
Chapter HI

ω^Trees in L

Tree theory forms a rich and interesting part of combinatorial set theory, having
applications in other parts of set theory as well as in other areas of mathematics
(in particular, in general topology). We study trees here because tree theory is
greatly enhanced by the assumption V = L, and affords a good example of the
application of the methods of constructibility theory. In this chapter we concen-
trate on ωx-trees, and as we shall demonstrate, these arise out of some very basic
questions in mathematics. Later chapters deal with generalisations to higher
cardinals.

ί. The Souslin Problem. ωx-Trees. Aronszajn Trees

The Souslin Problem has its origin in a classical theorem of Cantor concerning the
real line. In order to consider this theorem we need some definitions.

A densely ordered set is a linearly ordered set <X, ^ > such that whenever
x , ] / e l and x < y, there is a z e X such that x < z < y.

An interval in a linearly ordered set <X, =ζ > is a subset of X of the form

(x, y) = {z e XI x < z < y}

for some x,y eX, x < y. (We call this set the interval determined by x and y)
An ordered continuum is a densely ordered set <X, < > such that whenever Y

is a subset of an interval of X, there is a least z e X such that (V y e Y) (y ^ z) and
a greatest xe X such that (V y e Y) (x ^ y). (We call z the supremum of X x the
infimum of Y.)

A linearly ordered set is said to be open if it has no end-points.
A subset Y of a densely ordered set <X, ^ > is said to be dense in X if, whenever

x,zeX are such that x < z, there is a y e Y such that x < y < z.
Cantor proved that, considered as a linearly ordered set, the real line (R) is

characterised, up to isomorphism, by being an open, ordered continuum having
a countable dense subset (the rationals). In 1920, M. Souslin asked whether a
natural weakening of these conditions still suffices to characterise R.
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Let us say that a linearly ordered set X has the Souslin Property if every set of
pairwise disjoint, non-empty intervals of X is countable. (This condition is often
referred to as the "countable chain condition".) Clearly, if a densely ordered set X
has a countable dense subset Y, it must have the Souslin Property, since any
non-empty interval of X must contain an element of Y. The question Souslin
raised was this: Is it the case that R is characterised by being an open, ordered
continuum having the Souslin Property? Although Souslin did not publish any
indication that he thought a positive answer was likely, it has become common to
refer to a positive answer as The Souslin Hypothesis.

We now know that the Souslin Problem cannot be solved in ZFC set theory,
even if we assume GCH. We shall show that if we assume V = L, however, then
the problem can be solved, with Souslin's Hypothesis being false.

We shall solve the Souslin Problem (assuming V = L) by first reformulating it
in terms of trees. But before we do that, let us notice that the Souslin Hypothesis
is equivalent (in ZFC) to the following assertion:

Every densely ordered set with the Souslin Property has a
countable dense subset.

(We shall denote this last assertion by SH.) The proof (of equivalence) in one
direction is immediate. Assuming SH, if we are given an open, ordered continuum
having the Souslin Property, then by SH it will have a countable dense subset, and
so by Cantor's theorem it will be isomorphic to R. For the proof in the other
direction, suppose we are given a densely ordered set, X, with the Souslin Proper-
ty. Let X' be obtained from X by introducing a copy of the rationals at each end
(to obtain an open ordered set). Let X" be the Dedekind completion of X'. It is
easily seen that X" is an open, ordered continuum with the Souslin Property. By
the Souslin Hypothesis (as formulated by Souslin), X" is isomorphic to R. Hence
X is isomorphic to a dense subset of an interval of R. Thus X has a countable
dense subset.

We shall prove that if V = L then SH is false, by using V = L to construct a
densely ordered set having the Souslin Property but no countable dense subset.
We achieve this by way of trees.

A tree is a partially ordered set T = <T, < τ> such that for every x e Γ, the set

x = {yeT\y<τx}

is well-ordered by ^ Γ .
The order-type of the set x under < τ is called the height of x in T, denoted by

htΎ(x).
If α is an ordinal, the α-th level of T is the set

Ta = {xeT\htΎ(x) = oc}.

We often write T \ α to denote the set (J Tβ9 and T f α for the restriction of the
structure T to this set. β<a
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Sometimes we blur the distinction between a tree and its underlying set,
writing T instead of T, etc.

In a tree T, if we are at any point x, there is only one path "downwards",
namely x, though there may be several (or none) paths "upwards" from x. It is
customary to represent trees pictorally as in Figure 1, using vertical connecting
lines to denote the ordering < Γ in the upward direction, drawing the levels of the
tree on a horizontal line.

etc.

Fig. 1

Let T be a tree. A linearly ordered subset b of T with the property that whenever
xeb, then y <τ x implies y e b, is called a branch of T. If α is the order-type of b
under <τ, we say that b is an oc-branch. A branch is maximal if it is not properly
contained in any other branch of T. By the Axiom of Choice, every branch can be
extended to a maximal branch. Every set x is a branch of T. If x has no successors
in T (i.e. there are no points y e T such that x <τy\ then x u {x} is a maximal
branch of T.

An antichain of T is a subset of T, no two elements of which are comparable
under the ordering < Γ . An antichain is maximal if it is not properly contained in
any other antichain of T (or, equivalently, iff every point of T is comparable with
some member of the antichain under <Γ). By the Axiom of Choice, every anti-
chain of T can be extended to a maximal antichain. If Γα φ 0, then Tα is a maximal
antichain of T.

Let θ be an ordinal, λ & cardinal. A tree T is said to be a (θ, λ)-tree iff:

(i) (Vα<6>)(TαΦ
(ϋ) Tθ = 0;

(iii) (Vα

0);

In words, a (θ, λ)-tree is one of "height" θ and "width" less than λ. (We demand
I Tα I < λ rather than | Ta | < λ in (iii) to allow for the case where λ is a limit
cardinal.)
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A tree T is said to have unique limits if, whenever α is a limit ordinal and
x, y e Tα, if x = y then x = y.

A (0, /l)-tree T is said to be normal if T has unique limits and each of the
following conditions is satisfied:

(i) |ΓO | = 1;

(ii) if α, α + 1 < θ and x e Tα, then there are distinct yί, y2 e Tα + x such that

x <r)>i and x <ry2?

(iii) iϊ a < β < θ and x e Ta, there is a y e Tβ such that x <τy.

Let 7C be an infinite cardinal. A κ-tree is a normal (/c, /c)-tree.
It is trivial to show that every ω-tree has an ω-branch. (By recursion, pick

xn e Tn so that xn<τxn+1.) And it is tempting to imagine that this simple result
generalises to ωγ-trees. However, as was first demonstrated by N. Aronszajn,
there are ωx -trees having no ωx -branch. Such trees are now known as Aronszajn
trees.

1.1 Theorem. There is an Aronszajn tree (i.e. an ωγ-tree with no ω^branch).

Proof. By recursion on the levels, we construct an α^-tree T. The elements of Tα

will be strictly increasing α-sequences of rational numbers, and the tree ordering
will be x <τy iff x is an initial segment of y (i.e. iff x <= y). Notice that if b were an
ω1 -branch of such a tree, (J b would be a strictly increasing ωγ -sequence of
rationals, which is impossible. Hence our tree certainly can have no ωγ -branches,
and our problem is simply to construct the tree. In order to do this, we ensure that
at each stage in the construction, T \ a satisfies the following condition:

P(α): T f α is a normal (α, ω^-tree, and for every β < y < a and every
x G Tβ and every rational q > sup (x), there is a y e Tγ such that x c y and
q > sup(j ),

where sup (x) here denotes the supremum (in the reals) of the range of values of the
rational sequence x.

