Chapter IV
x*-Trees in L and the Fine Structure Theory

In this chapter we shall investigate natural generalisations of the Souslin and
Kurepa hypotheses to cardinals above w;. In the case of the Souslin hypothesis
this will require some combinatorial properties of L which we shall only be able
to prove by developing the theory of the constructible hierarchy more thoroughly
than hitherto. (This is the so-called “fine-structure theory”.)

1. k*-Trees

Let k be an infinite cardinal. The concept of a x-tree was defined in Chapter III.
By a k-Aronszajn tree we mean a k-tree with no x-branch. A k-Souslin tree is a
k-tree with no antichain of cardinality x. Just as in II1.1.2, every x-Souslin tree is
k-Aronszajn. And by arguments as in II1.1.3, if x is regular, then any (k, x)-tree
with unique limits which has no x-branch has a subtree which is k-Aronszajn; if
in addition the original tree has no antichain of cardinality «, it has a subtree
which is k-Souslin. The regularity of « is essential here. Indeed, for singular x, the
notion of a k-tree is somewhat pathalogical. For example, if k is singular there is
a (x, k)-tree with no x-branch and no antichain of cardinality x (namely the
disjoint union of the well-ordered sets (k,, ¢), v < cf(x), where («,|v < cf(x)) is
cofinal in k), but every k-tree has an antichain of cardinality x (an easy exercise).
We therefore restrict our attention to x-trees for regular x only. Since we shall be
assuming V = L for our main results, GCH will hold, and hence the only regular
limit cardinals are the (strongly) inaccessible cardinals. In this context we may
therefore expect the notion of a k-tree for x a regular limit cardinal to be bound
up with the notion of large cardinals. As we shall see in Chapter VII, this is in fact
the case. In this chapter we concentrate only upon the successor cardinals.

By ax*-Kurepa tree we mean a k " -tree with k * * many x *-branches. (Adopt-
ing a similar definition of a “x-Kurepa tree for inaccessible x does not lead to any
interesting notions, as we see in Exercise 3. More care is required in order to define
a reasonable notion of a xk-Kurepa tree in this case.) As in II1.2.1, the existence
of a k*-Kurepa tree can be shown to be equivalent to the existence of a certain
kind of family of subsets of ¥ *. Moreover, the proof that such a family exists in
L is a straightforward generalisation of the proof for the w, case, given in II1.2.2.
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However, when we try to construct a k*-Souslin tree in L we run into some
difficulties. It turns out to be slightly easier to try to generalise the proof using <
(I11.3.2 and I11.3.3) rather than the original construction (III.1.5). Now, the proof
of & generalises from w, to any uncountable regular cardinal in a straightforward
manner. Hence the generalised construction of the tree hinges upon a general-
isation of the proof of II1.3.3. This is not so easy. For suppose we try to construct
a x*-Souslin tree by recursion on the levels. Consideration of the proof of I11.3.3
tells us that on a stationary set of levels we must be very restrictive in the choice
of branches to extend, in order that all antichains be eventually “killed-off”. But
consider now some limit stage « “late” in the construction. We have defined the
tree T [ o and wish to define T,. Each point of T, must extend some a-branch of
T | o. But unless cf (x) = w, how can we be sure that T [ « has any a-branches? Our
attempts to kill off antichains at earlier limit stages may have resulted in T [«
having a sort of “Aronszajn property”. To overcome this problem we introduce
a combinatorial principle, [J, (“square x”), which enables us to split the construc-
tion of the limit levels of the tree into two cases. At some limit stages we kill off
antichains, using the generalised < principle. At the remaining limit stages we
ensure that enough branches are extended in order that the construction will
never break down. The penalty we must pay in order to be able to do this lies in
the proof of [J,.. This requires a detailed analysis of the levels of the constructible
hierachy (the “fine-structure theory”). This will occupy the later parts of this
chapter.

2. kT -Souslin Trees

We prove that if V = L, then for all infinite cardinals  there is a x *-Souslin tree.
Our first step is to formulate and prove a generalisation of the combinatorial
principle <.

Let k be any uncountable regular cardinal, E a stationary subset of k. By
< (E) we mean the following assertion:

There is a sequence (S,|a € E) such that S, < a for all « and whenever
X ck, the set {a€ E|X noa =8,} is stationary in k.

We denote &, () by .. Thus &, is the same as our original principle .
In order to prove that O, (E) is valid in L we require the following simple
lemma.

2.1 Lemma. Let k be an uncountable regular cardinal, A a limit ordinal greater than
k. Let X = L,, |X| < k. Then there is an N < L, such that X = N, |N| < k, and
Nnkek.

Proof. Let N, be the smallest N < L, such that X = N, and set

oy = sup(Ny N k).
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Since |Ny| = max (| X |, w) < k, and « is regular, we have o, < k. Proceeding re-
cursively now, let N,,, be the smallest N < L, such that N, ua, = N, and set

Uyt g = SUP(Ny11 NK).
If IN,| < k and o, < K, then
|Nn+1| = max(anl’ Ianl) <K,

$0 as k is regular, o, , < k.

Let
N = U N,.
Then
XcsN<L,,
and

Nok=(J NNnk= ) N.nK).

n<w

But for n > 0,

-1 EN, K S q,.
Hence

Nox= | a,.

n<ow

So, if we set
o = SUP, < ns

we have N Nk = a. But k isregular. Thus |[N| < k and o < k, so we are done. [

2.2 Theorem. Assume V = L. Let k be any uncountable regular cardinal, E a
stationary subset of k. Then O (E) is valid.

Proof. By recursion on « € E, define (S,, C,) to be the <;-least pair of subsets of
o such that C, is club in « and

yeC,nE—->S,ny+3S,,

provided lim (x) and such a pair exists, and define S, = C, = 0 in all other cases.
We show that (S,| o € E) satisfies O, (E).

Suppose that (S, |« € E)is not a O, (E)-sequence. Let (S, C) be the < -least pair
of subsets of x such that C is club in ¥ and

yeCNE—-Sny=*S,.
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Now, the sequence ((S,, C,)|« € E) is clearly definable from E in L, + . (The defini-
tion given above is absolute for L, . .) Hence (S, C) is also definable from Ein L, .
Using 2.1, we now define a sequence of submodels N, < L.+ (v < k), by the follow-
ing recursion:

N, = the smallest N < L,.+ such that |N| <k, Nnkek,and E€ N;

N, = the smallest N < L.+ such that |[N| < x, NNk ek, and
N,U{N,} € N;

N, = L<),1 N,, if lim (4). (Clearly, |N,| < k and N; n k € k here also.)

Set
o, =N,nK (v<k).

Then (2,|v < k) is a normal sequence in x, so the set
Z = {a,|a, = v}
is club in x. Hence
ENnZnC+0.
Leta,e ENnZ N C. Let
n: N, = L.
Then,
nlL,=id[L,, nk)=v, n(E)=Env,
T(Se, C) | €E) =((Se, C)lae Env), n((S,C))=(Snv,Cnv).

Since n7': Ly < L.+, (Snv,Cnv)is the < -least pair of subsets of v such that
Cnvisclubin v and

Yye(Cnv)N(ENV)>(Snv)ny*S,.

Hence (S nv, Cnv) =(S,, C,),and in particular S nv = §,. But v e C n E, so this
contradicts the choice of (S, C), and we are done. [

Using O, + (E) for a suitable set E, in the case where x is regular it is quite easy
to construct a k *-Souslin tree in L. We take

E = {aex™|cf(a) =x},

and construct the tree by recursion on the levels, following the pattern of I11.3.3.
At limit stages o € E we extend branches to “kill off” S,, if S, happens to be a
maximal antichain of T [ a. At all other limit stages & we extend all a-branches of
T I o, noting that as cf () < x in such cases, there are at most @ = x (by GCH)
such branches, so that T, will not be too big. We leave the details to the reader (see
Exercise 2).
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If x is singular, however, the above idea will not work. It is in order to handle
this case that we need to introduce the combinatorial principle O, (E). Using
O, (E), we shall give a construction of a x *-Souslin tree which works in all cases.

Let k be an infinite cardinal, E a subset of x *. By [J,(E) we mean the following
assertion:

There is a sequence (C,|a < k™ A lim () such that:

(i) C,is club in a;
(ii) cf(x) < x - otp(C,) <k;
(i) if & < o is a limit point of C,, then 4 ¢ E and C, = & n C,,.

