensuring as we proceed that for each infinite
α < / c + , T f α i s a normal (α, α+)-tree. The elements of T will be the ordinals in κ + ,
and we shall ensure that

α <τβ ->α < β.

To commence, set

If T \ α + 1 is defined, Tα+ x is obtained by using new ordinals from κ+ to provide
each element of Tα with two successors in T α + 1 . There remains the case where
lim (α) and T \ α is defined. This is where we must proceed carefully.

For each x e T f α w e attempt to define an α-branch b\ of T \ α such that
x G bx

a. Let (yα(v) \v < λj be the monotone enumeration of Cα. Given x e T \ α, let
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vα(x) be the least v such that x e T f yα(v). Define a sequence (px (v) | vα(x) ^ v < λΛ)
of elements of Γ f α as follows:

^ ( v α ( x ) ) = the least (as an ordinal) y e Ty α ( V α ( J C ) ) such that x <τy;

px(v + 1) = the least y e T y α ( v + 1 ) such that px(v) <τy;

px(η) = the unique y e TyM) such that

provided such a y exists (otherwise undefined), if lim (η).

Should the above construction prove impossible (because for some limit ordinal
Ά < KiPlin) is n o t defined), the entire construction of T breaks down. But for the
time being, let us assume that this is not the case and see how bx is defined. Later
on we shall prove (by induction on α) that the construction never breaks down.
Set

bx={yeT\a\(3v<λa)(y<τPxAv))}

Clearly, bx is an α-branch of T \ a which contains x and each point px (v) for
vα(x) ^ v < λa. We now define Ta as follows.

Suppose first that a φ E. In this case we use new ordinals from κ+ to provide
each branch bx, x e T \ α, with an extension in Tα.

Now suppose that α e £ , but that Sa is not a maximal antichain of T ϊ a. In this
case construct Ta just as in the last case.

Finally, suppose that α e £ and that Sα is a maximal antichain of T \a. Then
use new ordinals from K + to provide an extension in Ta of each branch bx such that
xeT \ot lies above an element of Sα. (Since Sa is assumed to be a maximal
antichain here, Tα will still contain a point above each member of T \ α, so normal-
ity will be preserved.)

The definition is complete. We show that T is a /c + -Souslin tree. It is clearly
a /c + -tree. So, given a maximal antichain, A, of T, we must show that \A\ ^ K. Set

C = {(xeκ+\T\oί^oίΛ Ana is a maximal antichain of T \ α}.

It is easily seen that C is club in K +. So by Oκ + (E) there is a limit ordinal α e C n E
such that Anot = Sa. Thus, in particular, Sa is a maximal antichain of T fα. But
α e £, so by construction every element of Ta lies above a member oϊ Ana. Thus
A n a is a maximal antichain of T. Hence A = Ana, and we are done.

It remains to check that the construction of T never broke down. Suppose, on
the contrary, that it did. Let a be the least limit ordinal for which we cannot define
all the α-branches bx, x e T \ a. Pick x e T \ a so that bx cannot be defined. Thus
for some limit ordinal η, vα(x) < η < λa, there is no point in Tya{η) which extends
all the pointspx(v) for va(x) ^ v < η. Since lim (η), ya(η) is a limit point of Cα. Hence
by the ΠK(E) properties, ya(η) φ E and

Cγa{η) = ya{η) nCa = {ya(v) I v < η} .
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By this last equality, ft*β(l/) contains all the points p*(v) for vα(x) ^ v < η. But since
ya(η) φ £, bγaiη) has an extension in Tγ<κiη). But this extension is precisely what we
assumed did not exist: an extension of each point/?£(v), vα(x) ^ v < η. This contra-
diction shows that the construction of T does not, in fact, break down, and thereby
completes the proof. D

Notice that what we have in fact just proved is the following result.

2.5 Theorem. Let K be an infinite cardinal If there is a stationary set E ^κ + such
that both ΠK(E) and OK + (E) hold, then there is a κ + -Souslin tree. D

Using 2.5, we shall show that /c + -Souslin trees exist under much weaker
assumptions than V = L. We need some preliminary combinatorial results.

By an argument as in IΠ.3.4 we have:

2.6 Lemma. Let K be any infinite cardinal, and let E c κ+ be stationary. Then
OK+(E) is equivalent to the principle <>*+(£), which asserts the existence of a
sequence (Sα | α e E) such that Sa c ^(α), \Sa\ <«:, and whenever X c κ +, the set
{oce E\X noce Sa} is stationary in κ + . Π

Using 2.6, we now prove (see also Exercise 7):

2.7 Lemma. Assume GCH. Let K be an infinite cardinal such that cf(κ) > ω. Let
W<Ξ κ+ be the stationary set

W={(xeκ+\cϊ(<x) = ω}.

Then OK+(W) is valid.

Proof By GCH there are exactly κ+ many subsets of κ+ of cardinality at most K.
Let (Xv\v < κ+) enumerate them in such a way that Xv ^v for each v < κ +. For
each α < κ+, set

For each α e W, let

Sβ = { U r a n ( / ) | / : ω - > Γ β } .

Since \Γa\ ^ K and cf(τc) > ω,

\Sa\tζ\ΓaΓtζκ°> = κ.

And of course

We show that (Sa\ α e W) is a Oκ+(^-sequence (see 2.6).
Let X ^κ+ be given. Let C ^κ+ be club. We must find an α e C n Pi^such

that X note Sa. To this end, define a strictly increasing sequence (αj n < ω) of
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elements of C as follows, by recursion. Let α0 be the smallest infinite ordinal in C.
If an e C is defined, let α n + 1 be the least element of C such that α M + 1 > απ and

X n α π e Γ α n + 1 . L e t

Since C is closed in κ: + , α e C. Moreover, cf (α) = ω, so α e W. Define/: ω -> Γα by

f(n) = X nocn (n < ω).

Clearly,

X n α = U r a n (/)eS«>

so we are done. D

In the above proof, we used the assumption cf (K) > ω in order to ensure that
the sets Sα had cardinality at most K. But what about the status of OK + (W) when
cf (K) = ω? Well, if we assume D κ in addition to GCH, we can modify the proof
of 2.7 to cover this case also, as we show next. (See also Exercise 8.)

2.8 Lemma. Assume GCH. Let K be an uncountable cardinal such that cϊ(κ) = ω,
and let Wc κ+ be the stationary set

W= {αeκ+ |cf(α) = ω}.

IfΏκ holds, then Oκ+ (W) is valid.

Proof. Define Γα, α < κ+ as in 2.7. Let (Cλ\λ < κ+ Λ lim(A)) be a Dκ-sequence,
and for each λ let (c*\v<θλ) be the canonical enumeration of Cλ. (Thus
θλ=otp(Cλ).)

Let Av, v < /c, be disjoint subsets of K of cardinality K such that K = \J Av. For
each δ < κ+ and each v < K, let v < κ

Then for each limit λ <κ+ we can define

fλ' Γλ >κ

by setting fλ(x) =/v

Cv(x) where v < θλ is least such that x e Γ c ; . The important
point to notice here is the following:

(*) If α < λ is a limit point of Cλ, then/ λ \Γa=fa.

(This is immediate from the fact that Cα = α n C λ in this case.)
For oceW now, set

Sα = {(J/fl~
x [x] I x is a countable, bounded subset of K} .

Then Sa c ^ (α), and, since the number of countable, bounded subsets of K; is K,
|SJ < JC. We show that (Sα | α e P^) is a <>κ+ (P^)-sequence (as in 2.6).



