
Chapter VIII

Strict Π{ Predicates and Kόnig Principles

1. The Kόnίg Infinity Lemma

In this section we discuss some of the uses of the Infinity Lemma in ordinary
recursion theory. The applications chosen for discussion are those which be-
come important new "axioms" or Kόnig Principles, when stated in the abstract.

Let T = <T, •<> be the full binary tree, as pictured below.

11

The set T is the set of nodes (finite sequences of O's and Γs) ordered by

d'<d

if the sequence d' properly extends the sequence d. If S^T is such that d0εS
and do^di implies d^eS, then S = <S, <fS> is called a subtree of T. If S is
a subtree then any maximal •< -linearly ordered subset b of S is called a branch
through S.

1.1 Kδnig Infinity Lemma. Let S = <S,-<tS> be any subtree of the full binary
tree. The following are equivalent:

(i) S has no infinite branch,
(ii) S is well founded,

(iii) 5 is well founded and has finite rank,
(iv) S is finite.
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Proof. Each of the implications (iv) => (iii) => (ii) => (i) is completely trivial so we
need only prove (i)=>(iv), or equivalently, —ι(iv) => —ι(i). Suppose S is infinite.
Let d0 = ( >eS. Either 0 or 1 has infinitely many predecessors in S so let dv

be the least of these which has infinitely many predecessors in SA Let^ dneS have
infinitely many predecessors in S and let dn+1 be the first of dβ, <0 which has
infinitely many predecessors in S. One of them must. Then

b = {dθ9dl9d29...}

is an infinite branch through S. D

One can generalize 1.1 trivially by allowing each node to have any finite
number of immediate predecessors, instead of exactly two, but once you allow
infinitely many, the theorem becomes false, as the following tree shows.

Indeed, the Infinity Lemma is so tied to the notion of finiteness and the integers
that it is difficult to generalize in a really useful way. So, rather than generalize
the Infinity Lemma itself, we go back and look for useful consequences of the
Infinity Lemma. Three of these consequences have turned out to play important
roles when generalized to other admissible sets. In this section we prove these
three results.

A predicate P ( x , f ) of integers x and number theoretic functions / is r.e. iff
there is a recursive predicate R(x,y) of integers such that

P(x,f)~3nR(xJ(n))

where f(n) is (a code for) the finite sequence </(0),...,/(n —1)> and R(x, f(n))
implies R(x,f(m)) for all m^n. (This may be taken as the definition or verified
easily from any other reasonable definition. This is the natural extension of r.e.
to predicates P ( x , f ) of numbers and functions.)
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1.2 Definition. A predicate S(x) on the integers is strict-Π{ (or s-Π\ for short) if
it can be written in the form

where P is r.e.
Here we use 2ω to denote the set of characteristic functions, i. e., those func-

tions mapping ω into 2 = {0, 1 } . The word "strict" refers to the fact that / ranges
only over 2ω, not over all number theoretic functions.

Our first application of the Infinity Lemma is to prove the following result.

1.3 Theorem (s-Π} = r.e., on ω). A predicate P on ω is strict-Ill iff P is r.e.

Proof. To prove (<=) just add a superfluous function quantifier. To prove (=>)
write

(1) P(x)~V/e2ω In R(xJ(n))

where R is recursive and satisfies

For /e2ω, each f(n) is a sequence of O's and 1's and so is really just a node on
the full binary tree T. The condition on R above asserts that

R(x,d)*d'<d=>R(x,d')

or, turning it around,

Thus, Sx={d\-\R(x9d)} is a subtree of T. If we restate (1) in terms of trees, it
becomes

(2) P(x) iff Sx has no infinite path,

which becomes, by the Infinity Lemma,

P(x)<r+Sx is finite

^3ΛΓW of length N,dφSx

<-+3ΛΓW of length N,R(x,d)

where #' is recursive. More informally, P(x) holds iff you can find a finite subtree
such that R(x,d) holds for every end-node d on S. D
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In proving 1.3 we also proved the next theorem. This (or a relativized form
of it) is what Shoenfield [1967] refers to as the Brouwer-Kόnig Infinity Lemma.

1.4 Theorem (s-Π} Reflection for ω). Let

define a strict-Til predicate. Then for any x

Proof. This is contained in the proof of 1.3. D

We will see in § 4 that the equation "s-Π} =r.e." can be viewed as abstract
formulation of the completeness theorem for Lωω and that "s-Πj Reflection for ω"
corresponds to the compactness theorem for Lωω. The fact that our proof of 1.3
also gives 1.4 corresponds to the fact that most proofs of the completeness theo-
rem yield compactness, but not vice versa.

Our final application of the Infinity Lemma is to the notion of implicit ordinal.
We state the definition in general to save repeating the definition in § 5.

1.5 Definition. Let SR be a structure for some language L, let R, S be two new
n-ary relation symbols and let <p(R,S) be a sentence of L(R,S), possibly con-
taining parameters from 501. Let α be an ordinal. The sentence φ(R,S) implicitly
defines α over 501 if the relation -<φ defined by

R<φS iff (9Jί,R,S)t=φ(R,S)

is well founded and α is its rank, i.e., a = ρ(^φ).
Our final application of the Infinity Lemma shows that if a Π° relation

φ(R,S) on ω implicitly defines an ordinal, then that ordinal is finite. In § 6 we
will learn that any α implicitly defined by even a Σ} sentence on ω is just the
order type of a recursive (explicit) well-ordering of ω. These two facts explain
why the notion of implicitly defined ordinal does not arise explicitly in ordinary
recursion theory.

A predicate φ(R,S) on ω is Π? iff ~Ίφ(R,S) is r.e. (To fit this into our de-
finition of r.e. replace R, S by their characteristic functions.)

1.6 Theorem. Let φ(R,S) be a 11° predicate of n-ary relations on ω. If the rela-
tion <φ defined by

iff <P(R,S)

is well founded, then its rank is finite.
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Proof. By use of pairing functions we can assume n = l, i.e., that R, S range
over subsets of ω. Assume -< is well founded so that

(2)

For any /e2ω let (/)π = {χ|/(2x3") = l}. We can restate (2) as

(3)

Since φ is Π?, the predicate ~ιφ((/)π+ι,(/)J is an r.e. predicate of /, n. By
s-Πj reflection there is an N <ω such that

which says that there is no sequence

RN + 1 ^φ RN ^φ ' ' ' ̂ φ *M ~^φ ̂ 0

Thus p K K A Γ + l. D

1.7—1.10 Exercises

1.7. Prove the relativized version of the theorems of this section. (The fact that
s-Π} Reflection holds relativized to any relation R on ω is expressed by saying
that ω is strict-I\\ indescribable)

1.8. Let R<S iff R,S<^ω and the least member of R is less than the least
member of S. Show that this is an r.e. predicate of R, S and that it implicitly
defines ω.

1.9. Let R-<S iff R.S^ωx ω, R, S are well-orderings and R is a proper initial
segment of 5. Show that this is a Π} relation which implicitly defines the first
uncountable ordinal.

1.10. Let -< be a well-founded relation on subsets of ω defined by a Σ} sen-
tence φ. Show that the rank of •< is <ω\. [Hint: Show that ρ«) can be pinned
down by a sentence of Lωc.]

1.11 Notes. The equation "s-Π|=r.e., on ω" was first observed by Kreisel in
the proof of the Kreisel Basis Theorem (cf. p. 187 of Shoenfield [1967]).

2. Strict Π{ Predicates: Preliminaries

Over ω, or HF, the strict-Π} predicates coincide with the r.e. predicates (by 1.3)
so it is difficult to see the exact role that the notion of strict-Π } plays in traditional
model theory and recursion theory. In general, however, strict-Π} does not
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coincide with Σl. By studying the s-Πj predicates in the general case, then, we
see more clearly the role they play over ω.

Let L* = L(e,...) be the language for KPU. We assume that there are only
relation and constant symbols in L*, no function symbols. (This is not an essential
restriction — see Exercise V.I. 8.) Let R1 ? R 2, be an infinite list of new relation
symbols, an infinite number of arity n for each n<ω. Let L*(R) be the expanded
language.

2.1 Definition, i) The strict-Hi formulas (s-Π} for short) of L*(R) form the smallest
class containing the Δ0 formulas of L*(R) closed under Λ , v, Vwet;, 3weι;, 3w
and the clause

if Φ(R;) is strict-Πί so is VR^(R;).

The strict-Π} formulas of L* consist of those s-Tl\ formulas of L*(R) which have
only quantified occurrences of the new relation symbols R l 9 R 2,... .

ii) The strict-Σ\ formulas form the dual class; that is, they form the smallest
class containing the Δ0 formulas closed under Λ, v, VWEI;, 3uev, Vw, 3R f .

There are two essential restrictions in the definition of strict-Π { formula.
First, only existential quantifiers over individuals are permitted. Second, only
universal second order quantifiers are allowed, and then only over relations, not
over functions. If we were to allow universal second order quantification over
functions, then we could build in first order universal quantification (by the
manipulations discussed in § IV.2). These observations are summarized by the
diagram:

strict-Πί formulas

ϋ ^Σ formulas Π} formulas

^ c,
first order formulas

All inclusions are proper.
Don't forget that L* may have extra relation symbols (like a symbol for the

power set relation) which are allowed to occur in Δ0, hence in s-Π}, formulas.
Satisfaction of s-Π} and s-Σ} formulas is defined in the classical second order

manner. Thus

SK^VRΦ(R)

means that for every relation R on 9K (of the correct number of places)

The study of s-Πj predicates is one of the few places in logic where the dif-
ference between relation symbols and function symbols really matters. In § 1
we defined s-Πj over ω in terms of quantification over characteristic functions,
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rather than the relations they describe, just to fit with standard practice in ordinary
recursion theory. Here the approach with relation symbols is more natural.

The following simple lemma expresses one of the most crucial properties of
strict-Π} formulas.

2.2 Lemma. Strict-Til formulas persist upwards under end extensions. That is,
If ^^ ®$n are ^-structures with %0ι^end®<n> and If Φ(vl,...,vn) is a s-Π} for-
mula of L* then

q,...,*,,] implies

for all x^.^eSlspt.

Proof. We need to prove a bit more to keep the induction on s-Π} formulas
going. Let 2Iαn^end®<R be jμven. We prove by induction on s-Π} formulas
Φ(Rί,...,Rm,v1,...,vn) of L*(R) that for all relations R^...,Rm on SK and all

implies

The proof is just the proof of persistence of Σ formulas with a new case for VS
thrown in. Suppose

(1)

Let S be any relation on 93^ of the correct number of places. By (1)

(2) (^,Rl\^,...9RJ[

so, by the induction hypothesis,

as desired. Notice that if we had allowed quantification over function symbols
step (2) would fail; just because S is a total function on 93^ is no reason to
suppose that St%0ι is a tota^ function. D

Let ί̂̂  be a structure for L*. A relation P on 91̂  is s-Π} if it can be defined
by a s-Π} formula of L* with parameters from Vlm. P is s-Σ} if P can be defined
by a s-Σ} formula with parameters. P is strict-Δ} if P is both s-Π} and s-Σ}.

A function is s-Π}, s-Σ} on s-Δ} iff its graph is s-Π}, s-Σ} or s-Δ} respectively.

2.3 Lemma. // a total function f on 91̂  is s-Π} then it is s-Δ}.



318 VIII. Strict Π} Predicates and Kδnig Principles

Proof. Since / is total,

f(xl9...9xn)ϊy iff 3z[/(x1,...,xJ = zΛ

Replacing f(x) = z by its s-Π} definition gives us a s-Π} definition of
or equivalently, a s-Σ} definition of the graph of/. D

2.4 Examples. Let A be an admissible set. We give three examples of strict-Π}
predicates which are not, in general, Σx. Note, however, that if A is countable
then these relations are Σ1 (for rather trivial reasons).

(i) Define P(a,b) iff card (α)< card (b). Then P is s-Π} on A.
(ii) Define P(a) iff card (a)< card (A). Then P is s-Π} on A.

(iii) Define P(a,b) iff b = Power (α), the real power set of a. P is s-Π} on A.
If A is closed under the power set operation then P is s-Δ} on A.

Proof, (i) We can write card (ά)< card (b) as

VR [R^bxa^Vxeblyea R(x9y)
-> 3x,x'eb 3yeα(x^xΆ R(x,y)Λ R(x',y))]

which asserts that no relation on b x a can be a one-one map of b into α.
Schematically, we can rewrite this as

VR[Π 1(R)ΛΔ 0(R)^Δ 0(R)].

Replacing -> by v we get

which is s-Π}. The proof of (ii) is much the same. To prove that fc = Power(α)
is s-Π}, note that fo = Power(α) iff

c f l)Λ VR

The second sentence of (iii) follows from 2.3. D

A formula is in s-Π} normal form if it is of the form

VRlyί,...,ymφ(υί,...,υn9y1,...,ym9R)

where φ is Δ0. The next lemma states that every s-Π} formula is logically equiv-
alent to one in normal form.