To commence the construction, we set

If T ϊ(α + 1) is defined and satisfies P(α + 1), we define

Γ«+i = {x ~ <q> \x e Γα Λ q e Q Λ q > sup(x)} .

Clearly, T f(α + 2) then satisfies P(α + 2).
Finally, suppose α is a limit ordinal and T \ α has been defined and satisfies

P (α). (Notice that if P (β) is valid for T \ β for all β < α then P (α) is automatically
valid for T f α.) The construction of Γα depends upon the following claim.

Claim. For each xeT\a and each rational q > sup (x), there is an α-branch b of
T ϊ α such that xeb and sup ((J b) < q.
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T o p r o v e t h e c la im, given x, q as a b o v e , p ick a str ict ly i n c r e a s i n g ω - s e q u e n c e
(oίn\n < ω) of o r d i n a l s , cofinal in α, so t h a t xeT \oc0. Since P(oc) is valid, we c a n
induct ive ly p ick e l e m e n t s yn e Tα n so t h a t x a y0 ^ yγ a y2a ... a n d s u p (yn) < q.
Set

b = {yeT\ct\(3n<ω)(y^yn)}.

Celarly, b is an α-branch of T \ α which contains x and is such that sup (\J b) ^ q,
proving the claim.

Using the claim, we construct Tα as follows. For each x e T \ oc and each
rational q > sup (x), pick one α-branch b (x, q) of T \ α as in the claim, and set

Ta = {[jb(x, q)\xeT\ocΛqε<I}Λq> sup(x)} .

It is easily seen that T ϊ(α + 1) satisfies P(oc + 1). In particular, Tα is countable
because both T \ α and Q are countable.

That completes the construction of T. Since T \ α satisfies P (α) for all α < ω x ,
T is an ω1-tree, and so we are done. D

Related to the notion of an Aronszajn tree is that of a Souslίn tree. This is
defined to be an ωx-tree having no uncountable antichain. (We shall see later that
Souslin trees are closely connected with the Souslin Problem.) As the following
result shows, Souslin trees are just special kinds of Aronszajn trees.

1.2 Theorem. Every Souslin tree is an Aronszajn tree.

Proof. Let T be a Souslin tree. Let b be any branch of T. We show that b must be
countable. Since T is normal, for each x e b we can pick an element x* e T such
that x < τ x * , ht(x*) = ht (x) + 1, and x* φ b. It is easily seen that {x* | x e b} is an
antichain of T. But if x, y e b are such that x Φ y, then x* + y*. So as T has no
uncountable antichain, b must be countable. D

The above proof made use of the normality requirements on a Souslin tree.
These are rather strong conditions, since they tend to point in the opposite
direction to the Aronszajn and Souslin requirements of no uncountable branches
or antichains. In the case of Aronszajn trees, the somewhat "paradoxical" situa-
tion arose (in 1.1) that essential use was made of normality requirements in order
to construct an Aronszajn tree. But in the case of Souslin trees, the full normality
requirements turn out to be a burden as far as construction of such trees in
connection with the Souslin Problem is concerned. The next lemma shows that
this burden is easily shed.

1.3 Lemma, (i) Let T be an (ω1, ω^-tree with unique limits, having no uncountable
branch. Then there is a subset Γ* of T such that, under the induced ordering, T* is
an Aronszajn tree.

(ii) Let Ύ be an ( ω l 5 ω^-tree with unique limits, having no uncountable branch
and no uncountable antichain. Then there is a subset T* of T such that, under the
induced ordering, Γ* is a Souslίn tree.
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Proof, (i) Since To is countable, we can find an element x0 of To such that T is
uncountable, where we set

T = {xeT\xo^τx}.

Let T" be the set of all members of T' which have extensions on all higher levels
of T". It is easily seen that each member of Ύ" has extensions on all higher levels
of T" itself. It follows that for every point x e T" there are points y, z e T" such
that x <τy,x <τz, and y and z are incomparable in T. (Otherwise the extensions
of x would form an uncountable branch of T.) Hence we can define a function
/: ωί-*ωί by the following recursion:

/(0) = 0;
/(α + 1) = the least β >/(α) such that for all x e Γ/(a) there are y, z e T/

such that x <τy, x <τz, and y φ z ;
f(λ) = supv<Λ/(v), iflim(A).

Set

T*= U T/w.
α<α>i

It is easily checked that T* is as required.

(ii) The above proof works in this case also. D

Notice that unique limits played no role in the above proof. We could have
omitted this requirement from all definitions and results, but it is common to
include it, and we shall always do so.

Our next result indicates our usage of the phrase "Souslin tree".

1.4 Theorem. Souslirΐs Hypothesis is equivalent to the non-existence of a Souslin
tree.

Proof. Assume first that there is a Souslin tree. We construct a counterexample to
SH, i.e. a densely ordered set having the Souslin Property but no countable dense
subset.

Let T be a Souslin tree. By replacing T by its restriction to the limit levels of
T, if necessary, we may assume that each member of T has infinitely many success-
ors on the next level of T. For each non-zero α < ωl9 let < α be a linear ordering
of Tα, isomorphic to the rationals, so that the set of all successors on Ta+1 of any
element of Ta is ordered as the rationals by < α+1. Let X be the set of all maximal
branches of T, and define a linear ordering on X by setting b <x d iff b (α) <α d (α),
where α is the least ordinal such that b n Γ α φ dnTa and b (α) denotes the unique
element of b n Ta,d(a) the unique element of d n Tα. Clearly, <X, =ζx> is a densely
ordered set of cardinality 2ω.

We show that X has the Souslin Property. Let I be any interval of X,
say I = (b,d). Choose α minimal so that b(α)φd(α). Pick Xj e Tα so that
b (α) <α Xj <α d (α). Let e (I) be a maximal branch of T containing Xj. Thus e(I)e I.
Suppose now that / and J are disjoint intervals of X. Then e(I) φ J and e( J) φ 7,
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so Xj and Xj must be incomparable in T. Since T has no uncountable antichains,
it follows that any pairwise disjoint collection of intervals of X must be countable.

We complete the proof of this half of the theorem by showing that X has no
countable dense subset. Let A be any countable subset of X. For each pair b, d of
distinct elements of A, let α(b, d) be the least ordinal α such that b(oc) + d(oc). Let

γ = sup {α(ί>, d) \ b, d e A & b + d}.

Since ,4 is countable, y < ω ! . Let w e Tγ and choose x j , z e Γ y + 1 so that
w <τx,y,z and x < y + ί y <y + xz. Let fox be a maximal branch of T containing x,
and choose b y, fcz similarly. If A were dense in X, we could find d,d' e A such that
bx<χd <xby and by<xd' <xbz. But since bx,by, bz all contain w, we would have
α(d, d') > y, contrary to the choice of y. Hence A cannot be dense in X.

Thus X is a counterexample to SH.
We now assume that SH is false and construct a tree satisfying the hypotheses

of 1.3 (ii), which by virtue of 1.3 (ii) at once implies the existence of a Souslin tree.
By the failure of SH, let X be a densely ordered set with the Souslin Property

but no countable dense subset. By recursion on the levels we define a partition tree
T = <Γ, ̂ > of X, elements of which are non-empty "intervals" of X. To com-
mence, we set To = {X}.