2. κ+-Souslin Trees 145

Let X c κ+ be given. Let C ^κ+ be club. We seek a n α e C n ί f such that
X nae Sa. Define

A = {λeκ+\(Vv< λ)(X n v e Γλ)} .

Clearly, A is club in κ + . Let λ be a limit point of A n C such that cf (A) = ω x . Since
CA is club in λ we can pick a strictly increasing, continuous sequence (bv\ v < ωt)
of elements o f i n C n Q , cofϊnal in 2. Notice that

XnbveΓbv+ί

for all v < ω l t

Let (κn\n < ω) be a strictly increasing sequence of cardinals, cofϊnal in K.
Define h: ωγ -> ω by:

ft(v) = the least n such that/λ(X n bv) < κn.

By Fodor's Theorem there is a stationary set E c α^ such that for some fixed
n < ω, h(v) = n for all veE. Let (y(i)|i < ω) enumerate (in order) the first ω
elements of £, and set y = sup ί < ω γ (ί). Let α = by. Notice that cf (γ) = ω, so α e W.
Moreover, by choice of the elements bV9 α is a limit point of C n CA, and in
particular αeC.

Now,

α = fcy = sup i<ωfty(ί),

so

Thus

where x c Λ: is defined by

x = { / A ( X n y | i < ω } .

But by choice of E,

so x is a countable, bounded subset of K. Moreover, by (*),

fx\Γa=fa.

Hence

X n α e Sα,

and we are done. D
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2.9 Lemma. Let K be any infinite cardinal, and let E ^ κ+ be stationary. Suppose

that Oκ+ (E) is valid. Let

E= [jEv

be a disjoint partition of E. Then for some v < K, Ev is stationary and Oκ+ (Ev) is
valid.

Proof Much as in IΠ.3.4, by Oκ + (E) we can find a sequence (TJOCG E) such that
T α ς α x / c and for each X c κ+ x K, the set

{α e EIX n (α x K) = Ta}

is stationary in κ+. For each v <κ, define (SI \ α e Ev) by

We show that for some v < K, (Sv

a \ α e £ v) is a Oκ+ (-E v )" s e c l u e n c e (This will auto-
matically entail that Ev is stationary, of course.) Suppose that, on the contrary, no
sequence (Sl\oce Ev)is a Oκ+ ( £ v ) - s e c l u e n c e Then for each v < KWQ can find a set
Xy c κ+ and a club set Cv^κ+ such that

Set

x=
v<»c

Then C is club in κ+, and, since Z r / {v} = Xv for each v < K,

which is a contradiction. The lemma is proved. D

2.10 Lemma. Let K be any uncountable cardinal for which Dκ is valid. Let
W^κ + be the stationary set

W={aEκ+\cf(oc) = ω}.

Then there is a stationary set E c W such that:

(i) ΠK(E) is valid;
(ii) ifOκ+(W)9thenOκ+(E).

(Thus, by 2.7 and 2.8, i/GCH holds, then Oκ+ (E) follows from (ii).)
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Proof. Let (Aλ\λ <κ+ A lim(/l)) be a Dκ-sequence. For each λ, let Bλ be the set
of limit points of Aλ below λ. The sequence (Bλ \λ < κ+ A lim (λ)) has the following
properties:

(i) Bλ is a closed subset of A;
(ii) if cf (λ) > ω, then Bλ is unbounded in λ;

(iii) y e β A - . β y = y n 5 A ;
(iv) cϊ(λ) <κ

By (iii) and (iv), otp (Bλ) ^ K for all A, so we can define a partition

W= U Wv

by setting

Wv = {λeW\otp(Bλ) = v}.

Now, VF is stationary, so for at least one v ^ K, WV must be stationary. Indeed, by
2.9 we can pick a v ^ / c such that Wv is stationary and

Let E = Wv for such a v. We prove that ΠK(E) holds. For each limit ordinal
λ < κ + , define Dλ as follows. If otp(£A) ^ v, let Dλ = Bλ.Otherwise, let Dλ consist
of all members of Bλ beyond the (1 + v)-th element, i.e.

It is easily checked that the sequence (Dλ | λ < κ+ A lim (λ)) has properties (i)—(iv)
above. And clearly, Dλ n E = 0 for all λ. Define Cλ for limit λ < κ+ by recursion
on λ as follows:

= | U { y | y G D λ } , if
λ l U {cyl y G D*} u {θ^ I n < ω}, otherwise, where (θj | n < ω)

is any strictly increasing ω-sequence cofinal in λ such that

θ^ = (J Dλ. (By (ii) for Dλ, we have cf (λ) = ω in case sup (Dλ) < λ)

We shall prove that (Cλ\λ < κ+ A lim (A)) is a Dκ-sequence and that Dλ is the set
of all limit points of Cλ below λ for each λ (which implies at once that
(Cλ\λ <κ+ A lim (A)) is in fact a D κ (E)-sequence, since Dλ n E = 0 for all A).

A trivial induction on λ shows that Cλ is unbounded in λ for each λ. Now, by
induction on λ, we prove:

(a) if y e Dλ, then Cy = γ n C λ .

Assume (a) holds below λ. Let γ e Dλ. Then by definition of CΛ, Cy c Cλ. So
C y ^ y π C A . T o prove the reverse inclusion, let ξ e y n Cλ. We show that ξ e Cγ.
By the definition of CA, for some δ e D λ we have ξ e y n Q . I f 5 = y then ξ ε Cy
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is immediate. Suppose that δ < y. Since y e Dλ, we have Dγ = y nDλ. Thus δ e Dγ.
So by definition of Cγ, Cδ^ Cγ. Thus ξe Cγ. Finally, suppose that δ > y. Then
y e δ nDλ. But δ e DA, so Dδ = δ n Dλ. Thus y e Dδ. So by induction hypothesis
at (5, Cγ = y n Q . Thus £ e Cy, and we are done.

The next step is to prove:

(b) Dλ is the set of all limit points of Cλ below λ.

Again we proceed by induction on λ. Assume that (b) holds below λ. Let ξ e Dλ.
Then by definition of Cλ, Cξ^ Cλ. But Cξ is unbounded in ξ. Thus ξ is a limit
point of Cλ. Conversely, let ξ < λ be a limit point of Cλ. We consider first the case
where sup (Dλ) < λ. Then

Cλ = [J{Cγ\yεDλ}u{θλ

n\n<ω},

and so ξ must be a limit point of (J {Cy | y e Dλ}. Now, DA is closed in λ9 so
<5 = (J DA G Z)Λ. Thus Dδ = δnDλ and

Thus (J is a limit point of Cδ. Then by induction hypothesis at <5, ξ e Dδ. But
Dδ = δ nDλ. Thus ξeDλ, as required. We turn to the other case, where
sup(DΛ) = 2. Let y e DA, y > ξ. Thus ξ is a limit point of 7 n CA. But by (a),
y nCλ= Cγ. Thus by induction hypothesis at y, ξeDγ. But yeDλ, so
Dy = y π D A . Thus ξ e DA, and again we are done.

By virtue of (a) and (b) we shall be done if we prove that each Cλ is closed in
λ and that if cf (λ) < K then otp (Cλ) < K. Well, we prove that Cλ is closed in λ by
induction on λ. Assume it is true below λ. Let y < λ be a limit point of Cλ. We
prove that y e Cλ. By (b), y e Z)λ. If y = (J D λ , then y = 0Q G ^A a n d w e a r e done.
Otherwise, there is an α e Dλ such that α > y. By (a), Cα = α n CΛ. Thus y is a limit
point of Cα. So by induction hypothesis, y e Ca. Thus ye nCλ^ Cλ, and again
we are done. Finally now, if otp (Cλ) ^ /c, then Cλ must have at least K limit points,
so by (b), \Dλ\ ^K. But if cf (λ) < K, this is not the case. The proof is complete. D

Notice that in proving the above result, we have demonstrated that D κ is
equivalent to the existence of a sequence (Bλ\λ <κ+ Λ lim(/l)) which satisfies
(i)-(iv) as stated in that proof. A stronger result of this nature will be proved in
section 5.

