
Chapter VI

Inductive Definitions

"Let X be the smallest set containing ... and closed under ---." A definition
expressed in this form is called an inductive definition. We have used this method
of definition repeatedly in the previous chapters; for example, in defining the
notions of Δ0 formula, Σ formula, infinitary formula, provable using the 9Jl-rule,
etc. In this chapter we turn method into object by studying inductive definitions
in their own right. We will see that their frequent appearance is more than an
accident.

1. Inductive Definitions as Monotonίc Operators

Let A be an arbitrary set. An π-ary inductive definition on A is simply a mapping
Γ from n-ary relations on A to n-ary relations on A which is monotone increasing
i. e. for all π-ary relations R, S on A

R^S implies Γ(R) c Γ(S) .

If Γ(R) = R then R is a fixed point of Γ.

1.1 Theorem. Every inductive definition on A has a smallest fixed point. Indeed,
there is a relation R such that:

(i) Γ(R) = R,
(ii) for any relation S on A, if Γ(S)<^S then R^S.

Proof. Let C = {S^An\Γ(S)^S}. Since AneC, C is non-empty. Let # =
Since (ii) now holds by definition it remains to prove (i), that is, that Γ(R) = R.
Let S be an arbitrary member of C. Since R c S and Γ is monotone we have
Γ(R)^Γ(S\ but Γ(S)^S, so Γ(R)^S. Since S was an arbitrary member of C,
and Λ = f)C, we have Γ(R)^R. To show that R^Γ(R) it suffices to prove
that Γ(R)eC. But since Γ(R)^R we have, by monotonicity, Γ(Γ(R))^Γ(R)
so Γ(R}εC. D

The proof of 1.1, while correct, tells us next to nothing about the smallest
fixed point of Γ and is certainly not the way we mentally justify a typical inductive
definition. Let us look at an example.
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1.2 Example. Our very first use of an inductive definition was the definition
of the class of Δ0 formulas. We defined it as the smallest class containing the
atomic formulas and closed under Λ , v, —ι,Vweι;, 3weι;. How do we convince
ourselves that there is such a smallest set? We simply say: start with the atomic
formulas and close under (i.e., iterate) the operations Λ, v, ~ι,Vweι;, 3weι;. We
can turn this process into a much more instructive proof of Theorem 1.1. (By the
way, to make the class of Δ0 formulas fall under 1.1 we let A be the class of formulas
of L* and define the 1-ary Γ by

Γ(U) = {φeA\φ is atomic or φ = (ψ/\θ) for some ψβεΌ or ...or φ =
for some

Motivated by the above example we make the following definitions.

1.3 Definition. Let Γ be any n-ary inductive definition on a set A.
(i) The ^-iterate of Γ, denoted by ΓΓ, is the π-ary relation defined by

(ii) IΓ = \JΛΓΓ, where the union is taken over all ordinals.

We will show that IΓ is the smallest fixed point of Γ referred to in Theorem 1.1.
We use the notation

to simplify some equations.

1.4 Lemma. Let Γ be any n-ary inductive definition on a set A.
(i) /? = Γ(0),

(ϋ) I « = Γ ( I Ϊ Λ ) for all a,
(in) α^β implies Ia

Γ^Iβ

Γ, and
(iv) I«Γ

+i=Γ(ΓΓ) for all a.

Proof. Parts (i) and (ii) are immediate from the definitions. Part (iii) follows from
monotonicity since

implies

Part (iv) follows from (ii) since
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1.5 Theorem. Let Γ be an n-ary inductive definition on a set A.
(i) There is an ordinal y (of cardinality ^ card (,4")) such that

jy — τ<y1Γ — 1Γ

and hence

(ii) IΓ is the smallest fixed point of Γ.

An

Fig. 1 A. Building up the smallest fixed point IΓ

Proof. First notice that the relations form an increasing sequence of subsets of A",

and hence the sequence must stop strictly increasing for some y of cardinality
^ card (An\ i.e.,

But then 1} = !^ for all α^y so IΓ = Ify- To prove (ii), note that

by using (i) repeatedly. Hence IΓ is a fixed point and it remains to show that IΓ

is the smallest such. Let Γ(S)^S. We prove ΓΓ^S for all α, by induction. The
induction hypothesis asserts that Iβ

Γ^S for all β<oc so IpΛ^S. By monotonicity
we have

S. D
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1.6 Definition. Given an inductive definition Γ, the least ordinal y such that
Iyr = Ify is called the closure ordinal of Γ and is denoted by ||Γ||.

Most of the inductive definitions we have used in the previous chapters have
had closure ordinal ω so that

One of the most important however, the set of sentences provable using the
9Jl-rule, will in general have closure ordinal greater than ω. (In fact, this inductive
definition has closure ordinal 0($R). See Exercise 3.19.)

Our interest in this chapter is in inductive definitions which are definable over
an L-structure 9W or over an admissible set A^. In order to insure the mono-
tonicity condition on Γ we need the notion of an R-monotone formula.

1.7 Definition. Let 91 be a structure for some language K (usually L or L* in
applications). A formula φ(x1? ..., XΛ, R) of Ku{R} (possibly having parameters
from 91) is R-monotone on 91 if for all x1,...,xne9t and all relations R^^R2

on 91,

(9l,K1)

implies

Recall the notion R-positive and corresponding notation φ(R+) from V.2.1.

1.8 Lemma. // φ(jc1? ...,xπ, R + ) is an R-positive formula of K then it is R-mono-
tone for all ^-structures 91.

Proof. Fix 91 and prove the result by induction following the inductive definition
of R-positive. D

Most inductive definitions are actually given by R-positive formulas because
most inductive definitions do not really depend on the particular structure 91
and any formula which is R-monotone for all structures 91 is equivalent to an
R-positive formula (see Exercise 1.14).

1.9 Notation and restatement of results. Let 91 be a structure for a language K.
Let R be a new π-ary relation symbol and let φ(x1? ..., xπ, R) be R-monotone on 91.

(i) The n-ary inductive definition given by φ, denoted by Γφ, is defined by

R) iff (

(ii) We let Iφ denote IΓφ and similarly for Pφ and /^α. Thus Iφ is an n-ary
relation on 91 satisfying
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Furthermore, if .R is an n-ary relation on 91 satisfying

then Iφ^R. Iφ is called the smallest fixed point of the inductive definition Γφ

and Iφ is called the αth stage of Γφ. It satisfies

1.10 Proposition. Let 91 foe any ^-structure and let φ(xiy ..., xw R) foe R-monotone
on 9ϊ, vv/zere R is a new n-ary symbol. The fixed point Iφ is a Π\ relation on 91.

Proof. By 1.9 we see that (xί9...,xjelφ iff VR[Γφ(R)c R^R(χ1 ? ...,xj] which
becomes

when written out in full. D

Let ^Γ = <ω,0, +,•>. Spector [1959] observed that Kleene's analysis of Π}
relations on Jf showed that every Π} relation or could be obtained by means of an
inductive definition. This result will follow from more general results in § 3. We
present the classical proof, nevertheless, since it is attractive and illustrates several
important points.

1.11 Theorem. Let ^Γ = <ω,0,+, > ana let S be an n-ary Π\ relation on Jf .
There is a formula φ(xί9 ...,xn,y,R+) with R n + l-ary such that

for all x l J . . . ,

Proof. We prove the result for n = 1 and use the following normal form of Kleene
for Π} sets S:

S(x) iff VflnP(xJ(n))

where the following are assumed:

P is recursive,

f(n) is a number s coding up the sequence </(0),...,/(n — l)>,

sl<s2 means that sί is a sequence (code) properly extending s2,

P(x,s2) and sί<s2 implies P(x9sί)9

1 codes the empty sequence,

if s codes <x l 9...,xΛ> then sy codes <x1,...,xπ,j;>.
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The desired inductive definition φ is given by

s is a sequence code and, P(x,s) or Vy R(x,sr];).

We first prove that

(1) Iφ(x,s) implies V/ [if f extends s then 3nP(x,/(n))].

Let R be the set of pairs (x,s) satisfying the right side of (1). Note that
P(x,s)->#(x,s). It suffices to prove that Γφ(R)^R. If (x,s)eΓφ(R) then either
P(x,s) or else VyR(x,fy). But then R(x,s) since every function extending s
extends 53; for some y.

Next we prove the converse of (1), or rather, as much of it as we need:

(2) V/3nP(xJ(n)) implies /φ(χ,l)

If P(x,l) then (x,l)e/° so we may assume — ιP(x,l). Assuming the left side
of (2) consider the set S of all s such that — ιP(x,s). This set is well founded
(under -<) since any infinite descending sequence would produce an / with
— ιP(x,/(tt)) holding for arbitrarily large π, and hence for all n. Let us write, in
this proof, p(s) for p<ΓS(s); ρ(s) is defined for all seS since 5 is well founded.
We prove by induction on ξ that if p(s) = ξ then (x,s)e/|+1. (Since leS we
then have (x,l)e/|+1 where ξ=ρ(i).) Observe that

p(s) = sup{p(ίy) + l\-ΊP(x,sy),yEω}.

Now for each y, if P(x,fy) then (x,s]r)elφ, and if -iP(x9fy) then (x,sy)el* + l

for some β<ξ by the induction hypothesis. In either case

But then by the definition of φ,

as desired. Combining (1) and (2) yields the theorem. D

One of our goals in this chapter is to prove some generalizations of this
result to arbitrary structures. Looking at the above theorem and its proof, we
are struck by three facts.

The most prominent fact is that the proof uses a normal form for Π{ pre-
dicates on Jf which has no generalization to Π} over arbitrary structures. If
we can ignore this unsettling fact, however, we can go on to make two useful
observations.

First, and very typical of the whole subject of inductive definitions, is that
the Π} relation S was not defined as a fixed point but rather as a "section" of
a fixed point :

S(x) <=>/,(*,!).
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The proof makes it clear that the last coordinate of Iφ is where all the work is
going on. It is only at the very last minute that we can set 5 = 1. (To clinch
matters, Feferman [1963] proves that not every Π} set over Jf is a fixed point.)
This motivates the next definition.

1.12 Definition. Let K be a language, 91 be any structure for K and let Φ be a
set of formulas such that each φeΦ is of the form φ(x1?...,x , R) for some n and
some n-ary relation symbol R not in K) and is R-monotone on 91.

(i) If S = Iφ for some φεΦ then S is called a Φ- fixed point.
(ii) A relation S of m arguments is Φ-ίnductive if there is a Φ fixed point S'

of m + n arguments (n^O) and yί9...9yne9l such that

S(xl9...,xJ iff S'(xl9...9xm9yί9...9y.J

for all xί9...9xme9l. S is called a section of S'.

Combining 1.10 and 1.11 (and the triviality that a section of a Π} relation
is Π}) we see that a relation S on Jf is Πj iff it is first order inductive.

A final point on the proof of Theorem 1.11. We made heavy use of coding
in the proof, coding of pieces of functions by sequences and sequences by num-
bers, not to mention the coding which goes into the proof of the normal form
theorem. In an admissible set, coding presents no trouble. In an arbitrary struc-
ture Sffϊ, however, we may be out of luck. In this case we have two options. One
is to restrict ourselves to 9W which have built in coding machinery (this amounts
to Moschovakis [1974]'s use of "acceptable" structures). The second option,
more natural in our context is to replace induction on 501 by inductions on HF^.
We study both approaches in the latter parts of this chapter.

1.13 — 1.19 Exercises

1.13. Let K be a language with only relation symbols. One form of the Lyndon
Interpolation Theorem asserts that if φ,^eKωω, if φ or ψ is R-positive, and if

then there is a Θ which is R-positive and has symbols common to φ and ψ such that

H<P->0) and

Prove a generalization of this to arbitrary countable, admissible fragments KA.

1.14. Prove that if ^(x^^^x^R) is R-monotone for all models 91 of some
theory T of Kωω (T not involving R, of course) then there is an R-positive
^(x l5...,xπ,R+) of Kωω such that

[Use the Kωω version of 1.13.]
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1.15. Let Γ be an inductive definition, i. e. a monotonic increasing operation on
n-ary relations on some set A. Show that Γ has a largest fixed point.

1.16. Let Γ be an rc-ary inductive definition on A and define

and for α>0,

Let

Jr = (V?

Show that JΓ is the largest fixed point of Γ refered to in 1.15.

1.17. Let Γ be an π-ary inductive definition on A and let Γ be defined by

Π(R) = An-Γ(An-R).

Prove that Γ' is an inductive definition. Prove that, for each α,

xeΓΓ iff xφJ«Γ

and hence that

IΓ. = A"-JΓ.

1.18. Let Φ1? Φ2 be classes of formulas R-monotone on a structure 9t, closed
under logical equivalence and such that

1 iff

A relation S on 91 is Φ^-coinductίve iff for some φeΦ1 and some parameters
yί9...,yneK

S(x!,....,xm) iff (xί9...,xm,yl9...,yn)eJφ

for all x l9...,xn69l. Show that S is Φ^coinductive iff ~ι S is Φ2-inductive.
(Hence every coinductive relation on 91 is Σ}. You can also prove this directly.)

1.19. Let G be an abelian p-group. Define Γ(H), for #^G, by

= {px\xeH}.

Show that JΓ is the largest divisible subgroup of G. In this case the least ordinal α
such that JΓ = Γ\β<oίJr is usually called the length of the group G. It plays a
key role in the study of p-groups.
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1.20 Notes. We have built monotonicity of Γ into our definition of "inductive
definition". There are also things called "non-monotonic inductive definitions"
which have interesting relationships with admissible sets. For references on these
operators, we refer the reader to Richter-Aczel [1974] and Moschovakis [1975].

All the results of § 1 are standard.

