
PartD

Second-Order Logic

This part of the book is devoted to the study of second-order logic and some of its
applications. We discuss the two chapters in the opposite order from that in which
they appear.

Chapter XIII is about monadic second-order logic, logic that allows quantifica-
tion over arbitrary subsets of the domain, but not over arbitrary relations or func-
tions. While this does not make any difference on structures like the natural
numbers with plus and times, where sequences can be coded by numbers, it turns out
to make an enormous difference in more algebraic settings. In these cases, monadic
second-order logic is a good source of theories that are both highly expressive yet
manageable. Section 2 illustrates the uses of finite automata and games in the proof
of decidability results. It begins with a simple case, the monadic theory of finite
chains, which it works out in complete detail, and shows how the method generalizes
to a number of results, including one of the most famous, Rabin's theorem on the
decidability of the monadic second-order theory of two successor functions. In
Section 3 more model-theoretic methods, generalized products, are used to prove
some of the same and related results. Some undecidability results are also presented.
Proofs of these have to be novel, since we are dealing with theories where one
cannot interpret first-order arithmetic.

If we think of monadic second-order logic as the part of second-order logic
obtained restricting the quantification in a simple definable manner, we can ask
whether there are any other natural sublogics that can be obtained by restricting
the second-order quantifiers in some other first-order definable manner. There is
one other. Namely, one might quantify not over arbitrary functions, but over
permutations of the domain. This is called permutational logic. It arose in Shelah's
study of symmetric groups. However, as it turns out, that's all! Up to a strong
form of equivalence, the only sublogics of second-order logic given by first-order
restricted second-order quantifiers are first-order logic, monadic second-order
logic, permutational logic, and full second-order logic. This result, first proved in
Shelah [1973c], is established by some new methods in Chapter XII. In addition,
a number of newer, related results are presented.





Chapter XII

Definable Second-Order Quantifiers

by J. BALDWIN

In this chapter we investigate the class of second-order quantifiers which are
definable in a sense which will shortly be made precise. This subject arose from
investigations of the following sort. Let K be an infinite cardinal and let Sκ denote the
symmetric group on K elements. What can we say about the first-order theories Tκ

of the groups SKΊ Isbell showed that there is a sentence in the language of group
theory that is true of Sκ just in case K = ω. McKenzie [1971] showed that ΓKα =
Tχβ implies α and β are elementarily equivalent as ordered sets. We can describe
the Isbell result as asserting that ω is characterized by a sentence of group theory.
McKenzie asked whether or not the set of cardinals characterized in this way was the
same as the set of second-order definable cardinals. Shelah [1973a] showed that
this was not so. McKenzie had also reformulated the notion of characterization so
as to make the question more natural. Instead of discussing the first-order theory
of the group Sκ, we can discuss the theory of the set K in a logic allowing quantifica-
tion over permutations. Shelah [1973a, b] showed that the Hanf number of this
logic is KΩω, where Ω = (2ω) + . This answers McKenzie's questions, since there
certainly are larger cardinals that are definable in second-order logic. In his proof,
Shelah discussed a similar quantifier: quantification over permutations of order
two. The first quantifier is certainly stronger than the second; moreover, it is
easy to describe the first quantifier in terms of the second. To see this, we simply
replace an arbitrary permutation / by three permutations g, hj of order two such
that on each orbit of/, g fixes "every other" element while, at the same time, h andy
are a product of two-cycles. These cycles agree with / on the elements fixed by g
and on the elements moved by g, respectively.

Prompted by questions raised by Stavi, Shelah [1973c] addressed the problem
of determining which quantifiers the discussion was about and how many of
them there were. The main aim of this chapter is to report his answer to this
question. That is, that there are four second-order quantifiers (which are
definable in the sense of Section 1.2 below): First-order (Qλ\ monadic second-order
(βmonλ permutational (Qi-x), and full second-order (βπ). These quantifiers
range over, respectively, elements, subsets, 1-1 functions, and arbitrary
relations. In Section 1, we will formulate the entire question more precisely
as well as provide some further examples of this class of quantifier. In Section
2 we will prove Shelah's theorem that there are only four second-order quanti-
fiers. The proofs in Sections 1 and 2 focus attention on two ideas. The argument
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that Qu is not interpretable in Qί-ι depends on the computation of the Hanf
number of Qί _ v On the other hand, the argument that any quantifier weaker than
QII is interpretable in Qί-1 depends on a decomposition theorem. This kind of
decomposition or Feferman-Vaught theorem is discussed in Section 3 (see also
Chapter XIII) and is applied in Sections 4 and 5. In Section 4, we will explore the
requirements on the notion of interpretation that are necessary to give a proof of
non-interpretability via the computation of Hanf numbers. Section 5 surveys the
classification of first-order theories by the interpretability of second-order quanti-
fiers. This classification naturally falls into the unstable case (discussed in Section
4) and the stable case (discussed in Section 5). Section 6 contains a brief survey of
some other generalizations that were found by Shelah.

1. Definable Second-Order Quantifiers

1.1. Logics, Theories, and Quantifiers

In Chapter II a logic L is defined as a function L which assigns to each vocabulary
τ a set of sentences L(τ) and a semantics \=τ. In discussing higher-order quantifiers
it is natural to examine theories rather than logics. For, the properties of a specific
logic—say, monadic logic—vary tremendously depending on the vocabulary
involved. In a vocabulary with only unary predicates the Hanf and Lδwenheim
numbers of monadic logic are Ko

 a n d the Feferman-Vaught theorem holds. On the
other hand, if the vocabulary contains a binary function symbol/, then, by specifying
/ to be a pairing function, we extend from monadic logic to full second-
order logic and all these pleasant properties are thus destroyed. Notice, however,
that we must not only make a binary function symbol available but we must, in
addition, specify that it defines a pairing function in order to induce the tragedy.
The major results in this chapter concern the relative interpretability of theories in
logics with second-order quantifiers.