Notice that by virtue of condition (iii), condition (ii) can be extended to give the
implication

(i)’ cf(x) =x - otp(C,) = k.

Notice also that if x is singular, we shall have cf(x) < x for all relevant o, so
otp(C,) < k for all a.

For any set E < w,, (0, (E) is a theorem of ZFC, since for each limit ordinal
o < w; we can take C, to be any w-sequence cofinal in o. But already O, (E) is
a significant proposition, not provable in ZFC alone.

We shall write O, in place of I, (9).

In 2.10 we shall prove that if [J,, then there is a stationary set E < x* such
that O, (E). And then in section 5 we shall prove the following theorem.

2.3 Theorem. Assume V = L. Let k be an infinite cardinal. Then O, is valid. O
We are now ready to construct a x *-Souslin tree in L.

2.4 Theorem. Assume V = L. Let x be an infinite cardinal. Then there is a k™ -
Souslin tree.

Proof. By 2.3 and 2.10, let E = k™ be stationary and let (C,|a < x* A lim ()
satisfy (1, (E). By 2.2, let (S,| « € E) satisfy <.+ (E). We shall construct a x *-Souslin
tree, T, by recursion on the levels, ensuring as we proceed that for each infinite
a < k*, T aisanormal (o, «*)-tree. The elements of T will be the ordinals in k¥,
and we shall ensure that

a<rfoa<p.
To commence, set
To = {0}.
If T | « + 1is defined, T, , is obtained by using new ordinals from x* to provide
each element of T, with two successors in T, ,. There remains the case where
lim (o) and T | « is defined. This is where we must proceed carefully.

For each x € T [ o we attempt to define an o-branch b} of T [« such that
x € b¥. Let (7,(v) | v < 4,) be the monotone enumeration of C,. Given x € T [ a, let
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v,(x) be the least v such that x € T [ y,(v). Define a sequence (p} (v) | v,(x) < v < 4,)
of elements of T | « as follows:

Di (v, (x)) = the least (as an ordinal) y € T, ,, ) such that x <ry;
Pi(v 4+ 1) = the least y e T,_(,+, such that p;(v) <ry;

pi(n) = the unique y € T, ) such that

(Vv <m2v,(x)>pz (V) <r)),
provided such a y exists (otherwise undefined), if lim (»).

Should the above construction prove impossible (because for some limit ordinal
n < ., D% (n) is not defined), the entire construction of T breaks down. But for the
time being, let us assume that this is not the case and see how b} is defined. Later
on we shall prove (by induction on «) that the construction never breaks down.
Set

by ={yeTla|@v <i)(y <rp:()}.

Clearly, b} is an a-branch of T [ « which contains x and each point pJ(v) for
Vo(X) < v < 4,. We now define T, as follows.

Suppose first that o ¢ E. In this case we use new ordinals from x* to provide
each branch b}, x € T [ «, with an extension in T,.

Now suppose that « € E, but that S, is not a maximal antichain of T | «. In this
case construct T, just as in the last case.

Finally, suppose that « € E and that S, is a maximal antichain of T [ o. Then
use new ordinals from x * to provide an extension in T, of each branch b7 such that
x e T |« lies above an element of S,. (Since S, is assumed to be a maximal
antichain here, T, will still contain a point above each member of T [ «, so normal-
ity will be preserved.)

The definition is complete. We show that T is a k" -Souslin tree. It is clearly
a xc*-tree. So, given a maximal antichain, 4, of T, we must show that | 4| < k. Set

C={aex’|Tlaca A Anaisamaximal antichain of T [ «}.

It is easily seen that Cisclubin k*. So by O, (E) there is a limit ordinala e CN E
such that A n o = S,. Thus, in particular, S, is a maximal antichain of T [ o. But
o € E, so by construction every element of T, lies above a member of A N «. Thus
A n o is a maximal antichain of T. Hence A = 4 na, and we are done.

It remains to check that the construction of T never broke down. Suppose, on
the contrary, that it did. Let a be the least limit ordinal for which we cannot define
all the a-branches b}, x € T | o. Pick x € T [ « so that b} cannot be defined. Thus
for some limit ordinal #, v,(x) < 1 < 4,, there is no point in T,_,, which extends
all the points p} (v) for v,(x) < v < #. Since lim (1), y,(1) is a limit point of C,. Hence
by the [OJ,(E) properties, y,(n) ¢ E and

Cya(n) = ya(") N Ca = {'Va(v) ' v < '1} .
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By this last equality, b} _, contains all the points p;(v) for v,(x) < v < . But since
7(n) ¢ E, b}, , has an extension in T, . But this extension is precisely what we
assumed did not exist: an extension of each point pj(v), v,(x) < v < #. This contra-
diction shows that the construction of T does not, in fact, break down, and thereby
completes the proof. [

Notice that what we have in fact just proved is the following result.

2.5 Theorem. Let x be an infinite cardinal. If there is a stationary set E < k* such
that both U, (E) and .+ (E) hold, then there is a k" -Souslin tree. [

Using 2.5, we shall show that x*-Souslin trees exist under much weaker
assumptions than ¥ = L. We need some preliminary combinatorial results.
By an argument as in 111.3.4 we have:

2.6 Lemma. Let k be any infinite cardinal, and let E < k™ be stationary. Then
O+ (E) is equivalent to the principle .+ (E), which asserts the existence of a
sequence (S,| o € E) such that S, < 2 (%), |S,| < k, and whenever X < %, the set
{ae E|\X naeS,} is stationary inx*. O

Using 2.6, we now prove (see also Exercise 7):

2.7 Lemma. Assume GCH. Let x be an infinite cardinal such that cf(x) > w. Let
W < k™" be the stationary set

W= {aer?|cf(a) = w}.

Then O+ (W) is valid.

Proof. By GCH there are exactly x* many subsets of x* of cardinality at most x.
Let (X,|v < k™) enumerate them in such a way that X, = vfor each v < k™. For
each a < k¥, set
I,={X,|v<a}.
For each a € W, let
S.={Uran()lfi oL}
Since |I,| < k and cf(x) > o,
1S:| S |I1° < k° =K.
And of course
S.c 2 ().
We show that (S,|a € W) is a O+ (W)-sequence (see 2.6).

Let X = x* be given. Let C = k™ be club. We must find an « € C n W such
that X na e S,. To this end, define a strictly increasing sequence (a,|n < w) of
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elements of C as follows, by recursion. Let o, be the smallest infinite ordinal in C.
If o, € C is defined, let a,,; be the least element of C such that a,,, > «, and
Xna,el, Let

O = SUP, < Up-

Since C is closed in k *, o € C. Moreover, cf (x) = w, so « € W. Define f: w — I, by
fm)=Xna, ©n<ow).

Clearly,
Xnoa=Jran(f)€eS,,

so we are done. O

In the above proof, we used the assumption cf (k) > w in order to ensure that
the sets S, had cardinality at most x. But what about the status of .. (W) when
cf(x) = w? Well, if we assume [J, in addition to GCH, we can modify the proof
of 2.7 to cover this case also, as we show next. (See also Exercise 8.)

2.8 Lemma. Assume GCH. Let i be an uncountable cardinal such that cf (k) = w,
and let W < k™ be the stationary set

W= {axex"|cf(a) = w}.
If O, holds, then &+ (W) is valid.

Proof. Define I, o < x* as in 2.7. Let (C,;| A < k* A lim(4)) be a [J,-sequence,
and for each A let (cZ|v < 8,) be the canonical enumeration of C,. (Thus
0, = otp(C,).)

Let 4,,v < k, be disjoint subsets of k of cardinality x such thatk = ( ) A4,.For
each 6 < k' and each v < «, let vex

12 I}Ll—+ A,
Then for each limit A < k* we can define
1

fl: Fll—_')K

by setting f,(x) = ffé (x) where v < 6, is least such that x € [ ;2. The important
point to notice here is the following:

(*) If « < A is a limit point of C,, then f, [ T, =f,.