Suppose we have defined Ta. For every / e Tα of cardinality greater than 1,
choose an interior point x(I) of/. (Since X is densely ordered, if I has at least two
elements, such a point always exists.) Let

I0 = {yeI\y<xx(I)}

Set

T α + 1 = {/0 |/e Tα Λ |/ | > 1} u{h \Ie Ta A \I\ > 1}.

Now suppose that lim (α) and Tβ has been defined for all β < α. In this case, set

Γα = {f( b I b is an α-branch of T \oc such that | f] b\ > 1} .

That defines T. Let θ be the least ordinal such that Tθ = 0. We shall show that
θ = ω t and that T satisfies the hypotheses of 1.3 (ii). It is clear that T has unique
limits. We show first that T has no uncountable branch (so that, in particular,

Suppose that B were an uncountable branch of Γ. Let (/α | α < ωx) be the
canonical enumeration of the first ωι elements of B. Set

A0 = {*<ω1\<yyeIa+1)(y<xx{Q)},

Thus Ao and Aι constitute a disjoint partition of ωγ. Hence at least one of Aθ9 Aί

is uncountable. Suppose, for the sake of argument, that Ao were uncountable.
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(The other case is handled similarly.) For α e i 0 , let Jα be the X-interval

Ja = (x(Iβ)9x(Q)9

where β is the least element of Ao above α. Now, if α e Ao and α < β, we have x (Ĵ )
<* x(JJ. Hence {Jα | α e Λo} is an uncountable set of pairwise disjoint intervals of
X, which is impossible. Thus T has no uncountable branch.

Moreover, T has no uncountable antichain. Essentially this is because incom-
parability in T means disjointness as "intervals" in X. For suppose {Ia | α < ω j
were an uncountable antichain of T. Then for each α < ωί we could choose
xα, j/αe/α, x a<xy a, whence {(xα, yα)|α < ωx} would be an uncountable set of
pairwise disjoint intervals of X, which is impossible.

Since T has no uncountable antichains, each level of T must be countable. If
we can show that T is uncountable, we shall thus be able to conclude that T is an
(ωx, ωj-tree and be done. But it follows easily from the construction of T that the
set {x(I)\I e T} is dense in X. (Roughly speaking, this is because we keep on
"splitting" intervals of X until it is not possible to go any further.) So, as X has
no countable dense subset, we see that T is indeed uncountable. D

1.4 enables us to prove that SH fails if we assume V = L.

1.5 Theorem. Assume V = L. Then there is a Souslin tree.

Proof. We construct an ω^tree, T, by recursion on the levels. The elements of Γα

will be sequences from α2, and the ordering of T will be sequence extension
(= set-theoretic inclusion). We carry out the construction so that at each stage
α < ωί, T ϊ α is a normal (α, ωj-tree. This will ensure that T is an α^-tree, so the
only problem will be to ensure that T has no uncountable antichains.

To commence, set

The definition of Tα + 1 is dictated by the normality requirements. If T \ α + 1
is defined, we set

Ta+ί = {s~<i}\seTaΛi = O, 1}.

If T fα + 1 is a normal (α + 1, ω^-tree, then T fα + 2 is clearly a normal
(α + 2, ωj-tree.

There remains the definition of Tα when α is a limit ordinal and T \ a has been
defined. Notice first that if T \ β is a normal (β, ωj-tree for all β < α, T \ α will be
a normal (α, ωx)-tree. Now, if 5 e α2 is to be a member of Ta9 {s \ β \ β < α} will have
to be an α-branch of T \ α. Hence for some collection, βα, of α-branches of T \ α
we shall have

What properties must the set Ba have? Certainly it must be countable. And to
preserve normality requirements, each element of T \ α must be a member of some
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branch in Ba. Since trees consisting of sequences as in this case necessarily have
unique limits, these two conditions on Ba suffice to ensure that T Γ α + 1 will be
a normal (α + 1, ω^-tree. So we are left with choosing Ba to ensure that T will be
a Souslin tree. How can we do this? Well, the final tree, T, will be a subset of (J α2

of cardinality ω1. By GCH, the set T will have ω2 many uncountable subsets. We
must choose the collections Ba so that none of these uncountable subsets of T is
an antichain of T. To see how this might be achieved, suppose that in fact there
were an uncountable antichain in T. Then there would be a maximal uncountable
antichain, A. For each α < ω l 9 A n (T \ α) is an antichain in T \ α. Let

C = CA = {α e ωί I lim (α) Λ A n (T \ α) is a maximal antichain in T \ α} .

The set C is club in ω x . Closure is immediate, of course. To prove the un-
boundedness of Cmωu given α0 < ω x , define απ < ω t recursively by setting αn + x

to be the least ordinal y > ocn such that each element of T \ ocn is comparable with
some member of A n (T \y), in which case it is easily seen that α = (J απ e C

n<ω

Suppose now that we can somehow choose the sets BΛ so that for each maximal
uncountable antichain A of T, there is an α e CA for which the definition of Tα

prevents the addition of any elements to T which are incomparable with all of the
elements of A n (T \ α). This would then ensure that in fact there are no un-
countable antichains in T. (The above discussion would be a proof by contradic-
tion of this fact.) Now, constructing Γα so that some specific maximal antichain
A n (T ϊ α) of T \ a does not "grow" in T (at any subsequent stage) is easy. Define
Ba so that each element of Ba contains a member of A n (T \ α). Since A n (Γ \ a)
is a maximal antichain in T \ α, each element of T f α is comparable with some
member of A n (T \ α), so constructing BΆ with this property causes no difficulties,
and will ensure that every element of Tα extends a member of A n(T f α), and
hence that any element of T of height greater than α will have to extend an element
of A n (T f α). Our problem now reduces to one of cardinalities. In constructing
T there are ωγ limit stages α where we can "kill off" maximal antichains
A n (T ϊ α) of T ϊ α in the above sense. But there are ω 2 many potential sets A. So
we must somehow deal with ω2 possibilities in ωγ steps. This is where we use
V=L.

Suppose then that we are at stage α, where lim (α) and T \ α has been defined.
Let Aa be the <L-least maximal antichain of T \ α with the property that the set

{y < α I Aa n Ty Φ 0}

is unbounded in α. (Such a set always exists, as is easily seen.) F o r each x e Γ f α ,

let bx be the < L -least α-branch of T \ oc such that xεbx and bx n Aa Φ 0. Since ^ α

is a maximal antichain of T \ α, fc,, is always defined. Let

BΛ = {bx\xeT\*}.

Set

Ta = {\Jb\beBΛ}.
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That completes the definition of T. We must check that T has no uncountable
antichain. Suppose, on the contrary, that it did. Let A be the <L-least maximal
uncountable antichain of T. Now, all of the sets involved in the above definition
of T are members of Lω2, so we could in fact carry out the construction of T within
the set Lω2. Thus T is a definable element of Lω2. Hence A is also a definable
element of Lω2. Moreover, we clearly have (by a trivial absoluteness observation):

¥L "A is the <L-least maximal antichain of T such that the set
{y e ωγ \ A n Ty φ 0} is unbounded in ω/'.

Let M be the smallest elementary submodel of Lω2. By II.5.11, M nLωι is
transitive and of the form Lα for some α < ωγ. (M is, of course, countable.) Since
T and A are definable in Lω2, they are elements of M. We have

TnM = T\oc.