2.5 s-Π} Normal Form Lemma. Assume that L* has a constant symbol 0. For
every s-Π} formula Φ(x,R) of L*(R) there is a s-Π} formula Φ' in normal form,
with exactly the same free variables and free relation symbols, such that for all
L* structures ^lm:

Vx [Φ(x, R)<->Φ'(X, R)] .
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Proof. We describe five quantifier-pushing manipulations which allow us to put
any s-Π} formula in normal form.

(i) VR 1 VR 2 Φ(R 1 ,R 2 )«VSΦ'(S)

where S is rc + w-ary, n being the arity of R1 ? m the arity of R 2, and where Φ'(S)
results from Φ by replacing

R!^,...,^) by S(tl9...9tn9Q9...90)9

R2(ί1?...,ίm) by S(0,...,0, *!,...,*„)•

(ii) V R i 3x φ Λ V R 2 3y ψ ++ V R t V R 2 3

as long as the various symbols are distinct. Similarly for v .

(iii) Vx 3R Φ(x, R)<-+3R' Vx Φ'(x, R')

where Φ' results from Φ by replacing R(ί l5...,ίπ) by R'(x9tί9...9t^. Taking
negations on both sides of (iii) we get

(iv) 3xVRΦ(x,R)^VR /3xΦ'(x,R /)

which lets us pull VR out in front of 3x. The bounded existential quantifier step
follows from (ii) Λ (iv). The only remaining step is the bounded universal quantifier.

(v)
<->VU

The part in brackets is Δ0 since it can be written

Vzεa (U(x) Λ U(z)^x = z) -> Vxea (U(x)^Φ(x, R,

It is now clear, by induction on s-Π} formulas, that we can put every s-Π} formula
in normal form. D

The Normal Form Lemma is quite useful. We use it in proving the next
theorem, and repeatedly in this sections to come.

Recall, from § IV.3, that for countable structures 9K

Π} on 9JI - Σ! on HYP^.

We proved an absolute version of this theorem in § VI. 5, by showing that

inductive* on 501 - Σx on HYP^ .

We close this section by proving a different generalization.
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2.6 Theorem. Let 9W = <M,Λ1,...,R/> be an infinite structure. A relation S on
is Πj on m iff S is strict-Ill on

To see that this is a generalization of the countable result we need to know
that, for 9W countable,

5-ΠJ on HYRro - Σ! on

This follows from Theorem 3.1 of the next section.

Proof of Theorem 2.6. We first prove the easy half (=>). Suppose

S(x)<->9Ml=VRφ(x,R).

Then

The part within brackets is Σt since all quantifiers in φ(M) are bounded by M,
an element of HYP^. To prove (<=) we must reexamine the proof of Theorem
IV.3.3, the result that

Σ! on HYRro => Πj on 501

regardless of 9Jΐ's cardinality. Suppose S is s-Π} on HYPOT, S^aR. By the
Normal Form Lemma we can write

S(p) iff HYPT ONVP3j;φ(pJ,P,f)

for some z = z1,...,zfcelHYPS[R. As in the proof mentioned above, we can replace
all parameters zi by good Σ1 definitions and so assume all parameters are from
Mu{M}. Let's say

S(p) iff HYP^VP3j?φ(p,y,P,4,M).

By the persistence of s-Πj formulas under end extensions, and by the truncation
lemma, S(p) is equivalent to

(!') (Wn,P)*=19φ(p39P,q,M) for all P and all models 91̂  of KPU+

(of cardinality card(5M)).

From here the proof proceeds exactly like the proof of IV.3.3, by coding up (Γ)
on M, with the extra VP riding along for free. D
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2.7 Exercise. Let Mm be any structure for L* and let Γ be a s-Π} inductive de-
finition on 91̂ ; i. e.

xeΓ(R) iff (9ίs

where Φ is s-Π}. Show that the fixed point IΓ is s-Π} on Mm.

2.8 Notes. The only theorem of this section comes from Barwise-Gandy-
Moschovakis [1971].

3. Kόnig Principles on Countable Admissible Sets

Strict-Π} formulas give us a language for expressing important new principles,
or axioms, for admissible sets; principles that isolate important aspects of the
Infinity Lemma.

In this section we discuss three Kόnig principles and show that they hold
on all countable admissible sets. Their role in the general case is discussed in
the remaining sections of this chapter.

K!: An admissible set A satisfies

if every strict-Til relation on A is already a Σl relation on A.

It is important to remember that this equation (s-Π} =Σ t) depends very much
on just what extra relations may be part of our admissible set A=(9W; A,e,...)
in those three little dots. Add a new relation to A and you increase both the
number of s-Π} formulas and the number of Σί formulas. It should also be kept
in mind that the Σί formula defining a s-Π} predicate P may have parameters
not appearing in a given s-Π} definition of P.

3.1 Theorem. Every countable admissible set satisfies s-Π} =Σί.

Proof. We will prove more; namely, that every Σί complete admissible set A
satisfies s-Π}=Σ1. Let P be s-Π} on A. By the Normal Form Lemma we can
write P in the form

P(x) iff A l = V R φ ( x , R )

for some Σί formula φ. Let T be the usual infinitary diagram of A:

diagram (A),
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By the persistence of s-Πj formulas under end extensions (Lemma 2.2) the fol-
lowing are equivalent:

P(χ),

93NVRφ(R,x) for all ®^e n dA,

) for all »3endA and all R^W1,

If A is Σ! complete then the set of x such that T\=φ(R,x) is a Σί set. D

Before stating the second Kδnig Principle, K2, we need to define the notation
Φ(α) for second order formulas Φ. To obtain Φ(α) one relativizes all unbounded
first order quantifiers to a (replace 3w by 3weα, Vw by Vweα) and replaces

...) by 3R[Rc=a"A(.. .)],

...) by VR[Rc f l»->(...)].

Note that if Φ is strict-Πj, or even Π}, then Φ(α) is strict-Π} with free variables
those of Φ and the new variable a.

3.2 Lemma. For every structure $1̂  for L* and every s-H{ formula Φ(vl,...,vn)
of L*, the following are true in 9IOT:

(i) VaVv1,...,vnεa[Ύτan(a)ΛΦ(a\v)-*Φ(v)~]',

(ii) Va,b,Vvl,...,vnεa[Ίτan(a)Λa<^bΛΦ(a\v)-*Φ(b)(v)'].

Proof. This is just another version of the persistence of s-Π} formulas under end
extensions. It can be proved directly or deduced from Lemma 2.2. D

K2: An admissible set A satisfies strict-Hi reflection if for every s-H\ formula
Φ(vl,...,vn) and every x1,...,xneA, A satisfies

Φ(x) -> 3α [Tran(a)Ax l 5 . . . ,x n eaA Φ(α)(x)].

We will see in §§ 4, 6 and 7 that s-Π{ reflection is a strong assumption. For
now we prove that it holds in all countable admissible sets.

3.3 Theorem. Every countable admissible set satisfies s-Π\ reflection.

Proof. Again we prove more with an eye toward the next section. This time we
prove that if A is Σt compact then A satisfies s-Π} reflection. Let Φ(vί9...,vn)
be s-Π}. By the Normal Form Lemma there is a formula Ψ(vί9...,vn) in s-Πj
normal form logically equivalent to Φ. It follows that Ψ(a\v^...v^ is logically
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equivalent to Φ(a)(vί9...9υn) so it suffices to prove reflection for formulas in s-Π}
normal form. So suppose Φ(v) is VR φ(v, R) and that A=Aα ϊ ί and

where φ is a Σ1 formula. Let T be the infinitary diagram of A, as in 3.2. As we
saw in that proof,

T\=φ(xl9...9xn9R).

By Σ! compactness there is a T0^T, T0eA such that

T0\=φ(xl9...9xH9R).

Let a0 = {y\y occurs in 7^}u{x1?...,xπ} and let a = ΊC(a0) so that aeA. Then

so

which is another way of saying that Φ(fl)[x1?...,xJ holds. D

The third Konig principle concerns the notion of implicit ordinal introduced
in 1.5 and is suggested by Theorem 1.6.

An ordinal α is a Π implicit ordinal over A if there is a Π sentence φ(R,S),
possibly containing parameters from A, which implicitly defines α over A (in
the sense of 1.5). The notion of a s-Σ} implicit ordinal is defined in a parallel
fashion. (It will turn out that every s-Σ} implicit ordinal is less than some Π im-
plicit ordinal; see 3.11 or 6.3). It is easy to see that every β<o(A) is a Π implicit
ordinal over A.

K3: The third Konig principle asserts that every Π implicit ordinal over A is
an element of A.

One might paraphrase K3 by saying that the Π implicit ordinals over A are
explicitly in A.

3.4. Theorem. Every countable admissible set satisfies the third Kδnig principle.

Proof. Since hΣ(A) = o(A) for countable A, 3.4 follows from 3.5. D

Admissible sets do not, in general, satisfy K3. In general, the Π implicit
ordinals know new bounds.

3.5 Theorem. Let A be admissible and let a be a s-Σ} implicit ordinal over A.
// β = hΣ(A) then a<β.
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Proof. Let Jk=Am be admissible and let α be the rank of the well-founded
relation -<φ where Φ is s-Σj; say

iff (A,

and φ is a Π sentence. We can assume that Q, R, S are all unary (i. e. range over
subsets of A) since the pairing function <x,y> is A-recursise. We need to find
a Σί theory T of LA which pins down α. The crucial observation is contained in (1).

lf ATOcendBw and (»^,^,S)^3Q φ(Q,R,S), and if R0 =
( ί then R0<ΦS0.

This follows from (A^,#0,So)^end(®<n>^>S) by thes-Σj version of Lemma 2.2.
From (1) we get (2).

(2)

Let AaϊicendS5n. The relation -< on subsets of 23^ defined by

Λ<S iff (»w,

is well founded. Hence any subrelation -<" of •< is well founded.

For, by (1), any infinite descending sequence in -<' would give rise to an
infinite descending sequence in -<φ.

It is pretty obvious how to use (2) to pin down the ordinal α by building
the hypothesis of (2) into a Σt theory T = T(<,...). The language for T will
contain the symbols of L* = L(e,...); a constant symbol x for each xeA; unary
symbols A (for A\? (for Power(A)), U (for α); binary symbols E (for &r\(A x P)),
-< (for <φ), < (for efα); and a function symbol F. The intended model for T,
the one with <m of order type α, is:

9W = <4uPower(4)uα;yl,...; Power(A), er\(A x Power(A)),-<φ;α, <,F>

where F(x)=0 for x^field«φ), F(R) = <φ-rank of R for R in field of <φ.
Hence rng(F) = α and R<ΦS implies F(R)<F(S). The theory T contains:

Vx[A(x)vP(x)vU(x)],

Infinitary diagram of A,

Extensionality for E,

"Ec=AxP".

(3) Vr,5 [r<5^P(r)Λ P(s) Λ Jy(P(q)Λφ(q9r9s))'].

(4) "< linearly orders U, rng(F) = U, F(x)=0 for x#field(X), and
F(s)=<-sup{F(r) + l : rXs} for sefield«)".



3. Kόnig Principles on Countable Admissible Sets 325

In line (3), φ(q,r,s) denotes the result of replacing R(x) by xEr, — \R(x) by
~ι(xEr) and similar for Q, S. (We are abusing notation since q does not range
over urelements here.) To see that T pins down α it remains only to prove that
for any other model 9W of T, <9W is well ordered. Let $R be any model of T. We
can obviously assume 90Ϊ has the form

where A^^S^ and P^ Power (33 )̂. To see that < is well ordered it suf-
fices, by (4), to prove that X" is well founded. But this is immediate from (2)
and (3). D

3.6 Corollary. // $Jl = (M,Rί,...,Rιy is countable and α is a first order, or even
Σ}, implicit ordinal over 901 then α<O(5[R). In particular, α is countable.

Proof. If α is Σ} over 501 then it is s-Σ} over HYP^ so the result follows from 3.5. D

3.7 Corollary. Every Σ} implicit ordinal over ω is less than ω{.

Proof. Immediate from 3.6 since ω\=O(J/^}. D

As we mentioned in § 1, Theorem 1.6 and Corollary 3.7 together account for
the fact that implicit ordinals seldom appear in ordinary recursion theory on ω.
They do appear in parts of mathematics far removed from the theory of ad-
missible sets. We present one example suggestive of others.

3.8 Example. Let 5DΪ be a Noetherian module (over a ring with identity), that is,
a module with no infinite chain

of submodules. Then

MXM" iff Mr, ΛΓ are submodules, M"cM'

defines a first order implicit well-founded relation. Its rank α = p(-<) is called
the length of 9W, α = /(ϊR). Thus /(ΪR) is a first order implicit ordinal over M.
This ordinal plays an important role in the structure theory of Noetherian modules.

3.9—3.12 Exercises

3.9. Prove a uniform version of 3.1. That is, show that for every s-Π} formula
Φ(υl9...,vJ there is a Σ^ formula φ(v^...,vn) such that for every countable ad-
missible set A,
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3.10. Prove directly that every s-Σ} implicit ordinal is ^ some Π implicit ordinal
over A.

