
Appendix

Nonstandard Compactness Arguments
and the Admissible Cover

One of the subjects we have not touched on in this book is applications of
infinitary logic to constructing models of set theory and the relationship between
compactness and forcing arguments. At one time we planned to include a chapter
on these matters, but the book developed along other lines.

In this appendix we present one example of such a result because it leads
very naturally to the admissible cover of a model 9JI of set theory. We want to
treat this admissible set for two reasons. In the first place, it gives an example
of an admissible set with urelements which has no counterpart in the theory
without urelements, and it is as different from HYP^ as possible. Secondly, we
promised (in Barwise [1974]) to present the details of the construction of this
admissible set in this book.

1. Compactness Arguments over Standard Models
of Set Theory

Let A = <^4,e> be a countable transitive model of ZF. Then A is an admissible
set and, moreover, (A,jR) is admissible for every definable relation R. We can
therefore apply Completeness and Compactness to LA or L(A Λ), for any such R.
There are many interesting results to be obtained in this way; we present one
here and refer the reader to Barwise [1971], Barwise [1974], Friedman [1973],
Krivine-MacAloon [1973], Suzuki-Wilmers [1973], and Wilmers [1973] for other
examples. We also refer the reader to Keisler [1973] for connections with forcing.

The axiom V = L asserts that every set is constructible.

1.1 Theorem. Let Ik be a countable transitive model of ZF. There is an end
extension 33 = <(#,£> of A which is a model of ZF + V = L.

Proof. Let T be the theory of LA containing:
ZF.
The Infinitary diagram of A.

We need to see that Tu{V = L} has a model. If not, then
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SO

by the Extended Completeness Theorem of § III.5. Thus A is a model of the
Σ! sentence expressing:

(1) 3Φ 3p \_p is a proof of (/\Φ)->(WL) where VxeΦ(xeZF or x is
a member of the infinitary diagram)] .

This Σ! sentence contains no parameters. Now let α = o(A) and let A0 = L(α).
Then AO is a model of ZF + V = L (it is the constructible sets in the model A
of ZF) and, interpreting Shoenfield's Lemma (Theorem V.8.1) in A, we have:
Any Σ! sentence true in A is true in A0.

Thus the sentence (1) is also true in A0. But this means that there is some
subset TQ of the infinitary diagram of A0 such that

which is ridiculous since A0 itself is a model of 7^ + ZF + V = L . D

There are a number of extensions of the above which will strike the reader;
most of these are covered by the version contained in Theorem 3.1 of Barwise
[1971]. What is not so obvious is how to extend the result from standard models
of set theory to nonstandard models. For if 31 = <,4,E> is a nonstandard model
of ZF then we have no guarantee that a "proof in the sense of $1 proves any-
thing at all. What we need is a new admissible set intimately related to 91 which
will allow us to carry out the above, and similar, proofs.

What is even less obvious is how to generalize results like Theorem 1.1 to
the uncountable. There are uncountable models of ZFC with no end extension
satisfying V = L, assuming of course that ZFC is consistent. Is there an un-
countable generalization of Theorem 1.1, involving consideration like /ιΣ(A),
which explains more satisfactorily why the result holds in the countable case?
The same question applies to all the results in Barwise [1971] and Barwise [1974].

2. The Admissible Cover and its Properties

In this section we will be considering models of set theory as basic structures over
which we build admissible sets. Thus we denote such structures by 95i = <M,E>
where E is binary. Recall, for xe9Jl, the definition

xE = {yeM\yEx}.

Let L contain only the relation symbol E; let L* = L(e, F) where F is a unary
function symbol. Let (f) be the axiom of L* given by

(t) Vp,x [x Ep^xE F(p)] Λ Vα
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An admissible set (for L*), say A^^^; ,4,e,F), is a cover of 501 if A^ is a
model of (|). That is, A^ is a cover of 501 iff

F(x) = xE for

0 for xεA.

The point of the definition is pretty obvious, assuming that we are working in
an admissible set A^ with 501 <£ AOT. A quantifier like Vx (x Ey-> . . .) is a bounded
quantifier in the sense of L but it is not bounded, in general, in L*. Using the
axiom (|) however, it becomes equivalent to the bounded quantifier Vx e F(y) (...).