To see this, suppose first that β < a. Then there is a surjection/: ω -• Tβ. Hence
there is such a surjection in M. But ω c M , s o it follows that Tβ=f"ω^M. Thus
Γ f α g M . Again, if xeTr\M, then (again because M -< Lω2)ht(x) e M, so
ht(x) < α, so x G T \ α. We also have

AnM = An(T\a).

(This is an immediate consequence of the previous equality.) So, if we let

π: M ^ Lβ

(by the Condensation Lemma) we have:

π \Lα = id \La9 π{ωγ) - α, π(T) - T f α , π(A) = An(T\<x).

(These are all easy consequences of the properties of the collapsing isomorphism.
Such considerations will occur often in our later development.) Thus, by elemen-
tary substructure and isomorphism, we have:

Vhβ "(A n T ϊ α) is the <L-least maximal antichain of T \ α such that the
set {y e α | (A n T \ α) n (T \ α)y φ 0} is unbounded in α".

By elementary absoluteness considerations, this clearly implies that AnT\oc
really is the <L-least maximal antichain of T \ α such that the set {7 < α |
(A n T Γ α) n Ty φ 0} is unbounded in α. Hence

AnT\a = Aa.

But then by the construction of Tα, every element of T of height greater than or
equal to α is comparable with some element of A n T \ α. This contradicts the fact
that A is an uncountable antichain of T. Hence T must be a Souslin tree, and we
are done. D

In section 3 we shall analyse the use of V = L in the above proof.
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2. The Kurepa Hypothesis

We have seen that there are ω1 -trees with no ωx -branches. And by making simple
modifications to an Aronszajn tree it is possible to construct ω^trees with exactly
K many ωί -branches, where K is any of the cardinals 1, 2, 3,..., n,..., ω, ω1. Now,
any c^-tree is a set of cardinality ω l 5 so the maximum possible number of bran-
ches is 2ωi. Thus, if we assume GCH, no α^-tree can have more than ω2 many
ωx -branches. A natural question is whether in fact there are any ω1 -trees which
have ω2 many ωx-branches. This turns out to be related to an old question of
D. Kurepa concerning the Generalised Continuum Hypothesis (see later), and as
a result, an coj-tree with ω2 (or more) ωx-branches is called a Kurepa tree.

In ZFC, or even in ZFC + GCH, it is not possible to decide whether or not
Kurepa trees exist. The sharpest results are these:

(I) If ZF is consistent, so too is the theory

ZFC + GCH + "there is a Kurepa tree".

(II) If the theory

ZFC + "there is an inaccessible cardinaΓ

is consistent, so too is the theory

ZFC + GCH + "there are no Kurepa trees".

(III) If the theory

ZFC + "there are no Kurepa trees"

is consistent, so too is the theory

ZFC + "there is an inaccessible cardinal".

Hence the non-existence of Kurepa trees is closely bound up with the notion
of inaccessible cardinals. We shall prove that if V = L, there is a Kurepa tree. But
before we do this, we relate the notion of Kurepa trees to the problem of Kurepa,
mentioned earlier.

The Kurepa Hypothesis {KH) is the assertion that there is a family & c 0> (ωx)
of cardinality ω2 such that for all α < ωi9 the set

$F Γα = { x n α | x e . f }

is countable. The following lemma is due to Kurepa himself.

2.1 Lemma. The Kurepa Hypothesis is equivalent to the existence of a Kurepa tree.
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Proof. Suppose first that there is a Kurepa tree, T. We may clearly assume that
T = <ω1? ^ Γ > and that α <τβ implies α < β. Let <F be the set of all cOi-branches
of T. It is immediately clear that 3F satisfies KH.

Conversely, let 3F c ^(ω x ) satisfy KH. For each x e f , define a function
fx: ω1 -> ̂ ( ω j by setting

Let

T = { / x Γ α | x e ^ Λ α < ω j .

For gι,g2e T, say ĝ  < Γ #2 iff ^1 <= #2- It is clear that T = <T, ^ Γ > is a tree such
that Tα c ^(coj), Since #" f α is countable for each α < ωί9 each level of T is
countable. Hence T is an (ω1? ωj-tree. For each x e J% the set

bx = {fx t α | α < ω 1 }

is an ωx-branch of T, and if xΦ y then bx=t by. Hence T has ω 2 many ωγ-
branches. Hence we shall be done if we can show that T is normal. Well, it is easily
seen that T satisfies all of the normality requirements except possibly the require-
ment that each element of T has at least two immediate successors. But this is
easily achieved: simply add two copies of an Aronszajn tree above each point of
T. The resulting tree will then be a Kurepa tree. D

2.2 Theorem. Assume V = L. Then there is a Kurepa tree.

Proof. We verify KH, rather than construct a Kurepa tree directly, as this turns
out to be marginally simpler (because there is less to check).

Using Π.5.4 and II.5.10, we can define a function /: ωγ -> ωx by letting /(α) be
the least ordinal γ > α such that Ly<Lωr Notice that L/ ( α ) will be a model of the
theory ZF" (= ZF minus the Power Set Axiom). (As is often the case in such
situations, we are being a little sloppy here. As formulated, ZF" will be a theory
in LST, and we have no concept of a model for an LST-theory. We can avoid this
sloppiness either by formulating a "copy" of the theory ZF~ in the language if,
or else defining within set theory the notion of "a model of ZF~" in an entirely
semantic fashion, just as we defined the notions of amenable sets and admissible
sets to provide us with the notions of "models" of the theories BS and KP,
respectively (Chapter I). What matters to us is that, working inside L/(α), we can
carry out any construction which can be carried out in ZF without use being made
of the Power Set Axiom.)

Define J ^ c

#-= {x c ω i | (Vα

For any α < ω l 5 $F \ oc £ Lfioc), so certainly \$F \ α| ^ ω. What we must show,
in order to prove that 3F satisfies KH, is that 13F \ = ω2. Intuitively, this is because,
although countable,/(α) is "much larger" than α (in the sense that L/ ( α ) is a "partial
universe" as far as the theory ZF~ is concerned).
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We shall assume that \&\ φ ω2 and work for a contradiction. By this assump-
tion, $F has an ωx-enumeration (not necessarily one-one). Let X = (xα | α < ωx) be
the <L-least ω1 -enumeration of 3F. Notice that the function / is definable in L ω 2

(because the definition of/ given above only involves sets in Lω 2), whence both 3F
and X are definable in Lω2.

By recursion, we define elementary submodels ΛΓV -< Lω2 for v < ωx as follows:

No = the smallest JV -< L ω 2 ;

Nv+ί= the smallest N < Lω2 such that Nv u {AΓJ c AT;

ΛΓ,= [jNv, if lim(δ).
v<<5

By Π.5.11, JVV n CL̂  is transitive for each v < ωt. Let av = Nvnω1. Now, by a
simple induction, we see that each Nv is countable, so each αv is a countable
ordinal. Moreover, since Nve Nv+1< L ω 2 , we have ocv = Nvnω1e Nv+1, so
αv < α v + 1 . Hence (α v |v < ω x) is a normal sequence in ω x . (Continuity follows
from the continuity of the sequence (AΓV | v < ω j , of course.) Set

x = {αv |v < ωί Λ α v φ x v } .

For each v < ω 1 , x Φ x v , s o x ^ t f . We obtain our contradiction by showing that
x n α G L / ( α ) for all a < ωx.