We are now ready to say a little more concerning the existence of /c + -Souslin
trees.

2.11 Theorem. Assume GCH. Let K be an uncountable cardinal for which D κ holds.
Then there exists a κ + -Souslin tree.

Proof. If cf(JC) > ω, then by 2.7, Oκ+ (W) is valid, where

W={oιeκ+\cϊ(a) = ω}.

If cf (K) = ω, then by 2.8, Oκ+ (W) is valid. Thus in all cases, Oκ+ (W) holds. Hence
by 2.10 there is a stationary set E c κ+ such that both Oκ+ (E) and ΠK(E) are
valid. So by 2.5 there is a κ + -Souslin tree. D
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3. κ+-Kurepa Trees

A κ + -Kurepa tree, it may be recalled, is a /c + -tree with κ+ + many κ + -branches.
A κ + -Kurepa family is a family ^^ 0>(κ+) such that | # Ί = κ++ and for all
α < κ+, \3F \ oc\ ^ 7c, where

Exactly as in III.2.1, we can show that the existence of a κ + -Kurepa tree is
equivalent to the existence of a κ+-Kurepa family. By generalising the proof of
IΠ.2.2 we shall show that if F = L, there is a κ+-Kurepa family for every infinite
cardinal K. We require two lemmas, generalisations of II.5.10 and II.5.11, respec-
tively.

3.1 Lemma. Assume V = L. Let K be an infinite cardinal. If

then X = L α for some α ^ κ + , ot> K.

Proof It suffices to prove that X is transitive, since the lemma then follows at once
from the condensation lemma. But

so this is proved just as in Π.5.10. D

3.2 Lemma. Assume V = L. Let K be an infinite cardinal. If

K c X -<L K + +,

then X n Lκ+ = Lα for some α ^ κ + , α > K.

Proof. This follows from 3.1 in the same way that II.5.11 follows from II.5.10. D

We can now prove:

3.3 Theorem. Assume V = L. Let K be any infinite cardinal. Then there is a
κ+-Kurepa tree.

Proof. It suffices to construct a κ+-Kurepa family. We proceed much as in IΠ.2.2.
By 3.1 we can define a function /: κ+ -* κ+ by letting/(α) be the least ordinal

such that

Set

For each α < κ+, \ 3F \ α| ^ K, SO in order to show that 3F is a κ+-Kurepa family
we need only prove that |#" | = κ+ + .
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Suppose, on the contrary, that \3F\ ^ κ + , and let

X = (xa\a<κ+)

be the <L-least κ+-enumeration of $F. Since the function / is clearly definable in
Lκ+ +, so too are 3F and X.

By recursion, we define a sequence (Nv\ v < κ+) of elementary submodels of
Lκ++ as follows:

No = the smallest N <LK++ such that K C AT;

Nx+1 = the smallest N <LK++ such that ΛΓV u {Nv} c AT;

AΓ,= U ^ v , if li
v<<5

By 3.2,

αv = N+

for each v < κ + . Clearly, (αv | v < κ+) is a normal sequence in κ: + .
Set

x = {αv| v < κ:+
 Λ αv φ xv} .

Since x Φ xv for each v < /c+, x φ #", and we obtain our contradiction by proving
that x n α e L / ( α ) for all α < κ + .

Let α < κ+ be given. Let η be the largest limit ordinal such that aη ^ α. (If no
such f/ exists, then x n α i s finite and we are done.) Since x n α differs from x n α^
by at most finitely many points, in order to show that x n α G L / ( α ) it suffices to
show that xnoLn£ L / ( α ) . In fact we show that x naηe Lf{aη), which is if anything
a stronger result. Since we shall have no further recourse to the original α, let us
write α for aη from now on.

Now,

x n α = {αv| v < /7 Λ αv φ x v},

so if (αv | v < η) and (xv n α| v < η) are elements of L / ( α ) we shall be done. (Recall
that L / ( α ) is a model of ZF~, though nothing like the full power of Z F " is required
in order to define xncc from the above two sequences, of course.)

Let

Clearly,

π \La = id \La9 π(κ+) = α, π(X) = ( x v n α | v < α).

Now,

so
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But

a = (κ

+)LP.

Hence

So, as π (X) = (xv n α | v < α), we have

(x v nα|v < α ) e L / ( α ) .

In particular,

(x v nα |v<f/)eL / ( α ) .

It remains to show that (αv| v < η) e L / ( α ). To this end, for v < η, let

πv: Nv ^ L^(v).

For each v,

πv(κ+) = α v,

so

αv = [the largest cardinal]L^ ( v ).

So, as L / ( α ) is a model of Z F " , it is sufficient to prove that

( j8(v) |v<f/)6L / ( β ) .

We define, by recursion on v, a sequence of elementary submodels JV̂  -< Lβ9 for
v < ηf ^ f/, as follows (see below concerning η')\

NQ = the smallest N <Lβ such that K ̂  N;

ΛΓ;+! = the smallest ΛΓ -< L^ such that AT; u {AT;} c AT;

Nί= [JK, if li

The ordinal 7/ is the largest ηf *ζη for which the above recursion is possible. (We
shall prove that η' = η)

Clearly,

(N'v\v<η')eLfia).

Hence

(β'(V)\v<η')eLnx),
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where we define

π'v: Nγ = Lβ>{v)

for each v < η'.
But

v<η->Nv<Nη<Lκ++,

so in the definition of Nv for v < η we can replace Lκ+ + by Nη. That is:

No = the smallest N <Nη such that K ̂  N;

Nv+ι = the smallest N <Nη such that Nv u {iVv} c iV;

ΛΓ,= U^v, iflim(δ).
v<<5

But

π:Nη^Lβ,

so an easy induction on v now yields the result

Hence η' = η and β(v) = β'(v) for all v < η. In particular, we have (β(v) \ v < η)
G L / ( α ), so we are done. D

By modifying the above proof along the lines of III.3.5 we may prove that
V = L implies Oκ

++ f°r all infinite cardinals K, where Oκ

++ is obtained from O + by
replacing ωί by κ+ throughout (so O + is O^). And an argument as in IΠ.3.6
shows that Oκ

++ implies the existence of a κ:+-Kurepa family. (See Exercise 4.)
The notion of a jc-Kurepa tree and the principle Oκ

+ in the case of K an
innaccessible cardinal will be dealt with in Chapter VII.

4. The Fine Structure Theory

The deeper results concerning the constructible universe, including the proof that
D κ is valid in L, require a detailed study of the individual levels of the constructi-
ble hierarchy. (Actually, there is an alternative approach as far as D κ is concerned:
the so-called "Silver machine" method. This is described in Chapter IX.)