In this way every formula φ of L translates into a formula φ of L* with the
properties :

if φ is Δ0 (resp. Σx) is L then φ is Δ0 (resp. ΣJ in L*

We use these remarks below without comment.
There are many admissible sets which cover a given structure 50Ϊ. For ex-

ample, if AaR = (SR; A,e) is admissible above 501 (in the sense of L(e)) then we
can define an A^-recursive F by

F(x) = {yeM\yEx}, xeM,

F(x) = 0, xφM,

and then (A^F) will be admissible in the sense of L(e, F) and will cover 501.
These admissible sets are not tied closely enough to the intended interpretation
of 501 for the applications we have in mind; they are too big with too many
subsets of $R. What we would like would be an admissible set A^ which covers
9JΪ and whose only sets of urelements are the sets of the form pE for peSR.

2.1 Definition. Let 9W = <M,E> be an L-structure and let (Cov^ be the inter-
section of all admissible sets which cover $R. More precisely,

where:

A = f } { B \ ( Ώ l ' , B , ε , F ) is admissible and covers

0 for aεA.

2.2 Theorem. // 5ΠΪ is a model of KP then Cov^ is admissible. Cov^ is called
the admissible cover of 501.

Proof. Deferred to § 3. D



368 Appendix: Nonstandard Compactness Arguments and the Admissible Cover

If we proved this theorem right now, the proof would look complicated and
ad hoc. What we shall do instead is to develop further properties of the admissible
cover in this section until, by the end of the section, we will know almost exactly
what (CovjK looks like. This should make the proofs (in § 3) easier to follow.

The next property of the admissible cover suggests the main step in the proof
of Theorem 2.2 and shows us that CovOT really lives in 901. (The corollaries of
Theorem 2.3 are easier to understand than 2.3 at a first reading.)

2.3 Theorem. Let 501 = <M,E> be a model of KP. There is a single valued notation
system p projecting <CovOT into 501 satisfying the following equations (where we use
x for the unique y such that p(x) = {y}, where 0, 1 denote the first two ordinals
in the sense of 50i and where < , ) is the ordered pair operation as defined in $01) :

(i) For xeM,

(ii) for αeCoVgpj, there is a yeM such that

ά = <l,y>

and yE = {x\xεa}.

Proof. Deferred to § 3, 3.1—3.7. D

Call a set a^Wl of urelements 9)1- finite if a — xE for some

2.4 Corollary. Let 501NKP and let α^50ϊ. Then a is Wl-finίte iff
Hence for any αeCov^, the support of a is $01- finite. In particular,

Proof. Let α^9W, αeCov^. Using the notation from 2.3,

where yE = {x\xea}. But α^9Jl so x = <0,x> for all xeα. Then we can define,
inside the model 501, the following set by Σ Replacement, remembering that
ΪRt-KP:

and then zE = a. The converse is trivial. D

Corollary 2.4 is very useful in compactness arguments involving Cov^, for
it tells us that if Γ0 e (Cov^ is a set of infinitary sentences, then the set

{xeM x is mentioned in T0}

is 50ϊ-finite. Recall that x is the constant symbol used to denote x. D
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We can use the projection from 2.3 to identify the pure sets in Cov^ and the
ordinals

2.5 Corollary. Let 2Rl=KP. Let A0 be the transitive set isomorphic to
The pure sets in Cov^ are exactly the sets in A0. In particular, o(<Covm) =

Proof. Since A0 is admissible (by the Truncation Lemma) it is closed under TC
so it suffices to prove that every transitive set 0eA0 is in Cov^ in order to prove

since Cov^ is transitive. Let αeA 0 be transitive and let

where xen^y(9K). Since Cov^ is admissible, by 2.2, we can apply Theorem V.3.1
in CoVjoj to see that ae(£ovm. To prove the other inclusion define the following
function by recursion in 9DΪ (more precisely, define it by Σ Recursion in KP and
interpret the result in 9JΪ):

(It is only the second clause which is relevant here but we'll use ' again later.)
Let η: </^/(90ίl),£> = <A0,e> and consider the following diagram, where
DO = [a I a a pure set in Cov^} :