3.11. Let 9Jl = <M, #!,..., Kj> and let α be a Σ} implicit ordinal over SR. Im-
prove 3.5 to show that

3.12. Prove that on the class of admissible sets A and relations P on A, .

"P is Σ! on A"

is the absolute version of

"P is s-Πl on A".

4. Kόnig Principles K^ and K2

on Arbitrary Admissible Sets

To summarize, the three Kόnig Principles introduced in § 3 are :

K
K

strict-Πί reflection;
Every Π implicit ordinal over A is an element o f ,

These three principles are generalized recursion theoretic statements which
attempt to capture different aspects of the Infinity Lemma. Each of them has
a model-theoretic counterpart for the infmitary logic LA. In this section we
discuss the counterparts of K^ and K2.

The basic tool for the study of all three of these principles is the Weak Com-
pleteness Theorem of § VII.2. Our first theorem explains the reason for referring
to that result as a completeness theorem.

4.1 Theorem. Let A be admissible and let T be a set of sentence of LA which is
strict-Til definable on A. The set

A: T\=φ}

is also strict-Π{ on A.

Theorem 4.1 will follow from the Weak Completeness Theorem and the next
Lemma.

4.2 Lemma. Let A be admissible and let LA be a Skolem fragment which is Δt

on A (in the sense of Lemma VII.2.4). There is a Π sentence φ(D) such that for
any ^^A:

Q) is an s.v.p. for LA iff (A,
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Proof. Since LA is Δx on A, Z^koiem is a Δt subset of A. 2 is an s.v.p. for LA iff
(A, ®) satisfies all the following conditions:

Vφ [(φ an axiom (Al)— (A 7) of LJ->(φe

® is closed under (Rl)— (R3),

VΦ [V Φ e 0 Λ ( V Φ a sentence) -> 3φ e Φ(φ e @)~\ .

Each of these conditions is naturally expressed as a Π condition on 2, so the
lemma is proved. Note the important role played here by Skolem fragments. If
we had to do without 4"ζkoiem^ ®"> we would have to add the clause

= φ(ι?)Λ(3ι;φ(t;))e ^->3ί [φ(t/v)e

which is not Π due to the unbounded 3ί. D

Proof of Theorem 4.1. We may assume, by VII.2.4, that LA is a Skolem frag-
ment Δ! on A and that every model of T can be expanded to a Skolem model.
By the Weak Completeness Theorem we have T\=φ iff

V® [0 an s.v.p. for L A Λ Γ^ @^φe &\.

By 4.2 this takes the form

where Φ(υ) defines the s-Π} theory T. The hypothesis of the outer implication
is s-Σ} so the whole becomes a s-Π} predicate of φ. D

4.3 Corollary. An admissible set A satisfies s-Tl\=Σ1 iff A is Σx complete.

Proof. The implication (=>) follows from 4.1. The other direction was proved
explicitly in the proof of Theorem 3.1. D

4.4 Corollary. The set of valid sentences of the admissible fragment LA is always
s-Π} on A.

Proof. Let T = 0 in 4.1. D

At various places in the book we have referred to Σί as a syntactic generali-
zation of r.e. on ω and to strict-Π} as a semantic version of r.e. on ω. The next
corollary of 4.1 makes this precise.
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A subset X^A is a complete Σ1 set (or complete sfπcf-Π} set) for the ad-
missible set A if X is Σl (resp. s-Π}), and for any other Σί set (resp. s-Π} set)
Y on A there is a one-one total A-recursive function F such that

ye Y iff F(y)eX

for all yelk.
Recall that T\-φ means that φ is provable from T in the sense of LA. (This

notation occurs in § III.5.)

4.5 Corollary. Let A be admissible. Let L contain L*(R) and a symbol x for each
xeA and let L'A be the admissible fragment given by A. Let T be the infinitary
diagram of A.

(i) The set X0 = {φeL'A | TΊ— φ} is complete Σ^ for A.
(ii) The set Xί = {φeL^\T\=φ] is complete s-Π} for A.

Proof, (i) is implicit in much of Chapters V and VI. It can also be obtained simply
as the absolute version of (ii). To prove (ii) note that Xl is s-Π} by 4.1 and that
every s-Π} set is one-one reducible to X± by the proof of 3.1. D

An analogous proof shows that on "bad" admissible sets, s-Π} can be as far
from Σ! as is conceivable.

4.6 Corollary. Let A be a self "-definable admissible set. Then H{ = strict-Ill on A.
That is, every Π} relation on A can be defined by a strict-Hi formula.

Proof. Let T be a Σl theory of LA which self-defines A. By 4.1, Cn(T) is s-Π}.
But by Lemma VII.1.9, every Π} relation on A is one-one reducible to Cn(T)
so every Π} relation is s-Π}. D

For example, Π}=strict-Π} on H(Kα+1) for all α^O, by VII.1.4.

We now turn to consider the logical role of strict-Π} reflection.

4.7 Theorem. An admissible set is Σl compact iff it satisfies sίricί-Π} reflection.

Proof. The implication (=>) was proved explicitly in the proof of Theorem 3.3. To
prove the converse, suppose that A is admissible and satisfies s-Π} reflection and
that T is a Σ! theory of LA. Assume further that every T0^ 7; T0ε A has a model.
By Lemma VII.2.4 we may assume that LA is a Skolem fragment and that every
T0^T, TOE A has a Skolem model. We will prove that T has a Skolem model.
Suppose, aiming at a contradiction, that T has no Skolem model. By the Weak
Completeness Theorem, no s.v.p. Q) for LA can contain T as a subset. Hence
(A,T) satisfies the s-Π} sentence Ψ(Ύ) expressing:

V ® [0 an s.v.p. for L A ^ 3 x ( x e T Λ x < £ ̂ )].

Let θ(v) be the Σ! formula defining T. The line above becomes

^ an s.v.p. for L A -»3x(θ(x)Λx
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which is a s-Π{ sentence Φ(y) with parameters y those of Θ(v) = θ(v,yί9...9yk). By
5-Π} reflection there is a transitive set αeA with yea such that Af=Φ(β)[y].
Let A0 = (9Knα;α,e,...) and let

so that TJe A by Δ0 Separation and TQ^T since θ is Σx. Since Φ(α)[y] holds
we have

We don't really know what Ψ(Ύ) says on A0, but (A0,7ί))cend(A,Γ0) so, by the
persistence of s-Π} formulas

(A,T0)I=?P(T).

But this says that 7^ is not a subset of any s.v.p. 2 for LA. Hence 7^ has no
Skolem model, a contradiction. D

Thus we see that two different aspects of the Kόnig Infinity Lemma, those
expressed by K{ and K2, reflect themselves in related but apparently distinct
aspects of first order logic. K t is responsible for the Completeness Theorem,
K2 for the Compactness Theorem.

One usually thinks of the Completeness Theorem as implying the Com-
pactness Theorem. The corollary to the next result shows this to be the case
for resolvable admissible sets. The general case is still open.

4.8 Proposition. The resolvable admissible sets are divided into two disjoint classes:
those that are Σ1 compact and those that are self-definable.

Proof. Proposition VII. 1.3 shows that no self-definable A can be Σt compact.
Now let A be a resolvable, admissible set which is not Σt compact. We must
show that it is self-definable. Since A is resolvable there is a total A-recursive
function J : o(A) -> A such that

α<jS=>J(α)eJ08),

J(α) is transitive, for all α,

Since A is not Σx compact, A does not satisfy s-Π} reflection, by 4.7. Thus there
is a s-Πj formula Φ(t ), and an xeA such that A satisfies:
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The second formula is s-Σ[ and so is logically equivalent to a s-Σ{ formula

3Rφ(x,R)

where φ is Π^ Let σ(u,v) be a Σί formula defining J :

J((ή = y iff ANσ(α,y).

The Σ! theory used to self-define A consists of:

The infinitary diagram of A ,

Vw, v [J(w) = ι;<->σ(w, v)~\ ,

Vx3l l [Ord(M)ΛXeJ(M)],

Vιι[Tran(J(u))],

φ(x,R).

Let (33<n,J) be any model of T. We can assume Agt^end^R We need to show
that AαR = 939l. If not, let xeS^ — A^. Then by the axioms on σ,

95wN3α[Ord(fl)ΛxeJ(α)].

Pick such an a. Then a is an ordinal of 93^ but aφA^ for if αeAw then
J(α)eA which implies xeA. Thus α>β for all jSeA. But then J(β)^J(a)
holds in 93*, for each jβeA. Thus Acend<j(α),£> and so Φ(J(fl))(x) holds.
This contradicts

since this asserts that Φ(fl) fails for all transitive b, in particular for b = J(a). D

4.9 Corollary. Every Σ^ complete resolvable admissible set is Σt compact. In other
words, K t implies K2 on resolvable admissible sets.

Proof. If 5-Πj^Σi then s-Π}^Π} and hence A cannot be self-definable,
by 4.6. Then by 4.8, A must be Σx compact. D

What is wrong with the following argument? If s-Π^Σj then (since Σ
reflection holds in all admissible sets) we must have s-Π} reflection. If you try
to fill in the steps in this argument you see that one is missing a certain uniformity
in the equation s-Π^Σi. This uniformity is captured by the next definition.

Let A=Am be transitive, let Φ(vlί...,vn) be strict-Π} and let φ(vl9...,vn)
be Σ1? where extra parameters from A are permitted in φ. We say that φ is
uniformly equivalent to Φ on A if

(1) .

(2) A t= Vα Vt^, . . . , vn € α [Tran (α) Λ ψ(a\v) ->• Φ(a\v)\ .
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4.10 Lemma. Let A=Am be transitive, closed under pairs and TC. Let φ(vί9...9vn)
be a Σl formula which is uniformly equivalent to the s-Π} formula Φ(vl,...,vn)
on A. For all x1 ?...,xπeA, A satisfies:

Φ(x) <-> φ(x)

<r+la [Tran(α) Λ xεa Λ <p(fl)(x)]

<-» 3fl [Tran(fl) Λ xea Λ Φ(fl)(x)] .

Proof. Write φ(vί,...,vn) as Byi/^,...,^,);) where y is Δ0. By (1),

If At=^(x,.y) then let a = ΎC({y,xl9...9xn}). Then αeA and φ(α)(^) holds so

φ(jc) -> 3α [Tran (a) Λ x e φ(fl)(*)] .

By (2), the right hand side of the above line implies

la [Tran(α) Λ xea Λ Φ(fl)(x)] .

By Lemma 3.2 (i), the above implies Φ(x). D

4.11 Definition. An admissible set A satisfies

5-Π}=Σ1 uniformly

if for each s-Π} formula Φ(vί9...,vn) of L* there is a Σl formula φ(vί9...,vn),
possibly with additional parameters from A, such that φ is uniformly equiv-
alent to Φ on A.

4.12 Theorem. An admissible set A satisfies s-Tl{=Σl uniformly iff A satisfies
s-Π\=Σl ands-Π\ Reflection.

Proof. The implication (=>) is immediate from Lemma 4.10. To prove that con-
verse, assume that A satisfies K^ and K2 and that Φ(vί,...,vn) is s-Π}. We must
find a Σί formula φ(vl,...,vn) uniformly equivalent to Φ(v1,...,vn) on A. Let
Ψ(vl9...9vn9b) be the s-Π} formula

[Tran(fe)Λ ϋ l 9.. .,!?„€& ΛΦ(>!,.. .,!;„)].

Since s-Π}=Σi there is a Σj formula \//(vi9...9vn9b) equivalent to Ψ(vί9...9vn9b)
on A. Let <p(vί9...9υn) be

3bψ(vί9...9υn9b).

To prove φ(v) uniformly equivalent to Φ(i ) first suppose that Φ(x) holds in A.
By s-Π} Reflection there is a be A such that Ψ(X9b) holds in A. But then ψ(Z9b)
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holds so φ(x) holds. To prove (2), suppose that αeA is transitive, that x l 5. . .,xπeα
and that φ(a)(x) holds. Then there is a be a such that ψ(x,b)(a} holds in A. Hence
ψ(x, b) holds in A and so

Tran(ft)Λ *!,..., x n e&ΛΦ ( f c ) (x).

Since bea and a is transitive, b^a so, by 3.2 (ii), Φ(α)(x) holds, as desired. Q

4.13 Corollary. An admissible set A satisfies s-Πj = ΣX uniformly iff A is Σx com-
! compact. D

4.14 Corollary. On resolvable admissible sets the condition s-Yl\=Σl is equivalent
to the condition s-Tl\=Σ1 uniformly.

Proof. By 4.9 and 4.12. D

The condition 5-11}=^ uniformly clearly captures a great deal of the re-
cursion theoretic and logical content of the Infinity Lemma. If you state it in
the "s-Σj =Πί uniformly' version, it even looks like the Infinity Lemma, at least
from one point of view. We will use it in § 6 to help us find interesting uncountable
Σ! complete and Σl compact admissible sets.