The detailed study of the individual levels of the constructible hierarchy
needed to prove D κ and related results was begun by Jensen in the late 1960's, and
is known as the "fine structure theory". Initially this really was a study of the
properties of the individual sets Lα as defined in Chapter II. However, it soon
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became clear that the sets Lα do not lend themselves easily to such a study. If one
tries to carry out simple set theoretic arguments within an arbitrary Lα, then
unless α is a limit ordinal one meets a host of minor, but troublesome difficulties.
For instance, unless α is a limit ordinal, Lα is not closed under the formation of
ordered pairs. Since the ordered pair function is one which is used all the time in
even the most elementary set-theoretical arguments, this is an annoying problem.
Certainly, it is possible to overcome this, and similar difficulties, but in so doing
a great deal of cumbersome apparatus needs to be introduced, and much of the
naturalness of set theory is lost. The difficulty is the more annoying because it
arises for an essentially irrelevant reason. The very simple functions which we
would like our levels to be closed under (ordered pairs, etc.) are all highly "con-
structible", and we only fail to achieve closure because they increase rank. And
there lies the root of the problem. The trouble is, when we defined the constructi-
ble hierarchy, we mimicked the definition of the cumulative hierarchy, insisting
that at each stage only subsets of the stage could appear at the next stage. But for
constructibility the crucial point lies in our other requirement, that at each stage
we allow only those new sets which are constructίble from the sets already avail-
able. And there are many set-theoretic operations which are, under any definition,
"constructive", but which increase rank by more than one level, and hence violate
the "subsets only" requirement. The way out of this dilemma is easy. We modify
the definition of the constructible hierarchy so that each level of the hierarchy is
an amenable set. This was first done by Jensen, and we thus refer to the modified
hierarchy as the Jensen hierarchy. It is this hierarchy whose "fine structure" is
usually investigated. The α-th level of the Jensen hierarchy is denoted by Jα.
Roughly speaking, Jα possesses all of the properties of the limit levels of the usual
Lα-hierarchy of constructible sets. And we can think of Jα as being a "constructibly
inessential" extension of the structure Lα. (By virtue of the closure properties we
obtain for the sets Jα, this picture is not totally accurate, but by ^nd large is the
way in which the beginner should view matters: when you read "Jα", think "Lα,
lim(α)"!)

In this section we outline the fine structure theory, developed to the stage
where we can prove D κ (assuming V = L). However, by its very nature, the fine
structure theory is very intricate, and some of the proofs tend to be long (though
except for the early development they are rarely boring). Consequently, we omit
practically all proofs in our outline. For applications of the fine structure theory
of the type we shall consider, however, it is not at all necessary to know anything
about these proofs, a knowledge of a few, readily appreciated key results being
sufficient. So we do not lose a great deal by our approach. Then, in section 5, we
use the fine structure theory outlined in order to give a rigorous proof of D κ in
L. The interested reader may then investigate the fine structure theory itself in
Chapter VI, where we develop the entire theory rigorously.

Now to our outline of the fine structure theory. Our first step is to define a new
"constructible hierarchy". Since we are interested in functional closure of the
levels of the hierarchy, rather than pure definability, our approach will be func-
tional. We shall define the hierarchy by iteratively closing up under various set
theoretical functions. All of these functions will be "constructible" in some sense.
Moreover, they will be sufficient to ensure that at the very least we obtain all of
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the usual constructible sets at each stage, i.e. La<^J^ The collection we use is
described below.

A function /: Vn -» V is said to be rudimentary (rud for short) iff it is generated
by the following schemas:

(ϊ)f(xu...,xn) = xi (Itζίtζn);

(ii) f(xί9 ..., xπ) = {xh Xj} (1 ^ ij ^ n);

(iii) f(xu ..., xn) = Xi - Xj (1 ^ ij ^ n);

(iv) f(xl9..., xn) = ft(0i(*i> . . . , x π ) , . . . , gk(xl9..., xπ)), where h9gl9...9 gk

are rudimentary;

(v) f(y, Xi , . . . , xn-1) = U #(z> xi> > *"-1) > w h e r e ^ i s rudimentary.
zey

It is clear that rudimentary functions are "constructible", so that any hierarchy we
define using them can reasonably be called a "constructible hierarchy". Indeed, it
can be shown that all rudimentary functions are ΣQF. The converse to this is false,
but if we define a relation A c yn to be rudimentary iff its characteristic function
is rudimentary, then for relations the notions of being rudimentary and of being
ΣξF do coincide. Another point which should perhaps be mentioned here is that
although rudimentary functions increase rank they do so by a finite amount only.

If X is a set, the rudimentary closure of X is the smallest set Y ^ X such that
7 is closed under all rudimentary functions. If X is transitive, so is its rudimentary
closure. For transitive sets X we set

τud(X) = the rudimentary closure of the transitive set X u {X} .

That the rudimentary functions will constitute an ideal class for defining a
constructible hierarchy which is only an "inessential" extension of the usual one
follows from the fact that for any transitive set X,

(In fact,

Σ o (rud {X)) n0>(X) = Def (X).)

The Jensen hierarchy is defined as follows:

Jλ= U Λ , if li

Thus each Jα is transitive, the hierarchy is cumulative, and for each α, the rank of
Jα is ωα, and

i n O n = ωα.
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(This last fact has the effect that in arguments involving the Jensen hierarchy,
ordinals of the type ωoc appear all the time.) For α > 1, Jα is amenable; the
canonical LST formula which says

is ΣfF; and (Jv | v < α) is uniformly Σ{* for α > 1. For each α,

The relationship between the Jensen hierarchy and the usual constructible hierar-
chy is:

(i) ( V α ) ( L α c J α c L J ;

(ii) La = Ja iff ω α = α.

(It is possible to say a little more, but the exact relationship between Lα and Ja is
rather complicated, and in any case is of no use to us.) In particular,

L =

There is a well-ordering <3 of L which is definable by means of a Σψ formula
of LST which is absolute for L and for any set Jα, α > 1, and which is such that
<j n (Ja x Jα) is uniformly Σ{* for all α > 1.

There is a Σ1(Jα) map of ωα onto Jα for each α > 1.
The concept of a Σπ skolem function has been met in II.6, and in II.6.5 we

proved that each limit Lα has a (uniformly Σί)Σί skolem function. Essentially the
same proof shows that each Jα, α > 1, has a (uniformly Σx) Σ x skolem function. A
rather more complicated proof shows that for α > 1, Jα has a Σn skolem function
for any n ^ 1. But there is no uniform Σn skolem function for Jα except for the case
n = 1. (The proof developed in Exercise II.5 can be used to show that the Jensen
hierarchy has no uniform Σ 2 skolem function.) This is a serious drawback. Even
the rather simple result proved in II.6.8 shows how useful uniformity properties
are in skolem function applications. And in order to prove results such as D κ , we
need to be able to carry out Σn condensation arguments of a type generalising
Π.6.8 for any n ^ 1. In order to facilitate this, we proceed as follows.

Recall that a structure of the form <M, A} (i.e. <M,e, v4», where A c M, is
said to be amenable iff M is an amenable set and

UE M -> A nu E M.

It is easily seen that most of the results about limit levels of the constructible
hierarchy given in Chapter II are in fact valid (by almost the same proof in each
case) for amenable structures of the form <Lα, A}. Moreover, each of these results
has a valid analogue for amenable structures < Jα, A}. (In this connection, remem-
ber that Jα is an amenable set for all α > 1.) In particular, there is a uniformly Σ1

Σx-skolem function for the amenable structures < Jα, A}. The main idea behind
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the fine structure theory is to capitalise on this fact, by reducing Σn predicates over
a Jα to Σ1 predicates over some amenable structure < J ρ, A}, and then working
with < Jρ, A} instead of Jα.