2. Σ Inductive Definitions on Admissible Sets

Let Σ(R+) be the collection of R-positive Σ formulas of L*(R) and let Σ+ be the
union of the Σ(R+) as R ranges over all relation symbols not in L*. Applying
Definition 1.12 (with K=L*, 91 = 21̂  and Φ = Σ+) we have the companion
notions of Σ+ fixed point and Σ+ inductive relation. These notions are the primary
object of study of this section. The proofs, however, give information about a
wider class of relations.

Let JΓ be a class of L*-structures and let Σ(Rt<>O be the collection of
Σ formulas <p(x l5...,xπ, R) of L*(R) which are monotone increasing on each
structure in jf. We let Σ(tJf) be the union of the Σ(RίJf) as R varies. (Read
"Σ increasing on JΓ" for Σ(JJΓ).) Given a structure ^I^eJΓ we have corre-
sponding notions of Σ(f JΓ) fixed point on 91̂  and Σ(|JΓ) inductive relation
on Slg,,. If jf = {91TO} then we write Σ(t«lsw) for Σ(pf)

Note that by Lemma 1.8, Σ+cΣ(|jf) for all jf. If jf is the class of all
structures for L* which are models of some theory T then Exercise 1.14 tells us
that Σ+ = Σ(pf), up to logical equivalence. In the results below, however,
Jf* is usually a single admissible set or a class of admissible sets.)

We have already studied the most important Σ+ inductive definition at some
length back in Chapter III. Let KA be an admissible fragment and let Thm& be
the set of theorems of KΔ. By definition, T/ιraA is the smallest set of formulas
of KA containing the axioms (Al)—(A 7) and closed under (Rl)—(R3). This is,
of course, a typical example of an inductive definition. Let Γ0 be this inductive
definition.

2.1 Proposition. Using the notation just above we have
(i) Γ0 is a Σ+ inductive definition, and hence

(ii) Γ/ιmA is a Σ+ fixed point.

Proof. We simply write out the definition of Γ0 to see that it is in fact Σ+. Let R
be a new unary symbol and recall that

xeΓ0OR) iff xeK A Λ[(A)v(Rl)v(R2)v(R3)]

where we have used

(A) "x is an instance of (Al)—(A7)".

(Rl) 3y[yeR/\(y->x)eR].

(R2) "x is of the form (ψ-*Vvθ(υ)) where v is not free in φ and (\l/-*θ(υ))eR".

(R3) "x is of the form (ψ->/\φ) and, for each φeΦ, (ψ
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We can rewrite this schematically in the form

xeΓ0(R) iff Δ 1 Λ[Δ 1 vΣ 1 (R + )vΔ 1 (R + )vΔ(R + )] ,

so Γ0 is indeed a Σ(R+) inductive definition. D

Now one of the primary aims of § III.5 was to prove that T/ιmA was in fact
Σ! definable on A. In this section we use this fact to prove that every Σ+ in-
ductive relation on an admissible set is Σί on that admissible set. For A countable,
even more is true.

2.2 Theorem. Let A be a countable admissible set. Every Σ(|A) inductive rela-
tion on A is Σ! on A.

Proof. It clearly suffices to prove that every Σ(| A) fixed point on A is Σ! since
the Σx relations are closed under sections. Let φ(x l9...,xn, R)eΣ(|A). The proof
goes back to the Extended Completeness Theorem for countable admissible
fragments and, hence, to our analysis of Γ0 carried out in § 111.5. Let K be the
formalized version of L*(R)u{x|xeA} and let KA be the fragment given by
A (=A2n). Let Tbe the KA theory:

Diagram (A),

Vi; [vE~a <-> \/*eα v = *] f°Γ a^ 0G A ,

Vϋ t, . . . , vn [φ(υί9 . . . , vn9 R) -> R(i?1? . . . , t?J] .

We claim that

(1) (xl9...9xjelφ iff TNROq,...,*,,)

from which the conclusion follows by the Extended Completeness Theorem.
The (<ί=) half of (1) follows from the observation that

when R is interpreted by Iφ. To prove (==>) suppose that (93 ,̂1 )̂ is an arbitrary
model of T. We need to prove that whenever (x1,...,xπ)e/<p, we have

If we let R0 = R\Am then we note that (up to isomorphism)

so what we need to prove is that Iφ^R0. This will follow (from 1.5(ii)) if we

prove that Γφ(K0)^^o); i e ?

 that

(2) (Aw,
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So suppose that y1,...,yneAm and

Since φ is a Σ formula and (95^,^) is an end extension of (A^,/^) we have

, R)\=φ(yl9...,yn9R)9

and so, by the last axiom of T, R(yί9...,yn) holds, and hence #()()>!,...,}>,,). This
establishes (2) and hence the theorem. D

Let φ(xί,...,xn,υί9...,vk,R) be a fixed Σ formula of L*(R). The following
remarks are intended to lift much of Theorem 2.2 to arbitrary admissible sets
by means of the Absoluteness Principle.

2.3 Remark. The Σ1 formula defining Iφ in Theorem 2.2 is independent of A
except for the parameters occuring in φ. More fully, let

denote the smallest fixed point defined on A by Γφ when v1=yί,...,yk = y
vided <?(*!,..., xπ, }Ί,..., yk,R)eΣ(Rt A)). There is a Σ1 formula ^(Xi,...^^^,...,^)
of L* such that for all countable, admissible A and all yly...,ykeA,

(3) if φ(x1,...,xn,y1,...,yk, R) is R-monotone on A then for all x1,...,xnelk,

(x1,...,x/l)e/φ(A,);1,...,};fc) iff ANi/φq,...,*,,,;^,...,^).

Proof. Let ψ be the formula which expresses

3p [p is a proof of σ-» R(xί9 . . . ,"xj where σ is a conjunction of members of T],

where T is as in the proof of 2.2, and examine the proof of Theorem 2.2. D

2.4 Remark. The operation /£(A, yl9..., yk), is a Σ operation of A, yι,...,yfc, since
it is defined by Σ Recursion on α. In ZF we proved the existence of an α (de-
pending on A9yί9...9yk) such that

(This step takes us outside KPU since it requires some form of Σx Separation.)
Thus, in ZF, the predicate

is a Δ! predicate of A, xl9...,xn,yί9...,yk. It is expressed by the Σx formula
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and the Γ^ formula

V α C / ίA,^,...,;)^^^

(The characterization of Iφ(Jk,yl9...,yώ as smallest fixed point of Γφ gives an-
other Πi definition.)

2.5 Remark. The conclusion of line (3) above is a ̂  predicate of A, yl9...,yk. The
hypothesis, however, is a Πt predicate of A, y1?...,yk which makes (3) of the
form Πi -> Δ! and hence a Σ! predicate of A, y1? . . . , yk. To apply the Absoluteness
Principle we would need the result to be Π^

We are now ready to lift Theorem 2.2 to the uncountable. We give two proofs
because each contains information not available in the other (see the two corol-
laries 2.7 and 2.8).

2.6 Gandy's Theorem. Let A be any admissible set. Every Σ+ inductive relation
on A is Σ! on A.

First Proof of Theorem 2.6. Fix ςφc l5...,xπ, ι?l5...,ι;k, R)eΣ(R+). Since φ is
R-positive it is R-monotone for all structures for L* and hence for all admissible
sets. The troublesome hypothesis of line (3) is thus superfluous and we see that
we have proved for all countable A:

if A is admissible then for all yί9...,ykeA and all x1,...,xII£A

The displayed part is Δx so by the Levy Absoluteness Principle, the result holds
for all A. D

2.7 Corollary. Let tf be a class of admissible sets which is Σt definable in ZFC.
Then for any AeJf , every Σ(|Jf ) inductive relation on A is Σί on A.

Proof. The hypothesis asserts that there is a Σt formula θ(x) without parameters
such that

iff 0(A),

ZFC h- Θ(A) -» A is admissible.

Replace "A is admissible" by "Θ(A)" in the above proof. D

For example, the Jf in 2.6 might be the class of all admissible sets or the
class of L(α) where α is recursively inaccessible or nonprojectible.

Second Proof of Theorem 2.6. This proof is more traditional in that it uses the
Second Recursion Theorem. For simplicity we let n = i and we suppress
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parameters y1}...,^k entirely since they are held constant in this proof. To
simplify notation, whenever S is a relation on A and φ(x,R)eΣ(R+), we write

A\=φ(x,S)

instead of the more accurate

Now let φ(x,R)EΣ(R+). Use the Second Recursion Theorem to define a Σί

Formula ψ of L* such that

(More precisely,

To fit thus into Second Recursion Theorem, first let S be a new binary symbol
and let φ'(x,β,S) be φ(x, 3y</?S( ,y)) and then apply the Second Recursion
Theorem.) We claim that

(4) for β<o(A)

xεlβ

φ iff ANι/φc,β).

The proof proceeds by induction on β. The induction hypothesis gives us,
for y<β,

so, taking unions,

Then for any xeA we have

iff

iff

iff Aϊ=φ(x,3γ<βψ( ,y))

iff A\=ψ(x,β).

Let α = o(A). From (4) we obtain

(5) i;« = {
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Now we claim that

(6) rφ(i<«) =/;«.

It suffices to prove Γφ(/^ *)£/<«, so suppose xeΓφ(/φ

<α), i.e., that

By (5) this becomes

By the Σ Reflection Theorem and Lemma V.2.2 there is a δ<α such that

which, by (4), is equivalent to

Thus xeΓφ(/**) = /£. But /£c/<« so xe/φ

<α as desired. But (6) immediately
implies that Iφ = Iφ*, so ||ΓJ|<α and

which proves that Iφ is Σ! on A. D

2.8 Corollary (Second half of Gandy's Theorem). Let A be admissible and let
φ(x l5...,xπ, R+) be a Σ formula with parameters from A. Let α = o(A).

(i) IIΓJKα.
(ii) For all β, Iβ

φ is Σ, on A.

Proof. Part (i) was explicitly mentioned in the second proof of 2.6. For (ii) we
have the result for jβ^α by 2.6 and for β<α by line (4) above. D

The results mentioned in 2.8 also hold for arbitrary R-monotone φ(x,R) if
the admissible set A is countable. The proof of this, however, must await a
stronger reflection principle, the s — Tl\ Reflection Principle.

For sets of the form L(α) the conclusions of 2.6 and 2.8 are actually equivalent
to the hypothesis of admissibility. This will follow from Theorem 3.17 in the
next section.

2.9—2.11 Exercises

2.9. Let 3ΪOT be a nonstandard model of KPU. Show that i^/(Mm) is a Σ+ fixed
point which is not first order definable over 91̂ . What is the length of the in-
ductive definition?
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2.10 (Stavi). Show that there are pure transitive sets which are not admissible
but such that every Σ+ inductive relation is Σ!. [Hint: Let A = L(τ1)nV(y) for
suitably nice α,ω<α<τ1.]

2.11. Let φ(x1,...,xπ,R+) be a Π formula and let Jφ be the largest fixed point
of Γφ on an admissible set A. Show that Jφ is Π?.

2.12 Notes. The fact that, over an admissible set A, a Σ+ inductive definition Γφ

has a Σ! fixed point and closure ordinal ||ΓJ|<0(A) is usually called Gandy's
Theorem. He proved this theorem in lectures at the UCLA Logic year in 1968
by adapting the proof-theoretic approach used to prove the Barwise Com-
pleteness Theorem. A similar approach is taken in Gandy [1974]. We have given
two new proofs for this theorem, one which shows that the result can be derived
from the Barwise Completeness Theorem, the other a much more standard
recursion theoretic approach using the Second Recursion Theorem.

The recursion theoretic approach to Gandy's Theorem suggests an alternate
approach to the material in this book. One could prove Gandy's Theorem (by
means of the Second Recursion Theorem) and then quote it to prove that the
set T/zwA of theorems of an admissible fragment KA is Σί on A. This would
suffice for many applications of the Completeness Theorem, but not all. Some
applications actually need the notion of KA-proof used in § III.5, since there is
important information coded inside the proof.

The approach taken here also has the advantage of stressing the interplay of
all branches of mathematical logic, which is one of the attractive features of
admissible set theory.

3. First Order Positive Inductive Definitions
and

We have seen various ways in which HYP^ is a mini-universe of set theory
above 901. For countable 9JΪ, we have seen that the relations on 9W which are
elements of IHYP^ are exactly the Δ} relations. This characterization breaks
down for uncountable 9M (see Exercise VII. 1.1 6) so we are left with two problems
in the general case:

To characterize the relations on 9JZ which are elements of HYP^, and
To characterize the Δ} relations on $R in terms of HYP^.

The first of these two problems is solved by Theorem 3.6 below. The second
problem is solved at the end of § VIII. 2.
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3.1 Definition (Moschovakis). Let K be a language and let Φ be the set of all
finitary formulas of the form φ(R+), for any new relation symbol R. Let 91 be
a structure for K and let 5 be a relation on 31.

(i) 5 is a (first order positive) fixed point on 91 if S is a Φ-fixed point (in
the sense of 1.12) on 91.

(ii) S is inductive on 91 of S is Φ-inductive on 91.
(iii) S is coίnductive on 91 if —iS is Φ-inductive on 9ί.
(iv) S is hyperelementary on 91 if S is inductive and coinductive on 91.

(For more intuition into the notion of coinductive, the student should do
Exercises 1.15—1.18.)

The theorems of this section are suggested by the following classical result.

3.2 Theorem. Let Jf = <ω,0, +, •) ana let S be a relation on Jf.
(i) S is Πj on Jf iff S is inductive on ΛΛ

(ii) S is Δ} on Jf iff S is hyperelementary on J f .

Proof. We proved (i) in 1.10 and 1.11; (ii) is immediate from (i). D

Thus we see that for relations on Jf,

Σt on HYP^ = inductive on Jf,

element of HYP^ = hyperelementary on Jf.