4.15—4.21 Exercises

4.15. Let α be admissible but not recursively inaccessible, let A = L(α). Prove
that the valid sentences of LA form a complete s-Πj set. Show that for any ad-
missible /?^ω l9 β is recursively inaccessible iff the set of valid sentences of Lβ

is ^-recursive.

4.16. A subset X of an admissible set A in bounded if X^a for some αeA.
Let A be admissible and satisfy s-Π} Reflection. Let T be a set of sentences of LA

which is s-Πj on A. Prove that if every bounded subset T0^T has a model
then T has a model. (It is open whether one can improve this by replacing
"bounded" by "A-finite".)

4.17. Let A be admissible. Suppose that for every Δ0 theory T of LA, if every
TQ^T, T0eA has a model, then T has a model. Show that A is Σ! compact.
[Show that s-Π} Reflection holds.]

4.18. Let A be admissible, α = o(A). A is s-Δ} resolvable if there is a limit ordinal
and a s-Δj function J:Λ,-»A such that

β<ξ=>JβeJξ for ]

Jβ is transitive for all β < λ ,
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The ordinal λ is said to be the length of the hierarchy J on A.
(i) Prove that if α = 3α then #pα) is s-Δ} resolvable. [Hint: If α = Sα then

HpJ = V(α). Let J, = VGB).]
(ii) Prove that if A is s-Δ} resolvable and if J is as above with A<o(A) then

A is self-definable.
(iii) Strengthen Proposition 4.8 to: The class of s-Δ} resolvable admissible

sets are divided into disjoint two classes, the Σ^ compact and the self-definable.
(iv) Let κ = 3κ. Show that <#(κ),e,^> satisfies K t iff it satisfies K2.

4.19. Kunen [1968] introduced an invariant definability approach to generalized
recursion theory on admissible sets by introducing the notions of a.i.d., i.i.d.,
and s.i.i.d. (see below) as generalizations of the concepts of finite, recursive
and r.e. In Barwise [1968], [1969 b] we showed that s-Π}=s.i.i.d. (see (ii)). (This
leads to the formulation of s-Π{ Reflection and the results of this section in
Barwise [1968], [1969 b].) Let A be admissible and let P be an rc-ary relation
on A. P is

(a) absolutely implicitly definable (a.i.d.) on A ,
(b) invariantly implicitly definable (i.i.d.) on A ,
(c) semi-invariantly implicitly definable (s.i.i.d.) on A

if there is a finitary first order sentence 0(P,Sl5...,Sfc) of L*(P,...) such that

(A,P)N3S1,...,SJk,θ(P,S1,...,Sfc)

and such that if Ac e n d® and P'c®" satisfies

then

(a) P =

(b) P =

(c) PcΞ

The sentence θ may contain parameters from A.

(i) Prove that P is i.i.d. iff P, ~ιP are s.i.i.d.
(ii) Prove that P is s.i.i.d. iff P is s-U\. [One half of this uses 4.1.]

(iii) Prove that if A satisfies s-Πj =Σ: uniformly then

s.i.i.d. — Σ! on A,

i.i.d. = Δ! on A,

a.i.d. — element of A .

(iv) Prove that A is self-definable iff A is a.i.d. on A.
(v) Prove that if A satisfies K2 then every a.i.d. subset of A is bounded.
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4.20. The notion of uniformity given by Definition 4.11 is really suggested by
the notion of proof. Prove directly, using the Extended Completeness Theorem
that if A is countable and admissible then A satisfies s-Πj^Σ! uniformly.

4.21. A more recursion theoretic version of the uniformity discussed in 4.11 and
4.20 was discovered by Nyberg. Prove that the admissible set A satisfies s-Π} =Σ1

uniformly iff for every s-Π} formula Φ(x,T+) in an extra relation symbol T there
is a Σ! formula φ(x,T+) such that for all Σx relations T on A, (A,T) satisfies

Vx[Φ(xJ+)~φ(x,T+)].

[Show that this condition is equivalent to Kt Λ K2. Note that in the proof of 4.7,
T occurs positively in

4.22 Notes. See Exercise 4.19 for the way s-Π} predicates found their way into
the subject. Corollary 4.9 was observed by Nyberg. For the record, it is still
open whether every Σ^ complete admissible set is Σx compact. (Surely not!)
It follows from Theorem 8.3 (applied to L(α)) that there are lots of resolvable
Σ! compact sets which are not Σj complete.

5. Kόnίg's Lemma and Nerodes Theorem:
a Digression

In this section we interupt our study to apply the condition

s-Π} = Σ! uniformly

to notions of relative definability.
One of the starkest applications of the Infinity Lemma in ordinary recursion

theory is the proof of Nerode s Theorem:

B is truth table reducible to C iff there is a total general recursive operator g
with %(KC) = KB.

Here B,C<^ω and KB is the characteristic function of B. This says, in effect,
that the total general recursive operators rather trivial.

Since Nerode s Theorem uses so little about ω, other than the Infinity Lemma,
it becomes a good test case for abstract versions of the Infinity Lemma, the
matter which concerns us in this chapter.

Turing reducibility breaks up into many non-equivalent notions over an
arbitrary set. We discuss generalizations of Nerode's Theorem for three of these:

<d is "Δ definable from",

^w is "weakly meta-recursive in",

^mr is "meta-recursive in".
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5.1 Definition. Let A be admissible and let φ(x,C), ψ(x,C) be Σ formulas,
possibly containing parameters from A. Let B, C be subsets of A. We say that
B^dC (via <φ,ιA» if for all xeA:

xεB iff (A,C)N<p(x,C),

xφB iff (A,C)Nι/φc,C).

If, for every C there is a £ such that £^dC via <φ,^> then the pair <φ,ιA> is
called a general Δ definability operator g over A, and we write 5(Q = B.

By the relativized version of Theorem II.2.3, if A = HF then B^dC iff B is
recursive in C, so that ^d coincides with Turing reducibility.

What is the most obvious way to define a general Δ definability operator?
It seems to be captured by the following definition. If A is admissible then Δ0(A)
denotes the Δ0 formulas when all total A-recursive functions are denoted by
terms of the language.

5.2 Definition. Let A be admissible and let φ(x,C) be a Δ0(A) formula. Then
via φ if, for all xeA,

5.3 Lemma. Let A be admissible.
(i) Every Δ0(A) formula φ(x,C) defines a general Δ definability operator.

(ii) // F is A-recursive and

xeB iff F(x)eC

then
(iii) A-
(iv) ^d is transitive.

Proof. They are all trivial. For example, to prove (i) you simply replace any
function symbol in φ by its definition as in § 1.4. Note that

xφB iff (A,C)N=-ιφ(x,C)

and —ιφ is also a Δ0(A) formula. D

5.4 Theorem. Let A be a resolvable, admissible set satisfying s-Tl\=Σ1 uniformly.
Let 3 be any general Δ definability operator over A. There is a Δ0(A) formula
φ(C) such that for all C^A

S(C)<}C via φ.

Proof. Let 0(x,C), ψ(x,C) be Σ formulas such that g is defined by

xeS(C) iff (A,C)N0(x,C),

xφ%(C) iff (A,C)N=^(x,C).
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Then, for every x, the following s-Tl{ formula Φ(x) holds on A:

VC[0(x,C)vιA(x,C)].

Let φ(x) be a Σ1 formula uniformly equivalent to Φ(x) on A. Since A is resolvable
there is an A-recursive function J: o(A)-> A such that A = !Jα<0(A) </(α) and J(α)
is transitive for all α. Now for each x, Φ(x) holds so there is an αeA such that
<p(x)(J(α)). Define

G(x)-J (least α[φ(x)(J(α))]).

Then G is A-recursive and total, G(x) is always transitive and

But then for every x, Φ(G(x))(x), by the uniform equivalence of φ and Φ. Thus,
for every C^A, either θ(x, C)(G(x)) or ^(x, C)(G(x)\ We claim that

(1) xeft(C) iff θ(x,C)(G(x)).

For if xeg(C) then (A, C) 1= θ(x, C) so ^(x, C)(G(JC)) cannot hold so φ(x,C)(G(x))

must hold. Similarly, if x^S(C) then 0(x,C)(G(x)) cannot hold. Let σ(υ,C) be
θ(υ, C)(F(V». Then σ(ι;, C) is Δ0(A) and g(C) ̂ C via σ. D

Since "s — Tl\=Σ1" implies "s — Π^Σ! uniformly" on resolvable admissible
sets, we could have used the weaker condition in the statement of the theorem.
This seems to conceal the main point of the theorem, though, since it is the uni-
formity which really matters in the above proof. Since the above proof is virtually
identical (in outline) to the proof of Nerode's Theorem (in, say Rogers [1967])
this gives further support to the feeling that "s — Π^Σ! uniformly" captures a
great deal of the recursion theoretic content of the Infinity Lemma.

The relation ^ d is quite sensible from a definability point of view. It has been
studied very little, however, because one does not have the tools from ordinary
recursion theory available. Put another way, the relation B^dC is not sensible
in terms of computation if the expanded structure (A, C) fails to be admissible,
for then in checking whether or not xeB one may have to use all of C, not just
an A-finite amount of information about C. This never comes up for HF, or for
any other H(κ\ κ:-regular, since every expansion of H(κ) is still admissible.

These observations prompt one to define a new notion of reducibility, one
where an answer to "xeF?" is determined by an A-finite amount of information
about C. Let Kc be the characteristic function of C :

0 if xeC,

1 if x£C

and let Cht(C) = {feA\f^Kc}. Thus ChA(C) is the set of all A-finite bits of
information about membership in C.
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5.5 Definition. Let A be admissible and let φ(x,f\ ψ(x,f) be Σ^ formulas with
parameters from A. We say that B is weakly metarecursive in C via <φ,^>, written

C via <<p», if for all xeA

xεB iff 3/eChA(C)[ANφ(x,/)],

*<££ iff 3/eChA(C)[Al=^(x,/)].

If for every C there is a £ such that B^WC via <φ,ι^> then the pair <φ,^> is
called a general weak metarecursive operator g and we write 5(C) = B.

The notion of tt-reducibility corresponding to ^w is complicated by the fol-
lowing observations. On HF one can define a recursive function H by

H(x) = { f \ f is a characteristic function with dom(/) = x} .

Then given any recursive predicate P of finite functions one can "split" it by

) = {feH(x)\P(f)},

Then F,G are recursive and, for each xeHF and each C^HF, ChHF(C) meets
(has nonempty intersection with) exactly one of the sets F(x), G(x) (depending
on whether or not Kc\x satisfies P or not). This triviality simplifies a lot of the
recursion theory on HF, especially when contrasted with a general admissible
set A where H(x) need not be a subset of A, let alone an element of A.

5.6 Definition. Let A be admissible. An A-recursive splitting is a pair F,G of
total A-recursive functions such that

(i) for each xeA, F(x), G(x) are sets of A-finite characteristic functions,
(ii) for each xeA and each C^A, ChA(C) meets exactly one of F(x), G(x).

5.7 Lemma. Let A be admissible and let F, G be an A-recursive splitting. Define

Then g is a general weak metarecursive operator on A.

Proof. Letφ(x,/)be/eF(x),^(x,/)be/eG(x). Then

iff 3/eChA(C)φ(x,/),

iff

so g(CKwC via<<p», for all C^A. D

The next theorem shows that for some admissible sets, every general weak
metarecursive operator arises as in the above lemma.
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5.8 Theorem. Let A be a resolvable admissible set satisfying s — Π { = Σ! uniformly.
Let 5 be any general weak metarecursίve operator. There is an A-recursive splitting
F, G such that for all C,

Proof. The proof is very much like the proof of Theorem 5.4. Let θ(x,/), ψ(x,f)
be Σ! formulas such that g is defined by

iff 3/eChA(Q[Al=θ(x,/)],

iff

Then for each xeA the following 5 — Π} formula Φ(x) holds :

VC3/[/eChA(C)Λ [θ(x,/)

Let φ(x) be uniformly equivalent to Φ(x) on A. Let J: o(A)->A be as in the proof
of 5.4 and define

H(x) = J(leastαφ(x)(J(α))).

As in the proof of 5.4 we see that H is a total A-recursive function, that H(x)
is always transitive, and Φ(x)(H(x)); i.e.,

(2) VC 3/eH(x) [>ChA(Q Λ 0(x,/) v ^(x,/)](IIW) .

Let
F(x) - {/eH(x) |/ is a characteristic function Λ θ(x,

G(x) = {/eH(x)|/ is a characteristic function Λ ι^(x,

We claim that for all x, C

xeg(C) iff F(x)nChA(C)^0,

iff

This will prove that F, G is an A-recursive splitting and the conclusion of the
theorem. First suppose xeg(C). From line (2) we see that F(x)nChA(C)^0.
But line (2) also implies that G(x)nChA(CHO for if /eChA(C) Λ ̂ (x,/)(H(x))

then ψ(x,f) holds in A, since ψ is Σ1? so x^g(C). The other half is similar. D

The relation ^ w has been studied a fair amount by the Sacks school (on ad-
missible sets of the form L(α)). In particular, it has shown that ^ w is not transitive.
This is not too surprising given the disparity between the amount of information
used about C (namely /eChA(C)) and the amount of information received

or xφB). Thus Sacks defines

C iff C
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This is equivalent to the existence of a single Σj formula φ(x,f) such that

(3) geChA(B) iff 3/eChA(C)[ANιA(x,/)].