Let haf A denote the canonical, uniform Σt skolem function for any amenable
structure < Jα, A}9 and let ifα> A be the uniform Σtf*'Λ> preidcate on Jα such that

y - K Λ(U *)<->(3 Z e Ja)HaiA(z, y> U x)'

(The function haA is defined in precisely the same manner as the canonical Σί

skolem function ha for limit Lα in Π.6. Thus,

where

α, A (U x) — the < j-least w eJa such that
=<jα,^> (ww is an ordered pair") Λ φi((w)0, X, (w)i),

where (φi(v0, vl9v2)\i <co) enumerates (in a uniformly Δία fashion) all Σ o for-
mulas of $£(A) having free variables amongst vθ9 vl9 υ2)

We now describe the means by which Σn predicates on a Jα can be coded as
Σj predicates on an amenable < J ρ, A}.

Let α > 1, n > 0. The Σn-projectum of α, denoted by ρ", is the smallest ρ ^ α
such that there is a Σπ(Jα) m a p / for which / " J ρ = Jα. It can be shown that ρ" is
the largest ρ ^ α such that < Jρ, A) is amenable for any Σn(Ja) subset A of Jρ.
Moreover, ρ" equals the smallest ρ such that Σn(Ja) n ^ ( ω ρ ) φ Jα.

It is easily seen that

For later convenience, we set

For each α > 1, n ̂  0, we can associate with α a standard code, A", and a
standard parameter , p", with the following properties:

1. Λΰ c ^ , i J e Σ n ( J α ) ;

2. <Jρn,^4"> is amenable;

3 . ^ = ^ = 0;

4. For all m > 0,

5. />"+x is the <j-least p e Je* such that

J ρ ; = / i ^ (ω x ( J ρ r ,
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By definition of the Σn-projectum, ρj, there is a ΣM( Jα) map/ such that
/"Jρn = Ja. Suppose now that P is a Σn(Ja) predicate on Jα. Set

Q = {xeJρnJf(x)eP}.

Then Q is a Σn(Ja) subset of Jρn. By Fact 4 in the above list, Q is Σ1«Jρ«, ^"». In
this way, instead of working with Σn predicates on Jα, we may work with "equiva-
lent" (in the sense that Q and P are "equivalent" in the above discussion) Σ1

predicates on <Jρn,,4£>, thereby being able to utilise the uniform Σx skolem
function possessed by the structures <Jρn, A"}. (Actually, from the above account
it would appear that the coding of a Σπ predicate on Jα by a Σx predicate on
<Jρn, A"} is via an arbitrary Σπ(Jα) function /. In practice we use, in effect, a
canonical such function constructed from the standard parameters and the canon-
ical Σ1 skolem functions. See the definition of the standard parameter pn

a

+* above.)
What is now needed in order to make this procedure work is a suitable condensa-
tion lemma. For suppose that

By the standard condensation lemma, there are unique ρ, A such that

But if we are to be able to work with the structures (JQn, A") instead of the original
Jα, we shall require that the ρ, A obtained in this manner are of the form ρ = ρ£,
A = A\ for some unique ά. In other words, what we need is a condensation lemma
for the hierarchy of structures

(JφAΐ> (αeOn).

This is provided by the following property of the standard codes:

6. Let α > 1, m ^ 0, n ̂  1. Let < J^, A} be amenable, and let

Then there is a unique α ̂  ρ such that ρ = ρ£, A = A\. Moreover, there is a
unique π ̂  π such that

and such that for all ί = 1,..., n:

(a) π(p$=pU

(b) (π r Jβ<): V^AίXm+n-tiJ^Ab.

The assertions concerning the extension π here should not be too surprising,
since An

Λ codes all the Σn information about Jα. The heart of assertion 6 is the fact
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that the standard codes are preserved under condensation arguments, indeed even
under "Σ o condensation arguments". This is essentially the case because of the
canonical manner in which the standard codes are defined. We fix some simple
(hence uniformly Δx) enumeration (φf \ί < ω) of the ΣL formulas of JS? (A) with free
variables v0 and vl9 and define, by recursion on n:

Λ n

a

+ 1 = {(i,x)\iEco AxeJρn A N< < 7 on,A»><Pi(x,Pi + 1)} •

5. The Combinatorial Principle Π κ

Using the fine structure theory outlined above, we shall prove that iϊV = L, then
D κ is valid for all infinite cardinals K. We begin by recalling the statement of D κ .

D κ : There is a sequence (Cα|α <κ+ Λ lim(α)) such that:

(i) Cα is a club subset of α;

(ii) c f ( α ) < κ H C α | < κ ;

(iii) if α is a limit point of Cα, then Cδ = α n Cα.

Let D^ assert the existence of a sequence (Ba\ α < κ+ A lim(α)) such that:

(i) Ba is a closed subset of α such that (Vy e Ba) lim(y);

(ii) cf (α) > ω -+ Ba is unbounded in α;

(iii) otp (Ba) tζ κ;

(iv) α e £ α - > E s = α n £ α .

5.1 Lemma. Let K be any uncountable cardinal. Then D κ and D'κ are equivalent.

Proof. Before we commence, notice that a weaker version of this result was proved
during the course of 2.10. The present proof is a refinement of the argument used
there.

First of all, suppose (Cα | α < K + Λ lim (α)) is as in D κ. For each α, let 5α be the
set of limit points of Cα below α. It is clear that the sequence (£α | α < K + A lim (α))
satisfies D^.

Conversely, let (Ba\ a < κ+ A lim(α)) be as in D^. By recursion on α we define
sets Cα as follows. If (J Ba = oc, set

Ca = \J{Cr\yeBa}.

Otherwise, if Ba is not cofinal in α, then by (ii) of D^, cf (α) = ω, so we may fix some
strictly increasing co-sequence (θa

n\n < ω), cofinal in α, with 6% = \JBa, and set

Ca = ()J{Cy\γeBa})υ{θϊ\n<ω}.

The following are proved exactly as in 2.10:

(a) I fye£ α , then Cy = γnCa.



5. The Combinatorial Principle D κ 159

(b) Ba is the set of all limit points of Cα below α.

(c) Cα is a club subset of α.

Moreover, we have

(d) ot

For suppose, on the contrary, that otp (Cα) > K. Then, since K is an uncountable
cardinal, it follows from (b) that otp (BJ > K. This is not the case, by choice of Ba.

Now, if K is regular, then since Cα is cofϊnal in α, (d) implies that

cf(α) < ιc->|C α | <κ,

and hence (Cα | α < κ+ A lim(α)) satisfies D κ . On the other hand, if K is singular,
we must modify the sets Cα in order to obtain a Dκ-sequence, as follows. Let
k = cf(κ ), and let (0V| v < k) be a strictly increasing, continuous sequence of limit
ordinals, cofϊnal in /c, with θ0 = 0. Set θ^ = K. Define sets Cα as follows. If there is
a v < k such that

0 v < o t p ( C e X 0 v + 1 ,

set

If no such v exists, then we must have otp (Cα) = θv for some limit ordinal v ^ k,
in which case we set

C; = {yeCa\(3τ < v)(otp(y n C J = 0τ)}.

It is routine to verify that (Cά| α < κ+ A lim (α)) is a Dκ-sequence. That completes
the proof, ϋ

Assume V = L from now on. We shall prove that D κ holds for all infinite
cardinals K. Since D ω is trivially valid (in ZFC), we may ignore the case K = ω. By
5.1, given some uncountable cardinal K, it suffices to prove D*. The basic idea is
to construct sets Ba to satisfy (i)-(iii) of D'κ by means of a construction which is
sufficiently uniform to enable (iv) to be proved by a condensation argument. In
order to do this we must set up some machinery.