We would like to generalize these equations from Jf to an arbitrary struc-
ture 901. We would like to, but we can t because the generalization works only
for 9JI which have some built in coding machinery. We discuss just how much
coding is needed in the next section. For now we simply state one special case
where all goes smoothly, and then take a different tack.

3.3 Theorem. Let A be an admissible set and let S be a relation on A.
(i) S is Σ! on HYP(A) iff S is inductive on A.

(ii) S is an element of HYP(A) iff S is hyperelementary on A.

Proof. We merely sketch a proof since this result is a special case of Theorem 3.8
and the results of the next section. The proof sketched here is more direct. As
usual, (ii) follows trivially from (i). We first show that if S is inductive on A then
S is Σ! on HYP(A). It clearly suffices to prove the result for the case where S
is a fixed point Iφ of some first order positive inductive definition Γφ. Since φ
is first order over A it is Δ0 in HYP(A) so Γφ is, in particular, a Σ+ inductive
definition over HYP(A), hence by Gandy s Theorem, Iφ is Σi on HYP(A). (A
more direct proof which works here but not in 3.8 is to observe that /£ is a
HYP(A)-recursive function of β, for jS<o(HYP(A)), and use Σ Reflection to
prove that ||ΓJ^0(HYP(A)). This would give the following ΣL definition of S:

S(x) iff
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To prove the other half, suppose 5^ A is Σx on HYP(A). By Theorem IV.7.3
(or, more precisely, Corollary 3.14 below) S is weakly representable in KPU'
using the A-rule, where KPU' is the theory

KPU,

diagram (A),

xeΆ (all xeA),

3α Vt;

But the set CA(KPU') of consequences of KPU' using the A-rule is clearly an
inductive subset of A. Thus we have

S(x) iff /(x)eCA(KPU')

for some A-recursive function /. An easy exercise (Exercise 3.20) establishes
that S is inductive on A. D

We have been deliberately sketchy in the above proof to give the student a
feel for the main idea. This must be gone into in more detail to prove Theorem 3.8
below, the main result of this section. First, though, let's draw some easy corol-
laries of Theorem 3.3.

3.4 Corollary. If A is a countable admissible set then

Πj on A = inductive on A,

Δ} on A = hyperelementary on A.

Proof. This is an immediate consequence of Theorem 3.3 and the results of
§ IV.3. D

3.5 Lemma. Let A be admissible.
(i) There is an (n + ί)-ary inductive relation on A which parametrizes the class

of n-ary inductive relations on A.
(ii) There is an inductive subset of A which is not hyperelementary.

Proof. By V.5.3, HYP(A) is projectible into A. Thus the lemma is just a restate-
ment using 3.3. D

Using these results we can show just exactly how one gets from one ad-
missible ordinal τα to the next admissible ordinal τα + 1. Namely

τα+ι = SUP {\\Γφ\\ '• Γφ ^s a first order positive inductive definition over L(τα)} ,

and this sup is actually obtained. This is a special case of the following result.
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3.6 Corollary. Let A be admissible and let α = o(IHYP(A)). Then α is equal tto
the sup of all \\Γφ\\ where Γφ is a first order positive inductive definition over A,
and this sup is actually attained.

Proof. We know that any first order positive inductive definition Γφ over A is
Σ+ over HYP(A) (in fact "Δ0+") so ||ΓJ|<α by the second half of Gandys
Theorem. To show that α is such an ordinal \\Γφ\\, use 3.5(ii) to choose an inductive
subset S^A which is not hyperelementary. Then S is a section of some fixed
point Iφ. Clearly Iφ is not hyperelementary either. We claim that ||ΓJ|=α. As
mentioned in the proof of Theorem 3.3, Iβ

φ is a HYP(A) recursive function
of β, for β<a. Hence /£eHYP(A) for all β<a. But then, if \\Γφ\\=β«*9

/φ = /£eHYP(A) which makes Iφ hyperelementary, a contradiction. D

As we'll see in the next section, the hypothesis that A is admissible is far
too strong for the above results. All we really need is a reasonable amount of
coding apparatus.

What we are really after, though, is a characterization of the relations on 50Ϊ
in IHYPg^ which works for all structures 501, not just those with built in coding
machinery. The best way around this is to slightly strengthen the notion of in-
ductive definition, so that one can do the coding needed in the inductive de-
finition itself.

3.7 Definition. Let Φ be the set of extended first order formulas φ(R+) of L*(R)
as defined in II.2.7, p. 50. Let 501 be a structure for L and let S be a relation
on 501 (or even HF^).

(i) S is extended inductive (written inductive*) on 501 iff S is Φ inductive on

(ii) S is extended hyperelementary (written hyperelementary*) on 50Ϊ iff S and
—\S are inductive* on 50Ϊ.

Our second, and principal, generalization of Theorem 3.2 is the following
result.

3.8 Theorem. Let 3K = <M,R1,...,R/> be a structure for L and let S be a rela-
tion on 50Ϊ (or even on HF^).

(i) S is Σ! on HYP^ iff S is inductive* on 501.
(ii) S is Δ! on HYP^ iff S is hyperelementary* on 501.

Its corollaries are analogous to those of 3.3.

3.9 Corollary. Let 9M = <M,R1,...,Rί) be a countable structure for L.
(i) Π} on 501 = inductive* on 501.

(ii) Δ} on 501 = hyperelementary* on 501. D

3.10 Lemma. Let 501^<M,R1,...,KZ> be a structure for L
(i) There is an (n + i)-ary inductive* relation on HFOT which parameterizes the

class of n-ary inductive* relations on HF^.
(ii) There is an inductive* relation on HF^ which is not hyperelementary*.
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Proof. HYP^ is projectible into HF^, again by V.5.3, so the results follows
from V.5.6 and 3.8. D

We use these corollaries to get the most intelligible description yet of
(and hence of HYP^ since HYP^-Lία)^ where α-

3.11 Theorem. // SBl = <M,R1,...,Λ/> is a structure for L then

O(9K) = sup{||ΓJ| I Γφ is an extended inductive definition over $R}

and this sup is actually attained.

Proof. The proof of 3.11 is exactly like the proof of 3.6 when 0(9W)>ω for
then HF^elHYP^. Suppose HYP^ has ordinal ω. Let Γφ be an extended first
order inductive definition on 9JΪ. As we will see in the proof of Theorem 3.8,
Γφ is Σ+ on HYR0J, so ||ΓJ|<ω by the second half of Gandy's Theorem. It is
simple to give an example of extended first order inductive definitions of
length ω, e. g.,

xeΓ(R) iff "x is a natural number Λ Vy<x R(y)"

defines ω in HF with

so ||Γ||=ω. D

It is worthwhile digressing to compare 3.8 with the following consequence
of 3.3, just to make sure the student is not confusing two distinct things.

3.12 Corollary. Let 9Jl = (M9Rί9....9Rly be a structure for L which is not re-
cursively saturated. Let S be a relation on $R (or even

(i) S is Σt on HYP^ iff S is inductive on
(ii) SeHYPan iff S is hyper elementary on

Proof. Since 90Ϊ is not recursively saturated, o(HYPaϊϊ)>ω so
But then HYP(MFsw) = IHYPsW since HYP(HFM) is the smallest admissible set
with HF^ as an element. Thus 3.10 is a special case of 3.3. D

The student must be clear about the difference between inductive* definitions
on 501 and inductive definitions on HF^. The latter are, in general, much more
powerful since they allow unbounded universal quantification over sets in HF^
iri addition to the unbounded existential allowed by inductive* definitions.

We have already done most of the work for proving Theorem 3.8 back in
§ III.3, the section on 9Jl-logic and the 90ΐ-rule.

In the discussion below we let 5tR = <M,JR1,...,.R/> be a jϊxed L-structure
and we let L+ be an expansion of L with a new unary symbol M and symbols p
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for each pe50l, just as in our discussion of 501-logic in § III.3. We assume that
L+ is coded up in an effective way on ΉF^.

3.13 Proposition. Let T be a set of sentences of L+ω which is Σx on HF^. Let
Cyχ(T) be the set of formulas of L*ω which are provable from T using the SOΪ-rw/e.
Then CM(T) is inductive*.

Proof. We simply write out the original definition Γ of C^T) given in III.3.4
and observe that it has the correct form. Let R be a new unary symbol and
define Γ by

xeΓ(R) if x6liωΛ[(l)v v(5)]

where (1)...(5) are given below.

(1) (Logical Axioms) "x is an axiom of first order logic";

(2) (Nonlogical Axioms) xeT;

(3) (Modus Ponens) ly[yeR*(y^>x)eR']9

(4) (Generalization) "x is of the form (̂  -> Vi? θ(v)) where υ is not free in if/
and (^-»θ(t;))e!Γ;

(5) (501-rule) "x is of the form Vt;0 [M(ι;0)->0(ι;0)] and for all peM, θ(p/ι;0)elΓ.

Clearly Γ defines COT(T), i. e., QR(Γ) = /Γ so that G^T) is actually a fixed point.
Γ is definable over HF^ by an R-positive formula; the only unbounded universal
quantifier is in (5) and it is a quantifier over M. D

The reader may remember that we left a couple of proofs unfinished in § IV.7,
the section on representability using the 9W-rule. We proved IV.7.3 and IV.7.4
in the countable case but left the absoluteness of those results until later. Prop-
osition 3.13 allows us to finish these proofs.

3.14 Corollary. Assume the notation of Proposition 3.13.
(i) xeCOT(T) is a Δt predicate of x, T and 9JI, Δx in the theory ZF.

(ii) Consequently, the proofs given in § IV.7 of IV.7.3 and IV. 1 A for the countable
case, together with Levys Absoluteness Principle, yield the general results.

Proof. Part (i) is a consequence of Remark 2.4. For (ii), the proofs of
IV.7.3 and IV.7.4 are quite similar. Since IV.7.3 is the more important for us
here (we apply it in the next proof) let us treat it in some detail. Again 7.3 (i)
and 7.3 (ii) are similar so we prove (i). Suppose, as in the proof of (i), that
φ(x1,...,xπ,p1,...,pk,M) i saΣi formula with the property that for all qί9...,qnεM

WίPn*=φ(ql9...9qn9p9M) iff KPU+

Now, if 9W is countable we use the 9Jl-completeness theorem to write

ΉYPn\F=φ(ql9...9qn9p9M) iff KPU+ \-
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I.e., we have for all countable SDΪ and all ql,...,qnεM:

t=φ(qι,...,qn9p,M) iff φ(q 1?..., .qB,p,M)eQDI(KPU+).

We claim that this is a Δ! predicate of ΪR, Δt in ZF. The right hand side of the
iff is Δx by (i), and the left hand side is Δx since satisfaction is Δx and since HYP^
is a Σ! operation of 9JI by the argument given in IV.3.5. By Levy Absoluteness,
the result holds for all 9W. D

Theorem 3.8 will follow from Proposition 3.13 given the next lemma. It is a
special case of the Combination Lemma of Moschovakis [1974].

3.15 Lemma. Let l/cHFTO be inductive*, let /: HF^ -> HF^ be Σ1 on
and let P be defined by

P(x1?. ..,*„) iff /(x1,...,xπ)eL7.

Then P is inductive* on 9JΪ.

Proof. Suppose U is a section of the fixed point Iφ where φ(vί9v29R+) is ex-
tended first order positive on 951, say

U(y)»((y,z0)elφ).

We define an rc + 3-ary inductive* definition Γφ so that a section of /| (with i = 0)
imitates /J and the section with ί = l takes care of /. Define ^(ι,x1,...,xπ,ί;1,ι;2,S+),
where S is π + 3-ary, by the following, where ί1,...,ίπ,z1,z2 are arbitrary but
fixed elements of

i = 0 Λ x = ΐ Λ ^(t;!, ι?2, Λ,W! w2 S(0, ίl5 . . . , ίπ, w1? w2)/R) , or

A simple proof by induction shows that

(6) φl9υ2) iff IΪ(0,tl9...,tΛ9Όl9v2)

so that

U(y) iff ^(0,ί1,...,ίπ,};,zo).

Another proof by induction, using (6), shows that

(/(x1,...,xπ),z0)e/J iff (l,x1,...,xll,z1,

Thus

P(xl9...,xπ) iff (l,x1,...,xn,z1,
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so P is a section of Iψ. The only universal quantifiers in ^ are those in φ so iff
is extended first order positive. D

We now return to prove the main theorem of this section, Theorem 3.8.

3.16 Proof of Theorem 3.8. (i) Let Γφ be an extended first order inductive de-
finition over 9JI. Since HF^ is a Σ^ subset of HYP^, relativizing the unbounded
(existential) set quantifiers in Γφ to HF^ and relativizing the unbounded quan-
tifiers over 30Ϊ to the set M turns Γφ into a Σ+ inductive definition over HYP^
and hence Γφ has a Σ1 fixed point Iφ, by Gandy's Theorem.

To prove the other half, let us consider a relation S on 9W which is Σl on
HYP^. By Theorem IV.7.3, S is weakly representable in KPU+ using the 9R-rule.
Thus there is a formula φ(vi,...,υn) of L* such that for all x1,...,x f l6M,

S(xl9...,xJ iff φ(x1,...,x l l)eQw(KPU+).

Now, by 3. 1 3, Cαϊί(KPU+) is inductive* over SR. Let f(x^ , . . . , xj = φ(xjvί , . . . , xn/vn).
Then

S(x1?...,xJ iff /(x1,...,

so S is inductive* by Lemma 3.15. The same proof works if S^ΉF^ except that
Exercise IV.7.5 replaces Theorem IV.7.3. Part (ii) follows from (i) as usual. D

The final results of this section show that for nonadmissible sets of the form
L(α)sw (for example), Σ+ inductive definitions are just as strong as arbitrary first
order inductive definitions, and that they are just as long. The results thus yield
partial converses to the results of § 2 by showing how necessary the assumption
of admissibility was for those results.