Fix α < ω x arbitrarily. We prove that x n α G L / ( α ) . Let 77 be the largest limit
ordinal such that ocη ̂  α. (If no such η exists, then x n α is finite and hence
x n α G L / ( α ).) Since x n α differs from x n α̂  by only a finite amount, and since
L / ( α ) is amenable, it clearly suffices to prove that x naηe L / ( α ) . But aη ^ α and /
is clearly monotone, so it suffices to prove that x n α̂  G Lf{0Lη). Hence we may
assume that oc = ocη, where lim(^).

Now, we have

x n α = {αv | v < η Λ αv φ xv n α},

so as L / ( α ) is a model of ZF~ we shall be done if we can show that

(αvIv <: 17), ( x v n α | v <η)eLf{oc).

Let

Clearly,

π \La = id \La, π(ω t ) = α, π(X) = ( x v n α | v < α).

In particular,

(xv n α I v < α) e Lβ.

So as 7/ ^ α,

(xv n α I v < η) e L^.
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Now, α G L / ( α ) -<

But since n{ωι) --

α = ω\ι

Hence,

Thus

(xv n α |

^ ω i > s o

is countable".

= α,

v < > y ) e L / ( α ) .
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It remains only to prove that (αv | v < 77) e L / ( α ) .
For each v < η, let

π v : Nv = Lβ ( v ) .

Then,

π v t L α v - id f L α v , π v (ωχ) = α v .

Since α v = ω ^ ( v ) , the sequence (ocv\v<η) is definable from the sequence
(β(v) I v < η) in Z F ~ , so we shall be done if we can prove that

Well, we proved above that β </(α), so certainly β e Lf{a). Moreover, L / ( α ) is a
model of Z F " . So, working inside L / ( α ) we can define a sequence (JV̂  | v < η') of
elementary submodels of Lβ (for some ηf) as follows:

AΓQ = the smallest N <Lβ;

iV;+ ί = the smallest N <Lβ such that AT; u {AT;} c AT;

JVί= U ^ if li

(The ordinal f/' is the largest η' ^η for which the above construction is possible:
in a moment we shall see that in fact ηf = η.) Still inside L / ( α ), let

< : AT; ̂ L ^ ( v ) (v < η').

Thus

Now recall the dfinition of the original sequence (JVV | v < ω x ). Since v < η implies
Nv<Nη< L ω 2 , in the definition of the initial part (AΓV | v < η) of this sequence we
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could equally well use Nη in place of Lω2. That is to say, for v < η we have:

No = the smallest JV <Nη;

Nv+ι = the smallest N <Nη such that Nv u {Nv} c AT;

N , = U^Vv, if lim(<5).
v<<5

Now.

so an easy induction argument shows that for each v < η,

(The successor step uses II.5.3.) Hence η' = η and for each v <η9 the structures Nv

and AΓy have the same transitive collapse, i.e.

Thus

(β{v)\v<η)eLfiΛ)9

and we are done. D

3. Some Combinatorial Principles Related
to the Previous Constructions

Both for later use and for independent interest, we shall analyse the use of the
condensation lemma in the two previous constructions using V = L. We begin
with the construction of a Souslin tree (1.5). If we try to eliminate the use of the
elementary substructure argument of 1.5, we see that what we need is the follow-
ing:

There should be a sequence (Aa | α < ωx) such that Aa c T \ α, with the
property that whenever A c T, then for any club set C ^ωt there is an
α e C such that A n (T \ a) = Aa.

For then, given an uncountable maximal antichain A c T, we take

C = {a e ωx\ A n(T \a) is 3, maximal antichain of T \α}

and find a n α e C for which An(T\oc) = Aa.
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The problem with the above approach is that the sequence (Λa | α < ω x) is too
closely bound up with the tree, T, which we are trying to define. And until Tα has
been defined, we do not know which members of α2 will lie in T, of course.
However, this problem is easily overcome. By taking the elements of T to be
countable binary sequences as we did, we fixed in advance the ordering of T
(namely ^ ) , and concentrated all our efforts upon choosing the correct subset of

(J α2 for the domain of T. An alternative approach is to fix in advance the domain
α<ωχ

of T, say the set ωu and to define the ordering, < Γ , by recursion. Thus we can
commence by setting To = {0}, and if T \ (α + 1) is defined, then for each x e T α w e
can pick the first two unused ordinals in ωx and appoint them as successors to x
in Tα+ x (subject to some well-ordering of Tα). For limit ordinals α, if T Γ α is defined,
we use the next ω unused ordinals to provide extensions in Ta of each member of
a suitably chosen countable collection, £ α , of α-branches of T \ α. Analysis of the
proof in this form leads to the following combinatorial principle:

There should be a sequence (Sα |α <ω1) such that Sa^a and for each
X ^ ωγ and each club C ^ ω1 there is an α e C such that X n α = Sα.

(See 3.2 below for a construction of a Souslin tree using this principle.)
The above principle implicitly involves the classical set-theoretic concept of a

stationary set, which we now consider briefly.
A subset, E, of a limit ordinal λ is said to be stationary in λ iff E has a

non-empty intersection with every club subset of λ.
It is immediate that stationary sets are unbounded. They need not be club,

since the result of removing one (limit) point from any stationary set is a stationary
set, of course. If K is an uncountable, regular cardinal, every club set C ^ K is
stationary (by 1.6.1), and in this case the property of being stationary lies strictly
between the properties of being club and of being unbounded. For example, in the
case of ω 2 , the set {α + 11 α e ω2} is unbounded in ω 2 but not stationary, whilst
the set {α e ω2\ cf(α) = ω} is stationary in ω2 but not club. A classical result of
Ulam (which we do not prove here) states that if E ^ ωί is stationary, there are
disjoint stationary sets Ev ^ ωl9 for v < ω l 5 such that E = [j Ex.

\<ω\

Stationary sets are closely connected with "regressive functions". If λ is an
ordinal and E c A, a function/: E ^ λis said to be regressive iff, for each non-zero
α e E,f(cή < a.

3.1 Theorem (Fodor's Theorem). Let K be an uncountable regular cardinal, and let
E ^K be stationary. Iff: E -+κ is regressive, then for some β e K, the set

is stationary in K.

Proof Suppose that, on the contrary, for each β e K the set

{oceE\f(ct) = β}
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is not stationary in K. Then for each /? e K: we can find a club set Cβ c K such that

Let

= {aeκ\as f] Cβ}.

This set, C, is called the diagonal intersection of the sets Cβ9 β < K. It is not hard
to see that C is club in K. Hence, as E is stationary in K we can find a non-zero
ordinal oce CnE. For β < α, we have oce Cβ, so/(α) + /?. (Since α e £ , / ( α ) is
defined, of course.) Thus /(α) ^ α. But this is absurd, since / is regressive. The
theorem is proved. D

As an easy exercise, the reader might like to prove that if E c K is not station-
ary, there is a regressive function on E which is not constant on any unbounded
set. Thus stationary sets may be characterised as those unbounded sets E such that
all regressive functions on E are constant on an unbounded subset of E.

In terms of stationary sets, our previous combinatorial principle can be ex-
pressed as follows:

There is a sequence (Sα | α < ω^) such that Sa <= α, with the property that

whenever X c ωu the set {α e ωx\X n α = Sα} is stationary in ωx.

In turns out that this combinatorial principle has many applications, and thus
deserves a name. Following Jensen, who discovered it, we call it <C> (i.e. "dia-
mond").