Following are some notations and conventions which are perhaps peculiar to
this chapter. Small Roman letters x, y, z etc. will represent individual variables while
small Roman letters r, s, t etc. will represent predicate variables. Similarly, capital
Roman letters R, S,T etc. represent relations, and small Roman letters a, b, c etc.
individuals. We will use a to denote a finite sequence of individuals and R for a
finite sequence of relations. We will also write άeA, and RGA, without writing the
appropriate exponent on A. If φ(x, y9 s) is a formula and A is a structure with
b e A and S a relation on A, then φ(A, 5, 5) = {αe A: A \= φ(α, b, S)}. We will
regard the ordinary equality sign as a logical symbol. For any formula φ(x, y, r),
(3<kx)φ(x, y, r) abbreviates:

(x 0),..., (xk)( Λ φ(χi, y,r)-+ V
\i < fc + 1 i < j < fc + 1
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1.2. Definable Second-order Quantifiers

For any structure M, let Mn denote the power set of Mn. Now full second-order logic
allows quantification over [jn<(0 Mn. We could consider restricting our quantifica-
tion to n-ary relations for a fixed n. More restrictively, we could allow 3Xn to range
only over a specified subset of Mn. If we require that subset to be definable by a
formula in pure equality theory, quantifying only over elements of M, we arrive at
the class of definable second-order quantifiers. More formally, we have:

1.2.1 Notation. If φ(r) is a formula whose only non-logical symbol is the rc-ary
relation r, then for each infinite set A, &ψ(A) is the collection of π-ary relations R on
A such that A 1= φ(R). We will use the same notation even if φ contains a finite
sequence r of relation variables.

1.2.2 Definition. Let φ(r) be a formula whose only symbols are r, = , first-order
quantifiers, and propositional connectives. Then Qφ{r) is the second-order quantifier
whose semantics are given by:

M \= Qψ{r)Φ(r) iff (31?) e ΛΦ(M)9 M \= φ(R).

There is a first-order theory naturally associated with each quantifier Qψ,
namely the theory, Tψ9 whose only non-logical symbol is R and whose only non-
logical axiom is φ(R). Note, however, that this theory does not contain all the
information that the quantifier does. For, expressions in the language with the
generalized quantifier can contain more than one instance of R.

Naturally, first-order quantification (gj) and full second-order quantification
(δii) a r e definable second-order quantifiers. As we will see in Section 2, the only
other examples are:

Monadic Quantification. Let r be unary and let φ(r) be any valid formula. Then Qφ(r)

is merely another name for the monadic second-order quantifier.

Perinutational Quantification. Let r be binary and let φ(r) assert that r is an equiv-
alence relation such that every class has two elements. We call Qφ{r) the permuta-
tional quantifier. The name "permutationaΓ will be justified shortly.

Note that quantification over L-automorphisms of M is not a definable second-
order quantifier, since the assertion that / is an automorphism cannot be given in
pure predicate calculus.

1.2.3 Definition. For T a first-order theory and Qφ a definable second-order
quantifier we write (T, Qψ) for the collection of all Qφ sentences in L(T) valid on the
models of T.

Convention. We write Qφ for (Th( = ), Qφ) where Th( = ) is the theory of equality.
We write (Th( <), Qψ) for the Qψ theory of order.
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1.2.4 Definition. Let r be Jc-ary. We say Qψ{r) is (first-order) interpretable in (T, Qψ{s))
if the following conditions hold. There exist first-order formulas θo(xo,y,s\
θ(x0,..., xk-1? y, s) and χ(x, s) such that:

(i) If A \= χ(a0, So) then ΘO(A, ά0, So) is infinite, So e /^04), and

( 0 O ( 4 , α 0 , S o ) , {Θ(A, a, S):aeA,SeMψ

= (0 O (Λ, a, So\ MΦ(ΘO(A9 a, So))).

(ii) For every infinite £, there exist A, a0, and So such that A \= χ(ά0, So)

Even though φ may contain only a single relation symbol r, the interpreting
formulas may contain a sequence < s 0 , . . . , sπ>. Note that by modifying θ0 we can
require, without loss of generality, that each structure (ΘO(A\ Θ(A)) satisfies φ.

In accordance with our convention we will write Qφ(r) < Q^(s) whenever T is the
theory of equality.

In this definition the theory which is interpreted is in the language with only the
equality symbol. No other notion is needed for Section 2. For the discussion in
Sections 4 and 5, we will extend the definition to (T l 9 Qψ) < (Γ2, Qφ) by requiring
that, for each relation symbol in the language of Ti, there be an interpreting formula
in the language of (T2, Qφ). We actually employ this more general notion only when
Tί is the theory of order or Tx = T2

The major results of this paper deal with the classification of the theories
(T, Qφ), where T is a first-order theory. Section 2 concerns the case in which T is the
theory of equality. It is easy to see that, for any theory T, we have

QΦ<QΦ implies (Γ, Qφ) < (T, Qφ).

Another formulation of this remark is that if Qψ < Qφ, then, for every vocabulary
^j Lω,ω(Qψ) < Lω-,ω(Qφ), where 4 < ' is taken in the sense of Chapter II. That is to
say, the finitary logic associated with Qψ is weaker than that associated with Qφ.
Moreover, this result obviously extends to infinitary logics. Thus, the work described
in this chapter provides a refinement of the notions in Chapter II.