3.17 Theorem. Let M^a where a is transitive in WM and let β be any limit
ordinal such that

is not admissible.
(i) A relation S on A^ is Σt on HYP(Aarι) iff S is Σ+ inductive on A^.

(ii) The ordinal o(HYP(Aαri)) is equal to

sup{||ΓJ| I Γφ is a Σ+ inductive definition on Am}

and the sup is actually attained.

3.18 Corollary. Let M<Ξα where a is transitive in Ψ^ and let β be any limit
ordinal. Let
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The following are equivalent, where & =
(i) Am is admissible.

(ii) Every Σ+ inductive set on Am is Σ: on A^.
(iii) For every Σ+ inductive definition Γφ on A^, ||ΓJ|^α.

Proof. By the results of the previous section, (i)=>(ii) and (i)=>(iii). To prove
(ii) => (i), suppose A^ is not admissible. Let S be a subset of A^ which is Σ: on
HYPίAan) but not HYP^^-finite; such an S exists since HYP^) is pro-
jectible into A^. But then 5 is Σ+ inductive on A^ by 3.17. S cannot be Σx on
ASH for then it would be Δ0 on ΉYP(Aml hence in HYPίA^). Thus -ι(i) => -ι(ii).
For the same reason, the length ||ΓJ| of an inductive definition of S could not
be ^ α so ~ι(i) => ~i(iii). D

The proof of Theorem 3.17 uses ideas similar to those used in the proofs of
Theorem 3.3 and 3.8. We leave a few of the details to the student.

Proof of Theorem 3.17. We prove (i) assuming A^ is countable, leaving the exten-
sion (via Levy's Absoluteness Principle) to the student. The (<=) half of (i) is ob-
vious, so let S be a relation on A^ which is Σ1 on HYPΐA^). Every xeHYP(Aan)
has a good Σ: definition with parameters from L(α,jS)u{L(α,β)} by Π.5.14. Since
Am is not admissible, β and hence L(a,β) also have Σx definitions on HYP(Aaϊl)
with parameters from L(a,β) by the last step in the proof of II.5.14. Thus every
xeWYP(A^ has a Σ^ definition with parameters from L(α,β). But then S has
a Σ! definition (as a subset, now, not an element) with parameters from L(α,β)
since the other parameters can be defined away. Thus suppose that for all

S(x) iff MYP(Am)\=φ(x,y)

where yeL(a,β) and φ is Σx. By the Truncation Lemma S(x) is equivalent to

(7) for all 23^ =>endAm, if ^t-KPU then 95W N φ(x,y).

Since β is a limit, L(a,β) is closed under pairs, union and Δ0 Separation so we
may code up K=L*u{x |xeA a R } on A^. Let KA be the (nonadmissible) frag-
ment of K^,^ given by A^. Let T^ KA the the theory

KPU

Diagram (A^)

Vϋ[ι;ea<->\/Jceaι; = x], for all

Every model of T is isomorphic to some ®αn^end^scn so (7) is equivalent to
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By Theorem ΠI.4.5 (really III.4.6) this is equivalent to saying that φ(x,y) is in
the smallest set of sentences of KA containing T and (Al)—(A 7) which is closed
under (Rl)—(R3). This clearly amounts to a Σ+ inductive definition Γφ such that

R(x) iff φ(x,y)e/Γ.

Therefore R is Σ+ inductive by Exercise 3.21.
To prove (ii) we need only find a Σ+ inductive definition on A^ with length

o(]RΎP(Am)). Let R^Am be HYPίA^-r.e. but not an element of HYPCA^).
There is such an R since ΉYP(Ay^) is projectible into Am by V.5.4. Then R is
a section of Iφ, where Γφ is some Σ+ inductive definition. But now the argument
used earlier, in the proof of 3.6 for example, shows that ||ΓJ| = o(HYP(Aw)). D

3.19—3.22 Exercises

3.19. Let Cm(KP\J+) = Iφ, where Γφ is extended inductive, by 3.13. Show that
O(9K) = ||ΓJ|. Thus, for example, 0($R) is just the least ordinal not assigned to
a proof using the ΪR-rule, under the usual assignment of ordinals to proofs.

3.20. Let 9X be a structure, let U be inductive on 91 and let /: An-+A be first
order definable. Modify the proof of 3.15 to show that

P(x) iff l/(/(x))

defines an inductive relation on 51.

3.21. Let 5ί be a structure, let l/^a be Σ+ inductive on 91, let /: An^A have
a Σ! graph and define P by

P(xl9...,xJ iff /(x1?...,xπ)6l/.

Show that P is Σ+ inductive on 91. [Mimic the proof of 3.15.]

3.22. Give the absoluteness argument for lifting Theorem 3.17 from the countable
to the uncountable.

3.23 Notes. The main results of this section are from Barwise-Gandy-
Moschovakis [1971], at least in the case of pure admissible sets. Theorem 3.17
and its corollaries are new here.

4. Coding HFOT on

A pairing function on a set M is simply a one-one function mapping M x M
into M. An n-ary function / on a structure 9JI is inductive (or hyperelementary)
if its graph is an (rc + l)-ary inductive (or hyperelementary, respectively) relation
on 501. In this section we show how to code HF^ on 50ί using an inductive pairing
function on 501. Our goal is to prove the following theorem.
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4.1 Theorem. Let 9Jί = <M,Λ1,...,R/> be a structure with an inductive pairing
function. The inductive and inductive* relations on SOΐ coincide.

We give the applications of this theorem (and a couple of related results
obtained along the way) in the next section by showing how a great many results
on inductive relations on 9K can be obtained in a simple fashion by projecting the
recursion theory of HYP^. In so doing, we tie up the theory of admissible sets
with the theory of inductive relations as developed in Moschovakis [1974]. Since
our aim in these sections is to relate our theory to Moschovakis theory, we feel
only mildly apologetic for using without proof two results (4.2 and 4.3 below)
from Chapter 1 of Moschovakis [1974]. The proofs are sketched in Exercises
4.17 and 4.18.

A relation P on 501 is defined from Q by hyperelementary substitution if there
are hyperelementary functions fly...,fk so that

P(x1? . . . , xj iff Q ( f ί ( x ί 9 . . . , xj, . . . , /k(xls . . . , xj)

for all x l 5...,xne9W.

4.2 Theorem. The inductive relations on SJi contain all first order relations and
are closed under Λ , v , 3, V and hyperelementary substitution. Hence, the hyper-
elementary relations on 501 contain all first order relations on SDΪ and are closed
under ~Ί, Λ , v , 3, V and hyperelementary substitution.

Proof. This result follows easily from 4.3. See Theorem 1D.1 of Moschovakis
[1974] or Exercise 4.18. D

The inductive relations on 901 are closed under induction in a sense made
precise by 4.3.

4.3 Theorem. Let Sl9...9Sk be relations on 50Ϊ and consider an inductive defi-
nition Γφ over the expanded structure (^ΰt9Sl9...9Sk)9 where φ is of the form
φ(x1,...,xπ,R+,S1,...,Sk) in Lv{R,Sl9...,Sk}.

(i) // Sl5...,Sk are hyperelementary on 9JΪ then the fixed point Iφ defined on
(3)l9Sί9...9Sk) is inductive on the original structure SOΪ.

(ii) If Sί9...9Sk are inductive on 50ί then the conclusion of (i) still holds provided
φ is Si-positive for i = !,...,&.

(iii) In either case (i) or (ii), Iφ is a section of a fixed point 1^ for some
^(x1,...,xm,R+)eLu{R} with \\Γψ\\>\\Γφ\\.

Proof. See Theorem 1C.3 of Moschovakis [1974] or Exercise 4.17. D

There is one simple consequence of 4.2 that deserves mention. If / is an in-
ductive function on ΪR and if its domain D is hyperelementary (e. g., if / is total)
then / is hyperelementary, since

iff (x1,...,x^/)v3z/(x1,...,xn) = z A
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Thus, if 9W has an inductive pairing function p, p is actually hyperelementary
since p is total.

The plan for the proof of Theorem 4.1 is simple. Fix an inductive pairing
function p on 9JΪ. We are going to use p to assign notations to the elements of
HFM. The set T of notations will be inductive on 9W but not, in general, hyper-
elementary. An extended first order formula of the form

will translate into

3x(xeTΛ )

which will keep us within the class of inductive relations since the inductive
set T occurs positively. On the other hand, a quantifier of the form

VαeHFw(...)

would translate into

Vx(xφTv~)

which is not permitted since T occurs negatively. The only complications in the
proof are caused by the following two facts. Since {p,q} = [q,p] we are not going
to be able to have unique notations for the elements of HF^. Secondly, we must
find some way to handle bounded universal quantifiers in a positive way. (This
accounts for the relation S used below and most of the other complications.)

The notation system used is based upon the fact that HF^ is the closure of
Mu{0} under the operation

Define a hierarchy HF^} as follows:

This hierarchy grows more slowly than the HPm(n) hierarchy used in § II.2 but
it eventually gets the job done.

4.4 Lemma. HF^U^HFff.

Proof. Suppose there were some set αeHF^ which did not appear at any stage
of our new hierarchy. Among such sets a choose one of least rank and, among
those of least rank, choose one of smallest cardinality. Since OeHF^, a is non-
empty so we may write
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Let α0 = {x l5...,xk}. Since rk(α0)^rk(α) and card (α0) < card (a), α0 is formed
in our new hierarchy, by choice of a. Since rk(xk+1)<rk(α), xk+l is also formed.
Pick n so that both a0 and xk+1 are in HF$}. Then a = S(a0,xk + 1) is in HF^ + 1). D

Let M be an infinite set with pairing function p: M x M ->M. Let x0, χ l s x2

be distinct elements of M. We use the following notational conventions.

0 for P(XO,XO),

x for p(x1?x),

xόy for /?(x2,p(x,y)).

4.5 Lemma. The functions /15 /2 defined below are one-one, they have disjoint
ranges and 0 is in the range of neither. They are HF(arι ^-recursive and hyper-
elementary on (9Jl,p):

fι(χ) = χ f2(χ,y)

Proof. This is immediate since p is one-one and x0, x l 5 x2 are distinct. D

We use these functions to define two sets of closed terms: the ur-terms denote
elements of M; the set-terms denote hereditarily finite sets over M.

4.6 Definition, (i) For each xeM, x is an ur-term and x denotes x, written

The set of ur-terms is called Tu.
(ii) The set Ts of set-terms and the function | | mapping 7^ onto HFM are

defined inductively:
a) 0 is in 7^ and 0 is a notation for 0, i. e.,

101 = 0.

b) If x is in 7^ and y is in TuvTs and if \y\φ\x\ then xόy is in 7^ and

\xόy\ = \x\u{\y\}.

(iii) The set T of all notations is TuuTs.

We require |y|^|x| to keep the set of notations of each αeHFM finite.

The definition of 7^ is an inductive definition, not over (9K,p) but rather over
ΊHF(arifp). One of our tasks is to show that 7^ is actually inductive over (2ft, p)
after all.
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Note that by Lemma 4.4, every αeHFM is |x| for some xeTs. Define the
following relations on M:

iff x,yeT and |x|e|y|;

x<ί y iff yeT and if xeT then

x&y iff x, yeT and |χ| = |j;|;

x£y iff yeT and if xeT then

4.7 Main Lemma. The sets Ts, T and the relations $, δ, «, and & are all in-
ductive on (M,p). The set Tu is definable on (M,p).

Proof. It is clear that Tu is definable on (M,p) since

yeTu iff

We will give an informal simultaneous inductive definition of the six other rela-
tions as well as two auxiliary relations R and R. First, however, let N be the
smallest subset of M containing 0 and closed under

if xeΛΓ then (xdx)eJV.

Thus N is inductive on (M,p) and N contains a unique notation for each
natural number. We will confuse a natural number with its notation in this
proof. Define

R(n,x) iff neN and xeT s and |x|eHFjS?;

R(n,x) iff neN and if xeTs then \x\φΉF$ .

The following clauses constitute a simultaneous inductive definition of all the
above relations. It should be pretty obvious to the reader how one could turn
this into one giant inductive definition over (M,p) and then extract the given
relations as sections. (If he needs help, the student can consult the Simultaneous
Induction Lemma on p. 12 of Moschovakis [1974].)

(1) xe'ζ iff x = 0 or there is a yeTs and a zeTuvTs such that z$y and
x is yόz.

(2) xeT iff xeT^ or xeT^.

(3) xS'y iff ye Ts and y is of the form uόv and x$u or x«t;.

(4) xS'y iff yeT and y is 0 or ye Tu or y is of the form uόv and x<f u
and x£ι;.

(5) x&y iff x,yeT and x=y or x,yeTs and for every z (z$xvz$y) and
(z^yvzS'x).

(6) R(Q,x) iff x = 0;
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l,x) iff x e 7^ and R(n,x) or else x is of the form yόz where
and (zeTu vR(n,z)).

(7) £(0,x) iff

R(n + l,x) iff £(rc,x) and either x is not of the form u 6v (for all u, υ) or
else x is of the form uόv but one of the following holds:

υδu, R(n,u), R(n,v).

(8) x&y iff there is an neN such that R(n,x) but R(n,y) or there is an nεN
such that R(n,x) and R(n,y) (in which case x is in 'ζ) and there is a z such that

((ZS'X Λ Z<ί }>) V (z<f y Λ Z<?X)) .

It takes a bit of checking to see that in each case the induction is pushed back,
but this checking is best done on scratch paper. D

The relations R, R used above are needed only to prove the Main Lemma.
They should not be confused with other relations R used later on.