There doesn't seem to be a very elegant notion of tt-reducibility to go along
with ^mr, but we do get one out of Theorem 5.8.

5.9 Corollary. Let A be resolvable and satisfy s — Yl\=Σί uniformly. Let ψ be such
that for every C there is a B satisfying line (3) above. There is an Ik-recursive splitting
F,G such that for all C,B as in (3)

£) iff F(0)nChA(C)^0. D

5.10 Exercise (R. Shore). Show that if V = L then the conclusions of 5.4 and
5.8 fail for A=L(ωί). [For 5.8 define g(C)=A if Cnω is infinite, =0 other-
wise. For 5.4 let R^&(ω) by Δx on A but not Δ0 and define 5(C) = A if

), =0 otherwise.]

5.11 Notes. The reader should consult Simpson's forthcoming book in this
series for more about reducibilities on admissible sets.

6. Implicit Ordinals on Arbitrary Admissible Sets

For the model theory of an admissible fragment LA, the ordinal /zΣ(A) plays a
more important role than o(A). For countable A we have /zΣ(A) = o(A). In
general, we will see that this condition again goes back to the Kόnig Infinity
Lemma.

6.1 Theorem. An admissible set satisfies the third Kδnig principle iff /zΣ(A) = o(A).

Proof. This is an immediate consequence of the next theorem. D

The ordinal hΣ(A) is not an absolute notion. That is, the size (cardinality) of
ΛΣ(A) may vary drastically from one model of set theory to another (cf. Theorem
4.2 in Barwise-Kunen [1971]). The important point for application, though,
is that /zΣ(A) has a precise description in terms of the generalized recursion theory

6.2 Theorem. Let A be admissible:

hΣ(A) = sup{ξ\ ξ is a Π implicit ordinal over A} .

Proof. The inequality ^ follows from Theorem 3.5. To prove the theorem it
suffices to prove that every ordinal β < hΣ(A) is less than some Π implicit ordinal ξ.
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We can read this off the proof of Theorem VII.3.1. Since β </zΣ(A), β can be pinned
down by some Σ± theory T of LA. Now consider the proof of VII.3.1 for this
particular theory T. In particular, consider the well-founded relation <S, •<>
constructed there. Since every ordinal pinned down by T is less than the rank
ξ = /?(-<) of this well-founded relation, it suffices to prove that this ξ is Π implicit
over A or, at least less than or equal to some Π implicit ordinal.

Case 1. If o(A) > ω then ξ is a Π implicit ordinal.
For if o(A) > ω. then we can write

(1)

out as a Π sentence φ(<2) ',&) using 4.2:

3rc<ω3w<ω[tt>wΛ TC^C^'Λ®' is an s.v.p. for LA(c l 9..., cj,

2 is an s.v.p. for LA(c l5 ..., cm)

All these clauses are Π and the others follows from these. Thus φ(β\Qi) is a Π
sentence which implicitly defines ξ = p(-<).

Case 2. // o(A) = ω then ξ^ξ' for some Π implicit ordinal ξ'.
Let \l/(@\ί&) be the Π sentence expressing the following:

Q),Q)' are sets of sentences of LA(C),

2 n LA is an s.v.p. for LA ,

Vm[(cm = cm)e®->® n LA(c l9 ..., cj is an s.v.p.

for LA(c l9 ..., cj and

the same sentence for ̂ ',

If ^,^'eS and ®X® then ψ(2',3ι\ If

0'<® iff (A,^,^'

defines a well-founded relation then its rank is ^ ξ = p(X) since •< is a subrelation.
So we need only prove that -<' is well founded. Suppose not. That is, suppose

Let $)n = <3)nc\ LA(c l9 .„, cπ). Since \l/(&ί9£&0) holds it follows that ^0 is an s.v.p.
for LA, that (GI = C1)e^2 and hence that ® t is an s.v.p. forj-^cj. That is, ̂ Oe S0,
®1e®1 and ^i^^Q. By induction on n we see that ^πeSn and @n+i<@n.
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This contradicts the well-foundedness of •<. Thus •<' is well founded. Since ψ
is a Π formula, the rank ξ' = p(X') is a Π implicit ordinal and β<ξ^ξ'. 0

Theorem 6.2 would have simplified the proofs of the theorems in §VII.4
since it is usually easier to show that a given well-founded relation -< is definable
by a Π sentence than to prove p(-<)</zΣ(A).

6.3 Corollary. Every s — Σ\ implicit ordinal over the admissible set A is less than
some Π implicit ordinal over A.

Proof. Immediate from 3.5 and 6.2. D

6.4 Corollary. // A is a resolvable admissible set and hΣ(A) = o(A) then A is
Σ! compact; i.e., K3 implies K2 on resolvable admissible sets.

Proof. By 4.8, if A fails to be Σί compact then A is self-definable, and hence
/ιΣ(A)>o(A) by Proposition VII.1.5. D

6.5 Corollary. Let a» = <M,Λ1, ...,/?,> and let A^HYP^. Then A is Σ!
compact i

Proof. One half follows from 6.4, since HYP^ is resolvable; the other half (=>)
from VII.3.8. D

We conclude this section with a theorem that explains why Π implicit ordinals
are so important from a theoretical, not just a practical, point of view.

Let φ(υ, R, S) be a formula with R, S n-ary, v a free variable, which may contain
parameters from A. For xeA we write -<* for the relation defined by

iff (A,

6.6 Lemma. // φ(v, R,S) is a Π (or even s — Σ}) formula then

P(*} tff <x

φ is well founded

defines a s — Πj predicate P over the admissible set A.

Proof. P(x) holds iff

where Q is n + 1 ary and <p(x,(Q)m+1,(Q)OT) denotes the result of replacing
(x1? ...,*„) by Q(x1? ..., xm,m). D

6.7 Theorem. Let A be admissible. There is a Π formula φ(v, R, S) such that

{x: XJ is well founded]

is a complete strict — Πj set for A.
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Proof. The set in question is always s-Π\ by 6.6. Let X1 be the complete s-Π}
set defined in Corollary 4.5: Xί = {φe L^| TN= φ}. We can assume L'A (of 4.5) is a
Skolem fragment which is Δ t on A and that every model of T can be expanded
to a Skolem model. We will show how to write "Is xeX^T in terms of asking
whether or not a certain tree of theories of L^ is well founded. Let (p(x,T",Γ)
express :

T", T" are sets of sentences of L'A,

= Vι;φ(ι;)eT->Vί(ί a closed term of L'->φ(f/u)eT')],

Vy, z [y, z closed terms of L Λ (y = z) e T' -» (z = y) e T"] ,

Vy, z, w [w = φ(ι ) e LA Λ y, z closed terms of L' Λ φ(y/v) E T

If xφXi (i.e. T^x) then Γu {~ιx} has a Skolem model 501. Let T be the set of
sentences true in 9JΪ. Then ψ(x,T', T') holds so <J is not well founded. Now sup-
pose <£ is not well founded, so there is a sequence

Let Tω = (JnTn. Then T satisfies all the conditions of Lemma VII.2.9, so Tω has
a model. But Tu{~ιx}cΓω so T^x. Thus

xeX t iff <J is well founded . D

6.8—6.10 Exercises

6.8. Let 501 be infinite. Show that if P^Wl is Πj on 501 then there is a first order
formula φ(v, R, S) such that

P(x) iff -< J is well founded .

This is analogous to the normal form for H{ relations on JΛ

6.9. Show that if α is the rank of some well-founded relation on Power(A) then
α<(2card(A))+. Conclude that /zΣ(A)<(2card(A))+.

6.10 (Open). Prove that hΣ(ΉΎPgjl) = sup{ξ: ξ is a first order implicit ordinal
over 9JΪ}.
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7. Trees and Σ1 Compact Sets of Cofίnalίty ω

The results of this chapter would be vacuous if there were no uncountable ad-
missible sets sytisfying the Kόnig principles K^ — K3. We exhibit such admissible
sets in this and the next section.

A set A is essentially uncountable if every countable subset of A is an element
of A. All of the Σί compact sets exhibited in this section have cofinalίty ω in the
sense that

where each AneA. Hence none of them is essentially uncountable. We give a
proof of the existence of essentially uncountable Σx compact sets in the next
section, though no explicit such sets are known. An explanation for this pheno-
menon will be found in § 9.

Let us return to our discussion of trees from § 1, and attempt to give a gen-
eralization of the Infinity Lemma soley in terms of trees.

In this section we turn the full binary tree around and think of it as pictured
in Fig. 7A.

Fig. 7 A. Another view of the full binary tree

Another tree, one with paths of length ω2, is pictured in Fig. 7 B.

Fig. 7 B. A tree of rank ω2

In general, a tree is a well-founded partial ordering ^~ = <Γ, -<>, with a least
element (usually denoted by 0), such that for each xeT, the set {yeT:y-<x}



344 VIII. Strict π; Predicates and Kόnig Principles

of predecessors of x is well ordered by -<. A subset C^ T is a chain in y if for
each x,yeC,

x^y or x = y or y^x .

A path thru ?Γ is a maximal chain. Thus every path is well ordered by •<.
Let ^ = <T, •<> be a tree. Since •< is well founded we have the usual rank

function p = p^ associated with y :

p(x) = sup{p(y)+l:)Kx}

and 3Γ has a rank ρ(y):

= sup{p(x) + l :xeΓ} .

A branch thru the tree 3~ is a path of length p(^). Not every tree has a branch,
as Fig. 7 C demonstrates.

Fig. 7 C. A tree with no branch

This tree has rank ρ(3~) = ω but every path is finite. Thus y has no branch.
We call the elements x of a tree 2Γ with p(x) = β the nodes of level β. Thus y
has nodes of every level β < pψ~\ Let lev = lev^- be the function with domain

defined by

Let A be an admissible set. A tree ^~ = <7;-<> isanA-ίreeif T^A, T, Xjlev^
are A-recursive and the rank ρ(y) of y is o(A). In particular, for each β < o(A),
T has nodes of level β (since p(^~) = o(A)) but the set of all nodes of level β is
A-finite (since lev(β)eA).

The Kόnig Infinity Lemma can be restated as follows. Let A = <HF,e,Λ>.
Then every A-tree has a branch.

7.1 Theorem. // A is a Σ! compact admissible set then every A-tree has a branch.
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Proof. It is easy to prove this by means of Σ^ compactness, by constructing a
nonstandard extension of the tree, picking a node d of nonstandard length and
letting the branch be defined by

An even easier proof, though, is by means of s-Π\ Reflection. Let ^r = <T,-<>
be an A-tree and suppose y has no branch, i. e. no path of length ρ($~} = o(A).
Then A satisfies the s — Π} sentence:

VC[C is a chain -> Jβ Vxelev(β) (xφC)'] .

By s — Π} Reflection there is a yeA such that

(1) VC[C is a chains 3β<y Vxelev(β) (xφC)] .

But then lev(y) must be empty, for if yelev(y) then

C = {xεT\x<y}

would violate (1). But then p(^")< y < o(A), contradicting the definition of
A-tree. D

The hypothesis "every A-tree has a branch" looks like it ought to be called
a Kόnig principle. The next theorem shows that it is in fact too weak to be of
general interest.

7.2 Theorem. Let A be an admissible set whose ordinal α = o(A) has coβnality ω.
Then every A-tree has a branch.

Proof. Since this is a direct generalization of the Infinity Lemma it is not sur-
prising that the proof is an amplification of the proof of that lemma. Let
α = sup{απ: n<ω] where a0<a t < <all< <a. Let ^~ = <T,<> beanA-tree.
We claim that we can find x0,x1? ... such that xne\Qv(an) and x0 X x j X . . . .
If we can do this, then

B = {yeT: y<xn for some n}

will be a branch thru 2Γ . To find the x's, let x0elev(α0) be such that

(x0<z).

(We must see that there is such an x0.) Given x0, let X^XQ be choosen so
that x^lev^) and

V j8>α13zelev(jS)[x1<z].
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Continuing in this way gives the desired sequence of xn's. Let us now prove
that x0 exists. (The proof that given xn we can find xn+l as above is almost
identical.) Suppose there were no such x0. Then

Vxelev(α0) 3)S>α0 Vzelev(jS) [x-£z] .