We will now use this observation to show that the four quantifiers we have dis-
cussed are distinct. However, these quantifiers may coalesce on some T. For
example, in the presence of a pairing function, Qmon is equivalent to Qn. This
phenomena is discussed in detail in Section 5.

One way to show that quantifiers are distinct is to observe that interpretations
as defined in Definition 1.2.4 preserve Hanf number. The Hanf number of a theory
(T, Qψ) is the least cardinal such that any (Q^)-sentence which has a model of at least
that cardinality has arbitrarily large models. A number of variants on this notion
are discussed in Baldwin-Shelah [1982], and we discuss it in somewhat more detail
in Section 4. For the present, however, a quick application of this observation
shows the following.
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1.2.5 Theorem. The four quantifiers are distinct: Qmon jt Q\, Qi-i ^ Qmon>

QnφQi-i

Proof. The class of well-orders is definable in (Th(<), Qmon) but not in (Th(<), Qλ).

Thus, β ^ ^ β,.
Every sentence in (Th( =), βm o n), is either true on all infinite sets or is false on

infinite sets. Thus, the Hanf number of (Th( = ), Qmon) is Ko. As remarked in the
introduction, there are Qι^1 sentences of equality theory with only uncountable
models. Thus, β,_! £ Qmon.

Shelah [1973a, b] showed the Hanf number of (Th( = ), Qγ-X) is NΩω and

thus that β π ^ β i - i . D

In the introduction we showed that quantification over arbitrary permutations
is bi-interpretable in the sense of Definition 1.2.4 with quantification over permuta-
tions of order 2. It is clear that quantification over permutations of order 2 is bi-
interpretable with the permutational quantification introduced above.

We will now give a few easy examples to show that a definable second-order
quantifier which can define certain kinds of relations must be stronger than our
standard examples, monadic and permutational quantification. The key to our
argument will be to deal with very simple Qψ formulas, namely those of the form
φ(x, R) with R e St^(A) and φ a first-order formula.

1.2.6 Definition. If the relation S on A is defined by φ(x, 5, R) with Rs3t^{A\
where φ is of the first-order, then we say S is simply definable by Qφ.

It is easy to show from the definitions that β π is maximal among all the definable

quantifiers

1.2.7 Proposition. For any φ, Qφ < β π . D

1.2.8 Lemma. IfQψ simply defines an infinite, coinfinite set, then Qmon < Qψ.

Proof Consider a definable second-order quantifier Qψ, and a structure A. Suppose
that for some first-order formula φ(x, a, R), with R s &Φ(A) and as A, both
φ(A, a, R) and ~iφ(A, a, R) are infinite. We will show that each subset of A is
definable by a formula θ(x, a, R\ with R e &Ψ(A). Call X a regular subset of A if
IXI = IX — XI = I Y4 I. Since ψ contains no non-logical symbols, the assumption
that one regular subset of A is definable by a first-order formula φ(x, 5, R) implies
that any other regular subset is also. But any subset of A is a boolean combination
of regular subsets so that all subsets of A are Qψ{r) definable. Thus, Qmon < Qψ(r). Ώ

We can view these remarks from another perspective, one that makes dis-
cussion of their consequences more concise. If R e &ψ(A\ then (A, R) can be
thought of as a model of a first-order theory in a language with non-logical symbols
R and whose only axiom is φ(R). Then our last observation is simply the assertion
that every infinite model of this theory is strongly minimal in the sense of Baldwin-
Lachlan [1971] that T is strongly minimal if every definable (with parameters) sub-
set is finite or cofinite. Moreover, standard compactness arguments show that
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this implies that if for each δ, φ(A, δ, R) is finite, then there is a uniform bound on
the cardinalities of these sets.

1.2.9 Lemma. // Qψ simply defines an equivalence relation with infinitely many
infinite classes and β m o n < ζ)^, then Qι-γ < Qψ.

Proof. Suppose there is a formula θ(x, y, α, R), a n l e 9tψ(A\ and anαeX such
that 0(x, y, a, R) defines on some infinite subset B of A an equivalence relation
having infinitely many classes with more than two elements. By shrinking B, we
may assume that each class has exactly two elements and that A - Bis infinite. By
the compactness and Lόwenhiem-Skolem theorems, we may assume that every
infinite set C contains a regular subset Bc with such a definable equivalence relation.
Using again the fact that φ contains no nonlogical symbols, we see that a similar
equivalence relation can be defined on C — Bc. But then, since B is simply definable
(as every subset is simply definable), we can easily define an equivalence relation on
all of C such that each class has exactly two elements. Thus we have defined Q x _ 1. D

The main result asserts that the four quantifiers we have discussed are (up to bi-
interpretability) the only definable second-order quantifiers and that, in fact, they
are linearly ordered by interpretation. In fact, the argument shows that we would
gain no additional cases by considering definable second-order quantifiers with
finite strings of variables (that is, by replacing Qφ(r) by 6^(r)).

Most of the definitions in this section have described definable second-order
quantifiers in pure logic. We can, of course, consider the more general situation in
which we add definable second-order quantifiers to a non-trivial first-order theory.
We will consider this situation in some detail in Section 5.

1.3. Some Conditions for Interpretabϊlity

In this section we will describe a few conditions which suffice for interpreting
second-order logic into another logic.

We remarked in Section 1.1 that the introduction of a pairing function trans-
forms monadic logic into full second-order logic. We now want to discuss a slightly
weaker condition which has the same effect.

1.3.1 Definition. The theory T is codable if, for some n and some model M of T,
there are infinite sets <βf: i < n} and C contained in M and a first-order formula
(possibly with parameters), φ(x, y0,..., yn-ι), which defines a 1-1 map from
Bo x x Bn_x onto C.