Let α be a limit ordinal, and let ωβ ^ α. We say that α is singular over Jβ iff
there is a ./^-definable map of a bounded subset of α cofinally into α; otherwise we
say that α is regular over Jβ. Let n ^ 1. We say that α is Σn-singular over Jβ iff there
is a ΣM(JjS) map of a bounded subset of α cofinally into α; otherwise we say that
α is Σn-regular over Jβ.

Clearly, α is regular over Jβ iff it is Σn-regular over Jβ for all n. If α is singular
over Jβ9 then α is singular over Jy for all y ^ jS. And if α is Σπ-singular over Jβ9 then
α is Σm-singular over J^ for all m^ n. Moreover, by V = L, if α is singular, then
there are β, n such that α is Σπ-singular over Jβ.
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Let

S = {aeκ+\(oc>κ) A (ωα = α) Λ (Vy <oc)(|y|Jα ^K)}.

It is easily seen that S is a club subset of κ+. We shall construct a sequence
(CJαeS) such that:

(i) Ca is a closed subset of S n α;

(ii) cf (α) > ω -• Cα is unbounded in α;

(iii) o t p ( C α K * ;

(iv) αeC α ->Cj = α n C α .

If we then identify S with {α e JC+ |lim(α)} in the obvious manner, we obtain a
D ^-sequence, as required.

Let ccE S. Then α is a limit ordinal between K and κ+. So in particular, α is a
β(όc) singular limit ordinal. Let β(cή be the least ordinal β such that α is singular over
n(a) Jβ. Let n(α) be the least integer n ^ 1 such that α is Σπ-singular over J^(α). The

definition of Cα splits into two cases, depending upon the nature of β (α) and n (α).
Define

Q Q = {α G SI β(ά) is a successor ordinal and n(α) = 1};

5.2 Lemma, α e β -* cf (α) = ω.

Proof. Let /? = β (α) = y + 1. Notice that as α e S, we have lim (α), so we must have
y ^ α here. Let / be a Σ( Jβ) map of a subset, M, of an ordinal δ < α cofinally into
α. Let P be a ΣQC^) predicate such that

Now, Jβ = rud(Jy), so every element of Jβ can be obtained by the successive
application of finitely many rud functions to finitely many elements of the set
Jγ u {Jy}. But amongst the rud functions are the identity function, the pairing
function, and the inverses to the pairing function. Moreover, the rud functions are
closed under composition. Thus, given any xeJβwe can in fact find a single rud
function g and a single element y of Jy such that x = g(y, Jy). Hence, if {g{\ i < ω)
is an enumeration of all the binary rud functions, we have:

(*) Jβ = {Qi(x> Jy)\xeJy Aίeω}.

For each i < ω, define a partial function ft on u by:

fi(v) = τ~(lxe Jy)P{9i(x, Jy), τ, v).

By (•),

/= \}fu
i<ω

SO

sup, < ω ( J <//'<*) = «•
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Thus the lemma will be proved if we can show that (J (//' δ) < α for each ί < ω.
Since α is regular over Jy, it suffices to prove that for each i < ωjt is Jy-defϊnable.

Now, the predicate (of x, τ, v)

is Σ0(Jβ) on Jy. But one of the properties of the rudimentary functions that we
mentioned in section 4 was that for any transitive set X,

Σ o (rud (X)) n0>(X) = Def (X),

so in particular we have

Thus the predicate (of x, τ, v) P (#i(x, Jy\ τ, v) is Jy-definable. It follows at once that
fι is Jy-definable, and we are done. D

By virtue of 5.2, we may define

for the case α e g , and there is nothing further to check.
We consider now the case <xe R.

5.3 Lemma. IfoceR, then ρggj = K .

Proof. Let β = β(α), n = n(α). Since K is a cardinal, II.5.5 (for the Jensen hierar- β, n
chy) implies that & (ω y) £ Jκ c J^ for all γ <κ. Thus we certainly have
^(ωy) nΣn(J / ϊ) c J^ for all γ <κ. Thus ρj ^ /c.

Now, by choice of β, n there is a Σn(J/3) map, /, of a bounded subset of α /
cofϊnally into α. We may code / as a subset of α in a simple fashion (e.g. using a
Σ ^ J J map of α onto Jα). But as / is cofinal in α, /φ Jα, and if α < jS then by
definition of β, α is regular within J^, so again as / is cofinal in α, we have/φ J^.
Thus, in all cases, ^(ωα) n Σ^ίJ^) $ J^, and so ρj =ξ α.

By definition of S, if dom (/) ^ y < α, then | γ \J<x ̂  K:, SO Jα contains a map from
K onto y. Consequently, by composing / with such a map if necessary, we may
assume that dom (/) c K. We may also assume (again by making trivial alter- /
ations to / if necessary) that /(v) > K for all v e dom(/). /

Again, since αeS, for each y such that K <y < α there is a function #y e Jα such
that g :̂ κ:-^y. In fact we may take gy to be the <j-least such map, and then the gy

sequence (gy\ K < y < α) is Σx(Jα).
Let (C/v I v < K) be a Jκ-defϊnable partition of K into K many disjoint sets of size

/c, and let (jv I v < K) be a Jκ-definable sequence of maps7v: Uv <-• K. (Practically any
(Uv\ v < K) and (jv\ v < K) which are explicitly defined will be Jκ-definable.)

Set

k=
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Clearly, k is a Σn(Jβ) map of K onto α. Since ρn

β *ζ α, it follows at once that ρn

β ^ K,

and we are done. D

For a G R, now, we set

ρ (α), X (α) ρ (α) = ρjjgj" \ A (α) = ^ f x .

If n (α) = 1, then ρ(oc) = β (α), so as α G R we shall have lim (ρ (α)). And if n (α) > 1,
then ρ(α) will be admissible, so again lim(ρ(α)). Thus ρ(oc) is a limit ordinal.
Moreover ρ(α) ^ α. For if n(oc) = 1, then ρ(α) = β(oί) > α. On the other hand,
suppose n(α) > 1. Now, α is Σn(Oί)-1 -regular over J ^ , so there is certainly no
Σπ(α)-1 («//?(α)) map of a bounded subset of α cofinally into α. But by definition of
ρ(α), there is a Σ π ( α ) _ 1 (J^(α)) map from a subset of Jρ ( α ) onto Jα, and hence there
is a Σ B Φ - ! ( J ^ ( α ) ) map from a subset of ω ρ(α) onto α. Thus ω ρ(α) ^ α. But
ωcc = oc. Hence ρ(α) ^ α, as stated.

Fix α e Λ now, and set

β,n,ρ,A, β = β(cc), n = n(α), ρ = ρ(α), A = A(cc), h = hρ,A, H = HρA.

KH
So, in particular, h is the canonical Σ x skolem function for < Jρ, ^> and if is a
£<jp, Ay p r e d i c a t e with the property that

y = h{i, X ) ^ ( 3 Z G Jρ)H(z, y, i, x).

hτ For τ < ρ, define a partial function hτ from ω x Jτ into Jτ by

y = Λτ(ϊ, x)<->(3ze Jτ)H(z, y, i9 x).

Now, the canonical Σ t skolem function hξt v is uniform for all amenable <Jξ, ί/>.

In particular, whenever τ < ρ is such that <J τ,^4n Jτ> is amenable, then the
function hτ defined above is its canonical Σί skolem function, i.e. hτ = hτ>AnJτ.