By Σ! Reflection there is a ye A such that

(2)

Let wElev(y). Now w has a predecessor x of level α0 and a predecessor zβ for
each β<y. But then x-<z^, contradicting (2). D

Thus, e.g., A = ffpω+ω) satisfies "Every A-tree has a branch" but it does
not satisfy s-Tl[ Reflection. Still, we did use the Infinity Lemma to prove s-Yl{
Reflection in § 1, so there should be some context in which the tree proof gen-
eralizes. If you analyze that proof you see that we also used two other facts:
every subset of an αelHF is in HF and, moreover, we can effectively find the
set of all subsets of a. It easy to see that a pure admissible set A such that

(sometimes called supertransίtive) must be of the form H(κ) for some TC, so we
restrict attention to H(κjs for the time being. In order for H(κ) to be closed
under ,̂ the power set, it is necessary and sufficient that K be a strong limit
cardinal (λ<κ=>2λ<κ). Note that Hpω + ω) is closed under the power set
but that

is not admissible (for the same reason that L(ω + ω) is not admissible). We write
,e,^> rather than the correct

7.3 Theorem. Let K be a strong limit cardinal and suppose that A =
is admissible. Then A is Σt compact iff every A-tree has a branch.

Proof. We have (=>) by 7.1. To prove the converse we assume that every A-tree
has a branch and prove s-Π} Reflection. Since H(κ) is closed under the power
set and since <H(κ;),e,^> is admissible, the usual definition by recursion of
V(α) shows that α-» V(α) is an A-recursive function of α. The usual "ZF-prooΓ
that every set is in some V(α) shows that V(κ) = H(κ). Let

(3) VS3yφ(S,x,y)

be a typical s-Πj formula true in A, where φ is Δ0 and we assume S is unary,
for simplicity. Let ξ = τk(x) so that xeV(α) for all a>ξ. We suppose that for
each α, £<α</c,

c V(α) 3yeV(α) φ(S,x,y)
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and get a contradiction, thus establishing s-Π} Reflection. Thus we are assuming
that for each α, ξ < α < K

(4)

We define a tree "̂ = <T,O by

'> iff α<β and S = S'nV(α).

Each such 5 is an element of /f (κ;), by supertransitivity. The least member of T
is <0,0>. The predecessors of some <α,5'>eΓ are just the pairs of the form
<β,SnV(/?)> for β<tt and hence have order type α under -<. Thus the level
of a pair <α,S> is just α. Furthermore, since

lev(α)eA and, by the above comments, lev is A-recursive. Line (4) says that
lev (α) ̂ 0 for all α<τc. Thus y is an A-tree. Let B be a branch thru y> that
is, a path of order type K. B is a set of pairs

exactly one pair for each α<τc, linearly ordered by •<. Furthermore, a<β
implies Sα = S^nV(α). Let S = (JΛ<KS0[. Then

for each α. We claim that (A,S) satisfies

-ι3yφ(S,x,y)

contradicting (3). For let ye A be arbitrary. Pick α<κ: such that £<α and
yeV(α). Since <α,Sα>eΓ

But (A, S) is an end extension of this structure so it also satsfies the Δ0 formula
,x,y), establishing our contradiction to (3). D

A cardinal is said to be (strongly) inaccessible if K: is a regular strong limit
cardinal. It follows from Theorem Π.3.2 that if K is inaccessible then
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is admissible for all R<^H(κ), so that Theorem 7.3 applies. A simple Lόwenheim-
Skolem argument shows that one can find λ<κ such that

is admissible and cf(Λ,) = ω. Alternatively, one can drop all talk of inaccessibles
and prove directly (using the reflection theorem of Levy) that for any definable
class R there are cardinals λ with cf(λ) = ω such that (H(λ),e,0>,R\H(λ)y is
admissible. Thus the hypothesis of the next theorem is not vacuous. It is this
theorem which has been the aim of the first part of this section.

7.4 Theorem. Let K be a strong limit cardinal of cofinality ω and assume that
,6,^,K> is admissible. Then A is Σl compact.

Proof. This is immediate from 7.2 and 7.3. D

Exercise 7.10 shows that A is also Σ^ complete. Exercise 7.11 shows that it
satisfies K3.

The urelement versions of 7.3 and 7.4 are not very interesting since 7.3 only
goes through for <SDt;H(/c)SM,e,^> when card(9Jl)<K, in which case 9JI is
already contained in H(κ), up to isomorphism.

We will return briefly to the notion of tree in § 9. Now we go on to discuss
two rather different examples of Σί compact admissible sets.

The following theorem of Nyberg gives quite concrete examples of Σt com-
pact and Σ! complete admissible sets.

7.5 Theorem. Let α be a limit ordinal of cofinality ω, let A be of the form
<H(5α),6,R> and let B be admissible with A6 IB, B projectible into A. Then B
satisfies s-Π} = Σ1 uniformly and hence is Σ1 complete and Σ1 compact. (A is not
necessarily admissible.)

The proof of this theorem is sketched in Exercise 7.16. Note that it applies
to HYP(H(5α)) whenever cf(α) = ω. This is a resolvable admissible set satis-
fying s-Π}=Σ1 uniformly (and hence the theorems of the previous sections).
On the other hand, if cf(α)>ω then HYP(HpJ) is strongly self-definable,
hence not Σ1 complete or Σί compact.

We conclude this section with a different kind of example.
A structure 9M = <M,R1,...,JR/> is recursively Σ\ saturated iff for every finite

expansion L' = L(Sl5...,Sk) of L and every recursive (equivalently, r.e.) set
Φ(vί,...9vn, S1?...,Sk) of formulas of L'ωω, $01 is a model of:
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It is easy to see that every recursively Σ} saturated structure is recursively
saturated. Theorem IV.5.7 shows that if 501 is countable and recursively saturated
then it is recursively Σ} saturated. The following theorem characterizes the
recursively Σ} saturated structures among the class of recursively saturated
structures.

7.6 Theorem. Let Wl = (M,R1,...,Rιy be an infinite recursively saturated struc-
ture of any cardinality. Then 501 is recursively Σj saturated iff HYR^ is Σ1 compact.

Proof. The "if part of the theorem is established by the very proof of Theorem
IV.5.7. To prove the converse, we assume that 9Jί is recursively Σ} saturated and
prove that HYP^ satisfies s-Π} Reflection. Suppose

(5) HYP w t=VR<p(R,jZ)

where φ is a Σ^ formula. Since ΉYPm = L$R9o)), we need to exclude the pos-
sibility that for every n < ω

(6)B L(ΪR,tt)^3R^φ(R,x).

Since each xeHYP^ has a good Σl definition in terms of parameters from
Mu{M}, we may assume that each xf in the sequence x is either in M or is M
itself. Let us rewrite (5) as

(7) L@Λ9ω)ϊ=VRlyψ(R9p9y9M)

where ψ is a Δ0 formula with no other parameters. We can rewrite (6) as: for
every n<ω

(8)π iχ5W,ω)l=3RVy6L(Af,π)-ι^(R,p,y,M).

Let Φ(p) be the set of formulas in L(U,A,E,F, R,Ri,. . . ,R;) which express the
following about 9K, p:

KPU+ relativized to U (for urelements), S (for sets), E (for e),

VyeL(U,Λ)-ι^(R,F(p),3;,U) (for all n<ω).

Every finite subset Φ0(p) of Φ(p) is satisfiable on 9JΪ by choosing relations which
code up IHYP^ on 501 itself and using (8)π to satisfy the last sentence in Φ0(p).
Since 9JΪ is recursively Σ} saturated there are relations on 2R which make the
whole set Φ(p) true:

(9)

;,...,Λ'>;4JE,/ί^^
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Let R*-RfIHYR0 l. By (7) there is a yeHYP^ such that

But yeL(M,n) for some n<ω. Since ψ is Δ0 and

we have

contradicting (9), since (9) asserts, among other things, that

9y9M). D

To see that this result gives us lots of uncountable Σ^ compact sets, we must
know that there are lots of recursively Σj saturated models. We assume the
reader is familiar with saturated or special models, referring him to Chang-
Keisler [1973] for the relevant definitions and properties.

7.7 Proposition. Every saturated (or even every special) model 9Jl = (M9Rl9...,Rly
is recursively Σ\ saturated.

Proof. If we assume the GCH we can get rid of the requirement that the set of
formulas is recursive; the proof not involving the GCH is sketched in Exercise
7.17. Let 9ϊΐ be a special model and let Φ(p,S) be a set of sentences such that for
each finite

Then the first order theory T/ϊ(9JΪ,p)uΦ(p,S) is consistent and so has a special
model (9K',p',S') of power card(9W), by the GCH.

But then (3R9p) = (3Jl'9p
f) (Lωω), and both models are special so

Hence

7.8—7.19 Exercises

7.8. Prove that the pure admissible set A is supertransitive iff A = H(κ) for
some cardinal K.

7.9. Prove the following: Let A be pure, admissible, supertransitive and Σt com-
pact. There is a cardinal κ = 2κ such that A = H(κ). Let A / = (A,^)). Then A'
is admissible and satisfies s-Πj^Σi uniformly. More slowly, prove:
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(i) A is closed under ,̂ using s-Yl{ Reflection.
(ii) A' satisfies s-Π} Reflection (0> is s-Δ} on A).

(iii) A' is admissible (using (ii)).
(iv) A' satisfies s-Π^Zi.

7.10. Prove that the following are equivalent, where K is a strong limit cardinal
and A = (H(κ),E,0>,Ry is admissible:

(i) A is Σ! compact (s-Πj Reflection),
(ii) A is Σ! complete (s-Π\=Σl),

(iii) Every A-tree has a branch.

7.11. Let A = <//(κ),e,R> be Σx compact. Prove that hΣ(A) = κ. [Use 7.9 and
s-Π} Reflection plus trivial cardinality considerations.]

7.12. Let λ = card (501) and let K: be a limit ordinal. Prove that the following
are equivalent:

(i) (9JI; VOT(κ:),e) is admissible,
(ii) κ = ϊκ(λ),

(iii) K: is a cardinal and VyJl(κ) = H(κ),0l.

7.13. Prove in ZFC that there are arbitrarily large cardinals κ = 3κ of cofinality
ω such that <//(τc),e,^> is admissible.

7.14. Let K be the Hanf number of second order logic. Show that
satisfies the hypothesis of 7.4.

7.15. Let α be a limit ordinal, let A be admissible and let V(α)eA. Prove that
ΉpJeA. [Consider the set X = {EeV(a)}: E is well-founded}.]

7.16. Theorem 7.5 follows from the following result of Nyberg. Prove that if $R
is a uniform Kleene structure and A^ is admissible above $R and projectible
into SDΪ then A^ satisfies s-Π^Σi uniformly. [Use the alternate form of
"s-Πj^Σi uniformly" given in Exercise 4.21.]

7.17. A structure ΪR^M,^,...,^) is resplendent if for every finitary Σ}
sentence 3Sφ(S) with constants from 2R, if 9lt=3Sφ(S) for some 91>9JI,
then 9«N3Sφ(S).

(i) Prove that every special model is ω-resplendent (Kueker [1971]).
(ii) Prove that every resplendent model is recursively Σ{ saturated. [Use

the techniques of IV.2.]
(iii) Associate with any finitary Σ} formula Φ(x) a recursive closed game

formula ^φ(x) such that
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for all 501 and, for SDΪ countable,

(10)

Such a ^φ is given by (the proof of) Svenonius's Theorem. Prove that if 9JΪ is
recursively saturated then StJΪ is resplendent iff

for all Σj formulas Φ.
(iv) Prove that if 9JI is resplendent then Π} on Wl = Σί on
(v) (Schlipf). Improve (iv) by showing that if 9JI is resplendent then

satisfies K t.

7.18. (Open). Characterize those 9W such that HYP^ is Σί compact.

7.19. (Open). Characterize those ΪR such that HYPW is Σ1 complete.

7.20 Notes. Theorem 7.4 is due to Barwise [1968] and, independently, and by
a completely different proof, to Karp [1968]. Theorem 7.3 is a refinement of a
classical result about weakly compact cardinals, contained in Theorem 9.10.

8. Σ1 Compact Sets of Cofίnalίty Greater than ω

In this section we prove an existence theorem which shows that there are many
Σt compact admissible sets besides those exhibited in the previous section. In
particular, we prove the existence of essentially uncountable Σt compact ad-
missible sets.

Let K be an uncountable regular cardinal. A subset C of K is closed in K if
for each initial segment C0 of C,

(supC0)<κ implies (supC0)eC.

This says that C is closed in the order topology on K. C is unbounded in K if

A set C is c.u.b. in K if C^κ and C is closed and unbounded in K.

8,1 Lemma. Let κ>ω be regular. If C0, Q are c.u.b. in K then so is
In particular, CΌnCΊ is nonempty.

Proof. The intersection C0πC1 is closed since the intersection of closed sets
is closed. To see that CΌnCΊ is unbounded, let β<κ be given. Let y±>β be
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in Q. Let y2

>7ι be in C0. Let y 3>y 2 be in Q and so on for each n<ω. Then
y = supM < ωyπ is less than /c since K is regular. Since y = supn < ωy2 n and C0 is
closed^ ye C0. Since γ = supn<ωy2n + ι and Cί is closed, yeQ. Thus /?<y and

). D

Thus, by 8.1, the collection

5 = {C c K; : C0 c C for some C0 c.u.b. in K:}

defines a filter on the subsets of K, called the c.u.b. filter on K. We say that P(α)
/zo/ds for almost all α < K if

is a member of the c.u.b. filter on K.