If T is codable, then, for any cardinal K, we have a pairing function from two
sets of power K onto a third. We can thus easily code any binary relation on K in
terms of the pairing function and a subset of the third set. This argument is carried
out in detail in Section Π.2.4 of Baldwin-Shelah [1982]. Formally, we have

1.3.2 Theorem. // T is codable, then Qu < (Γ, Qm o n). D
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Arguments like those for 1.3.2 show:

1.3.3 Lemma. If there is a first-order formula φ(x, y) which defines on some model M
of a first-order theory T and on some infinite subset A of M an equivalence relation
with infinitely many infinite classes, then Qu < (T, Qι_ι). D

This is Chapter II, Section 2.6 of Baldwin-Shelah [1982].

2. Only Four Second-Order Quantifiers

In this section we will prove the main result of Shelah [1973c]: that up to interpreta-
tion (in the sense defined in Definition 1.2.4) there are only four (definable) second-
order quantifiers. In Section 2.1 we will begin by deriving some consequences of
Ramsey's theorem and the Δ-system lemma which will be used several times in the
proof of the main theorem. That done, we will then show successively in Section 2.2
t h a t i f ρ m o n £ β , , t h e n β f < ft; in Section 2.3 that if Q1_1 < β ^ t h e n β * < Qmon;
and finally in Section 2.4 that if β π ^ Qφ, then Qφ < Qx-V These three assertions
and Proposition 1.2.7 yield the following theorem.

2.0 Theorem. IfQψ is a definable second-order quantifier, then Qφ is bi-interpretable
with one ofQl9 Qm o n, Q^u or Qu.

The proof of the first two of the three assertions constituting this theorem is
just a reworking of the argument given in Shelah [1973c]. We give the main idea
of the proof for the third in Section 2.4. In Sections 2.5 and 2.6 we give alternate
arguments for the crucial Theorem 2.4.6. The argument in Section 2.5 is derived
from Baldwin-Shelah [1982], while that in Section 2.6 is a modification of the
argument given in Shelah [1973c].

The argument for each of the three cases follows the same general line. To show
that Qφ < Qψ, we first define an appropriate notion of "α and h are β^-similar
over" respectively a finite set of elements in Section 2.2, a finite set of elements and a
finite set of subsets in Section 2.3, and a finite set of elements, a finite set of subsets,
and a finite set of 1-1 functions in Section 2.4. We say 5 determines θ if a and h are
Qψ similar over some sequence S satisfying φ implies a and b satisfy the same
formulas θ(x; R\ for R e $Φ(A). It is easy to see that if S determines each θ then
QΦ ^ Qφ The bulk of the argument which differs from case to case consists in
showing by induction on \g(x) that each θ(x; R) is so determined.

2.1 Consequences of Some Combinatorial Lemmas. Our first result is an application
of Ramsey's theorem to the problem of interpretation.
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2.1.1 Lemma. Let θ(z, y, x, R) be a first-order formula. Suppose that for every A and
every R e 0t^{A) and for some m < ω we have

and

At=(z)(y)θ(y,z,5t,r)-+zφy.

Then either

(I) for some n < ω,we have A |= (x)(3n)[βy)θ(y, z, x, RJ]; or

2(a) β m o n < Qφ and

Proof Assuming that (1) fails, we first show

(*) There are C = <cf: i < ω> and B = <&,-:; < ω> and d such that
B n C = 0 ; cf = c, iff i = j ; \= θ(bi9 cj9 d, R) iff i = j ; and

\= -iθ(ci9 cj, I R) if iΦj.

If, for each 3, there are only finitely many c such that \= (3z)θ(z, c, d, R), then (1)
holds by an easy compactness argument and we are finished. If not, then we can
certainly find disjoint sets B and C such that A \= θ(bi9 Cj, d, R) but A \=
~\θφi9 Cj, d, R\ for i < j . By applying Ramsey's theorem to the partition of pairs
{ij} for i < j < ω induced by whether or not θ(bh cj9 3, R) holds, we can pass
to subsets of B and C so that the truth oϊθ(bh cj9 3, R) depends only on the order of i
and j . We know that θ(bh c}, d, R) fails if ί < j and since (3<mz)θ(z, cj9 d, R) and
some Cj has more than m predecessors, we must also have ~\θ(bh c}, d, R) if i > j .
A similar use of Ramsey's theorem allows us to assume that ~i θ(ch Cj) also if ί Φ j .
This establishes (*).

We will now define a formula χ(y, d, R, R') such that A \= χ(ci9 d, R, R') iff
i = 0 mod 3. Since we will have thus defined an infinite and coinfinite set, it will
follow by Lemma 1.2.8 that Qmon < Qψ. We can assume that none of the ftf's or c/s
occur in d. Let / be the permutation of A which interchanges c 3 ί + 2 and c3i+ί and
leaves all other elements of A fixed. Let R' be the image of R under/. That is, /is an
isomorphism between (A, R) and (A, Rf). Then

A \= (x)[0(x, cj91 R) ++ θ(x, Cj, I R')~]

if and only if; = 0 mod 3. Thus, letting χ(y, d, R, R') be

we have (2a).
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To obtain (2b), we note that θ(x, y9 d, R) defines on a subset of B u C an equi-
valence relation having infinitely many classes with two elements. In the light of (2a)
and Lemma 1.2.9 we have (2b).

Our next step is an application of a weak version of the Δ-system lemma. The
remainder of this section is applied in Lemma 2.3.6 and 2.5.8.