(This is immediate from the fact that C, = « n C; in this case.)
For o € W now, set

S. = {{U/f. '[x]]x is a countable, bounded subset of x}.

Then S, = #Z («), and, since the number of countable, bounded subsets of x is k,
|S,| < k. We show that (S,|o € W) is a O+ (W)-sequence (as in 2.6).
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Let X < k" be given. Let C = k™ be club. We seek an o€ C n W such that
X naes,. Define

A={dext|Vv< )X nvel))}.

Clearly, Aisclubin k*. Let A be a limit point of A N C such that cf(1) = w, . Since
C, is club in 1 we can pick a strictly increasing, continuous sequence (b,|v < w,)
of elements of 4 n C n C,, cofinal in A. Notice that

Xﬁbvefbvﬂ

for all v < w;.

Let (k,|n < w) be a strictly increasing sequence of cardinals, cofinal in x.
Define h: w; » w by:

h(v) = the least n such that f,(X nb,) < k,,.

By Fodor’s Theorem there is a stationary set E < w, such that for some fixed
n<a, h(vi=n for all ve E. Let (y(i)|i < w) enumerate (in order) the first w
elements of E, and set y = sup;,, 7 (i). Leta = b,. Notice that cf (y) = w,so a € W.
Moreover, by choice of the elements b,, o is a limit point of Cn C,, and in
particular o € C.

Now,

o = by = Supi<wby(i)9
SO
Xnoa= ) (Xnb,y).

i<w

Thus
Xono=fix],
where x < « is defined by
x={f,(X nb,p)|i < w}.
But by choice of E,
XSk, <K,
50 x is a countable, bounded subset of x. Moreover, by (x),

Ll =f,.
Hence

Xnaes,,

and we are done. [
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2.9 Lemma. Let x be any infinite cardinal, and let E < k™ be stationary. Suppose
that Oy + (E) is valid. Let

E=JE,

v<kK

be a disjoint partition of E. Then for some v < k, E, is stationary and .+ (E)) is
valid.

Proof. Much as in I11.3.4, by &+ (E) we can find a sequence (T, « € E) such that
T, < a x x and for each X < k% x x, the set

{ae E| X n(xxx)= T}
is stationary in x*. For each v < «, define (S} |« € E,) by
Sy =T, {v}.

We show that for some v < «, (S; |« € E,) is a O, .+ (E,)-sequence. (This will auto-
matically entail that E, is stationary, of course.) Suppose that, on the contrary, no
sequence (S | € E,) is a O, + (E,)-sequence. Then for each v < x we can find a set
X, < k* and a club set C, = k™ such that

oeC,nE, > X, na+8S).

Set
X = U (X0,
c=[¢,.

Then C is club in k¥, and, since X” {v} = X, for each v < «,
ceCNE->Xn(axk)+ T,

which is a contradiction. The lemma is proved. [

2.10 Lemma. Let k be any uncountable cardinal for which O, is valid. Let
W < k*be the stationary set

W= {aek?|cf(x) = w}.

Then there is a stationary set E = W such that:

() O (E) is valid;
(i) if O (W), then Oy (E).

(Thus, by 2.7 and 2.8, if GCH holds, then <, + (E) follows from (ii).)
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Proof. Let (A,;| 2 < x* A lim(4)) be a O,-sequence. For each 4, let B, be the set
of limit points of A, below A. The sequence (B,| 1 < k™ A lim (1)) has the following
properties:

(1) B, is a closed subset of 4;

(i) if cf(1) > w, then B, is unbounded in 4;
(iii) ye B,—» B, =y N B;
@iv) f(}) <k —|B;| <k.

By (iii) and (iv), otp (B;) < « for all 4, so we can define a partition
w= W,

by setting
W, ={AeW]otp(B,) = v}.

Now, W is stationary, so for at least one v < k, W, must be stationary. Indeed, by
2.9 we can pick a v < k such that W, is stationary and

Ot (W) = O+ (W)

Let E = W, for such a v. We prove that [J,(E) holds. For each limit ordinal
A < k™, define D, as follows. If otp (B,) < v, let D, = B,.Otherwise, let D, consist
of all members of B, beyond the (1 + v)-th element, i.e.

Dl = Bl - {O(EB”OIp(Ba) < V}.

It is easily checked that the sequence (D;| A < k* A lim (4)) has properties (i)—(iv)
above. And clearly, D, N E = ) for all A. Define C, for limit A < xk* by recursion
on 4 as follows:

{U{CylyeDl}’ if Sup(D/l)=/1,

U{C,lyeD;} u{0}|n <w}, otherwise, where (6 |n < w)

is any strictly increasing w-sequence cofinal in A such that

05 = | D;. (By (ii) for D,, we have cf(4) = w in case sup(D;) < 4.

1=

We shall prove that (C;|A < k™ A lim(4)) is a OJ-sequence and that D, is the set
of all limit points of C, below A for each A (which implies at once that
(C;]A < k™ A lim(4)) is in fact a OJ, (E)-sequence, since D, N E = § for all A).

A trivial induction on A shows that C, is unbounded in 4 for each 1. Now, by
induction on A, we prove:

(@) ifyeD,, then C, =ynC;.

Assume (a) holds below 4. Let y € D;. Then by definition of C;, C, = C,. So
C, = yn C;. To prove the reverse inclusion, let € y n C;. We show that € C,.
By the definition of C;, for some de D, we have {eyn Cs.If 6 =y then £ e C,
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isimmediate. Suppose that 6 < y.Since y € D;, wehave D, =ynD;.Thusé e D,.
So by definition of C,, C; = C,. Thus £ € C,. Finally, suppose that 6 > y. Then
yednD,;.ButdeD,;,so Dy =056nD,. Thus y € Ds. So by induction hypothesis
at 6, C,=yn C;. Thus ¢ € C,, and we are done.

The next step is to prove:

(b) D, is the set of all limit points of C, below A.

Again we proceed by induction on A. Assume that (b) holds below A. Let £ € D;.
Then by definition of C;, C: = C;. But C, is unbounded in ¢. Thus £ is a limit
point of C,. Conversely, let £ < 4 be a limit point of C,;. We consider first the case
where sup (D;) < A. Then

C,=U{C,lyeD} u{biin <w},

and so ¢ must be a limit point of | J{C,|ye D,}. Now, D, is closed in 4, so
6=\)D;eD,. Thus D; =6 D, and

U{CVIYED/I} =(U{Cy|V€D5})UCJ= Cs0 Cs=Cs.

Thus ¢ is a limit point of Cs. Then by induction hypothesis at 8, £ € D;. But
Ds=06nD,;. Thus £eD,, as required. We turn to the other case, where
sup(D;) = A. Let ye D,, y > & Thus € is a limit point of y n C,. But by (a),
ynC;=C,. Thus by induction hypothesis at y, £eD,. But yeD,, so
D,=vnD,. Thus ¢ € D;, and again we are done.

By virtue of (a) and (b) we shall be done if we prove that each C; is closed in
A and that if cf(4) < k then otp(C,) < k. Well, we prove that C, is closed in A by
induction on A. Assume it is true below A. Let y < A be a limit point of C,. We
prove that y e C,. By (b), y e D;. If y = | D, then y = 6§ € C; and we are done.
Otherwise, there is an « € D, such that « > y. By (a), C, = « n C,. Thus y is a limit
point of C,. So by induction hypothesis,y € C,. Thusye nC, = C,, and again
we are done. Finally now, if otp (C;) > «, then C, must have at least x limit points,
so by (b), | D,| = x. Butif cf (1) < k, this is not the case. The proofis complete. [J

Notice that in proving the above result, we have demonstrated that [, is
equivalent to the existence of a sequence (B;|A < x* A lim(A)) which satisfies
(i)—(iv) as stated in that proof. A stronger result of this nature will be proved in
section 5.

We are now ready to say a little more concerning the existence of x *-Souslin
trees.

2.11 Theorem. Assume GCH. Let x be an uncountable cardinal for which OJ . holds.
Then there exists a k™ -Souslin tree.

Proof. If cf(x) > w, then by 2.7, O+ (W) is valid, where
W= {aex"|cf(a) = w}.