Now, by definition of ρn

β, together with 5.3 (and the Jγ-analogue of Π.6.8) there
/ , / is a Σn(Jβ) map/such that/" K = Jβ. Let f=fn(Je XK). Then / i s a Σn(Jβ) subset

of Jρ. So by the properties of the standard codes given in section 4,/is Σ x « Jρ, A}).
Moreover, J"κ = Jρ. By the properties of the Σ x skolem function, if / is

Σ¥"Λ>({p})9 we will have

h"(ωx(κx{p})) = Jβ.

So we may define

p p = /? (α) = the <J-least p e JQ such that JQ = h" {ωx(κx {p})).

Define a map g from a subset of K into Jρ by setting

<j By choice of/?, #"κ; = Jρ. Moreover, g is Σ^Jp"4>({/?}). Let G be the canonical
ΣJy7*" A> ({/?}) predicate (obtained from fί) such that

g(v) = x+^(3zE
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By recursion we shall define functions k: θ -> K, m: θ -• ρ, (Xv\v < θ\ (αv | v
< θ\ for some θ which is to be determined during the course of the definition. The
exact order of this definition will be examined as soon as the definition has been
given in full.

k(v) = the least τ e dom(g) such that αv < g(τ) < α and | α v | J g ( τ ) ^ K. k(v)

m(0) = the least y ^ K such that p e Jγ; m(v)

m(v + 1) = the least γ > m(v), αv, g ° fc(v) such that:

(i) , 4 n J m ( v ) e J γ ;

(ii) m(v), αv, ̂ °fe(v)e ft;'(ω x (K X

(iii) (3z6

m (A) = supv < λ m (v), if lim (λ) and this supremum is less than ρ (undefined if the
supremum equals ρ).

X,

αv = sup(Xv not), αy

Our D'κ set Cα will be the set

C« = ίαvl v < ^ Λ lim(v)},

where θ is the first ordinal for which the above definition breaks down. We shall θ
show that lim (θ) and that θ is the least ordinal such that supv < 6 > m (v) = ρ. We shall
also show that the function k is order-preserving, so θ ^ K and otp (Cα) ^ K. (The
function g is used precisely in order to obtain this result.) A condensation argu-
ment will be used to show that C5 = α n Cα whenever α e C α . The rather compli-
cated definition of the function m is designed to facilitate this part of the proof.
And now down to business.

Let us examine the way in which the above definition proceeds, and how it
may break down. The definition of m(0) comes first, and is unproblematical.
Suppose now that m(v) is defined for some v. Then we may define Xv and αv. We
show that αv < α. Suppose not. In other words, suppose that h'ή{v)(ω x(κx {/?}))
n α is cofinal in α. Now, <Jρ,/4> is amenable, so ΛnJm{v)eJρ. Thus <J m ( v ) ,
A n Jm ( v )> G JQ. Thus hm{v)eJQ. Now, there is a Jκ-defmable map of K onto
ω x (K x {/?}). Thus JQ contains a map from a subset of K cofinally into α. If ρ = a
this is already a contradiction. What if ρ > α? Well, in this case, since ρ ^ β(α),
α is a regular cardinal inside Jρ, and again we have a contradiction. Thus αv < α.
Since α e S , it follows that k(v) is defined. And now we may define m(v + 1)
without any difficulty. Thus the only way in which the construction can break
down is when a reach a limit ordinal θ such that sup v < θm(v) = ρ.

For each v < 0, by definition of m(v + 1) we have αv e /ι^ ( v + 1 ) (ω x (K X {/?})),
so α v e l v + 1 n α . Thus αv < α v + 1 . Moreover, since the function m is continuous
(by definition), for any limit ordinal λ < θ we have, by virtue of the manner in
which the functions hτ were defined, Xλ= (J Xv, and hence αA = s u p v < λ αv. Thus

the sequence (αv | v < θ) is strictly increasing and continuous at limits. Again, since
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supv < 0m(v) = ρ, we have

[)Xv = h"β(ωx(κx{p})) = JQ9

v<θ

so s u p v < 0 α v = α.
We show next that the function fc is strictly increasing. Let v < τ < θ. By the

definition of fc(τ), # ° f c ( τ ) > α τ and | α τ | J g ° k ( τ ) ^ K. S O as α v < α τ, we have
g o k(τ) > α v and | α v | J g ° k ( τ ) ^ κ\ S O by the minimality of k(v) in its definition,
fc(v) < fc(τ). But by definition of m(v + 1), g ° fc(v) e X v + 1 n α, so # © fc(v) < α v + 1

^ ατ ̂  g ° k(τ), and in particular fc(v) φ fc(τ). Thus k(v) < k(τ).
Since k is strictly increasing from θ into K, we must have θ ^K.
We set

C α C α = { α v | v < 0 Λ l i m ( v ) } .

By the above results, Cα is closed in α, has order-type at most K, and if cf(α) > ω
then Cα is unbounded in α. Moreover, by the definition of k and the inequality
αv < g © k (v) < α v + x (noted during the proof that fc is increasing), we have Cα c S.
Thus, all that remains to be proved now is that if α e Cα, then Cδ = α n Cα.

ά, λ Let α e Cα be given. For some limit ordinal λ < θ, α = aλ. Note that by the
definition of m, lim(/l) implies that ( J m ( λ ) , i n Λnα)) i s amenable.

5.4 Lemma, όί ̂  Xλ.

Proof. Since α = s u p v < λ α v , it suffices to show that αv ^ X λ for all v < λ. So let
v < λ. Then by definition of m(v + 1), αv G X V + I ^ ^λ β u t ά e S, so | α v | j 5 ^ K.
Hence |α v |

J m ( λ> ^ K. Since

we have <xv^ Xλ, as required. D

By the condensation lemma, let

π, ρ, A π: <J^, 1> ^ < X λ , i n l 2 ) .

Thus

π: < J^ A} -<! < J m ( λ ) , ,4 n J W ( A ) >.

But by transitivity,

< Jm ( Λ ), ^ n Jm ( λ )> -<0 < Jρ, ^ > .

Hence

π : < J ^ , l > < o < Λ ^ >

It follows from the fine-structure theory (section 4) that there is a unique β such
β, ft that ρ = Qnf1 and A = AJ"x, and a unique π 2 π such that, in particular,

π: Jβ<n-ιJβ.

h, P Let /i = Λ?t j , and set ^ = π " x ( ^ ) .



5. The Combinatorial Principle Π κ 165

By 5.4, π \ α = id \ α. If <χ < β, then since α = αλ = Xλ n α = ran (π) n α and
π c π, we have π (α) ^ α. (If α e ran (π), then in fact π (α) = α, but we have no
reason to suppose that this is the case.)

Define a map g0 from a subset of K into Jm{λ) by

go(v) = x<->(3ze Jm{λ)) G(z, x, v).

Now, 0o is ΣίJm<A> Λ n J m ( A ) >({/?}). Hence ^ = ̂ o n ( ά x K ) is Σ<

1

Jw(λ>'AnJ"<A>>({/?}).
But π t α = id \ α. Thus π " x " ^ = <h, and so gγ is Σf* ' ^> ({p}). So, as ρ = ρnf \

A = A"f\g1isΣn(Jβ).
By definition of m, /c/r A <= dom (gx) and ̂ x \ {k"λ) = g \ (k" λ). But αv < g ° fc (v)

< α v + 1 for all v. Thus ^ is cofinal in α.