2.1.2 Definition. A A-system with heart H is a family of sets {Cf: ί < K} such that
if i Φ j , then Cf n C} = H. We will frequently fix an enumeration h of H. Then h
will be taken to mean either the sequence h or the range of that sequence (that is,
H\ whichever is appropriate.

An easy combinatorial argument establishes

2.1.3 Lemma(The Weak Δ-System Lemma). //XQ: i < ω> is a sequence of distinct
sets with the same finite cardinality n, then there is a subsequence of the Ct which is a Δ-
system with some heart H, and \H\ < n.

For our application we want to distinguish the following families of formulas.

2.1.4 Definition. A family of formulas {θn(z0,..., zn_ l 5 y, r): n < ω} is malleable if

(i) θn is predicate of the set {z0,..., zπ_ 1}, not the sequence z.
(ii) If {cf: ί < ω} is a Δ-system with heart H ( | c f | = n and \H\ = m < n) and

A \= θn(di, B, R) for i, then A \= ΘJh, b, R).

2.1.5 Example. If θn(z0,..., zπ_ l 5 y, r) is

(x) φ(x0, , xm_ i, y, r) -> Λ V xi = zj I

then {θn: n < ω} is a malleable family. To see this, we let d be a solution oϊφ(x, 5, K)
and let cf be a Δ-system of π-tuples such that d c ct for each i. Then 5 is clearly
contained in h.

For {θn: n < ω} a malleable family, we introduce the following notation: 0*
denotes (3^) ^ (3zn_ i)^(z 0 , z l 5 . . . , zπ_ l 9 £ fi). θ;(z, y, Λ) denotes the conjunc-
tion of 0π(z, y, R) with the formulas ( z 0 ) , . . . , (zm_ x) i θm(z, j ; , R), for m < w.

This definition is designed to yield the following lemma.

2.1.6 Lemma. Suppose θn is a malleable family of formulas such that for every A, every
R G @ψ(A\ and every b in A, there is a finite sequence c with \c\ < M (for some integer
M) such that A \= θ]cl(c, b, R). Then

(i) There is an integer n(b) such that: θ%ih)(A, 5, R) is finite and

A N (3z)β;(δ)(z, 5, R) Λ Λ θ*Cb)(zi9 B, R).
i < n(b)
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(ii) //, in addition, Qmon < Qψ then there is an integer k and a formula β*(z, y, R)
such that:

(a) A z

(b) A N (y){z)\β'm{z9 y,R)-+ Λ {θ*(zi9 y, R): i < mftjor all m < M.

Proof, (i) Fix b and some c of smallest cardinality such that A \= 0H(c, δ, R) and sup-
pose \c\ = n. Suppose 0*04, b, R) is infinite. Then there is an infinite family of n-
element sets Cf such that if cf is any enumeration of Ch A \= θ(ch b, R). By the
Δ-system lemma, we can find a heart H (h) for the C,'s with \H\ = m < n. Moreover,
by the very definition of malleable family, A N θm(h, b, R). But this contradicts the
minimality of n and so yields (i).

(ii) Since Qmon < Qφ, we know by Lemma 1.2.8 that any (A, R) with each
R e ^^(A) is strongly minimal. In particular, there is an integer k such that all the
sets θφ){A, b, R) have cardinality < k. Recall that by hypothesis all the n(b) < M;
and, furthermore, let 0* be the formula:

V (3uo) (3"j- i)0?(S, y, R) - θf(z9 y, R).
j<M

This formula clearly meets conditions (a) and (b). D

2.2 Lemma. IfQmon £ Qψ9 then Qφ < Qj.

This subsection is devoted to the proof of Lemma 2.2. We will proceed by
induction to show that the hypothesis implies that every formula with parameters
R in &ψ(A) and k free variables is expressible in first-order logic. When k reaches the
arity of R we must then have the lemma (see Lemma 2.2.2). In addition to the notions
from Sections 1 and 2.1, we will require the following concept.

2.2.1 Definition, (i) Let X be a finite set of relation symbols or formulas. By
tpx(a; B) we mean the collection of formulas φ(x;b) such that BeB,
\l/(x; y)eX and |= ψ(ά, b). We will simply write, t=(a;B) for t{=](a; B).

(ii) Two finite sequences of the same length, a and δ, are (first-order) similar
over B if tp = (α; B) = tp = (5; B). _

(iii) The set D u c determines φ(x; c, R) if for any sequences a and b which are
similar over D u c: A \= φ(ά~, c, R) <-• φ(b, c, R)

Note. The notion D u e determines φ(x; c, R) depends not just on the formula
φ(x, y, R) but on the partition of the sequence xy.

2.2.2 Lemma. //, for every formula φ(x, y9 r), there exists \ jormula φ*(z9 y, f) and
an integer n such that for every A and every b in A and R in ̂ ^(A)

(i) \φ*(A9h9R)\ <n;and
(ii) φ*(A, b, R) u {b} determines φ(x9 ft, R\

< Qλ.



2. Only Four Second-Order Quantifiers 455

Proof. We apply the hypothesis, taking r(x) as φ(x y, r). Then R(x) is determined by
the finite set φ*(A, R) so that a suitable coding of the equality types over φ*(A9 R)
defines R(x) as required. D

2.2.3 Definition. The formula χ(w) is an = -diagram (read simply as equality
diagram) if χ is a maximal consistent conjunction of equalities and inequalities
among the wf.

Shelah [1973] calls χ a complete formula. The following lemma yields Lemma
2.2.

2.2.4 Lemma. // Qm o n ^ Qψ, then for every formula φ(x9 y9 r\ there is a formula
φ*(z9 y9 r) and an integer k such that for every A, δ, and R in 0t^(A): | φ*(A, B, R)\ = k
and φ*(A9 δ, R) u {δ} determines φ(x9 δ, R).