We are now ready to fill in the outline of the proof of Theorem 4.1. For
simplicity of notation let us suppose our language L has only one binary sym-
bol Q. Let R be a new relation symbol for use in inductive definitions. We con-
sider L*(R)=L(e,R) as a single sorted language with unary symbols U (for
urelements) and S (for sets) with bounded quantification as a primitive. We let
K be a new language with atomic symbols

Q, U, S, R,f,£, *, &.

We define a mapping Λ from L*(R) into K as follows: given φeL*(R), first
push the negations inside as far as possible so that the only negative sub-
formulas in φ are negated atomic. Replace each positive occurrence of xey by
x$y, each occurrence of —\(xey) by xSy, each positive occurrence of x = y
by x&y, each occurrence of ~~\(x = y) by x&y, each bounded quantifer

Vxey(...) by Vx(x^y v...),

) by

Thus, in φ, all occurrences of <f , /, «, £ are positive. If φ is extended first order
then S also occurs positively in φ since it only appears in the contexts

3x(S(x)Λ...)
and

3x((U(x)vS(x))Λ...).

Let M be the infinite set with pairing function p used above. Let Q be any
binary relation on M. Define Q on Tu by

Q(p,q) iff Q(p,q)
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for all p,qεM so that map t-»|t| gives an isomorphism of (TU,Q) onto
9W = (M,Q). We let 90Ϊ be the structure for K with universe M and with inter-
pretations given by

symbol: U S Q. δ δ « «

interpretation: Tu Ts Q £ β w *

Thus U , Q are interpreted by (hyper)elementary relations; the other symbols
(which will occur positively in φ whenever φ is extended first order) are inter-
preted by inductive relations so things are set up to apply Theorem 4.3 (i), (ii).

Given an n-ary relation R on HF^ we define R on T by

R(tl9...9tn) iff tfdίj,...,^!), for tl9...9tneT.

4.8 Lemma. For any formula φ^,...,^, R)el_*(R), any relation R on HF^, and
any ί1,...,ίkeT w

Proof. By induction on formulas φeL*(R). For atomic and negated atomic
formulas, it follows by the definitions. The induction step is immediate since
every xeHF^ is denoted by some term ί. D

4.9 Lemma. Let φ(xί9...,xn9 R+)eL*(R). For each a and each ί1 ?...,ίπeT we have

(lίj,...,!^!^ iff (ίl9...Λ)e/!,

where the induction on the left is over HF^, that on the right over Ώΐ.

Proof. By induction, of course. The induction hypothesis asserts that

(|f1 |,...,|fj)e/φ

< β iff (tl9...,tjel£*9

i.e., that (Ί^) = I^. But then

iff (n^J<^φ(\tll...,\tnlR+)

iff (m9I?«)\=φ(tl9...9tn9R + ) (by 4.8)

iff (ί l 5...,ge/. D

We are now ready to prove Theorem 4.1. The following result comes out of
the proof.

4.10 Corollary. Let Wϊ be a structure for L with an inductive pairing function.
If Γφ is an extended first order inductive definition over 501 then there is a first
order inductive definition Γψ over SOΐ with ||/^||^||/^||.
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Proof of Theorem 4.1 and Corollary 4.10. Let 50ΐ = <M,Q> be an L-structure and
let p be an inductive, hence hyperelementary, pairing function on 50Ϊ. By 4.2 (i),
50Ϊ and the expanded structure (501, p) have exactly the same inductive and hyper-
elementary relations. Thus TU,Q are hyperelementary on 50i, and 'ζ, <?,<?, «,
and £ are inductive on 501. Let S<^M" be inductive*. Choose an extended first
order inductive definition Γφ and parameters y l5...,)>keMuIHFOT such that

S(xί9...,xn) iff (xί9...,xn,y)elφ.

Now consider the inductive definition Γ^ over 501. By the above lemma \\Γφ\\ =\\Γ$\\
and, for any f1,...,t I I + keT,

(ί l5...,fπ+/c)e^ iff (\t,\,...,\tn

By Theorem 4.3 (ii) and the remarks above about the relations Ts, $, $, « and «
all occuring positively in φ, I-φ is inductive over the original 50Ϊ. Choose ί l 5...,f k

with |ίιl=3Ί,...,|ί f c |=^k. Then, for all x1,...,xπeM,

S(x1?...,xn) iff (x1,...,xn,ί1,...,ίk)6/^

so 5 is obtained from the inductive set /^ by hyperelementary substitution and,
hence, is inductive. By 4.3 (iii) there is an inductive definition Γφ over 501 with
l l^l l^l l^l l = l l^ l l» so this also proves the corollary. D

The notation system we have been using can be seen to be a notation system
in the precise sense of § V.5. This follows from the next lemma. We assume the
notation from above.

4.11 Lemma. Define a function π on HF(M p) by

Then π is a total HF(5[R ^-recursive function.

Proof. Given a set a of cardinality ^1, we call a pair (α0,x) a splitting of a if
a — α0u{x} but xφa0. Let

Spl(a) = {(a0,x)\(aQ,x) is a splitting of a}

for all αeHFM. It is a simple matter to check that Spl is IHF^-recursive. We
first define π more explicitly and then discuss the method used to see that the
definition is HF(an p)-recursive. The definition of π parallels the proof of 4.4.

π(p) = {p} for

π(0) = {0}.
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For nonempty sets α, π(a) is defined by a double induction, first on rk(α) and,
among sets of the same rank, on card(α). So suppose π(x) is defined for all xεa
and all x^a with card (x)< card (a). If α = {x1,...,xll} with n^i then we look
at any splitting (α0,x) of a. Now π(α0), π(x) are defined and, for ί0eπ(<20), |ί0l

 = flo
and for ^e φc), |ίιl = x so \t06t1\=a0v{x}=a. Thus we may define

π(α) = {ί0dί1: for some (α0,x)eSpl(α), ί0eπ(α0) and tίeπ(x)}.

With this definition π is clearly HF(an>p)-recursive by the Second Recursion
Theorem. D

4.12 Theorem. Let 50ί = <M,R1?. ..,#,> be a structure for L
(i) // 501 has an HF^-re cursive pairing function then HF^ is projectίble

into 501.

(ii) // 50ΐ has a ΉΎP^-re cursive pairing function then IHYP^ is projectible
into 50Ϊ.

Proof, (i) The sets in HF^ depend only on M, not on the whole structure 501,
so if we add a pairing function p to 501, HF(9R>P) has the same sets as HFW. By
Lemma 4.11, HF(SW>p) is projectible into 501; i.e., there is an HF(αn p) recursive
notation system π with Dπ^M. But then, if p is HF^-recursive, π is also HFM-
recursive. The proof of (ii) is similar. Let p be a HYP^-recursive pairing function
so that HYP^ and HYP(aKfp) have the same universe of sets. By V.5.3 we have
a notation system π0 for HYP^ with Dπ ^HFW. By 4.11, there is a HYP(M p)-
recursive map πγ on HF^ with πί(x)^M, π1(x)nπ1(y) = 0 for x^y. Let π be
defined by

Then π is a notation system for HYP^ with Dπ<^M. D

The following special case of 4.12 (ii) will be of great use to us in the next
section.

4.13 Corollary. Let SDl = <M,R1,...,R ί> be a structure for L with an inductive
pairing function. Then ΉYP^ is projectible into 50ί.

Proof. If p is an inductive pairing function on 501 then it is hyperelementary and
hence an element of HYP^. Thus 4.12 (ii) applies. D

4.14—4.18 Exercises

4.14. Let 5DΪ = <M, ~> where ~ is an equivalence relation on M which exactly
one equivalence class of each finite cardinality. Define

x<y iff card (x/~)< card ( y / ~ ) .
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(i) Prove that < is Σx on HF^ and hence is extended inductive on 9JΪ.
(ii) (Kunen). Prove that < is not inductive on 9K.

(iii) Prove that o(HYPaϊl)>ω.

4.15. This exercise introduces the Moschovakis[1974] notions of acceptable and
almost acceptable structures. A coding scheme %> for a structure SCR consists of:

(a) a subset N* of M and a linear ordering <* of N^ such that

<AT*, <*>^<ω, <>, and

(b) an injection < >* of the set of all finite sequences from M into M .
Given a fixed coding scheme ^ we use 0, 1,2,... to indicate the appropriate

members of N^ as ordered by <*. Associated with a coding scheme # there are
some natural relations and functions.

Seq*(x) iff x = < >* or x = <x1,...,xll>* for some π and some x1?...,xπ.

/Λ*(x) = 0 if
= ή if Seq^(x) and x =

q^(x,m) = xm if for some x l 5...,xw, x = <x1,...,xπ>*' and
= 0 otherwise.

A structure 90Ϊ is almost acceptable (or acceptable) if M has a coding scheme #
with all of N^, <*, Seq^, Ik*, q* hyperelementary (or first order, resp.).

(i) Show that every almost acceptable structure has an inductive pairing
function.

(ii) Let 9M be a structure with an inductive pairing function. Show that M is
almost ̂ acceptable iff M is not recursively saturated. [It is easy to see that if SDΪ
is almost acceptable then o(HYPaw)>ω. To prove the converse use Corol-
lary 4.10.]

4.16. Show that all models of Peano arithmetic, KPU and ZF have definable
pairing functions, even the recursively saturated ones.

4.17. Let 50l = <M,R1,...,Λ ί> be an infinite structure and let Γψ be an inductive
definition over 90Ϊ, say ^ = ̂ ,...,114,8+). Now let 90ΐ' = (aR,S) where S is
defined by:

S(xl5x2) iff (x1,x2,al,a2)elφ.

Let φ(ι;1,...,u3,S+,T+)eLu{S,T}, where S is binary (to denote S) and T is 3-ary
(to be used in an induction) and let Γφ be the natural inductive definition over
($R,S) given by φ. We are going to outline the proof from Moschovakis [1974]
that Iφ is inductive over the original structure 9W, thus proving Theorem 4.3.
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Let 0,l,w1,...,I74,"y1,...,F3 be constants from M with 0^1. Let Q be a new
8-ary (8 = 1+4 + 3) relation symbol and define θ(ί,M1,...,M4, ι? l 9...,ι?3,Q+) by

[l=θΛ ^(M 1,...,M 4, Q(0, , , , •,U1,^2,^3)/R] V

r^ι,β2Λ^2^3)/S,Q(l,w1,ΐ72,i73,ΐI4, , , )/T].

Consider the induction definition Γθ over $R.
(i) Prove that for each α,

(M 1 9 . . .,M 4 )6/; iff (0 ,M 1 , . . . ,M 4 , t? 1 , . . . ,

and hence

(M l 5...,M4)e/^ iff (0,M1 9...,M4, ?!,...,

(ii) Prove that if (l,!^,...,^, ^,...,1)3)6/0 then (u l5...,ι;3)e/J.
(iii) Prove that if (ι;l5...,ι;3)e/5 then for some jβ, (1,M1 5...,M4, t; l5...,t;3e/£, by

induction on α, using (i).
(iv) Use (ii), (iii) to conclude that Iφ is a section of Iθ and hence is inductive

on an.
(v) Show that IIΓJ^HΓJ.

(vi) Prove Theorem 4.3.

4.18 Use Theorem 4.3 to prove Theorem 4.2 [For example, show that if Sl5 S2

are inductive on Wl then 8^82 is inductive on (9Jl,Sl5S2) with an inductive de-
finition in which S l5S2 occur positively.]

4.19 Notes. The fact that an inductive pairing function suffices for coding
on 9JΪ goes back, indirectly, to Aczel [1970]. The proof of Theorem 4.1 given
above owes much to ideas of Aczel and Nyberg.

5. Inductive Relations on Structures with Pairing

Inductive and coinductive definitions appear in most branches of mathematics.
Spector [1961] was the first to focus attention on them as objects worthy of study
in their own right, but then only over the structure Jf of the natural numbers.
The development over an absolutely arbitrary structure 9JΪ was not carried out
until Moschovakis [1974] produced his attractive and coherent picture. Our
object in this section is to view portions of Moschovakis picture as projections
of ΉYP^.

Let us summarize the results at our disposal.

5.1 Theorem. Let 9K = <M,R1,...,R ί> be a structure with an inductively definable
pairing function. Let S be a relation on $01.
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(i) S is inductive on 9M iff S is Σ1 on
(ii) S is hyper elementary on 9W iff

(iii) 0($0ΐ) is equal to

sup{||ΓJ| I Γφ is first order positive inductive on 501}

and this sup is attained.
(iv) HYPjCT is projectible into 50Ϊ.

Proof. Part (i) follows from Theorems 3.8 and 4.1; (ii) follows from (i). Part (iii)
follows from Theorem 3.11 and Corollary 4.10. Part (iv) is Theorem 4.12 (ii). D

We want to use this theorem to obtain some of the results in Moschovakis
[1974]. In order to facilitate comparison we use the same names for theorems
as in Moschovakis, even when our theorem is a little more or a little less general.

5.2 Corollary (The Abstract Kleene Theorem). // 9M = <M, Rί9 . . . , Rz> is a counta-
ble structure with an inductively definable pairing function then the Π\ relations
coincide with the inductive relations on 9M.

Proof. Both classes of relations coincide with the class of relations on 9JΪ which
are Σ, on HYP^ by 5.1 and § IV.3. D

Notice that this result makes no reference to admissible sets; it is only in
the proof that they appear. The same remark applies to many of the results
below. In order to make this more obvious we use Moschovakis notation

K** = sup {||ΓJ| I Γφ is a first order positive inductive definition over M} .

Thus κm = O(50ΐ) if 50Ϊ has an inductive pairing function. In this section 50Ϊ always
denotes a structure (M,^,...,!^) for the language L.

5.3 Proposition (The Closure Theorem). Let 9JΪ have an inductive pairing function
and let φ(xί9...,xn9 R+) define Γφ over 9JZ.

(i) For each α</caϊϊ, Pφ is hyperelementary on 9JΪ.
(ii) Iφ is hyperelementary iff \\Γφ\\<κm.