8.2 Lemma. Let λ, K be regular cardinals, ω^λ<κ. If P(α) holds for almost
all UL<K then P(α) holds for some α with cf(α) = A.

Proof. Let C be c.u.b. in K: be a subset of

Let y be the λth member of C, enumerated in the natural order. There is such
a λth member since K is regular and C is unbounded in K. It is clear that
cf(y) = d(λ) = λ since λ is regular. D

In reading the next theorem, the student should think of Jα as #(Nα) or
L(ωα) or L(α,ωα), since these are the usual applications.

8.3 Theorem. Let K be an uncountable regular cardinal, let R^H(κ) and let
J: κ-+H(κ) have the following properties:

(i) Jα is transitive and closed under pairs and union, for all α</c;
(ii) <x<β<κ implies JaeJβ;

(iii) if λ<κ is a limit ordinal then Jλ = \JΛ<λJΛ

(iv) for each α<κ, the structure

satisfies Δ0 Separation. Then, for almost all α< K, Jία is a Σ^ compact admissible set.

Proof. The idea for this proof goes back to the notion of stable ordinal. For
the purposes of this proof we call an ordinal α β-superstable if a<β<κ and
for every s-Π} formula Φ(vί9...,υJ and every aί,...,anεJΛ,

if Jpϊ=Φ(aί9...9an) then
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We first prove:

(1) if α is β-superstable then JFα is a Σ! compact admissible set.

So suppose α is β-superstable. Since Δ0 Collection follows from s-Π} Reflection
(in fact from Σ Reflection) it suffices to prove that JΓα satisfies s-Π} Reflection.
Let Φ(aί,...,an) be a s-Π} formula true in JΛ.

Then

and hence JJ^ is a model of the s-Π} formula Ψ(aί9...9an)

since JaeJβ. But then by superstability, JίΛ^=Ψ(aί,...,an)9 so JJα satisfies s-Π}
Reflection, proving (1).

We will prove the theorem by proving that almost every α<κ; is β-super-
stable for every β,a<β<κ. To prove this we use normal functions. (A func-
tion f:κ-+κ is normal if /is increasing (α<j8<κ=>/(α) </(/?)) and continuous
(A a limit <κ=>/(A) = sup{/(α): α<A}). If f:κ->κ is normal then the set of
fixed points of /,

is always c.u.b. in K, as is easily seen.) We define a normal function / such that
/(α) = α implies α is β-superstable for all β between α and K. This will prove
the theorem. Let P(α,]8) be the following condition on α, β<κ:

for all β',β^β'<κ, and for all s-Π} sentences Φ(α l5....,απ) with constants
from JΛ9 if Jβ,\=Φ(aί9...9aJ then

Note that P(α,j80) implies P(a9βι) for all /?! between jS0 and c. Since card(Jα)<κ:
there are <κ s-Π} formulas Φ(α) so a trivial cardinality argument proves that
Vα<κ:3j3</cP(α,jβ). Now define / by

/(α) = least β [ β > f ( y ) for all y<α, and P(α,j8)] .

Since K is regular, /(α) is defined for all α<κ. Thus f:κ^κ and / is increasing
by definition. Let us prove that / is continuous. Let λ < K be a limit ordinal.
Let β = sup{/(α):α<;i}. We need to verify P(λ9β). Thus let β'^β and let Φ
be a s-Π} sentence with parameters from Jλ which is true in Jβ,. We must see
that Φ is true in Jβ. But Φ is defined in Jα for some α<A so Φ is true in J/(α)

and hence in Jβ by persistence of s-Π} formulas. Thus / is normal.
Now suppose /(α) = α. Then P(α,α) holds so α is /P-stable for all j5'>α,

β'<κ. By (1) this shows that almost every α<κ has Jία Σt compact. D
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8.4 Corollary. Let κ>ω be regular. Then for almost all α<κ, L(α) is a Σί

compact admissible set.

Proof. Apply 8.3 with Jα = L(ωα). Then for almost all α<κ, L(ωα) is Σ1 com-
pact. But ωα = α for almost all α<τc since /(α) = ωα is a normal function. D

8.5 Corollary. Let κ>ω be regular and let 5Π = <M,JR1,...,R ί> be a structure
of power less than K. Then for almost all α<κ;, L(9Jl,α) is Σί compact.

Proof. Similar to 8.4. Since there is isomorphic copy of 50ΐ in H(κ). D

The next result gives us essentially uncountable Σί compact admissible sets,
when one applies Lemma 8.2 and the observation that H(κ) is essentially un-
countable iff d(κ)>ω. & denotes the power set operation (restricted to H(λ)
in 8.6).

8.6 Theorem. Let K be inaccessible, κ>ω. Let R^H(κ). Then for almost all
λ<κ, (H(λ\e,0>,RπH(λ)y is Σ1 compact.

Proof. Let Jα = /f(Dα). Then J:κ-*H(κ) since κ = 2κ, and card(H(3α)^iα+1 <κ.
Thus, for almost all α<κ, <#pα),e,^,fln//pα)> is Σ! compact. But /(α) = 5α

is a normal function so almost all α<κ: have 5α = α. Thus almost all λ<κ have

Σ1 compact. D

We can reinterpret all of the above by thinking of the class of all ordinals
as an inaccessible cardinal. We can restate Theorem 8.6 in this case as a result
in ZFC.

8.7 Corollary. Let R be any class. The class of λ such that (H(λ),e,0>,RnH(λ))
is Σ! compact contains a closed proper class of cardinals. Hence for any regular K
there are arbitrarily large such Xs of coβnality K.

Proof. The last sentence follows from 8.2. D

A cardinal K: is a Mahlo cardinal if every c.u.b. set C^κ contains an in-
accessible cardinal (and hence contains K such inaccessible cardinals λ<κ).

8.8 Corollary. Let K be a Mahlo cardinal and let R^H(κ). There are K inacces-
sible cardinals λ<κ such that (H(λ),e,0>,RrιH(λ)y is Σ1 compact.

Proof. Immediate from 8.6. D

8.9 Exercise. Suppose <//(/c),e> is Σί compact. Prove that K is not the first
inaccessible. Prove, in fact, that if K is inaccessible then K is the τcth inaccessible.
[Use s-Π{ Reflection.]

8.10 Notes. Theorem 8.3 is contained in Barwise [1969 b].
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9. Weakly Compact Cardinals

In this final section we consider weakly compact cardinals and their relationship
to Σ! compact admissible sets.

Let L be a language with ^K symbols coded as a Δ! subset of H(κ). The
language Lκω consists of those φeLaoω with less than K subformulas.

9.1 Definition. A cardinal κ^ω is weakly compact (for Lκω) if for every set
T^H(κ) of sentences of Lκω, if every subset T0^T of power <κ has a model
then T has a model.

This definition is usually expressed in terms of a stronger language Lκκ (de-
fined in Exercise 9.14) and it is usually assumed that K is inaccessible in which
case H(κ) has power K and hence T has power ^ K. We will see that both of
these apparent strengthenings follow from Definition 9.1. Note that ω is weakly
compact.

9.2 Lemma. Let κ^ω be a cardinal
(i) Lκω=LQθωnH(κ).

(ii) // K is regular then Lκω is the least subset of Laoω containing Lωω closed
under ~~ι, V, 3 and

if Φ^Lκ ω and card(Φ)<κ then /\Φ and \/ΦeL κ ω .

(iii) // κ>ω is a limit cardinal then

*-κω = \Jλ<κ *-λω

where the union is over all infinite cardinals λ<κ.
(iv) K is weakly compact iff <//(jc),e,.R> is Σl compact for every relation

Proof, (i), (iii) and (iv) are immediate from the definitions. To prove (ii) let L'κω

be the least class described. It is clear that Lκω^Lκω. To prove Lκω=L'κω it
suffices to prove that Lκω is closed under —ι, V, 3 and the clause

if Φ^Lκ ω and card(Φ)<κ then /\Φ, γΦeL κ ω .

The first part is trivial. So suppose Φ^ Lκω and card(Φ)< K. We must verify that

card (sub (/\ Φ)) < K .

But

Since Φ^Lκ ω each sub(φ) has power <κ for φeΦ. But card(Φ)<κ; and K:
is regular so card(/\Φ)<κ. Similarly, card(\/Φ)<κ;. D



9. Weakly Compact Cardinals 357

Part (iv) of this lemma shows that the notion of weakly compact cardinal
is just the relativization of the concept of Σl compact admissible set to an arbi-
trary R^H(κ).

Before we see just how strong the assumption that K is weakly compact and
uncountable is, let us stop to examine the plausibility of the existence of such
cardinals. We want to show that the same kind of intuition which prompts one
to admit ω, inaccessible cardinals and Mahlo cardinals as legitimate abstract
objects also prompts one to admit weakly compact cardinals as legitimate ob-
jects in the hierarchy of sets.

There was a time when the existence of ω was considered problematic. One
must accept each natural number, but it took years for the limit, the set of natural
numbers, to be accepted as a legitimate abstract object, suitable for use in
mathematics.

Once one accepts the basic principles of set theory, one sees how to generate
many cardinal numbers, which must be accepted. Only fairly recently have in-
accessible cardinals begun to be considered as the natural limit of the accessible
cardinals and hence suitable for use in mathematics.

We saw in Corollary 8.7 that for any class R, almost all cardinals K have the
property that (H(κ),e,RπH(κ)y is Σί compact. Given any collection 0t of
classes that can be coded by a single class, we see that almost all K are such that
(H(κ),e,RnH(κ)y is Σί compact for all Re&. A natural limiting assumption
is that (H(κ),e,Ry should by Σ^ compact for all R^H(κ). This is the assump-
tion that K is weakly compact.

(Another argument that is often given for the existence of weakly compact
cardinals, as well as measurable cardinals and strongly compact cardinals,
cardinals we can see no argument for at all, is that they should exist "by analogy
with ω". This seems like a very weak argument. The results of § 7 suggest that
the crucial property of κ = ω for compactness is that d(κ) = ω, whereas weakly
compact cardinals are always inaccessible and hence regular. Of course ω is the
only regular cardinal K with cf(κ:) = ω.)

Call K a Σl compact cardinal if <H(κ),e> is Σ1 compact. Call K a Σt(jR)
compact cardinal if <//(κ:),e,R) is Σx compact. Thus K is weakly compact iff K
is Σ^R) compact for every R^H(κ). We remind the reader once again that

9.3 Proposition. Let
(i) // K is Σί compact then K = 3K.

(ii) // K is weakly compact then K is inaccessible.

Proof. Part (i) is a small part of Exercise 7.9 but we include its proof for com-
pleteness sake. Suppose K is Σ: compact. We will first prove that

(1) H(κ) is closed under the power set.

Suppose aεH(κ). Then H(κ) satisfies the s-Π} formula

V17 3b
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By s-Π} Reflection, ^(a)^c for some ceH(κ) so 0>(a)<ΞH(κ). For (1) we see
that κ = 30[ for some limit ordinal α. Suppose α<κ. Then H(κ) satisfies the
s-Π} formula expressing:

Vjβ<oc 3/ [fun(/) Λ dom(/) = j3 + l

for y<β

for limit

Then 5-Πj Reflection gives a contradiction since one would have an aeH(κ)
such that V(α)cα. This proves (i). To prove (ii) we need only see that K is reg-
ular. Suppose /:α->/c where α<κ: and K = sup {/(/?): β<α}. We claim that
<H(κ),e,/> does not satisfy s-Π} Reflection. In fact it does not even satisfy
Σ Reflection and hence is not admissible, since it satisfies the Σ formula

but there can be no bound ξ<κ for the ordinals y. D

There are many characterizations of the class of weakly compact cardinals
which fall out of our study. An admissible set A is strict-Til indescribable if (A,,R)
satisfies s-Πj Reflection for every R^A. K is s-Π} indescribable iff <H(κ;),e>
is s-Π} indescribable.

9.4 Theorem. An infinite cardinal K is weakly compact iff it is strict-Til inde-
scribable.

Proof. Immediate from Theorem 4.7. D

An admissible set A satisfies Π} Reflection if for every Π} formula Φ(x l9...,xπ),
A satisfies

Φ(x)-> 3α [Tran(α)Λx1,...,x I IeαΛ Φ(fl)(x)].

A is Π} indescribable if (A,.R) satisfies Π} Reflection for every R^A. K is Π}
indescribable iff <ff(τc),e> is Π} indescribable. HF does not satisfy Π} Reflection
or, for that matter, Π^ Reflection since

HF^Vx3y (xey)

but no finite set can satisfy this sentence. Thus ω is certainly not Πj indescribable.
We will see, however, that for K with cf(κ)>ω, s-Π} Reflection implies Π}
Reflection and s-Π} indescribability implies Π} indescribability. The secret to
understanding this and a number of other facts is contained in the following
surprising result.
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Let the language L (of L^J contain a distinguished binary relation symbol E.
A well-founded L-structure is an L-structure 9W with E951 well-founded.