Proof The proof is by induction on the length of x for arbitrary sequences y and f.
If lg(x) = 1, the result is immediate from the remark following the proof of
Lemma 1.2.8.

We now consider a formula φ(x; y9 r). Let x = x' w and y' = w y. Now, we
have φ0 = φ(x; y9 f) and φx = φ(xf; y\ f) which differ only in the position of the
semicolon. Suppose we have constructed by induction a formula φξ(z, y\ r) and
an m such that for each a, δ, and R e @Ψ(A):

(j)\φ$(A,a,B,R)\<m;
(ii) φ*(A9 a, b, R) u {a, b} determines φ(x'\ a, b, R);

(iii) φ{(z, w, δ, R) -+ z φ w.

By explicitly listing {a, δ} in (ii), we are left free to assume that (iii) holds. Now,
applying Lemma 2.1.1, we see A \= (y)(3^z)(3w)(0*(z, w, y, R)). Let φftz, y, R)be
(3w)05(z, w, y, R). Then, for each a and b, it is easy to see that φ*(A, b, R) u {a, b}
determines φ(x'9 a, δ, R). It remains to remove the dependence on a. To do this,
however, we must first look more carefully at how the determination occurs.

Let c be an enumeration of φ*(A, δ, R). Fix lg(z) = lg(c) and let χ^x'; w, y9 z)
for i < p be a complete list of the equality diagrams in the displayed variables. For
each as A and each /, we must have either

(i) A N {xf){ji{x\ a, δ, c) -> φ(3c', α, δ, £)]_; or
(ii) ^ |= (x')[χ.(x', α, δ, c) -> -i0(x', α, δ, Λ)].

Now, for each S ^ p, let χs(a, δ, ^ ) hold just if (i) above holds for exactly those
i G S. Now, by strong minimality, there is an L (depending on S and δ) such that if
A \= χs(a, δ, R) for more than L choices of a, then A \= χs(a, δ, R) for all but finitely
many a. By compactness and the fact that there are only finitely many
choices for S, we can choose a single L with this property for all δ and S. Now,
φ(x; δ, £) is clearly determined by φ*(A, δ, R) u C(δ) u δ, where C(δ) denotes the
set of those a such that A \= χs(a, δ, R) -• (3< Lx)χ s(x, δ, £). Moreover, we now see
that φj(A, δ, £) u C(δ) has less than (k + L) elements and is uniformly definable
from b. Thus, we have proven the lemma. D
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In Shelah's original proof, the C(b) are defined by an appeal to Lemma 2.1.6 so
that the structure of his argument is actually closer to that which follows in the
proof of Lemma 2.3.

2.3 Lemma. IfQγ_x £ Qφ then Qφ < Qmon.

Our proof of this result is parallel to the proof of Lemma 2.2. We will require the
following concept—a concept that is analogous to the notion given in Definition
2.2.1.

2.3.1 Definition, (i) Two finite sequences, ά, 5, of the same length, π, are monadically
similar over <£>; C o , . . . , Cm_ x> if for any d in D and any i < n, bt = d iff
at = d\ and, for j < m, a{ e CΊ iff bt e CΊ.

(ii) A finite equivalence relation over F is an equivalence relation (on /c-tuples,
for some k) which is definable with parameters from F and has only finitely
many equivalence classes,

(iii) The set D and the finite equivalence relation E monadically determine
φ(x, c, R) if, for any sequences a and b of the same length: if a and b are
monadically similar over <Z) u c; C o , . . . , Ck_!> where the C, are the
equivalence classes of E, then φ(α, c, R) «-+ φ(b, c, R).

2.3.2 Lemma. If for every formula φ(x, y, r) there exist formulas φ*(x, u, y, r) and
θ(z, y, r) swc/x that for every A, c, and R e M^A):

(i) θ(A,c,R)is_finite;
(ii) φ*(x, w, c, K) is a finite equivalence relation;

(iii) θ(^, c, # ) and φ*(x, w, c, R) monadically determine φ(x, c, R\ then

% < Qmon

2.3.3 Definition. For any formula φ(x y, r), any A and c, any .R e &ψ(A\ and any
C c i , define e(φ(x; c, R\ C, A) = e(φ, C, A) by

e(φ, C, ^ ) = {<α, b>: tp { = ,^ c -, F ) } (α; A - C) = tp { = ,^,c-,r-)}(fo; A - C).

The formulas in t p { = φi^t τ,r)}{a \ X)are obtained by fixing any entry in x for sub-
stitution of a and leaving the others for substitutions from X. Note that e(φ, C, A)
is first-order definable (with parameters C, c and R).

2.3.4 Lemma. //21 -1 < Qφ, then for every A,C,b, and φ(x y, r)> e(φ, C, /I) /iαs on/y
finitely many equivalence classes.

Proof. By Lemma 2.2, we can assume that Qm o n < Qψ. We first note that by Lemma
1.2.9, since e(φ, C, A) is definable, it can have only finitely many equivalence classes
with two or more elements. Since replacing C by a smaller set refines the equivalence
relation, we can, by proper choice of C, assume that each class of e(φ, C, A)
is a singleton. If e(φ, C, A) has infinitely many classes, we will define in terms of
R e 3lψ(A)9 an equivalence relation possessing infinitely many classes with two
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or more elements. We thereby contradict Lemma 1.2.9. For this, fix a permutation
/with order 2 of A whose set of fixed points is (A - C) u {b}. Let R1 = f(R). Let
So denote the relation defined by φ(x, b, R) and S1 the relation defined by
</>(*, δ, ^ i ) . Let eγ be the following equivalence relation (this relation is clearly
definable from R, Rί9 C and b and therefore by Qψ):

{<α, c>: tp { S o, = }(a: (A - C) u {5}) = tp { S l , = }(c; (A - C) u {5})

and

tp { S o, =}(c; (Λ - C) u {δ}) = tp { 5 l , = } (α; 04 - C) u {5}).