Proof. I* is a HYP^-recursive function of α, for αeHYP^. Hence each
/^elHYP^ for αeHYP^ and is thus hyperelementary by 5.1 (ii). This proves (i)
and the (<=) half of (ii). Consider the map pφ defined on Iφ by

pφ(x) = least β(xefy.

This is clearly ΉYP^-recursive. If /^elHYP^ then, by Σ Replacement

exists in HYP and is thus less than κm. D
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One of the awkward points in the theory of inductive definitions (when not
done in the context of admissible sets) is that one needs to deal with ordinals but
the ordinals are not in your structure. To get around this difficulty, Moschovakis
introduces the concept of an inductive norm. A norm on a set S is simply a
mapping p of S onto some ordinal λ. We use

to indicate that p is a norm mapping S onto λ. Given p: S-^ A, define

x^py iff xeSΛ(yφSvp(x)^p(y)),

x<py iff xεS/\(yφSv p(x)<p(y)).

A norm p:S^>λ is inductive on 9ΪI if the relations ^p and <p are inductive
on 9JI. Notice that if p:S-++λ is inductive then S is inductive since S(x) iff x <px.

The most natural inductive norms are those on fixed point Iφ defined by

(To see that this norm p = pφ is inductive observe that

x^py iff

x<py iff

and the relations on the right are clearly Σ: on HYP^, hence inductive on 9JI.)
One of the most useful lemmas on inductive definitions is the Prewellordering

Theorem which asserts that every inductive set has an inductive norm. In terms
of admissible sets, this is a consequence of the fact that HYP^ is resolvable, in fact

where α = O(9Jl). Most of the consequences of the Prewellordering Theorem in
Moschovakis [1974] are actually obtained more easily from this equation. See
for example, Exercise 5.19 for the Reduction and Separation Theorems.

5.4 The Prewellordering Theorem. Let $R have an inductively definable pairing
function. Every inductive relation S on Wl has an inductive norm.

Proof. Let S be Σl on IHYP^ , say

S(x) iff

where φ is Δ0 and α = o(HYR0ί) = κ:απ. Let R be the HYP^-recursive predicate
given by

R(β,x) iff lzeL(β)wψ(x,z)
so

S(x) iff 3βR(β,x).
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Now the map f on S defined by

/(*) = least βR(β,x)

is not onto an ordinal so it is not a norm. Define p on S by

p(x) = {yeM\3γ<f(x)R(γ9y)}.

Now

y<x iff yep(x)

is a well-founded relation so its associated rank function p = p< is a norm. We
claim it is inductive on SOΪ. To see this observe that

y<px iff yeS and Vβ*ζf(y)-ιR(β,x),

y^px iff yeS and xφp(y)

so both relations are Σl on HYP^, hence inductive on 9Jί. D

The Closure Theorem shows that every fixed point Iφ is the uniform limit of
hyperelementary sets, the Iβ

φ. The Prewellordering Theorem allows us to extend
this from fixed points to arbitrary inductive sets. If p : S ->-> λ then p endows S
with stages Sβ

β in a natural way:

The Boundedness Theorem, Corollary 5.6, is the natural generalization of the
Closure Theorem.

5.5 Theorem. Let 9Jί be a structure with an inductive pairing function. Let
p\S^+λ be an inductive norm on a relation S.

(i) ^oOHYP^) and p is WLYP^recursive.
(ii) For each α<o(HYPαR), ^eHYP^ and, as a function of α, S* is a MYPm-

recursive function.

Proof. Define a function p with domain S by

p(x) = {yeM\p(y)<p(x)}.

For xeS,

so p(x)eWYPyjl by Δt Separation. Further, p is HYP^-recursive since its graph
is Σ! definable:

p(x) = z iff



234 VI. Inductive Definitions

Now we may apply V.3.1 to p. Define

-<x iff

and note that -< is well founded since y-<x implies p(y)<p(x). But then p is
IHYR^-recursive by V.3.1 since

This proves (i). To prove (ii) first define Q(β,x) by

Q(j8,x) iff β<λ and

We claim Q is HYP^-recursive. The clause β<λ causes no trouble since either
λ = o(\RΎPm) in which case the clause is redundant or else A<o(HYPαR) in
which case "β<λ" is Δ0. But for β<λ

Q(β,x) iff

-ιQ08,x) iff

so Q is Δ! on HYP^. But

so SjeHYPjtf by Δ! Separation. The graph z = Sβ

p is Σl since it is equivalent to

so (ii) holds. D

5.6 Corollary (The Boundedness Theorem). Let Wl be a structure with an induc-
tive pairing function. Let p : S -H> λ be any inductive norm.

(i) Kfc*.
(ii) For each α<κ:ari, S£ is hyper elementary.

(iii) S is hyper elementary iff λ<κm.

Proof. The only part left to prove, after Theorem 5.5, is that if S is hyper-
elementary then every inductive norm p: S->-»λ has λ<κm. This follows by
Σ Replacement since

λ = sup{p(x)\xeS}

and p is HYP^-recursive. D

The next result, the Covering Theorem, is one of the most useful consequences
of the Boundedness Theorem. We state only the special case that we need in
the Exercises.



5. Inductive Relations on Structures with Pairing 235

5.7 Corollary (The Covering Theorem). Let $R be a structure with an inductive
pairing function. Let S be an inductive subset of 9J? and let TC S be coinductίve
on 9JΪ. Let p\S^+λ be any inductive norm on S. Then T is a subset of one of
the hyperelementary resolvents Sβ

p for β < κm.

Proof. Suppose that the conclusion failed. Then we could write

which makes M — S a Σί subset of HYP^ and hence SeHYP^ since S is also
Σ! on IHYPj,,. But then S = Sλ

p and λ<κ™ by 5.6, so T is, after all, a subset of
the hyperelementary resolvent S*. D

We now return to more familiar matters.

5.8 Theorem. Let 9JΪ be a structure with an inductive pairing function. For each
n^ί there is an inductive relation of n + ί arguments that parametrizes the class
of n-ary inductive relations.

Proof. In view of 5.1(iv), this is just a restatement of V.5.6. D

As always, we have the following corollary, to be compared with 5.13 below.

5.9 Corollary. // 9JI is a structure with an inductive pairing function, then not
every inductive relation is hyperelementary. D

Some further uses of HYP^ in the study of inductive relations are sketched
in the exercises, see especially 5.19, 5.23 and 5.24.

We can get an excellent feeling for the inductive, coinductive and hyper-
elementary relations on a structure by returning to infinitary logic.

Let α be an admissible ordinal, let A = L(α) and let LA be the admissible
fragment of L^ given by A. We refer to the elements of LA as the α- -finite formulas.

Let 9JΪ be a structure for L. A relation S on 90Ϊ is defined by an α- finite formula
if there is an α-finite φ(x l5...,xn, >Ί,...,^fc) and there are # l5...,g fce$)t such that

(1) S(xl9...,xJ iff aR^*!,...,*,,,^...,^]

for all x1?...,xneSR. S is defined by an (^-recursive n-type if there is an α-recursive
set Φ(xι,...,xn,yι,.. ,yk) of α-finite formulas and there are qί9...,qkeW, such that

(2) S(XI,...,XΛ) iff Wl\=/\φeφφ[xi,...,xn,q1,...,qk]

for all x1,...,x l l6SDΪ. Replace the infinite conjunction in (2) by an infinite dis-
junction

(3) S(xί,...,xJ, iff
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and we say that S is defined by an ^-recursive n-cotype. Notice that S is defined
by an α-recursive type iff —\S is defined by an α-recursive cotype. The student
should compare 5.10 with Theorem II.7.3. (Another version holds without the
pairing function assumption; see Exercise 5.29.)

5.10 Theorem. Let 9JI be a structure for L with an inductive pairing function and
let α = O(SR).

(i) A relation S on 9JI is hyper elementary on SCR iff S is defined by an on-finite
formula.

(ii) A relation S on 9Jί is inductive on 50Ϊ iff S is defined by an oί-recursive cotype;
S is coinductίve on 95Ϊ iff S is defined by an tt-recursive type.

Proof. We first prove the (<=) parts of (i) and (ii). Since
IXoO^HYRpj, so every α-finite formula is in HYP^. Thus any relation defined
by an α-finite formula is in HYP^ by Δx Separation and, hence, is hyper-
elementary. It suffices to prove either half of (ii) so suppose that Φ is an α-recursive
(or even α-r.e.) set of α-finite formulas and S is defined by (3) above. Then
S(xi9...,xJ iff the following is true in

This makes S a Σt set on JHYP^ so S is inductive on 501 by 5.1.
We now prove the (=>) parts of (ii) and (i). Suppose S is inductive on Sffl, say

S(x) iff (x,q0)elφ

where φ(vί9v29q9R+) has R binary and has an extra parameter q. Since u = κm,

*φ = \Jβ<a. *φ

We define formulas ψβ by recursion on β as follows, where 0(f/R) denotes the
result of replacing R(ί1? t2) by ίt Φ tl Λ t2 Φ t2 :

ovί9υ29v3 s

Ψ i f a ί 9 υ 2 9 υ 3 ) is φ(vl9v29υ39 \/γ<β ψ ( , ,

A simple proof by induction shows that

(x,3>)e/£ iff

and, hence,

(x,y)elφ iff

Then we have

S(x) iff
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Thus it remains to check that the set

is an α-recursive set. The function f(β) = ψβ is clearly definable by Σ Recursion
in L(α) so Φ is at least α-r.e. Define a measure of complexity of formulas, say
c(Θ), by recursion as follows:

c(θ) = l if θ is atomic,

c(θ) = c(\l/} + 1 if θ is -ι\l/, 1v ψ or Vv ψ,

c(θ) = sup{c(ψ) + l\ψeΘ} if θ is /\<9 or V ® -

Then c(ψβ)^β so

iff 3jS

which shows that Φ is α-recursive. This finishes the proof of (ii), but what happens
if S is actually hyper elementary? Then SeHYP^ and we can define a function

with dom(0) = S by

g(x) = least β(Wl\= ψβ(x9 qθ9 q)) .

Let y = sup(rng(#)). Then y<α by Σ Replacement in HYP^. Then

S(x) iff Ώt\=\/p^^x9qθ9q)

so S is defined by an α-finite formula. D

The converses of Theorem 5.10 (i), (ii) also hold. We prove the converse of (i)
and leave the other as Exercise 5.22. First a lemma.

5.11 Lemma. Let 50Ϊ be an L-structure with an inductive pairing function, let LA

be an admissible fragment which is an element of IHYP^, and let

S"= {S^Mn\for some <peLA, and some qί9...9qkeM,

Wl)r=φ[xί,...9xn,qί,...9qk~] iff S(xi9...,xJ

for all x l 5...,xπeM}.

(i) The collection S" can be parametrized by an n + i-are hyper elementary
relation, with indices from M.

(ii) There is a hyperelementary set which is not in S1.

Proof, (ii) follows from (i) by the usual diagonalization argument. The proof
of (i) is a routine modification of Theorem V.5.7 since HYP^ is projectible
into 9JI. D
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5.12 Theorem. Let Wl be a structure for L with an inductive pairing function and
let α be an admissible ordinal If the hyperelementary relations on 9JΪ consist of
exactly the relations definable by a-finite formulas, then a = κm.

Proof. Lemma 5.11 shows us that if every hyperelementary relation is definable
by an α-finite formula then K™ ^α. We now show that if every relation definable
by an α-finite formula is hyperelementary, then α^K^. Suppose, to prove the
contrapositive, that a>κm and let 5 be any inductive relation which is not
hyperelementary. By 5.10, S is definable by a /c^-recursive cotype. But then,
5 is definable by an α-finite formula since α>κ9W, so not every relation definable
by an α-finite formula is hyperelementary. D

It is interesting to compare the following corollary of 5.10 and 5.12 with a
result in Moschovakis [1974].

5.13 Corollary. Let $R be a structure with an inductive pairing function. The fol-
lowing conditions on ΪR are equivalent:

(i) Wl is recursively saturated.
(ii) Every hyperelementary relation is first-order definable.

(iii) κm = ω.

Proof. Since κ;ro = o(HYPaR), we proved (i)<=> (ii) back in § IV.5. We have the
implication (iii)=>(ii) by 5.10 or by II.7.3. By 5.12 we have (ii)=>(iii). D

Moschovakis assumes that his structures are acceptable (see Exercise 4.15),
a stronger condition than having an inductive pairing function. Corollary 5B.3
of Moschovakis [1974] asserts that if ΪR is acceptable then there is a hyper-
elementary relation that is not first order definable. Since an acceptable struc-
ture $R always has κm>ω (by 4.1), this follows from 5.13. But 5.13 also shows
us that the restriction to acceptable structures rules out many of the most inter-
esting structures, model theoretically interesting at any rate.

The general version of 5.13 reads as follows.

5.14 Corollary. Let 30Ϊ have an inductive pairing function and let α be an admissible
ordinal. The following are equivalent:

(i) 9JI is a-recursively saturated and not β-recursively saturated for any ad-
missible β<0ί.

(ii) The hyperelementary relations are just those definable by en-finite formulas.
(iii) κm = oί.

Proof. We have (ii) <=> (iii) by the theorems above and (i) <=> (iii) by Exercise
IV.5.11 and the equality κm = o(WLΎP<m). D

Let 9JI have an inductive pairing function and let o/ί = κm. By 5.14 we see
that the hyperelementary relations on 9JΪ are just the relations explicitly definable
by α-finite formulas. One could imagine stronger notions of inductive and hyper-
elementary where one allowed an α-finite or even a HYP^-finite formula
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φ(x1,...,x , R + ) to define an inductive operation Γφ. Refer to these notions, for
the time being, as oc-inductive, a-hyper 'elementary, MΎP^-inductive and HYP^-
hy φer 'elementary . The next result shows that the notion of inductive on 9CR is
"stable" in that it coincides with α-inductive and HYP^-inductive.