If cf (k) = w, then by 2.8, O,.+ (W) is valid. Thus in all cases, .+ (W) holds. Hence
by 2.10 there is a stationary set E < k™ such that both .+ (E) and O, (E) are
valid. So by 2.5 there is a x "-Souslin tree. [
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3. k"-Kurepa Trees

A k" -Kurepa tree, it may be recalled, is a x *-tree with k* ¥ many « *-branches.
A k*-Kurepa family is a family # < 2 (k") such that |#| = x** and for all
o<kt |F la| <k, where

Floa={xna|xeF}.

Exactly as in II1.2.1, we can show that the existence of a k*-Kurepa tree is
equivalent to the existence of a x*-Kurepa family. By generalising the proof of
I11.2.2 we shall show that if V = L, there is a x *-Kurepa family for every infinite
cardinal k. We require two lemmas, generalisations of 11.5.10 and I1.5.11, respec-
tively.

3.1 Lemma. Assume V = L. Let k be an infinite cardinal. If
kS X< Lx* .

then X = L, for some a < k™, a > K.

Proof. It suffices to prove that X is transitive, since the lemma then follows at once
from the condensation lemma. But

Fr. Vx(Ix] < x),

so this is proved just as in I1.5.10. O

3.2 Lemma. Assume V = L. Let k be an infinite cardinal. If
ke X< Lx" 4,

then X "L+ = L, for some a < k%, 0 > k.
Proof. This follows from 3.1 in the same way that I1.5.11 follows from I1.5.10. O
We can now prove:

3.3 Theorem. Assume V = L. Let k be any infinite cardinal. Then there is a
k" -Kurepa tree.

Proof. It suffices to construct a k *-Kurepa family. We proceed much as in I11.2.2.
By 3.1 we can define a function f: k* — x* by letting f(«) be the least ordinal
such that
ku{a} = Lygy<Ly+.

Set
F={xckt|Va<k®)(xnaeL;y}.

Foreach a < k%, |% | «| < k, 5o in order to show that & is a x*-Kurepa family
we need only prove that |#| =x**.
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Suppose, on the contrary, that |#| < x*, and let
X =(x,]a<k™)

be the <, -least x *-enumeration of . Since the function f is clearly definable in
L,++,so0tooare & and X.

By recursion, we define a sequence (N,|v < k%) of elementary submodels of
L.+ as follows:

N, = the smallest N < L, ++ such that x = N;
N, .+, = the smallest N < L, + such that N,u {N,} = N;
Ns=J N,, if lim(d).
v<d

By 3.2,
a,=N,nxtex®,

for each v < k*. Clearly, (a,|v < xk*) is a normal sequence in x *.
Set

x={o,|v<rt Ao é&x}.

Since x #+ x, for each v < k¥, x ¢ &, and we obtain our contradiction by proving
that xnae L, forall o <x™.

Let o« < k™ be given. Let # be the largest limit ordinal such that o, < o. (If no
such 7 exists, then x N « is finite and we are done.) Since x N « differs from x N a,
by at most finitely many points, in order to show that x na € L, it suffices to
show that x N, € L;(,. In fact we show that x N a, € L;,,), which is if anything
a stronger result. Since we shall have no further recourse to the original a, let us
write « for «, from now on.

Now,

xno={o|v<nnAaéx,},

so if (a,|v < #) and (x, N «|v < n) are elements of L, we shall be done. (Recall
that L, is a model of ZF ~, though nothing like the full power of ZF ~ is required
in order to define x N o from the above two sequences, of course.)

Let

n: N, = Lg.
Clearly,

nlL,=idL,, nkT)=a, nX)=xnalv<a).
Now,

%€ Ly < Lg+,
so

'=Lf(a) [Ial < K]'
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But
o= (k")
Hence

B<f®).
So, as 7(X) = (x, na|v < «), we have
(xynalv<a)eL;y.
In particular,
(x,na|v<mn)€Ly.
It remains to show that («,|v < #n) € L. To this end, for v < 7, let
m,: N, = Lgyy.
For each v,

m(k") =y,
SO

o, = [the largest cardinal]Fs® .
So, as L, is a model of ZF 7, it is sufficient to prove that

(BM[v<mneLyy-.

We define, by recursion on v, a sequence of elementary submodels N, < L;, for
v <1 <, as follows (see below concerning #’):
N¢ = the smallest N < L, such that x = N;
N+, = the smallest N < Lj such that Nyu {N;} = N;
Ns;= U N,, if lim(9).
v<d
The ordinal n’ is the largest " < 5 for which the above recursion is possible. (We

shall prove that ' = n.)
Clearly,

(Ny|v<n)eLyy-.
Hence

BWIv<n)eLsw,
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where we define

m,: Ny = Ly,
for each v < 7".

But
V<11—>NV<N"<LK++,

so in the definition of N, for v < n we can replace L.+« by N,. That is:

N, = the smallest N < N, such that x = N;
N, = the smallest N < N, such that N, U {N,} = N;
N;= J N,, iflim(9).
v<o

But
n: N, = Lg,

so an easy induction on v now yields the result
v<n-(m[N,): N,~N,.

Hence ' = and B(v) = f'(v) for all v < 5. In particular, we have (B(v)|v < #)
€ L), so we are done. [J

By modifying the above proof along the lines of II1.3.5 we may prove that
V = L implies & for all infinite cardinals x, where <. is obtained from &* by
replacing w; by k* throughout (so & is ©,). And an argument as in I11.3.6
shows that ¢ implies the existence of a xk*-Kurepa family. (See Exercise 4.)
The notion of a xk-Kurepa tree and the principle . in the case of x an

innaccessible cardinal will be dealt with in Chapter VIL

4. The Fine Structure Theory

The deeper results concerning the constructible universe, including the proof that
O, is valid in L, require a detailed study of the individual levels of the constructi-
ble hierarchy. (Actually, there is an alternative approach as far as [, is concerned:
the so-called “Silver machine” method. This is described in Chapter 1X.)

The detailed study of the individual levels of the constructible hierarchy
needed to prove (], and related results was begun by Jensen in the late 1960’s, and
is known as the “fine structure theory”. Initially this really was a study of the
properties of the individual sets L, as defined in Chapter II. However, it soon



4. The Fine Structure Theory 153

became clear that the sets L, do not lend themselves easily to such a study. If one
tries to carry out simple set theoretic arguments within an arbitrary L,, then
unless a is a limit ordinal one meets a host of minor, but troublesome difficulties.
For instance, unless « is a limit ordinal, L, is not closed under the formation of
ordered pairs. Since the ordered pair function is one which is used all the time in
even the most elementary set-theoretical arguments, this is an annoying problem.
Certainly, it is possible to overcome this, and similar difficulties, but in so doing
a great deal of cumbersome apparatus needs to be introduced, and much of the
naturalness of set theory is lost. The difficulty is the more annoying because it
arises for an essentially irrelevant reason. The very simple functions which we
would like our levels to be closed under (ordered pairs, etc.) are all highly “con-
structible”, and we only fail to achieve closure because they increase rank. And
there lies the root of the problem. The trouble is, when we defined the constructi-
ble hierarchy, we mimicked the definition of the cumulative hierarchy, insisting
that at each stage only subsets of the stage could appear at the next stage. But for
constructibility the crucial point lies in our other requirement, that at each stage
we allow only those new sets which are constructible from the sets already avail-
able. And there are many set-theoretic operations which are, under any definition,
“constructible”, but which increase rank by more than one level, and hence violate
the “subsets only” requirement. The way out of this dilemma is easy. We modify
the definition of the constructible hierarchy so that each level of the hierarchy is
an amenable set. This was first done by Jensen, and we thus refer to the modified
hierarchy as the Jensen hierarchy. It is this hierarchy whose “fine structure” is
usually investigated. The o-th level of the Jensen hierarchy is denoted by J,.
Roughly speaking, J, possesses all of the properties of the limit levels of the usual
L -hierarchy of constructible sets. And we can think of J, as being a “constructibly
inessential” extension of the structure L,. (By virtue of the closure properties we
obtain for the sets J,, this picture is not totally accurate, but by and large is the
way in which the beginner should view matters: when you read “J,”, think “L,,
lim («)!)