By amending the argument of 1.5 we prove:

3.2 Theorem. O implies the existence of a Souslίn tree.

Proof. Assume O, and let (Sa\ α < ω x) be a O-sequence as described above. By
recursion on the levels we construct a Souslin tree, T, with domain ωγ. The
elements of T \ ω will be the finite ordinals, and for infinite α the elements of Tα

will be the oridinals in the set

{ξ\ωoc ^ ξ < ωα + ω}.

We shall carry out the construction so that for each α < ω l 5 T f α is a normal
(α, ω^-tree.

Set To = {0}. If n e ω and T \ n + 1 is defined, define T \ n + 2 by taking the
elements of Tn in turn, for each one picking the next two unused finite ordinals to
be its successors in Tn+ι. If α ^ ω and T \ α + 1 is defined, define T \<x + 2 by
using the ordinals in the set {ξ | ωα ^ ξ < ωoc + ω} to provide each element of Tα

with two successors on Ta+1. Since Ta is countable, this is easily arranged. There
remains the case where lim (α) and T \ a is defined. By the normality of T \ α, for
each x e Γ f α w e can pick an α-branch bx of T \ α containing x. The exact choice
of bx is unimportant except when Sa is a maximal antichain of T \ α, in which case
we ensure that bx n Sa φ 0, which is easy to do by virtue of the maximality of the
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antichain Sα in T \ oc. The ordinals in the set {ξ | ωα < ξ < ωa + ω} are then used
to provide one-point extensions in Tα of each of the (countably many) branches bx,
xeT\oc.

The above construction clearly provides us with an α^-tree, T. We need to
check that T is Souslin. It suffices to show that every maximal antichaίn of T is
countable. Let X c ω 1 be a maximal antichain of T. Set

C = {αeω1 |α)oc = α Λ l n α i s a maximal antichain of T \ oc} .

Now, if ωα = α, then T \ oc = Tc\ α, so X n α is certainly an antichain of T \ oc.lt
is easy to see that C is club in ω1 now. (The argument was given in 1.5.) So by O,
we can pick an α e C so that X n α = Sα. By the construction of Tα, every element
of Tα lies above an element o f l n α . Hence X n α is a maximal antichain in T.
Thus X = X noc, which means that X is countable, as required. D

Notice that O implies CH: for if (Sa | α < ω t ) is a O-sequence, then for each
set X c CD there is an ordinal α such that I = I n α = Sα. In fact O can be
regarded as a sort of "super-CJF\ This is highlighted by the following fact, whose
proof is left as an exercise (see Exercise 3). O is equivalent to the existence of a
sequence (SJ α < ω j such that Sα ^ α for each α and, whenever X ^ ω1 there is
at least one infinite ordinal α such that X n α = 5α. Ciϊ, on the other hand, is
equivalent to the existence of a sequence (Sa\ a < ωx) such that Sa ^ α for each α
and, whenever X ^ ω x , then for all α < ω x there is a jS < ωx such that X n α = Sβ.

The following result completes our analysis of the proof of 1.5.

3.3 Theorem. Assume V = L. T/ierc O is vα/irf.

Proo/. By recursion on α we define sets Sα c α, Cα ς α for each α < ω x .
To commence, we set

If 5α, Cα are defined, set

Finally, suppose lim(α) and Sγ9 Cγ are defined for all y < oc. Let (Sa, Cα) be the
<L-least pair of subsets of oc such that:

(i) Cα is club in oc;

providing that such sets exist, and set

Sa = Cα = α,

otherwise.
Notice that, by the above definition, the sequence ((Sα, Cα) | α < ω ^ is defin-

able in Lω2. We show that the sequence (Sa \ oc < ωλ) satisfies O
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Suppose that (Sa\ α < ω^) were not a O-sequence. Then for some set S c ωl9

the set

{α e ω J S n α = Sα}

would fail to be stationary in ωl9 so there would be a club set C c coί such that

Let (S, C) be the <L-least pair of such sets S, C. Notice that this definition will
define (S, C) in Lω2.

Let X -< Lω2 be countable, and let π:X ^ L .̂ By II.5.11, X n Lω i is transitive.
Let α = X n ω x . Then

π\La = id\La and π(ωi) = α.

Moreover, as is easily checked (cf. similar arguments in 1.5)

π(S) = S n α , π(C) = C n α, π((Sy|y < ωx)) = (Sy\γ < α),

Now, by elementary absoluteness considerations, we have

I=LCO "(S, C) is the <L-least pair of subset of ωί such that C is club in ωx

and(VyeC)(Sny 4=Sy)".

So, a s π " 1 : Lβ<Lω2,

^Lβ "(S n α, C n α) is the <L-least pair of subsets of α such that C n α i s
club in α and (V y e C n α) ( (Snα)nyΦ Sy)".

Thus, by another simple absoluteness observation (together with II.3.4(i)), we see
that (S n α, C n α) really is the <L-least pair of such subsets of α. But by definition,
this means that Sa = Snoc and Cα = C n α .

Now, as we saw above,

\=Lβ "C n α is unbounded in α".

Thus C n α really must be unbounded in α. But C is closed in ω t . Hence α e C.
But this implies that 5 n α φ S α , so we have a contradiction. The proof is com-
plete. D

A natural strenghtening of O would be the following: there is a sequence
(Sa\ α < ωx) such that Sα c α for each α and whenever X ^ ωx there is a c/wfc set
C c an such that X n α = Sα for all αeC. However, it is an easy exercise to show
that this is impossible. But by modifying the formulation of O a little, we can
obtain an equivalent statement which can be strengthened in the above fashion.
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Let O' mean the following assertion:

There is a sequence (TJα < ωλ) such that for each α, Tα is a countable
subset of ^(α), with the property that whenever X^ωί9 the set
{α e ωγ IX n α e TJ is stationary in ω x .

Clearly, O' is a consequence of O: if (Sα|α < ω j is a O-sequence, then
(Γα I α < ω j is a O'-sequence, where we set Ta = {Sa} for all α < α^. In fact, <>' and
O are equivalent, as we now show.

3.4 Lemma. O' and O are equivalent.

Proof Let (Γα | α < ωx) be a O'-sequence. We first of all use (Ta\ α < ω j in order
to construct a "O'-sequence" onωjxω. That is, we define a sequence ([/J α < ωx)
such that l/α is a countable subset of ^(α x ω) and for each set X c co1 x ω, the
set

{α e ω1 \ X n (α x ω) e C7α}

is stationary in ω^

To this end, choose a bijection

j : ω1<^ω1 xω

so that for all limit α < ω l 9

(/ fα):
For instance, using the fact that any ordinal in ωx has a unique expression of the
form

δ + 2m-{2n + 1 ) - 1,

where <S is either 0 or else a limit ordinal, and where m, n e ω, we can set

7((5 + 2m (2n + 1) - 1) - (δ + m, n).

For each α < ω l 5 now, set

f t / | C / e Γ α } , if

{0, otherwise.

It is easily checked that (Ua\ α < ωx) has the desired properties.
Now let (£/" I n < ω) enumerate Ua9 for each α < cox. Thus ί/ α "ςαxω and

whenever X c cot x ω there is a stationary set E ^ co1 such that for every ue E
there i sanπeω such that X n (α x ω) = (7". Now, in general, the n here, for which
I n ( α x ω ) = ί / α " , will depend upon α. But as we shall show below, this is not
always the case.