5.15 Theorem. Let 9JΪ have an inductive pairing function and let a = κ'm.
(i) The inductive, oc-inductive and MΎPm-inductίve relations on SCR all coincide.

(ii) Hence, the hyper elementary, a-hyperelementary and ΉYP^-hyperelementary
relation on 5CR all coincide with the relations explicitly definable by ^-finite formulas.

Proof. It suffices to prove that if φ(xί,...,xn,R+) is a formula of LA, where
A = HYRER, then Iφ is inductive on SJΪ. The proof uses the ideas from the two
halves of 5.10 (ii). First note that /£ is a HYP^-recursive function of β, for β<u,
since it is defined by Σ Recursion in HYP^. As before, the Σ Reflection theorem
shows that ||ΓJ|^α. Now define the formulas φβ as in the proof of 5.10:

ιA0(x1? . . . , xπ) = φ(xί9 . . . , xn9 f/R) ,

ιj/β(xί,...,xn) = φ(xί,...,xn, \/γ<βφ (...)/R)

so that (*!,.. ..xJe/S iff a»N^[xl9...,xJ. Thus

(Xΐ,...9xjelφ iff aRNV^.^i,-,^].

But the set of HYP^-finite formulas {\l/β\ β«y] is α-r.e. (actually α-recursive) so
Iφ is Σ! on HYP^ and hence inductive on 9JI by 5.1(i). D

5.16—5.30 Exercises

5.16. Show that each of the following structures has a definable pairing function.
(i) ̂  = <ω,0,+, >.

(ii) Any model of Peano arithmetic.
(iii) Any model of ZF, KP or KPU.
(iv) L(a,λ) for any limit ordinal λ.
(v) ^ = <ωωuω,ω,0, +, ,App>, where ωω is the set of all functions mapping

ω into ω and

App(/,rc,w) iff f(m) = n.

5.17. Show that no nonstandard model of Peano arithmetic is acceptable. Show
that some nonstandard models of Peano arithmetic are almost acceptable and
that some are not. [Show that if (91, 9C) is a model of nonstandard analysis then
91 is not almost acceptable.]

5.18 (Moschovakis [1974]). Let 501 = <α, <> where α is any ordinal ^ω. Show
that 9W has an inductive pairing function. This is not easy. First assume
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5.19 (Moschovakis [1974]). Let 501 be a structure with an inductive pairing func-
tion. Prove the following results using Theorem 5.1.

(i) κm = sup{p(-<)\< is a hyperelementary pre-wellordering of 501}.
(ii) If 50Ϊ has a hyperelementary well-ordering then

κm = sup{p(X)K is a hyperelementary well-ordering of 501}.

(iii) (Reduction). Let B, C be inductive on 501. Show that there are disjoint
inductive sets B0^B, C0^C such that £0uC0 = £uC. [See V.4.10.]

(iv) (Separation). Let B, C be disjoint coinductive subsets of 501. Show that
there is a hyperelementary set D containing B which is disjoint from C.
[Use (iii).]

(v) (Hyperelementary Selection Theorem). Let S(x,y) be an inductive rela-
tion on 501. Show that there are inductive relations S0, St such that

5.20. We give an application of the covering theorem; in fact, the original version
of it due to Spector. We use the notation from Rogers [1967]. Let

W — {e\ φ2 is the characteristic function of a well-ordering <J .

Let p(e) = the order type of <e, for eεW.
(i) Show that W is Πj on JT.

(ii) Show that p is an inductive norm,

(iii) Let B be a Σj set of natural numbers, B^W. Show that sup {p(e)\eeB}< ω{ .

5.21. Show that 5.10(ii) remain true if "α-recursive type" is replaced by any of
the following:

(i) α-r.e. type,
(ii) HYP^-recursive type,

(iii) HYPgjj-r.e. type.

5.22. Let 501 be a structure with an inductive pairing function and let α be an
admissible ordinal. Suppose that the inductive relations on 50ί are exactly the
relations defined by an α-recursive cotype. Show that oc = κm.

5.23. Let SOΪ have an inductive pairing function. Let S, Ύ be inductive relations
which are not hyperelementary.

(i) Show that TeHYP(αriS), and hence that HYP(SWfS) and HYP(αϊl>Γ) have
the same universe of sets. [Show that o(HYP(αϊl s^xXΉYP^) and then use
5.10 (ii).]



5. Inductive Relations on Structures with Pairing 241

(ii) (Moschovakis [1974]). Show that the two expanded structures ($R,S) and
(9JΪ, T) have the same inductive and hyperelementary relations.

5.24 (Moschovakis [1974]). Let 9JI be a structure with an inductive pairing func-
tion and let S be an inductive relation on 95Ϊ which is not hyperelementary. Show
that for any relation T on 9Jί,

S is hyperelementary on (2K,Γ) iff fc^ ^fc*.

5.25. Show that Theorem 5.15 is not true without the hypothesis that 9JΪ has an
inductive pairing function. [Use the 90Ϊ of Exercise 4.14.]

5.26. Our proof of the Abstract Kleene Theorem, Corollary 5.2, is a bit round
about. Prove it directly from the 9Jί-completeness theorem and Proposition 3.13.
(This proof, by the way, establishes the second order version given in Moschovakis
[1974] without change.)

5.27. Let 9JΪ be a structure for L with an inductive pairing function.
(i) Show that C^KPU*), in the notation of Proposition 3.13, is inductive

but not hyperelementary.
(ii) Show that κm = closure ordinal of the inductive definition of "provable

from KPU+ by the 9JΪ-rule".
(iii) Show that Qn(KPU+) can be used to parametrize the inductive relations

on 9W. [Use the closure of the inductive relations under hyperelementary sub-
stitution and some hyperelementary coding of formulas.]

5.28. The following definition, due to Nyberg, will be useful in Exercise VIΠ.9.16
and in Theorem VIΠ.9.5. A structure 9Jl = <M,JR1,...,Λk> is a uniform Kleene
structure if for every Π} formula Φ(x,S+) in some extra relation symbols S there
is a first order φ(x,y, R + ,S+) and a yeM such that for all x and all 5

if and only if

where the R in φ is used for the induction over the structure (9Jΐ,S). Prove that
every countable structure with an inductive pairing function is a uniform Kleene
structure. Let α be any ordinal of cofinality ω. Show that <V(α),e> is a uniform
Kleene structure. (This last is due to Chang-Moschovakis [1970].)

5.29 (Makkai and Schlipf, independently). Improve Theorem 5.10 as follows:
Let 9K be a structure for L and let α = O(9JΪ). Let S be a relation on 2tt. Show that:

(i) SeHYPjH iff S is defined by an α-finite formula;
(ii) S is Σ! on HYP^ iff S is defined by an α-recursive cotype. [Hint: Use

the fact that every fleHYP^ is of the form &(pι,...9pn,M,L(λί)m,...,L{λk)m)
for some limit ordinals λί9...9λk and a substitutable function ^.]
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5.30 (Moschovakis [1974]). Let $R noίhave an inductive pairing function. Prove
that κm is admissible or the limit of admissibles. It is an open problem to find
an 9JI where K®1 is not admissible.

5.31 Notes. Some of the results discussed above hold without the pairing func-
tion assumption. For example, all of 5.3 through 5.6 are proved directly in
Moschovakis [1974]. On the other hand, some of the results are false without
the pairing function (like 5.2, 5.8—5.12) and those that do hold are much harder
to prove without the admissible set machinery. For structures without an in-
ductive pairing function we are left with two distinct approaches, inductive
definitions and HYR^ (equivalently, inductive* definitions). Only time will tell
which is the most fruitful tool for definability theory.

6. Recursive Open Games

An open game formula is an infinitary expression ^(x) of the form

where each φn is a formula of Looω. Note that ^(x) itself is not a formula of L^
due to the infinite string of quantifiers out front. If {φn\n<ω} is a recursive set
of finitary formulas then ^(x) is called a recursive open game formula.

For our study, the most important result on game formulas goes back to
Svenonius [1965] where he proves that, for countable ΪR, the Π} predicates are
exactly those defined by recursive open game formulas (Theorem 6.8 below). This
result went largely unnoticed until the formulas were rediscovered by Moschovakis
[1971]. He established that for acceptable 9JΪ (of any cardinality), it is the in-
ductive relations on 9JΪ which are definable by recursive open game formulas
(Corollary 6.11 below). Thus, from our point of view, Moschovakis was proving
the "absolute version" of the Svenonius theorem.

Before going into these results in detail, let's step back to examine the concept
of "absolute version" with some detachment.

We have been using ZFC as a convenient informal metatheory and hence
may construe all our results as statements about the universe ¥ of sets. By a
class C on ¥ we mean a definable class,

xeC iff

for some formula φ(v) of set theory. A predicate P on ¥ is, by definition, given by

P(x) iff

for some formula (̂
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6.1 Definition. Let C be a class defined by a Σ{ formula without parameters and
let P be some predicate. A relation Pabs is an absolute version of P on C if the
following conditions hold:

(i) Pabs is absolute on C (that is, there are Σ and Π formulas Ψι(vl9...,vn),
\I/2(V i,..., V^ SUCΓ1

Pabs(x) iff

iff

(ii) P and Pabs agree on CnHfa) (that is, for all x1,...,xπeCn/ί(ω1),

P(x) iff Pabs(x)).

While not every predicate has an absolute version, at least there can be at
most one absolute version.

6.2 Metatheorem. Let C be a Σ^ definable class, let P be some predicate and let
Pl5 P2 be absolute versions of P on C. Then for all xeC,

P,(x) iff P2(x).

Proof. This is just a special case of the Levy Absoluteness Principle, one we
have used several times in special cases. The hypothesis can be written

The part within brackets is equivalent to a Π formula so the conclusion follows
from the Levy Absoluteness Principle. D

6.3 Example. Let C be the class of pairs (9W,S) where 93Ϊ is a structure. Let P(9W,5)
assert that S is Π} on $R. Let Pabs(2R,S) assert that 5 is Σί on HYP^. Then we
have shown that P and Pabs agree on countable structures and that Pabs is ab-
solute. For other examples, see Table 5 on page 254.

The distinction between Pabs and P is the distinction between Part B and
Part C of this book.

In this section we apply these general considerations as follows. We first
prove that for all countable 9M=<M,Λ1,...,Λ />, a relation S on 9W is Π} iff it
is defined by a recursive open game formula. Next we show that the notion
"S is definable on 9Jί by a recursive open game formula" is absolute. It will then
follow that for any 9JΪ,

S is Σl on IHYPgR iff S is definable by a recursive open game formula

and hence, by Theorem 5.1, that if 9JΪ has an inductive pairing function,

S is inductive on 9JΪ iff S is definable by a recursive open game formula.
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(For 5R without an inductive pairing function, we must replace inductive by
inductive*.)

The first question to settle is the very meaning of an infinite string of quan-
tifiers. Given a relation R(yι,zl9...9yn9zn9...) of infinite sequences from 9K, what
is to be meant by

The sensible interpretation is by means of Skolem functions. The above is de-
fined to mean

3F1,F2,...[(TO,F1,...,Fπ,...)t=V^^

For ease in presenting informal proofs it is convenient to rephrase this in
terms of an infinite two person game, one played by players V and 3. The
players take turns choosing elements al,bί9a2,b2, . from 9JI. Player 3 wins if
R(al9bl9a29b2,...)'9 otherwise V wins. Then

is equivalent to:

Player 3 has a winning strategy in the above game.

Formally, of course, a strategy for 3 simply consists of a set {F1?F2,...} of Skolem
functions such that

For games which begin with a play by 3,

we use the convention that a function of 0 arguments is simply an element of 90Ϊ.
We have already defined the notion of an open game formula ^(x)

' Vyi ^Z! . . . VH <Pn(x, J>1, Zl9 . . . , J>π, Zπ) .

The important part here is the infinite disjunction, not the fact that it begins
with V (we could always add a superfluous V if it started with 3) nor the fact
the quantifiers exactly alternate one for one (again we could introduce super-
fluous quantifiers if necessary). The reason this is referred to as an "open" game
formula is that in any given play

aί9bl9a29b29...
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of the game, if 3 wins then he wins at some finite stage n and thus it wouldn't
matter what he played after stage n. (That is, there is a whole neighborhood of
winning plays for 3 in the suitable product topology.)

The dual of an open game formula is a closed game formula, one of the form

V^i 3 ι̂ Vj;2 3z2 . . . /\n φn(x, yί9 z1? . . . , yn, zn) .

In a closed game, 3 must remain eternally diligent if he is to win.

6.4 Examples, (i) The simplest example of an important recursive open game
sentence is given by

tyl V^2 ••• Vn<ω Όπ + l ^π) -

This sentence holds in <9W,E> iff £ is well founded. This is a rather boring game
for 3 since he never gets to play. Once V has played a sequence a1?a2,...,3 wins
if it is not a descending sequence. Hence, 3 has a winning strategy iff there are
no infinite descending sequences.

(ii) The Kleene normal form for Π} relations on ^Γ = <ω,0, +,•>,

S(x) iff V/3πΛ(/(fi),x),

can be considered as a reduction of Π} relations to recursive open game for-
mulas, namely S(x) iff

VJΊ Vy2 . . . \/B 35 [5 codes < j71? . . . , yny Λ R(s, x)] .

(iii) On arbitrary countable structures we must use game formulas in which
both players get to play if we are to characterize Π} relations. Suppose M is
countable and let 50Ϊ = <M,JR,5> where R, S are binary. Then 9K is a model of

Vyι 3z! Vy2 3z2.../\ntm<ωR(yn,yJ<->S(zn,zm)

iff <M,.R>^<M,S>. Here we have expressed a Σ{ sentence by a recursive closed
game sentence.