In this section we outline the fine structure theory, developed to the stage
where we can prove [J, (assuming V = L). However, by its very nature, the fine
structure theory is very intricate, and some of the proofs tend to be long (though
except for the early development they are rarely boring). Consequently, we omit
practically all proofs in our outline. For applications of the fine structure theory
of the type we shall consider, however, it is not at all necessary to know anything
about these proofs, a knowledge of a few, readily appreciated key results being
sufficient. So we do not lose a great deal by our approach. Then, in section 5, we
use the fine structure theory outlined in order to give a rigorous proof of OJ, in
L. The interested reader may then investigate the fine structure theory itself in
Chapter VI, where we develop the entire theory rigorously.

Now to our outline of the fine structure theory. Our first step is to define a new
“constructible hierarchy”. Since we are interested in functional closure of the
levels of the hierarchy, rather than pure definability, our approach will be func-
tional. We shall define the hierarchy by iteratively closing up under various set
theoretical functions. All of these functions will be “constructible” in some sense.
Moreover, they will be sufficient to ensure that at the very least we obtain all of
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the usual constructible sets at each stage, i.e. L, < J,. The collection we use is
described below.

A function f: V" — V is said to be rudimentary (rud for short) iff it is generated
by the following schemas:

(i)f(xla"'axn)=xi (ISISH),
(11) f(xl’ LR xn) = {xb xj} (1 < la] < n)a
(i) f(xg,...,x) =x;—x; (1 <i,j<n);

(1V) f(xla LR} xn) = h(gl(xla ooy xn)’ --"gk(xla ceey xn))’ Where h’ gi> -5 9k
are rudimentary;

W) f, X1y .oy X—1) = J 9(z, X4, ..., X,—1), where g is rudimentary.

zey

It is clear that rudimentary functions are “constructible”, so that any hierarchy we
define using them can reasonably be called a “constructible hierarchy”. Indeed, it
can be shown that all rudimentary functions are £4F. The converse to this is false,
but if we define a relation 4 = V™" to be rudimentary iff its characteristic function
is rudimentary, then for relations the notions of being rudimentary and of being
22F do coincide. Another point which should perhaps be mentioned here is that
although rudimentary functions increase rank they do so by a finite amount only.

If X is a set, the rudimentary closure of X is the smallest set Y =2 X such that
Y is closed under all rudimentary functions. If X is transitive, so is its rudimentary
closure. For transitive sets X we set

rud (X) = the rudimentary closure of the transitive set X U {X}.

That the rudimentary functions will constitute an ideal class for defining a
constructible hierarchy which is only an “inessential” extension of the usual one
follows from the fact that for any transitive set X,

rud (X) n 2 (X) = Def (X).
(In fact,
Zo(rud (X)) n 2 (X) = Def (X).)

The Jensen hierarchy is defined as follows:
Jo =0;

Ja+1=rud(']a);
Ji=UJ,, if im(4).

a<i

Thus each J, is transitive, the hierarchy is cumulative, and for each «, the rank of
J, is wa, and

J,NnOn = wa.



4. The Fine Structure Theory 155

(This last fact has the effect that in arguments involving the Jensen hierarchy,
ordinals of the type wa appear all the time.) For « > 1, J, is amenable; the
canonical LST formula which says

x =J,
is %F; and (J,|v < a) is uniformly XJ= for o« > 1. For each o,
Ja+1 N '@(‘Ia) = Def(']az)'

The relationship between the Jensen hierarchy and the usual constructible hierar-
chy is:

(@) (Vo) (Lo s J, = Lo
@) L,=J, iff oa=oa.

(It is possible to say a little more, but the exact relationship between L, and J, is
rather complicated, and in any case is of no use to us.) In particular,

L= \J J..

aeOn

There is a well-ordering < of L which is definable by means of a Z%F formula
of LST which is absolute for L and for any set J,, « > 1, and which is such that
<y (J,xJ,) is uniformly Z{= for all & > 1.

There is a £, (J,) map of wa onto J, for each a > 1.

The concept of a X, skolem function has been met in I1.6, and in I1.6.5 we
proved that each limit L, has a (uniformly X,) X, skolem function. Essentially the
same proof shows that each J,, o > 1, has a (uniformly X,) X, skolem function. A
rather more complicated proof shows that for a > 1, J, has a £, skolem function
for any n > 1. But there is no uniform X, skolem function for J, except for the case
n = 1. (The proof developed in Exercise I1.5 can be used to show that the Jensen
hierarchy has no uniform X, skolem function.) This is a serious drawback. Even
the rather simple result proved in I1.6.8 shows how useful uniformity properties
are in skolem function applications. And in order to prove results such as [J,., we
need to be able to carry out Z, condensation arguments of a type generalising
I1.6.8 for any n > 1. In order to facilitate this, we proceed as follows.

Recall that a structure of the form (M, A) (ie. {M,e, A)), where A = M, is
said to be amenable iff M is an amenable set and

ueM->AnueM.

It is easily seen that most of the results about limit levels of the constructible
hierarchy given in Chapter II are in fact valid (by almost the same proof in each
case) for amenable structures of the form {L,, A). Moreover, each of these results
has a valid analogue for amenable structures < J,, A). (In this connection, remem-
ber that J, is an amenable set for all « > 1.) In particular, there is a uniformly X,
¥ ,-skolem function for the amenable structures {J,, A)>. The main idea behind



156 IV. k*-Trees in L and the Fine Structure Theory

the fine structure theory is to capitalise on this fact, by reducing X, predicates over
a J, to X, predicates over some amenable structure {J,, A, and then working
with {J,, A) instead of J,.

Let h,, 4 denote the canonical, uniform X, skolem function for any amenable
structure {J,, A), and let H, , be the uniform X{’= 4> preidcate on J, such that

y= ha, A(i, X)H(_:JZGJ,,,)Ha,A(Z, Vs i7 x)'

(The function h, , is defined in precisely the same manner as the canonical %,
skolem function h, for limit L, in IL.6. Thus,

ha, A (l, X) =~ (ra, A (l’ x))O H
where

I., 4 (i, x) ~ the <;-least w € J, such that
E(r., 4y (W is an ordered pair”) A ¢;((W)o, X, (W)1),

where (¢; (vo, v,, V) |i < @) enumerates (in a uniformly AJ* fashion) all X, for-
mulas of & (4) having free variables amongst v, v;, v,.)

We now describe the means by which Z, predicates on a J, can be coded as
X, predicates on an amenable {J,, 4).

Let o > 1, n > 0. The X,-projectum of a, denoted by g}, is the smallest ¢ < o
such that there is a Z,(J,) map f for which f”J, = J,. It can be shown that ¢}, is
the largest ¢ < a such that {J,, 4> is amenable for any Z,(J,) subset 4 of J,.
Moreover, g equals the smallest ¢ such that X,(J,) N 2 (wo) & J,.

It is easily seen that

m<n—or< ol

For later convenience, we set
0F =d.

For each « > 1, n > 0, we can associate with « a standard code, A%, and a
standard parameter , p};, with the following properties:
L Ay s Jpm, AzeZ,(J);
2. <Jeg’ A is amenable;
3. A2 =p) = 0;
4. For allm > 0,

zm(<J9:’ A:>) = ‘@(Ja:)mzn+m(']a);

n+1

. pilis the <,-least p e Jgn such that

O

Jor = W, 4n(@ X (Jyg 1 x {p})).
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By definition of the X -projectum, g}, there is a X,(J,) mapf such that
f"Jgn = J,. Suppose now that P is a Z,(J,) predicate on J,. Set

Q = {x e Jy| f(x) € P}.

Then Q is a X, (J,) subset of J,». By Fact 4 in the above list, Q is Z, ({Jyz, 43)). In
this way, instead of working with X, predicates on J,, we may work with “equiva-
lent” (in the sense that Q and P are “equivalent” in the above discussion) X,
predicates on {J,n, 43>, thereby being able to utilise the uniform X, skolem
function possessed by the structures {Jpn, A3). (Actually, from the above account
it would appear that the coding of a X, predicate on J, by a £, predicate on
{Jgn, Az is via an arbitrary X,(J,) function f. In practice we use, in effect, a
canonical such function constructed from the standard parameters and the canon-
ical £, skolem functions. See the definition of the standard parameter p?** above.)
What is now needed in order to make this procedure work is a suitable condensa-
tion lemma. For suppose that
(X, AN X)) <L {Ipm, A3 .

e
By the standard condensation lemma, there are unique g, 4 such that
(X, Ain X))y = (Jg, A).