Claim, lϊ X ^ ωίxω, there is a stationary set F ^ ωγ such that for some fixed
n e ω, X n (α x ω) = ί/" for all cce F.
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To see this, let X c ω1 x ω be given. Choose E g ^ ! stationary so that

α e £ -• (3 n e ω) [X n (α x ω) = C/£|.

Define/: £ -» ω by setting /(n) = 0 for n e E n ω, and letting/(α) be the least n
such that X n(ocxω) = U", otherwise. Since / is regressive, Fodor's Theorem
(3.1) tells us that for some nsω, the set

F = {aeE\f(a) = n}

is stationary in ω1. Clearly, F is a claimed.
For each n < ω and each α < ωί9 now, set

We show that for some n e ω, (S" | α < ωx) is a O-sequence. Well, suppose other-
wise. Thus for each n e ω we can find a set Xπ c co1 and a club set Cn^ ω1 such
that

Set

x= u ftχW)^
Π < CO

c= n c,.

Then C is club in ωx and for all n < ω,

This contradicts our earlier claim, and completes the proof. D

The following principle, known as O* ("diamond-star") is an obvious
strengthening of O'

O*: there is a sequence (Sa | α < ωx) such that Sa is a countable subset of
έ? (α) and for any X <^ωx there is a club set C ^ω1 such that X n α e Sa

for all a e C.

It is clear that O* implies <>' (hence O) And it is known that O* does not follow
from O The next theorem provides us with an alternative proof of O from V = L.

3.5 Theorem. Assume V = L. Then O* is true.

Proof Define a function/: ω -• ωt by setting

/(α) = the least γ > α such that NLy"α is countable".

Let
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We show that (Sa\ α < ω x) is a <>*-sequence. Since each Sα is clearly a countable
subset of ^(α), what we must prove is that if X c ωx is given, there is a club set
C c cox such that X n α e Sa for all α e C.

By recursion, we define a sequence of elementary submodels

Nv<Lω2, v <<*)!.

Let

AΓ0 = the smallest JV -< L ω 2 such that X e N;

Nv+1 = the smallest N < Lω2 such that Nv u {Nv} c JV;

iV,= U ^ v , if liU
v<<5

By II.5.11 we can define αv e ω x by

αv = N

Clearly, the set C = {αv| v < ω t } is club in ωx. We show that X n α G Sα for each
α e C . Let v < ω t be given. Let

= α v, π (X) = Z n α v .

Then,

π: JV

π fa

In particular,

But

Xn

%,

whereas

α v =

V ~

Z v )

ω

= ^ 0

= i d

'ocv i

fαv, π(ωj

s countable",

Hence β </(α v ) and we see that

X n α v G L / ( α v ) .

Thus X n αv G SΛV and we are done. D

We turn now to our analysis of the construction of a Kurepa tree from V = L
(2.2). The essential combinatorial property of L used here is the following general-
isation of O* known as O + ("diamond-plus"):

O + : there is a sequence (Sa\ α < ωx) such that Sa is a countable subset of
0>(μ) and whenever X c coί there is a club set C ^ ωγ such that for all
α G C, both X n α e Sa and C n α G Sα.
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It is clear that O* is just an apparently weaker version of O+ In fact O+ is a real
strengthening of O* In particular, O* does not imply the existence of a Kurepa
tree, whereas O+ does, as we show below.

3.6 Theorem. Assume O+ Then there is a Kurepa tree.

Proof. As in 2.2, we choose to establish the existence of a family #" c ^(ω x ) such
that 13FI = ω 2 and \tF \CL\ ^ ω for all α <ωί9 rather than construct a Kurepa tree
outright.

Let (Sα| α < ω t) be a O+-sequence. Recalling that Hωi is the set of all heredi-
tarily countable sets, for each α < ω 1 ? let Mα -< Hωi be countable and such that

Set

If we can prove that 13F\ = ω2 we shall clearly be done. Suppose that, on the
contrary, |$F\ = ωx. (It is clear that #" is at least uncountable, since {α} e 3F for
all QL <ω1) Let (xv | v < ωx) enumerate all unbounded members of J*\ (This se-
quence does not have to be one-one. Hence, as we clearly have α^eJ^, the
sequence does exist.) For each v < ω l 5 let

Bv = {α e ωί I lim (α) Λ XV n α is unbounded in α}.

It is easily seen that £ v is club in ω x . Set

B = {αecϋillimία) Λ (VV< α)(αe£v)}.

It is easily seen that B is club in ωx. (B is essentially the diagonal intersection of
the sequence (βv |v < ωx), already mentioned in 3.1.) Applying O+ to the set
B c ωγ we obtain a club set C ^ ωx such that

Let (αv I v < ω t) enumerate, monotonically, the club set

{α G BI α = sup (C n α)).

For v < ω l 5 set

βv = min(C-(α v + 1)).

Thus

α v < βv < α v + 1 .

Set
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For any v < ωί9

v ^ αv < α v + 1 eB,

s o x v n α v + 1 is unbounded in α v + 1 . But

xnav+1 = {βτ\τ ^ v} c βv + 1 < α v + 1 .

Hence x ή= xv. We obtain our desired contradiction now by proving that xeJ^,
i.e. that x n α e Mα for all α < ωί.

If x n α is finite, then it is immediate that x n α e Mα, since

α c Mα < Hωι.

So assume x π α i s infinite. Let β ^ α be the greatest limit point ofxnα. Since
x n α differs from x n jS by at most finitely many points, and since Mα is a model
of ZF~, it suffices to prove that x n β e Mα. Now, β is a limit point of x and x c C,
so as C is closed in ωλ, β e C. Thus

, CnβeSβ.

But β ^ a. Hence

βnβ, CnβeMa.

Let λ be such that

Then

{αv| v < λ} = {α 6 5 n β \ α = sup [(C n jS) n α]} .

So, as

B n j 8 , C n i 8 ε M β ^ f ί ω i ,

we conclude that

{αv|v < λ}eMa.

But for v < λ9

Hence

and we are done. D
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To complete our analysis of 2.2 now, we prove:

3.7 Theorem. Assume V = L . Then O + is valid.

Proof. As in 2.2 we may define a function/: ωx -• ω x by letting/(α) be the least
ordinal such that

Set

Notice that / and (Sα | α < ωγ) are definable in L ω 2 (using the above definitions).
We prove that (Sα | α < ω x) satisfies O +

Suppose that (Sα | α < ω x) did not satisfy O + , and let X be the <L-least subset
of ωx such that for all club sets C ^ωx there is an α e C such that it is not the case
that both X n α and C n α lie in SΛ. Notice that X is definable in Lω2 by means
of this definition.

By recursion, define a sequence of elementary submodels Nv -< L ω 2 , v < ω x , as
follows:

No = the smallest iV <̂ L ω 2 ;

Nv+ι = the smallest iV < L ω 2 such that Nγ u {Nv} c JV;

Nδ= [j Nv, if lim((5).
v<<5

By Π.5.11, N n L ω i is transitive. Set

αv = Nvnω1.

Clearly, (αv | v < ω j is a normal sequence in α^. Let

π v : AΓV ̂  Lβiv).

Clearly,

π v t Lα v = id ί Lα v, π v (ωx) = αv, πv(X) = X n α v .

Let C be the set of all limit points of the set {β (v) | v < ω j . C is club in ω x . We
obtain our contradiction by showing that for all α e C,

I n α , C n α e S α .