9.5 Theorem. Let A be an essentially uncountable Σί compact admissible set.
Let T be a Σ1 theory of LA. // every A-fmite T0^T has a well-founded model
then T has a well-founded model.

Proof. Recall that A is essentially uncountable iff every countable subset of A
is an element of A. We know that A satisfies s-Π} Reflection since A is Σί com-
pact. The proof of this theorem is exactly like the proof that s-Π} Reflection
implies Σt compactness, once we have the following definitions and lemma. D

We may assume that LA is a Skolem fragment which is Δ! on A. Call an
s.v.p. Q) for LA well-founded if there is no infinite sequence <ίπ: rc<ω> of closed
terms of LA such that (tn+ί Etn)e@ for all n<ω.

9.6 Lemma. Let A be an essentially uncountable admissible set.
(i) There is a Π sentence φ(D) such that for all ί^<ΞA,

iff 2 is a well-founded s.v.p. for LA.

(ii) // 9JΪ is a well-founded Skolem structure for LA then the s.v.p. Q)^ given

by 50Ϊ is well-founded.
(iii) // 3) is a well-founded s.v.p. for LA then 3) has a well-founded model.

Proof, (i) Since A is essentially uncountable, every sequence <ίπ: n<ω> of terms
of LA is actually an element of LA. Thus the condition that 2 be well-founded
is expressed by a universal quantifier over A. The proof of (ii) is trivial. To prove
(iii) let 2 be a well-founded s.v.p. By the Weak Completeness Theorem, Q) has
a model 2^. Let SR be the smallest submodel of 2 .̂ Then

3JK3R! (LA).

By Exercise VII.2.14 every element of $R is denoted by a closed term of LA.
Thus SPΪ is well-founded and a model of the sentences in 2. D

This lemma can also be used to prove a completeness theorem. See Exer-
cise 9.11.

Theorem 9.5 explains why none of the explicitly described Σt compact sets
given in § 7 were essentially uncountable. The conclusion of Theorem 9.5 is so
strong that it makes such sets very hard to find.

Our first use of Theorem 9.5 is to prove the results referred to above.

9.7 Theorem. Let K be a cardinal with d(κ)>ω.
(i) // <H(κ),e,K> satisfies s-Π} Reflection then it satisfies Π} Reflection.

(ii) // K is s-Π} indescribable then K is Π} indescribable.
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Proof. Part (ii) follows immediately from (i). To prove (i) let <#(*),£,#> satisfy
s-Π\ Reflection. By 9.3, κ = 3κ. Since H(κ) is closed under 9, the graph of 9
is s-Π} on H(κ) so A = <#(κ;),e,^,K> also satisfies s-Π} Reflection and in
particular, is admissible. Thus the definition of V(α) is A-recursive and
H(κ) = V(κ). Suppose

where ψ is first order but that for all α, α0

<V(α),e,ΛnV(α)>l=3S-ι^(S)

where α0 is large enough so that all parameters in ψ are in V(α0). Let T be the
following Σ! theory of LA:

KP + Power,

Infinitary diagram of <A,^>,

"c is an ordinal",

(c>j5) for all β<κ = o(A),

Every A-finite subset of T has a well-founded model; one simply interprets c
as some large α<κ;. By Theorem 9.5, T has a well-founded model 501. Since it
is well founded we can assume it is transitive. But then c501 is a real ordinal β ̂  K
and the last axiom of T implies that there is an S^V(κ) such that

D

Theorem 9.7 is really rather remarkable since if K is Σl compact then
s-Π{=Σί(0>) and hence s-Π\

9.8 Corollary. // K is weakly compact and greater than ω then K is Mahlo.

Proof. Since K is weakly compact it is inaccessible. Since κ>ω, 9.7 applies
so K is Π} indescribable. Let C^κ be c.u.b. in K. We must prove that there is
a λ<κ such that λ is inaccessible and λeC. Let A = <#(κ;),e,^,C> and con-
sider the Π} sentence Φ true in A:

(2) VF Vα [F a function Λ dom(F) = α Λ Vβ<α (F(j?) is an ordinal)

(3) Vα

(4) Vα



9. Weakly Compact Cardinals 361

The VF in (2) is the only second order quantifier; so Φ is Π} (but not s-Π}).
By Π{ Reflection, there is transitive BeH(κ) such that Φ(B) holds. Let
λ = o(B) = £n Ord. By (2), λ is a regular cardinal. By (3), A is a strong limit cardinal.
By (4), λ is the sup of elements of C. Since C is closed, λεC. D

We can connect weakly compact cardinals with trees as follows. A tree
2Γ = (Ύ, -<> is a κ-tree if the rank of 2Γ is K and for each α</c, y has less
than K nodes of level α. A cardinal K has the tree property iff every κ>tree has
a branch, that is, a path of length K.

9.9 Theorem. Lei τc^ω fee inaccessible. Then K is weakly compact iff K has the
tree property.

Proof. By Theorem 7.3 we see that, for K inaccessible, K is weakly compact iff
for every A of the form <f/(κ:),e,^,K>, every A-tree has a branch. Clearly
every such A-tree is a τc-tree. Conversely, if 2Γ is a τc-tree then ?Γ is isomorphic
to a tree on H(κ). Thus T is isomorphic to an A-tree for some expansion
<H(κ),e,Ry of H(ιc). D

We summarize the characterizations of weakly compact cardinals obtained
in the above by means of the following statement. We say that K satisfies
s-Π\(R) = Σί(R) uniformly in R if for every s-Π} formula Φ(vi9...,vΛ9P9R) there
is a Σ! formula φ(vl9...9vn,P9K) such that

<ff(ιc),e,^,Λ>M W [Φβ R)~φ(£, R)]

for all R^H(κ). (This is a different use of the word "uniformly".) We say that K
is weakly compact for Lκω(ι^7) if for every T^H(κ), if every subset of T0 of
power < K has a well-founded model, then T has a well-founded model.

9.10 Theorem (Summary). Let K be an infinite cardinal. The following are
equivalent:

(i) K is weakly compact for Lκω.
(ii) K = ω or K is weakly compact for LK(0(iP~/).

(in) K is s-Π I indescribable.
(iv) κ = ω or K is Π} indescribable.
(v) K is inaccessible and has the tree property.

(vi) K is inaccessible and for every R^H(κ), <H(κr),e,/O has a proper ele-
mentary end extension.

(vii) K is inaccessible and κ = ω or else for every R^H(κ), (H(κ),E,Ry has
a proper well-founded elementary end extension.

(viii) K is inaccessible and satisfies s-Π{(R) = Σ1(R), uniformly in R.

Proof. We list below the equivalences which have been already stated or else
are immediate consequences of earlier results.
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(i) <=> (ϋ) (=> by 9.5; <= by just adding E to a theory not mentioning it),
(i)«=>(iii) (by 9.4),

(iii)<=>(iv) (by 9.7 ϋ),
(i) <=> (v) (by 9.3 and 9.9).

The following implications are trivial:
(ii) => (vii) (trivial compactness argument),

(vii) => (vi) (trivial for κ>ω, the case κ = ω follows from compactness of

*~ωω)

The remaining implications (vi) => (v), and (iii) <=> (viii) are implicit in earlier
results or proofs, but we will make them explicit. To prove (vi) => (v), let
^ = <Γ,<> be a fc-tree. We may assume T^κ. Let A = <#(/c),e,7;<,lev>.
We can code up all of T, •<, lev into one R^H(κ) so, by assumption (vi), there
is a proper elementary end extension 33 = <£,E,T', -<,lev'> of A. Let beB be
an ordinal, bφA. Let xeT satisfy

Then {yeA y^'x} is a branch through T. To prove (iii) => (viii), let
Φ(x,R) = VS φ(x,R,S) be a s-Π{ formula involving an extra relation symbol R.
For any R, <H(κ:),e,^,K> satisfies one of the below iff it satisfies all:

Φ(x,R),

VSφ(x,R,S),

3α [Tran(α) Λ x e α Λ V S ^ α φM(χ9 R, S)] (by (iii)),

The last line gives us a Σt formula i/φc,^0, R) equivalent to Φ(x, R) for all JR. To
prove (viii) => (iii), notice that since K is inaccessible, H (K) = V(κ) and that
A = <H(κ),e,^,IO is resolvable, since H(κ) = \Ja<κ V(α). Thus if A satisfies
s-Π^Σi then A satisfies s-Πj Reflection by Corollary 4.9. D

Some further equivalences are given in the Exercises.

Looking at this summary, one can hardly fail to be struck by the equivalence
of notions coming to us from model theory, set theory and recursion theory.
The summary is slightly misleading, however, in that it hides many important con-
siderations which go into its proof, considerations including supervalidity prop-
erties, resolvability, essential uncountability, A-trees, and so forth. It is only by
understanding the earlier results involving these notions that one sees the various
forces at work in Theorem 9.10.

9.11—9.16 Exercises

9.11. Let A be an essentially uncountable admissible set and let T be a s-Π} set
of sentences of LA. Let

: φ is true in all well-founded models of T}.

Show that Cn^(Γ) is s-Π}.
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9.12. Let K be weakly compact, κ>ω. Show that if C^κ is c.u.b. then there
is a Mahlo cardinal λ<κ, λeC.

9.13. Suppose that for every R, <H(κ:),e,^,R> satisfies s-Πj^Σi. Show that
,6,^> satisfies s-Π}(R) = Σ1(R), uniformly in R.

9.14. The definition of weakly compact cardinal is often given in terms of Lκκ.
We sketch a proof that the two definitions are equivalent. We define L^ to be
the smallest collecting containing L^ closed under — i, /\, \/ and

if φeLaoω and V is a set of variables occurring in φ then 3Vφ and
are in L^.

For any K, Lκlc = LQOQOnH(κ:).
(i) Prove that Lκκ consists of those φeL^ with <κ subformulas.

(ii) The following are sentences of Lωιωι :

Give a formal definition of 9JlNφ[s] for φe L^ so that these sentences express
well-foundedness and essential uncountability, respectively.

(iii) Show that every subformula of a sentence of Lκκ has less than K free
variables.

(iv) Let K be inaccessible and let φe\-κκ. Show that if φ has a model then
it has one in H(κ). Let T^H(κ) be a set of sentences of Lκκ. Show that if Γhas
a model then it has one of power K. [Modify the usual Lόwenheim-Skolem proof.]

(v) Let K be weakly compact for Lκω. Show that K is weakly compact for Lκκ.
That is, let T^LKK be a set of sentences such that every T0^T, card(7^)<κ;,
has a model. Show that T has a model. [For κ = ω this is trivial. For κ>ω
apply 9.10 (vii) to <#(κ),e,^, Γ>. Use the fact that (iv) holds in H(κ) and hence
in any elementary end extension. Also use the fact that H(κ) is closed under
sequences of length < K;.]

9.15. Show that K is weakly compact iff κ-+(κ)\\ that is, iff for every partition

of [/c]2 = {{α,/?}: %<β<κ} into two sets, there is a subset C^κ such that
[C]2^p. for ί = 0 or i = l. [It is probably easiest to prove that 9.10 (vii)
implies κ-+(κ)\ and to prove ω-^(ω)l separately. To prove the other half
show that κ-^(κ)2 implies 9.10 (v).]

9.16. The parts (vi) and (vii) of Theorem 9.10 do not have significant lightface
versions; that is, versions without the "for all K" clause, as the following example
of Kunen shows. Let K be the least inaccessible cardinal such that <H(τc),e> has
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an elementary end extension. Show that it has no well-founded elementary end
extension.

9.17 Notes. The "weakly" in weakly compact derives from the following. A
cardinal K is strongly compact if (yR',H(κ)m,e,Ry is Σt compact for every
structure ΪR = <M,S> and every R^H(K)W, regardless of the size of 501 as
compared to K. We see no convincing argument that strongly compact cardinals
>ω are a natural limit of existing cardinals and so we do not study them here.

The equivalence, for /c>ω, of weakly compact with Πj indescribability is
due to Hanf and Scott [1961]. Some authors take Π} indescribability as the
definition of weakly compact, thus ruling out ω. This seems not only silly (to
rule out the one concrete example) but positively misleading since, as the proof
of 9.7 shows, a number of considerations besides compactness are involved in
the proof of Πj indescribability. The equivalences (in 9.10) (i) <=> (ii) <=> (v)
<=> (vi) <=> (vii) are all well known. Similarly for the other equivalences given
in the exercises. Corollary 9.8 and Exercise 9.12, which show that the first
weakly compact κ>ω is much larger than the first inaccessible cardinal, are
due to Hanf [1964]. The last equivalence ((i) <=> (viii)) in 9.10 is a uniform ver-
sion of a result in Kunen [1968].

The remarkable argument that strongly compact cardinals exist "by analogy
with ω" always reminds me of the goofang, described in The Book of Imaginary
Beings, by Jorge Luis Borges :

The yarns and tall tales of the lumber camps of Wisconsin and
Minnesota include some singular creatures, in which, surely, no one
ever believed...

There's another fish, the Goofang, that swims backward to keep
the water out of its eyes. It's described as "about the size of a sunfish,
only much bigger".