But if we are to be able to work with the structures {J,., 4;) instead of the original
J,, we shall require that the g, 4 obtained in this manner are of the form ¢ = ¢Z,
A = AZ%for some unique &. In other words, what we need is a condensation lemma
for the hierarchy of structures

(Jo A2 (€ On).

This is provided by the following property of the standard codes:
6. Leta > 1,m >0, n > 1. Let {J;, A) be amenable, and let

Uz <Jg'a Z> <m <Jq:9 A:>'

Then there is a unique & > ¢ such that ¢ = g%, A = A% Moreover, there is a
unique # 27 such that

7 ‘IE <m~§-nJaa
and such that foralli=1,...,n:
(2) #(pY) = pas
(b) (ﬁ r‘]efa) <Jgf;a A§i> <m+n—i<JQ;a A{'z>

The assertions concerning the extension # here should not be too surprising,
since A" codes all the £, information about J,. The heart of assertion 6 is the fact
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that the standard codes are preserved under condensation arguments, indeed even
under “T, condensation arguments”. This is essentially the case because of the
canonical manner in which the standard codes are defined. We fix some simple
(hence uniformly A,) enumeration (¢;]i < ) of the X, formulas of £ (4) with free
variables v, and v,, and define, by recursion on n:

A:H ={i,x)]iew A XEJ: A '=<Je,.,,4;> coi(i,ﬁZ“)}.

5. The Combinatorial Principle [,

Using the fine structure theory outlined above, we shall prove that if V = L, then
O, is valid for all infinite cardinals k. We begin by recalling the statement of [J,.

O,: There is a sequence (C,|o < k™ A lim(«)) such that:

(i) C,is a club subset of a;
(i) cf(x) < k = |C,| < x;
(iii) if & is a limit point of C,, then C; = an C,.

Let OJ; assert the existence of a sequence (B,|« < k* A lim () such that:

(i) B, is a closed subset of a such that (Vy € B,) lim(y);
(ii) cf(«) > w — B, is unbounded in «;
(iii) otp (B,) < k;
(iv) ke B, —» B; =anB,.

5.1 Lemma. Let x be any uncountable cardinal. Then O3, and O are equivalent.

Proof. Before we commence, notice that a weaker version of this result was proved
during the course of 2.10. The present proof is a refinement of the argument used
there.

First of all, suppose (C,|« < k* A lim(«)) is as in [J,.. For each a, let B, be the
set of limit points of C, below a. It is clear that the sequence (B,|o < k* A lim (a))
satisfies (.

Conversely, let (B,| o < k* A lim («)) be as in (1. By recursion on o we define
sets C, as follows. If { ) B, = o, set

C.=U{C)lveB,}.

Otherwise, if B, is not cofinal in a, then by (ii) of (I}, cf () = w, so we may fix some
strictly increasing w-sequence (05 |n < w), cofinal in o, with 65 = ( ) B,, and set

C.=(U{ClyeBh)u{filn < w}.
The following are proved exactly as in 2.10:
(a) If ye B,, then C, =y n C,.
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(b) B, is the set of all limit points of C, below o.

(c) C,is a club subset of a.

Moreover, we have

(d) otp(C,) < k.

For suppose, on the contrary, that otp (C,) > k. Then, since x is an uncountable
cardinal, it follows from (b) that otp (B,) > «. This is not the case, by choice of B,.
Now, if k is regular, then since C, is cofinal in «, (d) implies that

cf(0) <k —-|C,l <k,

and hence (C,|« < k* A lim () satisfies [],.. On the other hand, if « is singular,
we must modify the sets C, in order to obtain a [J -sequence, as follows. Let
i = cf(x), and let (6,| v < K) be a strictly increasing, continuous sequence of limit
ordinals, cofinal in x, with 8, = 0. Set 6, = «. Define sets C, as follows. If there is
a v < k such that

ev < Otp(ca) < 0v+17
set

C,=1{reC,otp(ynC,) = 0,}.

If no such v exists, then we must have otp (C,) = 6, for some limit ordinal v < k,
in which case we set

C.={reCGlAt<v(otp(ynCy = 06,)}.

It is routine to verify that (C,|a < x* A lim (%)) is a (J.-sequence. That completes
the proof. O

Assume V = L from now on. We shall prove that (1, holds for all infinite
cardinals x. Since [, is trivially valid (in ZFC), we may ignore the case kx = w. By
5.1, given some uncountable cardinal x, it suffices to prove [J. The basic idea is
to construct sets B, to satisfy (i)—(iii) of (I} by means of a construction which is
sufficiently uniform to enable (iv) to be proved by a condensation argument. In
order to do this we must set up some machinery.

Let o be a limit ordinal, and let wf > «. We say that o is singular over Jj iff
there is a J;-definable map of a bounded subset of a cofinally into o; otherwise we
say that « is regular over J;. Let n > 1. We say that a is Z,-singular over J, iff there
is a X, (Js) map of a bounded subset of « cofinally into «; otherwise we say that
a is Z,-regular over Jy.

Clearly, o is regular over Jj iff it is X,-regular over J; for all n. If « is singular
over J;, then a is singular over J, for all y > B. And if « is Z,-singular over J;, then
a is Z,,-singular over J, for all m > n. Moreover, by V = L, if « is singular, then
there are f8, n such that a is Z,-singular over J;.
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Let

S={aext|(@>x)A(@a=a) A (Vy <a)(]y]* <k)}.

It is easily seen that S is a club subset of x*. We shall construct a sequence
(C,|a € S) such that:

(i) C,is a closed subset of S N a;

(ii) cf(x) > w — C, is unbounded in «;
(iii) otp(C,) < k;
(iv) aeC,»Cz=anC,.

If we then identify S with {0 e x*|lim(x)} in the obvious manner, we obtain a
O,-sequence, as required.

Let o € S. Then « is a limit ordinal between k and k. So in particular, « is a
singular limit ordinal. Let f(x) be the least ordinal § such that « is singular over
Jp. Let n(«) be the least integer n > 1 such that « is X,-singular over J;,. The
definition of C, splits into two cases, depending upon the nature of f§(x) and n (x).

Define

Q = {xeS|B(«) is a successor ordinal and n(x) = 1};
R=S-0.

5.2 Lemma. o e Q - cf (1) = w.

Proof. Let B = B(x) = y + 1. Notice that as o € S, we have lim («), so we must have
y = o here. Let f be a £(J;) map of a subset, u, of an ordinal 6 < « cofinally into
a. Let P be a Zy(Jg) predicate such that

fO)=1e@zelpP(z1,v).

Now, J; = rud (J,), so every element of J; can be obtained by the successive
application of finitely many rud functions to finitely many elements of the set
J,u {J,}. But amongst the rud functions are the identity function, the pairing
function, and the inverses to the pairing function. Moreover, the rud functions are
closed under composition. Thus, given any x € J; we can in fact find a single rud
function g and a single element y of J, such that x = g(y, J,). Hence, if (g;|i < w)
is an enumeration of all the binary rud functions, we have:

(%) Jg =1{gi(x,J))|xeJ, Aicw}.

For each i < w, define a partial function f; on u by:
fiv) =t1e@@xed)P(gi(x, J,), T,v).

By (),
f=Ul

i<w

SO

sup;<, |J(fi"0) = .
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Thus the lemma will be proved if we can show that ( J(f;" 6) < « for each i < w.
Since o is regular over J,,, it suffices to prove that for each i < w, f; is J,-definable.
Now, the predicate (of x, t, v)

P(gi(xa Jy)> T, V)

is £ (Jg) on J,. But one of the properties of the rudimentary functions that we
mentioned in section 4 was that for any transitive set X,

2o (rud (X)) n 2 (X) = Def (X),
so in particular we have
Zo(Jp) N2 (J,) = Def(J,).

Thus the predicate (of x, 7, v) P (g:(x, J,), 7, v) is J,-definable. It follows at once that
fi is J,-definable, and we are done. [J

By virtue of 5.2, we may define
C,=0

for the case « € Q, and there is nothing further to check.
We consider now the case a € R.

5.3 Lemma. If « € R, then ¢}% = k.

Proof. Let f = B(«), n = n(x). Since x is a cardinal, I1.5.5 (for the Jensen hierar-
chy) implies that Z(wy) = J, = J; for all y <x. Thus we certainly have
2 (wy)NZ,(Jp) < Jg for all y < k. Thus ¢ > k.