Let αeCbe given. For some limit ordinal λ < ω l 5

α = supv<Aj5(v).

Claim 1. α = α λ .

To see this, it suffices to prove that for all v < ω l 5

αv < jS(v) < α v + 1 .
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Well, clearly, αv < β(v). But β(v) is definable from AΓV since Lβ(v) is the transitive
collapse of Nv, and moreover this definition relativises to Lω2 (i.e. is absolute for
Lω2). So, as

we have β(v)eNv+ί. Hence β(v) e α v + x , and the claim is established.

Claim 2. β(λ)<f((x).
To see this, note first that by definition of/,

But,

t=L/(α)"α is countable".

= (χλ = ω\β{λ).

Hence β (λ) < /(α), as claimed.
Now, by claim 1,

Xncc = πλ(X)eLβ{λ),

so by claim 2,

X n α e L / ( α ) .

Thus

X n α G 5α,

and it remains to prove that C n α e Sα. It clearly suffices to prove that

This is proved exactly as in 2.2, so we do not repeat the details here. Our proof
is complete. D

Exercises

1. ωγ-Trees and Souslin Trees (Section 1)

Let T be an cOi-tree, P a totally ordered set. T is said to be P-embeddable iff there
is an order-preserving map/: T -• P. Our interest concerns the cases when P is
either the rationals, Q, or else the reals, R.

1 A. Show that an α^-tree, T, is Q-embeddable iff there are antichains An9 n < ω,
of T such that

n< ω
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1 B. Show that if an c^-tree, T, is R-embeddable, it is an Aronszajn tree but not
a Souslin tree. (Hint: It is possible to utilise 1 A here.)

1C. Construct a Q-embeddable α^-tree. (The tree constructed in 1.1 almost suf-
fices.) Such trees are sometimes referred to as special Aronszajn trees, though we
shall use this name for a different notion (see Exercise IV. 1).

1D. It is known to be consistent with ZFC that every Aronszajn tree is Q-embed-
dable. (See Devlin and Johnsbrάten (1974).) Show that if V=L there is a
R-embeddable Aronszajn tree which is not Q-embeddable. (Hint: Take the ele-
ments of T to be countable one-one sequences of integers whose ranges are
co-infinite in ω, ordered by inclusion. Construct T by recursion on the levels to
satisfy the following condition:

ifcc < β < ω1 and s e Ta and σ is a finite set of integers, disjoint from ran (s),
there is a t e Tβ such that s c t and σ n ran (t) = 0.

Use V = L to ensure that if/: T-+Q were an embedding, there would be a limit
ordinal α < coχ such that for each xeTa there is a y e T, y <τx, such that
/(3θ =/(*)•)

2. Kurepa Trees (Section 2)

2 A. Assume V = L. Define /: ω t -> ωx by setting

/(α) = the least γ such that α e Lγ -< L ω i .

Construct an α^-tree as follows. The elements of Tα will be members of α2. The
ordering of T will be c Let To = {0}. If Tα is defined, let

If lim (α) and T \ a is defined, let

TOL = {(J b I fo is an α-branch of T ϊ α lying in L/ ( α )} .

Prove that T is a Kurepa tree.

2 B. Let T be the Kurepa tree constructed in 2 A. Show that there is a set U ^ T
which is a Souslin tree under the induced ordering.

3. The Combinatorial Principle O (Section 3)

3 A. Let O~ be the following principle: there is a sequence (Sa\ oc < ωx) such that
Sa is a countable subset of 0> (α) for each α and whenever X ^ ω1 there is an infinite
ordinal α such that X noce Sa. Prove that O is equivalent to O (Hint: First show
that O~ implies O~+, where O~+ is the same as O~ except that the α which is
asserted to exist is required to be a limit ordinal. Now let (Sa\ oc < ωλ) be as in O~ +

Define 7: ωx -• ωί by 7(v) = 2 v. Set Γα = {j~x "x \ x e SJ. Then (ΓJ α < ωA) is a O'-
sequence. The idea is that, given a club set C c cox from which we must find an α
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with X n α e Tα, for a given I g ω ^ w e construct a set Y c co1 whose intersection
with the even ordinals i s / ' X and whose intersection with the odd ordinals is a
diagonalisation set ensuring that iϊ Ynoce Sa, then α e C.)

3 B. Show that CH is equivalent to the existence of a sequence (Sα | α < ω ^ such
that Sα is a countable subset of ̂ (α) (α < ω x) and whenever X c ω 1 ? then

(Vα)(3j8MXnαeS,).

3 C. Show that O is equivalent to the existence of a sequence (SJ α < ω x) and a
function/: ω x -> ω x such that Sα is a countable subset of ^(α) for each α and
whenever X c ω 1 then for uncountably many cc < ωt.

(3β<f(a))(Xn*eSβ).

3 D. Let P assert the existence of a sequence (Ua\ α < ω x Λ lim(α)) such that (7α is
an increasing ω-sequence, cofinal in α, with the property that whenever X <^ ω1

is uncountable there is an α such that L/α c X. Show that in the presence of CH,
P is equivalent to O (It is known that in the absence of CH, P does not necessarily
imply O.) (Hint: Let (Xa\ α < ω t ) enumerate all bounded subsets of ω x so that
each set appears cofinally often. Define Sa = (J {X^ noc\β eUa} to obtain a
O~ -sequence.)

3 E. Show that O implies the existence of two non-isomorphic Souslin trees.

3 F. Show that O implies the existence of an R-embeddable tree which is not
Q-embeddable.

3G. Show that O implies the existence of a family {^4v|v < ω2} of stationary
subsets of ωλ such that the intersection of any two of them is countable.

4. O and O + in L[A] (Section 3)

Using the same kind of ideas employed in Exercises 11.2 and II.4, we prove that
O and O + hold in L[A], where A c ω\iA\

4 A. Assume V = L[A], where A c coί. Prove that O is valid. (Hint: For each
limit ordinal α, let (Sα, Cα) be the < L μ π α ] - l e a s t P a i r °f subsets of α lying in
L[A ncc] such that Cα is club in α and Sa n y Φ Sγ for all y e Cα, whenever possible.
Now argue analogously to 3.3.)

4B. Suppose V= L[A], where A c ω1. Prove that if ω\[An0ί] < ωi for alia < ωl9

thenω! is inaccessible in L [A n α ] for alia < (^.(Hint Ifω! were not inaccessible
in L[A n α] for all α < ω l 5 then for some α we would have ω x = ( g + ) L ^ n α i . By a
condensation argument, θ can be shown to be countable in some L[A n y]. Then

ω i = ω\iA π ^ for δ = max(α, y).)

4C. Assume V= L[A], where A c co^ Prove that O + is valid. (Hint: Define
δ: ω1 -> ω x by cases, depending on A. If ωj = ω ^ M n α ] for some α < ωl9 let α0 be
the least such, and let δ (α) = ωγ n Mα, where Mα is the smallest M <Lωχ [A] such
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that α0, α e M. Otherwise let (5(α) = ωf^0"1 (which is countable by virtue of 4B),
and set α0 = ω. For α < ωx now, let ά = max (α, α0). Set Sa = 0*(α) n L5(α) [A n ά].
Now argue as in 3.7, except for the fact that there are now the two cases to
consider instead of one.)

4 D. Prove that if there is no Kurepa tree, then ω2 is inaccessible in L. (Hint: Use
4 C, together with an absoluteness argument concerning Kurepa trees.)