Given a game formula ^(x) we write

as shorthand for

not (9WN #(*)).

In general one must resist certain impulses generated by experience with finite
strings of quantifiers. There is no reason to suppose that
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implies

That is, just because 3 has no winning strategy in the first game is no reason
to suppose he does have a winning strategy in the second game. One can find
K's for which this fails. For open and closed games, however, this tempting
maneuver is perfectly acceptable, as Theorem 6.5 shows. We shall use the idea
from this proof a couple of times later on.

6.5 Gale-Stewart Theorem. For all 9Ji and x,

iff

Proof. Let game I be the game given by

(we are suppressing the x since they play no role) and let game II be given by

It is clear that 3 cannot have a winning strategy in both games, for then V could
use 3's strategy from game II to defeat him in game I. Thus we have the (<=) half
of the theorem. (This part does not use the openness hypothesis.) Now suppose
3 has no strategy in game I. We show that V has a winning strategy in I which
of course amounts to a winning strategy for 3 in II. Now since 3 has no strategy
in I there must be a fixed a± such that 3 still has no strategy in the game

9WN3Z! Vy23z2...\/nφn(aί9zί9...9yn9zJ.

Why? Because if each av gave rise to a strategy s(aί) for 3 then he would have
had a winning strategy at the start; namely

answer Vs play of % by using s ( a ί ) .

Thus Vs first play is to play an aγ such that

Now after 3 makes some play zί=bΐ, V again plays an a2 so that 3 still has
no winning strategy; i. e.
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The same reasoning as above shows that such an a2 exists. Now V keeps on
playing at the mth play some am so that

and, in particular

Then, at the conclusion of play we have

a win for V in game I. We have thus defined a winning strategy for V in game I. D

6.6 Corollary. For all 9W, x,

iff
Wlϊ=3yίVzί...\/n-ιφn(x9yί9zί9...9yn9zn).

Proof. The following are equivalent:

W\=3yίVzί...\/n-}φn(x9yl9zί9...9yn9zn)

not [W\=-\3yίVzί...\/n-\φn(x9yί9zi9...9yn9zn)']

not [aRNVy13z1.../\nn-ιφπ(x,y1,z1,...,yπ,zπ)]

zί.../\φn(x9yi9zί9...9yn9zn). D

A simple application of the Gale-Stewart Theorem is to show that recursive
open game formulas define Π} sets. We'll improve this later by improving the
Gale-Stewart Theorem.

6.7 Corollary. Let $(x) be a recursive open game formula of L. There is a Yl\
formula Θ(x) such that for all infinite L-structures 501 and all x l 9...,x f ce9ίR,

) iff Wl\=Θ(x).

Proof. Let #(x) be

To prove the corollary it suffices, by the Gale-Stewart Theorem, to find a Σ}
formula equivalent to

3yίVzί.../\n-ιφn(x9yl9...9zn).
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This expression is equivalent to

3F [F is a function with dom(F) = all finite sequences from M Λ for all n

and all yl9...9yneM9 -\φn(x,yi,F((yίy)9...,yn9F((yί,...9yny))'].

This is co-extended Σ} by Proposition IV.2.11 and hence is Σ{ by Proposition
IV.2.8. To see that the same Σj formula works in all structures one simply notices
that the proofs in § IV.2 were uniform. D

We now come to the theorem of Svenonius referred to above, a partial con-
verse to 6.7.

6.8 Svenonius Theorem. For every Πj formula Θ(x) of L there is an recursive
open game formula &(x) of L such that for all countable structures 501 and all
x l 5...,x f ce$0l,

9Wt=#(3) iff ΪRN=β(Jc).

Proof. It suffices, by the addition of constant symbols for the variables x l 5...,xn,
to prove the theorem for Π} sentences. We actually prove the dual, that every
Σ} sentence is defined by some recursive closed game sentence in all countable
structures. By the Skolem Lemma of V.8.7, any Σj sentence is equivalent to
one of the form

3S1,...,SmVy1,...,y/3z1,...,zkφ(j;,z,S)

where φ is quantifier free with no function symbols. We prove the special case

3S Myγy2 3^z2 φ(yί9y29zl9z29S)9

the general case being only notationally more complicated. We need the fol-
lowing fact.

(1) For each quantifier free formula θ(v,S) there is another quantifier free
formula θ°(v) such that

is valid. Moreover, one can find θ° effectively from θ.
To prove (1), first write θ(v, S) as a disjunction

where each 0£ is a conjunction of atomic and negated atomic formulas. Since 3
commutes with \/ it suffices to prove (1) for formulas which are conjunctions
of atomic and negated atomic formulas. So suppose we have to get rid of the
3S from 3S 0(S,S) where θ(v, S) is
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and each ι//i is atomic or negated atomic. This just amounts to propositional
logic. First remove all equalities like (x = y) and make up for them by replacing
x by y and y by x everywhere they occur (see examples below). Next we simply
inspect the new list of formulas to see if it is consistent in propositional logic.
If it is, θ° consists of the conjunction of all the formulas in the original list that
don't mention S; if it isn't consistent, θ° consists of some false formula like
We give three examples.

Example 1. Suppose θ(v,S) consists of

R(x,z), S(x), (x = y), -ιS()0.

The new list consists of

R(x,z), R(y,z), S(x), S(y)9 -ιS(y), -ιS(x).

This is not consistent so there can be no such S.

Example 2. Suppose θ(v,S) consists of

R(x,z), S(x), (xϊy), (y = z).

The new list consists of

R(x,z), R(x,y), S(x), (xϊy), (x^z).

This is consistent so there will be such an S iff

Example 3. Suppose φ(v,S) consists of

S(x), (x=y), (y = z)9

The new list will contain (y^y) which is not consistent; there is no such S.
These examples should convince the student that the procedure decribed

above actually works. It is obviously effective. This proves (1).
Now, using (1), let Ψjίyn9yί2,zn9zi29y2ί9y229z2l9z22,...9ynί,yn29znι9zn2) be a

quantifier free formula equivalent to

and let the closed sentence ^ be
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First we prove that:

(2) For any model m, if Wl\=lSVyl9y2=lzί9z2φ9 then

For suppose (9Jl,S)^Vy1 Vy21z1 Iz2φ(yί9 y29zί9z29 S). Let 3 play with the
strategy:

if V plays al9a2 at stage n, then choose bί9b2 so that ( W l 9 S ) \ F = ( p ( a l 9 a 2 9 b l 9 b 2 9 S ) .
This clearly presents 3 with a win.

To conclude the proof we need only prove

(3) // 9JI is countable and 9JlN^ then there is a relation S on 9ϊΐ so that

Suppose SOtN^ so that player 3 has a winning strategy. Since 9W is countable,
so is M2, so enumerate M2, M2 = {<α f l l,απ2> I n<ω}. Let V play yni = ani and let
3 play zni = bnieM using his winning strategy. Thus, we end up with

for each n<ω. Then, by the ordinary Compactness Theorem for propositional
logic

Diagram (3Λ)v {φ(amί9am29bmί9bm29S) \ m<ω]

is consistent. Thus there really is an S such that

&Λ9S)^φ(aml9an29bml9bn29S)

for each m, since φ is quantifier free. Thus, since every pair is ̂ mί9am2y for some m,

This proves (3).
The proof of the theorem is complete except that ^ is not quite in the form

demanded of a recursive closed game formula. But trivial modifications with
superfluous quantifiers, renaming variables and renaming the subformulas
obviously puts it in the desired form. D

We have carried out half our task by showing Π} is the same as "defined by a
recursive open game formula" for countable structures. It remains to show that
it is absolute. We prove more than this in the next two results.

The next theorem can be viewed as an effective version of the main theorem
of Keisler [1965]. The proof is rather different.

Given a recursive open game formula ^(x), say,
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we define its finite approximations δm(x) by :

δm is Vy^... Vymlzm\/n^mφn(x,y1,z1,...,yn,zn).

It is obvious, from a gamesmanship point of view, that

is true in all structures.

6.9 Theorem. Let 30Ϊ be recursively saturated. Then, using the notation of the
previous paragraph,

Proof. We already have the trivial implication (<-). To prove the contrapositive
of the other direction we imitate the proof of the Gale-Stewart theorem. We
assume

and exhibit a winning strategy for V in the game

Vj/i 3zi Vy2 3z2 ... V» <?»(*> >Ί>zι> •••> ^'z«)

We claim that there is an aί such that, for each m<ω,

Why? Suppose that for every α^M there is an m such that

Now this all holds in IHYP^, which has ordinal ω, so, by Σ Reflection there is a
fe < ω such that m can always be chosen less than k. (Here we are using the fact
that φn is a recursive function of n, so is Σί in HYP^.) But then

contrary to assumption. Thus there is such an a^ and we let V play it. Let 3 play
zί=bl. We claim that there is an a2 such that, for all m <ω,

The reasoning is just as for a^. If V continues in this way, do what 3 will, a sequence
a\bla2b2 ... will be generated which satisfies

for each n. Hence we have described a winning strategy for V. D
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Now, if 9JI is a structure with α = o(HYPan) one would hope to show that,
on 9JΪ, ̂ (x) is equivalent to the disjunction of its α-finite approximations:

This turns out to be true once one has the correct definition of the
Let y(x) be a recursive open game formula, say

Define formulas δn

β(x, yί9zi9...9 ynzn)

δn

λ(x, y 1? . . . , zj is \/β<λδ
nβ if λ is a limit ordinal .

Let δβ(x) be δ^x). Note that δn, for π<ω, has the same meaning as it did in
Theorem 6.9. Also note that δβ is an α-recursive function of β<α, whenever α
is an admissible ordinal.

6.10 Theorem. Let <y. = o(MYPm). Then, using the notation of the previous para-
graph,

Proof. To prove the easy half (<-) one first proves by a straightforward induction
on β that

for all n. For n = Q this gives the desired result. The proof of the other half is so
similar to the proof of Theorem 6.9 (a special case of 6.10) that we leave it to the
student. D

6.11 Corollary. For any structure yn = (M,Rι, ...,Rty and any relation S on $R,
the following are equivalent:

(i) S is definable by a recursive open game formula on 9K.
(ii) S is inductive* on 9Jί.

(hi) S is Σ! on HYP^.
// $R has an inductive pairing function, these are also equivalent to

(iv) S is inductive on Wl.

Proof. It follows from 6.10 that

"S is definable on 9M by a recursive open game formula"

is absolute so the theorem follows from Theorem 6.2. We present a slightly more
direct proof which shows a bit more uniformity.
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We see immediately that (i)=>(iii), from Theorem 6.9, since

is Σ! on HYP^. It thus suffices to prove (ii)=>(i). Let φ(x, R + ) be any extended
first order formula. Write /φ(9CR) for the fixed point defined on 9JΪ by Γφ. We prove
that there is a fixed recursive open game formula ^(x) such that

(4) for all 9«, xe/φ(3W) iff 9MN^(x)

Now Iφ(9Jl) is extended Π} on 3W, hence Π} on 50ί by Proposition IV.2.8, and the
same Π} formula Φ(x) defines /^(SR) for all 2K;

(5) for all OR, xe/φ(9W) iff

Now use Theorem 6.8 to choose ^(x) such that

(6) for all countable SR, ΪR^Φ(x) iff

Now, combining lines (5) and (6) we have

for all countable Stt[xe/φ(SW) iff

and the part in brackets is absolute. Hence, by Levy Absoluteness, we have (4). D

6.12 Exercise. The Interpolation Theorem for Lωω can be stated as follows.
Let Φ(x1? ..., xj be a finitary Σ} formula of Lωω and let Ψ(xί9...9xn) be a finitary
Π} formula of Lωω. If every L-structure 501 is a model of

(*) Vxl9...,xH[Φ(Z)-*Ψ(x)']

then there is a first order formula Θ(x) such that every L-structure 9JΪ is a model of

(**)

We can turn this into a local result as follows.
(i) Let 9JI be a recursively saturated countable model of (*). Show that there

is a θ(x) such that 501 is a model of (**). [This is easy from Exercise V.4.8. A more
direct proof goes via Sveiionius Theorem and the Approximation Theorem 6.9.
Of course one could also cheat and apply the Interpolation Theorem for LA

with A-HYP^.]
(ii) Prove the interpolation theorem for Lωω directly from (i).

6.13 Notes. The student would profit from a comparison of our treatment with
that in Moschovakis [1971], [1974]. His proof [1971] makes it clear where the
approximations δβ originate. The model theoretic interest of the Moschovakis-
Svenonius results was brought out by the important paper Vaught [1973]. The
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student is urged to read this and Makkai [1973] in the same volume. This section
(VI.6) of the book is included partly to make these papers more accessible.

Table 5. Absolute versions of some nonabsolute notions

Primitive notion P Absolute version Pabs Relevant class C of objects

1. S i s Π } o n 9 J Ϊ S i s Σ j on HYP^ all structures 9W = <M,K1,...,
and relations S on $R

2. S is Π{ on <0ί S is inductive* on ΪR same as (1)

3. S is PI} on <0ί S is inductive on 2R SR, S as in (1) when ΪR has an
inductive pairing function

4. S is Π } on SJR S is defined by an open recursive game same as (1)

5. \= φ t— φ all sentences of Looω

6. <0ί ̂  91 9N ̂  p 91 (cf. § VII.5) all structures 9K, 91

7. ΪR^9I SWΞftίL^J (cf.§VIL5) same as (6)

8. S is strict Π} on A S is Σ j on A (cf. § VIII.3) all admissible sets A and
relations S on A

9. Wl is rigid every element of <0ί is definable by a all L-structures $R = < M , Λ t, . .
(cf. § VII.7) formula of Looωn MYP^ without

parameters