Now, by choice of 8, n there is a £,(Jz) map, f, of a bounded subset of o
cofinally into a. We may code f as a subset of « in a simple fashion (e.g. using a
X, (J,) map of « onto J,). But as f is cofinal in o, f¢ J,, and if & < § then by
definition of B, « is regular within J;, so again as f is cofinal in o, we have f'¢ J,.
Thus, in all cases, 2 (wa) N Z,(Jp) § Jp, and so gf < a.

By definition of S, if dom (f) = y < «, then |y|’* < «, so J, contains a map from
x onto y. Consequently, by composing f with such a map if necessary, we may
assume that dom (f) < x. We may also assume (again by making trivial alter-
ations to f if necessary) that f(v) > « for all v e dom ().

Again, since o € S, for each y such that ¥ < y < o thereis a function g, € J, such
that g,: x <> 7. In fact we may take g, to be the <,-least such map, and then the
sequence (g,|k <y < a)is Z,(J,).

Let (U, |v < k) be a J,-definable partition of x into ¥ many disjoint sets of size
x,and let (j,| v < x) be a J -definable sequence of maps j,: U, <> k. (Practically any
(U,|v < k) and (j,| v < k) which are explicitly defined will be J,-definable.)

Set

k= U{gf(v) °jvl"€d0m(f)}-

9y
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Clearly, k is a Z,(J5) map of x onto a. Since ¢} < o, it follows at once that ¢} < x,
and we are done.

For « € R, now, we set
_..1 _—
0@ =@, A =A45E7".

If n(x) =1, then g («) = B (), so as « € R we shall have lim (¢ (). And if n(x) > 1,
then g(x) will be admissible, so again lim (¢ («)). Thus g(«) is a limit ordinal.
Moreover g (x) = a. For if n(x) = 1, then g(«) = f(«) = «. On the other hand,
suppose n(x) > 1. Now, « is X, - ;-regular over J;,, so there is certainly no
2, @-1(Jp@) map of a bounded subset of a cofinally into «. But by definition of
o(x), there is a X, ,)— 1 (Jp ) map from a subset of J,,, onto J,, and hence there
is a Z,(-1(Jp) map from a subset of w - ¢(x) onto a. Thus w - ¢ () > a. But
wa = a. Hence ¢ (o) > «, as stated.
Fix o € R now, and set

ﬁ:‘ﬁ((x)’ n=n(), ¢=¢0@, A=A, hzhe,A’ H=HQ,A*

So, in particular, & is the canonical X, skolem function for {J,, 4) and H is a
z§le 4> predicate with the property that

y=h(i,x)>@zeJ)H( y,i,%).
For 7 < ¢, define a partial function A, from w x J, into J, by
y=h(,x)@zeJ)H(zy,ix).

Now, the canonical X, skolem function h; y is uniform for all amenable {J,, U>.
In particular, whenever 7 < ¢ is such that {J,, A nJ,) is amenable, then the
function h, defined above is its canonical £, skolem function, ie. h, = h, 4. ;..

Now, by definition of gj, together with 5.3 (and the J,-analogue of I1.6.8) there
isa X, (J;) map fsuch that f”«x = J;. Let f = fn (J, x ). Then f'is a X, (J4) subset
of J,. So by the properties of the standard codes given in section 4, fis Z, (< J,, A)).
Moreover, f"k =J,. By the properties of the £, skolem function, if f is
e ({p}), we will have

W (o x (x x {p})) = J,.
So we may define
p = p(x) = the <,-least p € J, such that J, = h" (w x (x x {p})).
Define a map g from a subset of k into J, by setting
gl@v +1i) >h( (v, p)).

By choice of p, g"x = J,. Moreover, g is {4’ ({p}). Let G be the canonical
=5’ 4> ({ p}) predicate (obtained from H) such that

g =x-3zeJ)G(z x,v).
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By recursion we shall define functions k: 6 — k, m: 6 — g, (X,|v < 0), («,|v
< 6), for some 6 which is to be determined during the course of the definition. The
exact order of this definition will be examined as soon as the definition has been
given in full.

k(v) = the least T € dom(g) such that a, < g(r) < « and |a,|”=® < k.
m(0) = the least y > x such that pe J,;
m(v + 1) = the least y > m(v), ,, g ° k(v) such that:

D) AN Jpue €y

(i) m(v), &, g ° k(v) € hy(@ x (kc x {p}));
(i) 3z € J)(G(z,g° k), k(V);

m(4) = sup, <, m(v), if lim (1) and this supremum is less than ¢ (undefined if the
supremum equals g).

Xv = h;;l(v)((UX(K X {p}))
o, = sup (X, na).

Our O, set C, will be the set
C,={a,)v<0 Alim(v)},

where 0 is the first ordinal for which the above definition breaks down. We shall
show that lim (6) and that 6 is the least ordinal such that sup, ., m(v) = 0. We shall
also show that the function k is order-preserving, so 6 < k and otp (C,) < k. (The
function g is used precisely in order to obtain this result.) A condensation argu-
ment will be used to show that C; = & n C, whenever & € C,. The rather compli-
cated definition of the function m is designed to facilitate this part of the proof.
And now down to business.

Let us examine the way in which the above definition proceeds, and how it
may break down. The definition of m(0) comes first, and is unproblematical.
Suppose now that m(v) is defined for some v. Then we may define X, and «,. We
show that a, < «. Suppose not. In other words, suppose that hy,,, (@ x (x x {p}))
Na is cofinal in a. Now, {J,, A) is amenable, so AN J,,,, € J,. Thus {J, ),
AN,y €d,. Thus h,, €J,. Now, there is a J-definable map of x onto
 x (x x {p}). Thus J, contains a map from a subset of x cofinally into a. If ¢ = «
this is already a contradiction. What if ¢ > «? Well, in this case, since ¢ < (),
a is a regular cardinal inside J,, and again we have a contradiction. Thus a, < o.
Since a € S, it follows that k(v) is defined. And now we may define m(v + 1)
without any difficulty. Thus the only way in which the construction can break
down is when a reach a limit ordinal 0 such that sup,.,m(v) = g.

For each v < 0, by definition of m(v + 1) we have a, € hy,, +1)(® X (x x {p})),
so o, € X,,;na Thus a, < a,, ;. Moreover, since the function m is continuous
(by definition), for any limit ordinal 1 < 6 we have, by virtue of the manner in
which the functions h, were defined, X; = ) X, and hence «; = sup,.,a,. Thus

v<i

the sequence (o, | v < 6) is strictly increasing and continuous at limits. Again, since

k(v)

m(v)
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sup, <gm(v) = o, we have

U X, = B (@ x (p}) = ;.

v

SO SUpP, <o, = a.

We show next that the function k is strictly increasing. Let v < 7 < 0. By the
definition of k(7), gok(t) > o, and |o|’s-*® < k. So as a, <a,, we have
gok(t)>a, and |a,|’¢-*» < k. So by the minimality of k(v) in its definition,
k(v) < k(). But by definition of m(v + 1), gck(v) e X, na,s0 gok(v) < a,,
< a, < g o k(7), and in particular k(v) % k(). Thus k(v) < k(7).

Since k is strictly increasing from 6 into x, we must have 0 < «.

We set

C,={o,|]v <0 A lim(v)}.

By the above results, C, is closed in o, has order-type at most x, and if cf (x) > w
then C, is unbounded in «. Moreover, by the definition of k and the inequality
a, < gok() <a,,, (noted during the proof that k is increasing), we have C, < S.
Thus, all that remains to be proved now is that if x € C,, then C; = a n C,.

Let a € C, be given. For some limit ordinal A < 6, @ = «;. Note that by the
definition of m, lim (1) implies that {J,, A N Jp(» is amenable.

54 Lemma. a < X;.

Proof. Since & = sup, <, a,, it suffices to show that «, = X, for all v < A. So let
v < A. Then by definition of m(v + 1), &, € X+, € X,. But @€ S, so |a,|’ < k.
Hence |a,|'™* < k. Since

{o,} vk € X; < Jniy»

we have o, = X;, as required. O
By the condensation lemma, let

m: (g A) 2 (X, AN XD
Thus

e {Jgy A <y {Imays A OV Iz -
But by transitivity,

{Imays AN Ty <0<y A

Hence
T <J6’ Z> <0 <Jga A> .