Pure part (Co v^) -=-> D0cM

We claim that, for every pure set αeCov^, (ά)'e^/(9Jl) and η((ά)') = a, which
will conclude 2.5. The proof is by induction on e. First, ά = <l,x> where
xE = {b:bea}. But then (ά)' = z where

Thus (ά)E^iT?(W) by part of the induction hypothesis, and hence (a)'
Computing η((ά)') we get

= { η ( ( ί ) ' ) \ b e a } .
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The other part of the induction hypothesis states that η((b)') = b for bεa so we
get

= α. D

Using 2.4 and 2.5 we can give a picture of (Cov^. The dotted line in 9W is the level
at which it becomes nonstandard (if it is nonstandard).

Wl

Fig. 2 A. A model $R of set theory next to its admissible cover

The projection given in 2.3 is ad hoc in that we could have used others. The next
function, by contrast, is canonical.

Let Ayn = (yR;A,€,F) be admissible and a cover of $R. A function * is an
e-retraction of A^ onto Wl if x* is defined for every xeA^ and satisfies the fol-
lowing equations:

(1)
\p*=p for

\(a*)E = {b*\bea} for all

We can use the projection given by Theorem 2.3 to prove the following characteri-
zation

2.6 Corollary. Let 9JINKP. (Cov^ has an ^-retraction into 9JΪ and it is the only
admissible set covering 9JΪ which has such an e-retraction.

Proof. The proof is an elaboration of the proof of Theorem 2.5. It is clear that any
admissible set A^ covering 9Jί has a function * satisfying (1), simply by the second
recursion theorem for KPU:

x* = y iff (x is an urelement Λ y = x) v

(x is a set and F(y) = {b* \ b e x}) .

The problem is that x* won t usually be defined for all x. Let us first show that
for A^^Cov^, x* is defined for all x. Define ' just as in the proof of 2.5. We
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claim that for all

371

(x)' is defined

(p)'=p for peM

((ά)')E = {(x)'\xea} for aeM .

This is proved by induction just as in 2.5 and shows that x* is defined for all x
since x*=(x)'. This proves that Cov^ has an E-retraction onto $R. Let A^ be
any other cover

which has a totally defined e-retraction *. Let D be the domain (in the peculiar
sense of Definition V.5.1; that is D = rng( )) of the notation system of Theorem 2.3
and let

\p\ = the unique x such that x = p

for pεD. Thus | | maps D onto (Cov^. Define an A^-recursive function / from
ASK into ®ί using * :

/(P)=<0,p>

See Fig. 2B at this point.

Fig.2B.

A simple proof by induction on e shows that f(x)eD and |/(x)|=x, for all
xeAm. Thus A^^Cov^ so (Eovm = A<m since (Cov^ is the smallest admissible
set covering 9JΪ. D

The e-retraction * of Cov^ onto 9W is not one-one, of course, since (α*)* = α*
but a*Φa, for any set αeCov^. Otherwise, though, it is far more natural and
less ad hoc than the projection of Theorem 2.3. We saw in the proof of 2.6 how to
reconstruct the projection from *.

Also note that * is (Cov^-recursive.
For applications of (Cov^ we need two more properties of (Cov^. The first

tells us what Σ^ on Cov^ means in term of 9Jί.
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2.7 Theorem. Let 9Jlt=KP. A relation S on SK is Σ! on Covw iff S is Σ+ inductive
on 9JΪ; that is, iff S is a section of Iφ where φ = φ(vl,...,υΛ>R+) is some Σ inductive
definition (in the language L(R)) interpreted over 90Ϊ.

Proof. Deferred to 3.9. D

The last property we need relates the admissible covers of two different
models 3W, 31. Let 9K = <M,£>, 91 = <ΛΓ,F> where 9K^9ί. Note that $ϋϊ<Ξend9ίi
if (Cov^cCov^. If 9K,9tNKP and 5ϋtcend9l then Cov^ c Cov^, as the
construction in § 3 makes translucent.