Clearly, if a,ceC and /(α) = c, then <α, c> e e^ Now, if {a, c> 6e ί 9 then

tp { S o, = }(c; (>1 - C) u {5}) - tp { S l t =}(a; (A - C) u {δ}) = ^.

But since e(φ(x; 5, Λ), C, y4) has only singleton equivalence classes, the unique
element realizing q in the S1 interpretation is/(c). So a = f(c). Since ex is clearly
symmetric, we see that eλ(a, c) if and only if a = f(c). That is, we can define by
eχ(x,y) v x = y an equivalence relation with infinitely many two element classes.

Note that by invoking the compactness theorem, we can find a uniform n such
that, for all C and 5, e(φ(x; 5, R\ C, A) has less than n equivalence classes.

The following technical result asserts that if a definable symmetric, reflexive
relation has a bounded number of pairwise incomparable elements then its transitive
closure also is definable. We need it for the next lemma.

2.3.5 Proposition. Suppose φ(x, y) defines α symmetric reflexive relation such thatjor
some m and for any set of distinct elements {at'. i < m}, there are i φ j such that
φ(ai9 aj). Then the equivalence relation E which is obtained by forming the transitive
closure of the relation defined by φ(x, y) is itself defined by:

(3z 0), . . . , ( 3 z 2 w _ 3 ) / \ φ(Zi,zi+ί) A z 0 = x Λ z 2 m _ 3 = y).
i<2m-3

Proof Let {a0,..., ak} be the shortest path connecting a0 and ah9 and let k = 2u
or k = 2u + 1, depending on the parity of u. No pair from {α 0 , . . . , au} satisfies
φ. Thus, u < m — 1 which yields the result. D

2.3.6 Lemma. // β i - i ^ δ^> then for each formula φ(x; c, R) there are formulas
φ*(x, w, y, R) and θ*(z9 x9 u, y9 f) such that for every A, c, a and R e 01^{A):

(i) 0*(x, y9 c, R) defines an equivalence relation with finitely many classes.
(ii) IfA\= φ*(a9 b9 c, R\ then <α, b} e e(φ(x9 c, R\ Θ*(A, c9 R) u {a9 b}9 A).

(iii) Θ*(A9 c, R) is finite.
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Proof. We first use Proposition 2.3.5 to establish (i) and the weakened version of (ii)
which is obtained by replacing e(φ(x; c, R\ Θ(A, c, R) u {a, b}, A) by the equi-
valence relation e* which holds for two elements if and only if for some finite B9

e(φ, B, A) also holds of those elements. The formula φ*(x9 y, b, R) defines a finite
equivalence relation which refines the finite equivalence relation e*(φ(x;b, R), A, R).
Then two applications of Lemma 2.1.1 yield the full result.

For the first step, define for each A, b and R e &tφ(A) the binary relation en =
en(φ(x; b, R), A, R) to hold for <α, b> just if for some n-element subset B of A,
<α, by e e(φ(x, b, R\ B, A). Note that en is reflexive and symmetric but not transitive.
Moreover, there is a formula φn(x, y, b, R) which defines en. Finally, en refines en+ί.
Now, let the equivalence relation e* = (J {en: n < ω}. For a fixed m, not depending
on 5, each en(φ, B, A) has at most m classes so there is no set of m + 1 elements,
each pair of which does not satisfy φn. Thus e* has at most m classes. So for some /,
the set of sentences

U {-iΦB(χι,χj,a,Λ)}

is inconsistent. Let p be the least integer such that Γ p is inconsistent. By Proposition
2.3.5, the transitive closure of φp(x, y, 3, r) is definable by a formula φ*9 and defines
an equivalence relation with at most m classes, φ* clearly satisfies (i) and the weak-
ened form of (ii). Thus, each equivalence class of e* is a union of φ* equivalence
classes.

To establish the full strength of (ii), we define the malleable family of formulas
θn(x, y, z, U, r) which assert that <x, y} e e(φ(x; w, r), {x, y, z 0 , . . . , zn_ J , A). Tak-
ing p for the bound M in the hypothesis of Lemma 2.1.6, we deduce that there is
a formula 0*(z, x, y, ΰ, f) such that for some k (first a k(b) but then, by compactness,
independent of b) we have:

(a) A \= (x)(y)(3<kz)θ*(z, x, y, c, K).
(b) If A N φ*(a, b, c, K)_then <α, b} e e(φ, Θ*(A, a, b, c, R) u {a, b}9 A).
(c) If A \= -i φ*(a, b, c, R) then Θ*(A, a, b, c, R) = 0 .

Now, applying Lemma 2.1.1 twice to condition (a) we obtain

A \= (3<kz)(3x)(3y)θ*(z, x, y, 5, R) so

(3<kz)(3x)(3y)θ*(z,x,y,ύ,R).

Now, to complete the proof of Lemma 2.3, we show by induction that every

formula is monadically determined.

2.3.7 Lemma. IfQι-ι ^ Qψ, then for any φ(x; y, r), there are formulas φ*(x9 u, y, f)
and θ(z, y, r) which monadically determine φ(x\ y, r).