It follows from the fine-structure theory (section 4) that there is a unique § such
that ¢ = Q%“ and 4 = A%‘l, and a unique % 2 7 such that, in particular,

ﬁ: JE <”._1 Jﬂ'
Let h = h; 7, and set j = n~ ! (p).
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By 54, na =id [d. If & < fB, then since & = a; = X, na = ran(n) N a and
n < &, we have (&) = a. (If « € ran (7), then in fact #(&) = a, but we have no
reason to suppose that this is the case.)

Define a map g, from a subset of x into J,;, by

Jo(v) =xe@QzeJ,)G(zx,v).

Now, g is ¢/ 4nIm@>({ p}). Hence §; = Jo N (& x k) is T A0 Imad({p}),
Butz [a =id [ & Thus n~'"g, = gy, and so g, is Z{'» * ({5}). So, as g = ¢3!,
A= A;"‘, g is Z,(Jp).

By definition of m, k" A = dom(g,) and g, [ (k"4) = g [ (k" A). But a, < g o k(v)
< a,.q for all v. Thus g, is cofinal in &.
5.5 Lemma. =K.

Proof. Since & € S, we can use the function g, to prove this by the same argument
we used in 5.3. [

5.6 Lemma. B = ().

Proof. The existence of g, shows that g(x) < B. If B = & we are done. So assume
B > a. Suppose that (&) < B. Then Jz will contain a map f from a subset of some
y < & cofinally into &. Since #: J5 <,-; J;, #(f) will be a map from a subset of
7 (y) < % (&) cofinally into 7 (&). Now, y € &, so 7 (y) = y. Thus #(f) maps a subset
of y cofinally into 7(&). But since f< axa, f< A(f). So as dom(f) =y and
dom (7 (f)) < v, we must have 7 (f) = f. Thus f maps a subset of y cofinally into
#(d). Butran(f) < & < o < 7 (&), so this is impossible. This proves the lemma. [

5.7 Lemma. n = n(d).

Proof. By 5.6 and the properties of g, n(&) < n. If n = 1 we are done. So assume
n > 1. We must prove that & is Z,_; regular over J;. Suppose not. Then there is
aX,_,;(Jz map of a bounded subset of & cofinally into &. Since & € S, an argument
as in 5.3 now shows that g5~ = x. But ¢~ ' = @ > & > , a contradiction. [J
5.8 Lemma. p = p().

Proof. By 5.5, 5.6, and 5.7, p (&) is (by definition) the <,-least element of J; such
that J, = h" (@ x (k x {p(@)})). Now,

U <J§, A <3 <Jmu)a An Jm(l)> s

SO
7[R (@ X (ke X {P}))] = hmeay (@ x (c x {p})) = X ;.
Thus,
oxEx{p})=rn"1"X,=J;
This proves that p(&) <,p. Let p’'=n(p(@)). Pick iew, vex so that
P = h(i,(v, p(@)). Applying 7, we get p = h(i, (v, p)). Thus

W (0% (ke x {p})) = h" (@ x (X {p'}))-
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Thus J, = k" (w % (x x {p'})). So by choice of p, p <, p'. Applying ™', p <, p(@).
The lemma is proved. O

Now define g from & exactly as g was defined from o.
59 Lemma. gn(@xk"A) =gn(@xk”"7).
Proof. By virtue of 5.5 through 5.8, for v < k, T < &, we have
glv+i)=tehilv,p)=r.
But 7: {J,, A <; {Jpzy» A N Iy and n [ @ = id | & Hence

h (l’ (V, [3)) =T hm{ﬂ.) (i’ (V, P)) =T.
Thus:

(%) gl@v +i) =1 hy,u,GQ v, p)=r1.
Now, by the uniformity of the X, skolem function,
by (@, (v, p)) =t implies h(i, (v,p)) = 7.
Thus by (%),
glwv+i) =1 implies g(wv +i)=r.

Suppose that, in addition, wv + i € k” . Assume that g(wv + i) = 7. Then by the
definition of the function m,

AzeJnw) Gz, T, 0v +i).
So by the canonical, uniform nature of the X, predicate G,

hm(}.) (i, (p)=r.

Thus by (*), g(wv + i) = 7, and we are done. O

Now define k,m,(X,|v<0), (&|v<8) from & exactly as we defined
k,m,(X,|v < 0),(a,|v < 0) from a. Thus, in particular, provided that & € R, we will
have

C; ={d,|v<8 Alim(v)}.
5.10 Lemma. For all v < 4, k(v) = n(R(v)) = k(v), m(@() = m(v), 2’ X, = X,,
a, = (&) = a,.

Proof. Since n: {J5, A) <y {Jpm@zy, A" Jpny> and 7 [ & = id | &, this follows from
5.5 through 5.9 by a straightforward induction on v. [
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Since («,|v < 4) is cofinal in «; = &, it follows from the above lemma that
d = A. Hence,

{a,|v<0Alim®)} = {a,|v<iAlim®)}=&nC,.

We shall be done provided that & € R. Suppose that n = 1. Then ¢ = Q% = f. But
n: Jg <Jps and lim (m (4)). Hence lim (¢). Thus n = 1 implies lim (B). Thus & € R,
and we are done. [} is proved.

Exercises

1. k*-Aronszajn trees (Section 2)

Let x be an infinite cardinal. By a special K:-_Aironszajn tree we mean a k" -tree
T such that for each a« < k™, T, < {f|f: «——— K}, with the ordering f <, g iff
f<g. It is immediate that any such tree must be «*-Aronszajn, of course.

1 A. Prove that there is a special w,-Aronszajn tree, first of all by making a simple
modification to the tree constucted in IIL.1.1, and then by means of a direct
recursion on the levels, much as in the proof of III.1.1. (As then, the problem is to
ensure that the construction does not break down at some stage.)

1B. Prove that if k is a regular cardinal such that 2<* = , then there is a special
k" -Aronszajn tree. (Generalise the direct proof of 1 A above. The hypotheses on
Kk are used to ensure that the construction does not break down.)

1C. Prove thatif V = L (or more generally if 2<* = x and [J, holds), then for any
infinite cardinal k there is a special k *-Aronszajn tree. (The [J,-sequence is used
to ensure that the construction does not break down. See the proof of 2.4.)

2. k*-Souslin trees (Section 2)

Let x be an uncountable regular cardinal. Assume GCH together with &+ (E),
where E = {x € k" |cf(x) = k}. Prove that there is a k *-Souslin tree.

3. k-Kurepa trees (Section 1)

Show that if « is inaccessible, there is a k-tree with 2 many x-branches. Suggest
a definition of a x-Kurepa tree which avoids this example (and indeed any other
example one can construct in ZFC alone).

4. The combinatorial principle &7+ (Section 3)

Formulate the principle &7+ by analogy with &* for w,. Prove that V=L
implies &7+ and that ¢+ implies the existence of a " -Kurepa tree.

5. O, in L[A] (Section 5)
Prove that [J, holds if V' = L[A], where 4 < k™ is such that

Vo <rxh)[|a/H40d < k.
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(This requires some reworking of the fine-structure theory, and is quite a demand-
ing exercise.)

6. On the failure of (1, (Section 5)

From the result of exercise 5 above, deduce that if (J, fails, then x* is Mahlo in
L. (It can be proved that if it is consistent with ZFC that a Mahlo cardinal exists,
then it is consistent with ZFC that I, is false.)

7. GCH and the principles .+ (Section 2)

Prove the following generalisation of lemma 2.7: Assume 2* = x* and that 4 < k
is a regular cardinal such that either x* = k or else [A # cf(x) and (V60 < k)
(0" < k)]. Then O+ ({6 < x™|cf(8) = A}) holds. (Even better, conclude that
O+ ({0 < k| cf(8) = A}) holds.)

8. O, and the principles ..+ (Section 2)

Prove the following generalisation of lemma 2.8: Assume [J, and that (V0 < k)
(0™ < k) &2 = k. Then O+ ({6 < k™ | cf(8) = cf (x)}) holds. (Can the above
be strengthened to get G ({6 < k™ | cf () = cf(x)})?)