2.8 Theorem. Let W,9ί^KP, SRcend$R.

only if

Proof. The translation φ->φ defined at the beginning of this section makes
the (<=) half of this theorem immediate. The converse follows from the considera-
tions of the next section. D

3. An Interpretation of KPU in KP

The proofs of the theorems of §2 all involve interpreting the theory KPU of
L(e, F) in the theory KP of L, in the sense of § II.4, and then applying this inter-
pretation to models 501 of K P.

The interpretation is the one suggested by the projection of Cov^ into 5DΪ
which we want to construct to prove Theorem 2.3 :

where

yE = {x\xEa} .

3.1 The Interpretation /. We are dealing with two separate set theories, KP
formulated in L with E as a membership symbol and KPU + (|) formulated in
L(e, F) with e as the membership symbol, so this must make things a bit confusing
no matter what we do. In this subsection we want to work axiomatically within
KP so we use e for membership when we really ougth to use E, just because it
seems the lesser of two evils. We use the usual notation for symbols defined in KP,
symbols like 0, 1, <*,)>>, OP (for ordered pair).
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Define predicates within KP by the following:

xE'y «-> N(x) Λ N(y) Λ (2nd(x)e2nd(y))

Set(x) <-> 3y[x = <!,}>> Λ Vze.y(N(z) v Set(z))]

OP(x) Λ 1 st(x) = 1 Λ ze2nd(x)

The predicates N, E',<ί and F' are defined by Δ0 formulas. The predicate Set is
defined, using the second recursion theorem, by a Σ t formula. We use these to
define our interpretation as follows, where L* = L(e, F) is considered as a one-
sorted language with relation symbols U (for urelement), S (for set)

Symbol of L* Interpretation in KP under I

Vx Vx(N(x)vSet(xH...)

U(x) N(x)

S(x) Set(x)

xEy xE'y

xey x$y

F(x) F'(x)

3.2 Lemma. / is an interpretation of KPU + (f) in KP. That is, for each axiom φ
of KPU + ft), φ1 is a theorem of KP.

Proof. We run quickly through the axioms, beginning with (f). The interpretation
of (t) reads

VxVy[N(x)Λ N(y)->(xE';y4-*x<f F'GO)] .

So suppose N(x)ΛlN(y). Let x = <0,x0>, y = <0,y0>. Then the following are
equivalent :

xE>,

Extensionality: The interpretation of Extensionality asserts that if Set(x) and
Set(y) and

Vz[(N(z) v
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then x = y. Assume the three hypotheses. Let x = <l,M>, y = <l,ι;>. Then zS'x
iff zew, z$y iff zεv. Since every zewui; satisfies N(z) v Set(z), u = v and hence
x = y.

Foundation: Suppose there is an x such that

Set(x)Λ<pJ(x).

Choose such an x of least possible rank. Then since y£>z-+rk(y)<rk(z), we have

Vz[Set(z)Λz<ίx->-V(z)].

Pair: Suppose N(x)vSet(x) and N(y) v Set(y). Let

Then Set(z)Λ(w<ίz<->(w = x v w = >;)).

Union: Suppose Set(x). Let

by Δ0 Separation and let j; = <l,y0>.

Δ0 Separation: Let φ be a Δ0 formula of L(e, F). The formula φ1 is a Δ0 formula
of L* when L* is expanded by the symbols N, E', E, F'. Suppose Set(x), say x = <l,x0>.
Let

y0 = {zex0\φI(z)}

by Δ0 Separation and let ^ = <1,^0) Then

zS'y iff z£x/\φ\z).

Δ0 Collection: Suppose φ(x,y) is Δ0, suppose Set(«) and that

Vx^a3y[N(y) v Set(y))Λ φI(x9y)'] .

Let α = <l,Λ0> so that the above becomes

Vxeα 0 3y [(N(y) v Set(y)) Λ φI(x9y)'] .

By Σ Reflection there is a b such that

Vxεa0lyeb[(N(y) v Set(y))Λ φ^y)]^ .

Let
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by Δ0 Separation and let b1 = <l,fe0>. Then

y ) . D

3.3 The model 9ft-'. Let 9JΪNKP. Let TV, E', Set, δ, F be the predicates and func-
tion defined in Wl by the corresponding symbols of KP. Then, letting 91 = <ΛΓ,F>
we have

= 93α, say.