5.5 Lemma. ρ^ = K.

Proof. Since ά e S, we can use the function gx to prove this by the same argument
we used in 5.3. D

5.6 Lemma, β = β (α).

Proof. The existence of gx shows that β(α) ̂  β. If β = ά we are done. So assume
β > α. Suppose that β (α) < ^. Then Jβ will contain a map / from a subset of some
γ < α cofmally into α. Since π: J^ <n-i Jβ, ft if) will be a map from a subset of
π (y) < π (α) cofinally into π (α). Now, y e α, so π (y) = y. Thus π (/) maps a subset
of y cofinally into π(α). But since / ς α x α , / ^ π(/). So as dom(/) c -y and
dom(π(/)) c γ9 we must have π (/ )=/ . Thus / maps a subset of y cofinally into
π (α). But ran (/) ^ α < α ̂  π (α), so this is impossible. This proves the lemma. D

5.7 Lemma, n = n (ά).

Proof. By 5.6 and the properties of gί9 n(α) ̂  n. If n = 1 we are done. So assume
n > 1. We must prove that α is ΣΠ_ x regular over J^. Suppose not. Then there is
a ΣΠ_ x( J^) map of a bounded subset of ά cofinally into α. Since α G S, an argument
as in 5.3 now shows that ρ p ι = K. But ρ|~1 = ρ ̂  α > K, a contradiction. D

5.8 Lemma. ^ = /> (α).

Proof By 5.5, 5.6, and 5.7, p(μ) is (by definition) the <j-least element of J$ such
that Je = h" (ωx(κx {p (α)})). Now,

π: < Jρ, Λ> -<! < Jm{λ), A n J m ( A ) >,

so

π"[/i"(ω x (K x {^}))] = Kw (ω x (K X {/>})) = X λ .

Thus,

R"(ωx(κ x {p})) = π~1"Xλ = Js.

This proves that p(a)<jP- Let />' = π(p(d)). Pick i e ω , V6κ so that
p = Έ(i, (v,p(d))). Applying π, we get p = h(i, (v,/>'))• Thus

h" (ω x (ic x {/?})) s /i" (ω x (K x {/>'})).
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Thus Jρ = h"(ω x (K X {/})). So by choice of p,p *ζjpf. Applying π ~ \ p *ζjp(ΰ).
The lemma is proved. D

g N o w define g from α exactly as g was defined from α.

5.9 Lemma. ^ n ( α x Π ) = ^n(άxk"λ) .

Proo/ By virtue of 5.5 through 5.8, for v < K, τ < α, we have

g(ωv + 0 = τ<r+Ji(i9(v9p)) = τ .

But π: < Jρ, Z> -<! < Jmiλ)9 A n J m ( λ ) > and π t α = id \ α. Hence

S (i, (v, ̂ )) = τ ̂  ή m ( λ ) (i, (v, p)) = τ.

Thus:

(*) £(ω v + 0 = τ <-* ftm(λ) (Ϊ, (v,p)) = τ.

Now, by the uniformity of the Σί skolem function,

K(λ)(U (v,p)) = τ implies Λ(Ϊ, (V,p)) = τ.

Thus by (*),

#(ωv + i) = τ implies #(ωv + i) = τ .

Suppose that, in addition, ωv + i e k"λ. Assume that g(ωv + ΐ) = τ. Then by the
definition of the function m,

(3zeJm(λ))G(z,τ,ωv + /)•

So by the canonical, uniform nature of the Σ o predicate G,

Thus by (*), g(ωv + i) = τ, and we are done. D

Now define k, m, (Xv \ v < θ\ (αv | v < θ) from ά exactly as we defined
fc, m, (Xv I v < 0), (αv I v < θ) from α. Thus, in particular, provided that α e ^ w e will
have

C s = { ά v | v < θ Λ l i m ( v ) } .

5.10 Lemma. For α/ί v < λ9 k(v) = π(k(v)) = k(v), π(m(v)) = m(v), π r /X v = X v,
άv = π(άv) = α v.

Proof. Since π: < J^, Z> -<x < JW ( A ), -4 n Jm{λ)} and π t α = id \ α, this follows from
5.5 through 5.9 by a straightforward induction on v. D
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Since (αv | v < λ) is cofinal in ccλ = α, it follows from the above lemma that
θ = λ. Hence,

{αv I v < θ A lim (v)} = {αv | v < λ A lim (v)} = α n Cα .

We shall be done provided that δce R. Suppose that n = 1. Then ρ = ρ^ = β. But
π\ JQ< Jm{λ) and lim(m(λj). Hence lim (ρ). Thus n = 1 implies lim(β). Thus δίe R,
and we are done. D^ is proved.

Exercises

1. κ + -Aronszajn trees (Section 2)

Let K be an infinite cardinal. By a special κ + -Aronszajn tree we mean a τc + -tree
T such that for each α < κ+, Ta c {f\β α 1 - 1 >/c}, with the o r d e r i n g / < τ # iff
/ c g. It is immediate that any such tree must be κ + -Aronszajn, of course.

1 A. Prove that there is a special ωx -Aronszajn tree, first of all by making a simple
modification to the tree constucted in III. 1.1, and then by means of a direct
recursion on the levels, much as in the proof of III. 1.1. (As then, the problem is to
ensure that the construction does not break down at some stage.)

1 B. Prove that if K is a regular cardinal such that 2<κ = K, then there is a special
κ + -Aronszajn tree. (Generalise the direct proof of 1A above. The hypotheses on
K are used to ensure that the construction does not break down.)

1C. Prove that if V = L (or more generally if 2 < κ = K and D κ holds), then for any
infinite cardinal K there is a special κ + -Aronszajn tree. (The Dκ-sequence is used
to ensure that the construction does not break down. See the proof of 2.4.)

2. κ + -Souslin trees (Section 2)

Let K be an uncountable regular cardinal. Assume GCH together with Oκ+ (E),
where E = {a e κ+ \ cf(α) = K). Prove that there is a /c+-Souslin tree.

3. κ-Kurepa trees (Section 1)

Show that if K is inaccessible, there is a κ>tree with 2K many κ>branches. Suggest
a definition of a κ:-Kurepa tree which avoids this example (and indeed any other
example one can construct in ZFC alone).

4. The combinatorial principle O^+ (Section 3)

Formulate the principle O^+ by analogy with O + for ω ^ Prove that V= L
implies O^+ and that O^+ implies the existence of a τc+-Kurepa tree.

5. ΏκinL[A] (Section 5)

Prove that D κ holds if V = L[A], where A c κ+ is such that

( V α < κ : + ) [ | α | L U n α ] ^K].
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(This requires some reworking of the fine-structure theory, and is quite a demand-
ing exercise.)

6. On the failure ofΠκ (Section 5)

From the result of exercise 5 above, deduce that if D κ fails, then κ+ is Mahlo in
L. (It can be proved that if it is consistent with ZFC that a Mahlo cardinal exists,
then it is consistent with ZFC that D ω i is false.)

7. GCH and the principles Oκ+ (Section 2)

Prove the following generalisation of lemma 2.7: Assume 2K = κ+ and that λ <κ
is a regular cardinal such that either κλ = K or else [λ φ cf (K) and (V θ < K)
•(θλ ^ K)]. Then Oκ+({δ < κ+\d(δ) = λ}) holds. (Even better, conclude that
Oκ

++ ({δ < κ+1 cϊ(δ) = λ}) holds.)

8. ϋ κ and the principles <>*+ (Section 2)

Prove the following generalisation of lemma 2.8: Assume D κ and that (V0 < K)
• (0cf (κ) ^ K) & 2K = K+. Then Oκ + ({5 < * + I cf ((5) = cf (*)}) holds. (Can the above
be strengthened to get O*+ ({δ < κ+ \ cϊ(δ) = d(κ)})Ί)