93<n is a model of KPU + (t), by 3.2. The structure 91 is isomorphic to 9W via the
map x^<0,x>. If DOT is any admissible set covering 9Jί then

N,E',F' are D^-recursive, as is the isomorphism χπ-><0,x>

Set,

by the remarks at the beginning of § 2.

3.4 The model ^(SDΓ7). Let 9Kt=KP and let 93* be as defined in 3.3.
is the largest well-founded substructure of 93 ,̂ before being identified with a
transitive set this time. Notice that 1̂ 7(93̂ ) is closed under F' since F'(x) is always
a set of urelements. Thus by the Truncation Lemma, ^7(93 )̂ is a well-founded
model of KPU + (t) If ID^ is admissible and covers $R then

Λf,E',Fare D^-recursive, as is the isomorphism x -^<0,x> and

Set n ̂ 7(93 )̂, g\ (Set n ̂ (»«)) are Dro-r. e.

The first follows from 3.2. The second line follows from Theorem V.3.1.

3.5 The admissible set isomorphic to iS*7(2R~J). Let ΪR^KP and let

where A is transitive (in V^). By 3.4, Agj is admissible and covers 9t. Let D^ be
any admissible set which covers 9W. By 3.4 and Theorem V.3.1, there is a D^-
recursive isomorphism of 9W and 91, and A is D^-r. e.

3.6 (Cov^ defined. Let 9Jlt=KP and let A^ be as in 3.5. The isomorphism ί'.yi^ 9W
extends to an isomorphism of Vgj onto V^ by :

carrying every transitive set in V^ onto a transitive set of Wm. In particular, A^
is carried over to an isomorphic admissible set over 9M, say A^ =
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where A' = {i(a)\aεA}. We claim that this A^ is the admissible cover of ΪR.
It clearly is admissible and covers 501. Let DOT be admissible and cover $ϊt. The
isomorphism i can be defined by e-recursion in D^ and so A^ £ D .̂ Thus A^
is contained in every admissible set covering M so A^^Cov^. This proves
Theorem 2.2.

3.7 The projection. It is clear from the above construction of (Cov^ that every
xeM is "denoted by" <0,x> and that every αeCov^ is denoted by

where yE is the set of "notations for" members of a. Turning this around gives the
desired projection.

We saw, early in §2, how to translate Σl formulas of L into Σ^ formulas of
L*, using the covering function. We now see how we can translate Σ! formulas
of L* into "formulas" about 9JI.

3.8 Translation Lemma. Let 3yφ(x,y) be a Σ^ formula of L*, where φ is Δ0,
and let ψ(x,z) be the interpretation

a formula of L Let 9Wl=KP, let a = o((Covm) and let xeCov^. Then

iff there is a β<a such that

Proof. Suppose Cov^ \= φ(x, y). Then

for some "standard ordinal" z of 50l~J. Thus, by Corollary 2.5,

for some β <α. The other half follows from 3.3—3.7. D

3.9 Proof of Theorem 2.7. A complete proof of Theorem 2.7 would include a
proof of the following fact. The Σ+ inductive relations on 9W contain all Σ relations
and are closed under Λ , v , 3 and substitution by total Σ1 functions. This is proved
just as in Exercise VIA 18. But, given this, we have an easy proof of Theorem 2.7
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from 3.8. Suppose R is Σi on Cov^, say

where φ is Δ0. Let θ(x) = Ordty)1 and define

Γ( U) = [x I M 1= 0(x) Λ Vy Ex U(y)} .

Then Γ is a Σ+ inductive definition over Wl and IΓ is the set of {β \ β < α =
Furthermore

R(p) iff 3ze/Γ00ϊ^«0,p>,z))

so R is Σ+ inductive. The other half is trivial since any Σ+ inductive definition Γ
over ΪR transforms into a Σ+ inductive definition Γ over Cov^, and then, by
Gandy s Theorem, /f is Σ1 on Cov^. D

3.10 Proof of Theorem 2.8. Suppose W^end9l and.aR^SR. Since aRcend9l,
Covαrlcend(Cov9l so any Σ predicate true in Cov^is true in Cov^,. In particular,
the projections for (Cov^ and Cov^ agree on αeCov^, so we may write a for
this projection without fear of confusion. Suppose αeCov^ and

where φ is Δ0. Then there is a β<o((£ov<m) such that 91 is a model of

by 3.8. Hence 91 is a model of

(1) 3z [Ord(z)7 Λ [3χrk(3θ - z Λ φ(ά,

Since ΏK^, 9K is also a model of (1). By Lemma 3.2, 501 is a model of (Founda-
tion)7 so 9Jί is a model of

3z [Ord(z) l Λ [3Xrk(y) = z Λ φ(ά, y)]7 Λ

[Vwe z -i 3y(rk(y) = w Λ φ(ά,

Pick such a "least" z. Since 9W^end9l, this least z must be ^β in the sense of E,
so it must be a standard ordinal. That is, there must be some y<o(Covw) such
that γ = z. Thus 9K is a model of

so, by 3.8,

Thus
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3.11 — 3.13 Exercises

3.11. Prove that a relation S^JR (a model of KP) is s-Πj over 9Jί iff it is s-U\
over Covggj.

3.12. Prove the following result of Aczel: Let S<^Wl (a countable model of KPU).
Prove that S is s-Π\ on 9Jt iff S is Σ+ inductive on SR. [Combine 2.7, 3.9 and
VII.3.1.]

3.13. Extend the construction above from models of KP to models of KPU.

4. Compactness Arguments
over Nonstandard Models of Set Theory

In this final section we want to show how the admissible cover can be used to
extend results from standard to nonstandard models. We give two simple examples.

We know from Theorem VII.1.3 that no countable admissible set A is self-
definable. An equivalent statement (in view of Exercise VIII.4.19(iv)) is that if A
is countable, admissible and

for some first order sentence φ(R) (possibly involving constants from A) then
there is a proper end extension 95 of A such that

Phrased this way, the result holds for any countable model of KP, standard or
nonstandard (or countable model of KPU by 3.13).

4.1 Theorem. Let 9W = <M,£> be a countable model of KP such that

for some sentence φ(R). There is a proper end extension 91 of 9M such that

Proof. Let A^A^^Cov^ and let LA be the admissible fragment given by A.
Let x be a constant symbol in A used to denote x, for each xeM, and let T be
the following Σ: theory of LA :

diagram (9JI)

φ(R)

(all xeM) .
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We can form the first sentences since A covers $R. We must prove that T is con-
sistent. Since A is a countable admissible set, the Compactness Theorem implies
that if T is not consistent, then there is a T0^ j, T0eA such that Γ0 is not con-
sistent. By Corollary 2.4,

{xeM|x occurs in T0}

is 9Jl-finite. But then there is always some yeM left over to interpret c so T0 is
consistent. D

Our final result extends Theorem 1.1 from standard to nonstandard models
of set theory.

4.2 Theorem. Let 9M = <M,E> be any countable model of ZF. There is an end
extension 91 of Wl which is a model of ZF + V = L.

Proof. Let SR0 be the submodel of SR such that

M0 = {x e M 1 9W 1= "α is the first stable ordinal" Λ x e L(α)} .

Then by Shoenfield's Absoluteness Lemma (see § V.8)

Let A^Cov^R, A0 = CovaRo, so that Ao^A by Theorem 2.8. Let T be the
theory of LA containing

ZF

Vt;[ι;Ex<-»\/y6jeEι; = y], for all xeM.

The proof now proceeds exactly like the proof of Theorem 1.1 except that the
model of Γ0 is not 9W0 but the model 90^ where

M i = {x e M 1 9PΪ 1= "x is constructive" } .

The reason for using 3Jlί9 rather than 9Jt0> is that SO^-^SDl (parameters are not
allowed in Shoenfield's Lemma) but the statement of Theorem 2.8 requires -<^
One could equally well improve 2.8. D

4.3 — 4.4 Exercises

4.3. Prove that both assumptions ΪR|=KP and $R is countable are needed for
Theorem 4.1.

4.4. Show that if ZF is consistent then there is an uncountable model of ZFC
which has no end extension satisfying ZF + V = L.