Proo/. The proof is by induction on lg(x). If lg(x) = 1, we are merely restating
Lemma 2.3.6. Thus, suppose that we have the result if lg(x) < n, and consider a
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formula φ(x; y, R) with lg(x) = n. By Lemma 2.3.6 we can find a finite equivalence
relation φ*(x, y9 δ, R) and a set Θ(A, δ, K) such that if

A \= φ*(a, c, δ, K), then <α, c> G έ?(tf>, 0*04, a, C, 5, Λ) u {α, c}, A).

This means that the equivalence classes oΐe(φ, Θ*(A, a, c9 δ, R) u {a, c}, A) are
finite unions of equivalence classes of φ*. Now, for each element d of Θ*(A, δ, R) u
{a9 c}, let φdyi(x'; δ, d, R) be the (n — l)-ary relation obtained by substituting d for
x{ in φt. Then, φ(x; δ, R) is first-order definable from the equivalence classes of ψ*9

the elements of Θ(A, δ, Λ) u {a, c}, and the φdtl{x', b, R). For, if a n Θ(A, δ, ,R) =
0 , then 0(ά; δ, R) depends only on the φ* equivalence class of the α f. If a n
Θ(y4, δ, Λ) ^ 0 , then φ(a; δ, Λ) depends on one of the φdti which are monadically
determined by induction. This completes the proof of Lemma 2.3. D

2.4 Lemma. IfQu jέ β^ ί/zeπ β^ < β i- i

Once we have established this lemma, we will have completed the proof of the
four second-order quantifier theorem. We will first show that a certain decomposi-
tion of all structures (A, R) with R e St^A) implies that Qφ < Qx_x. Afterwards, we
will show that the hypothesis Qn φ Qφ implies that such a decomposition exists.

An extremely simple example of such a decomposition is the division of models
of Th(Z, S) into connected components. More complicated examples are elaborated
in Baldwin-Shelah [1982].

2.4.1 Definition, (i) If E is an equivalence relation then two sequences a and δ are
similar for E if lg(α) = lg(δ) = k and there is a partition of k into, say, n
sets Jo,..., J π _ ! such that for any elements of the sequences ai9aj9 bi9bj we
have diEcij if and only ΊίbiEbj if and only if i and; are members of the same
partition element Jι. We write a = < α 0 , . . . , απ_ ί > where a} is the set of at

with ieJj.
(ii) The model M is decomposed over N if there is an equivalence relation E

on M — N such that if a is similar for Etob and, for each ai9 hh we have
tp(α f; N) = tp(δ f; N), then for each lg(α)-ary relation symbol, R, in the
vocabulary of the structure M \= R(ά) <-• R(b). We say E is an L-con-
gruence.

(iii) The L-structure M is strongly decomposed over N by E if each equivalence
class of E has no more than | L | elements.

(iv) The theory T is (strongly) decomposable if, for each M \= T and each
N -< M with I TV I < | Γ |, M is (strongly) decomposed over N.

We will show that if Qn £ Qφ9 then each structure (A, R) with Re^φ(A) is
strongly decomposed by the following natural equivalence relation. (The
hypothesis Qu φ β 4 is required to show the relation is symmetric.)
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2.4.2. Definition, (i) For an element a and a set B, we write a e CI(JB) if, for some
formula φ(x) with parameters from B, φ(a) holds and φ has only finitely
many solutions,

(ii) Let N < M, then for a, b e M - N, a ~ N b if a e cl(JV u {b}).

We will show that such a decomposition suffices for the interpretation of Qψ

inQι_i and then that the decomposition exists. For the first task we require a few
more definitions.

2.4.3 Definition. Let C o , . . . , Cw_ 1 be a sequence of subsets of A and l e t / 0 , . . . , fk_ ί

be a sequence of partial 1-1 functions on A. Then

(i) Two finite sequences a and b of the same length are 1 — 1 similar over
<Dj C o , . . . , Cm_ i /o, •.., /*-1> if for any d in D and any i<n =
lg(α), ft,- = d iff αf = d, and for 7 < ra, αf e C, iff bt e Cj and for / < fc,
/ fe) = d (e C, ) if and only if fφ,) = d(e Cj).

(ii) The sequence <D; C o , . . . , Cm_ t / 0 , . . . , / k _ t> 1-1 determines φ(x, c, JR)
if for any sequences α and 5 of the same length we have that if a and b are
1-1 similar over <Z); C o , . . . , Cm-γ\ f θ 9 . . . , Λ_i>, then φ(a,c,R)+->
ΦΦ, c9 R).

2.4.4 Definition. A formula φ(x, y, n) is called a binding-formula if, for some integer

K 1= (x)(3<ky)Φ(^, y, π) Λ (>;)(3<fcx)φ(x, y, n).

Note that if M is strongly decomposed via ~N, then for any pair of elements
a,beM — N, if a and b are equivalent, then for some binding formula M φ(x, y, ή)
with the n from ΛΓ: \= φ(a, b, ή). Moreover, if a is a sequence of equivalent ele-
ments from M - N, t(a; N) is implied by the union of the types ί(α f; N\ for
i < n with the binding formulas which relate the at. Finally, if a is a sequence from
M — N involving elements from different equivalence classes, then t(a; N) is
implied by the types of the singleton ah the binding formulas which tie together the
elements from the same classes and the negations of all binding formulas which
might relate pairs that are not in the same class. With this in mind, we will establish
a final lemma and complete the proof of the theorem.

2.4.5 Theorem. If for every infinite A and every Re&ψ(A)(A, R) is strongly de-
composable by ~N,for some proper elementary submodel N of (A, R), then Q^ <

δl-l

Proof Let M = (A, R) be strongly decomposed over N. Note that for any M* >- N,
M* is also strongly decomposed over N. Thus, for any model M of Th(ΛΓ) and any
άeM — N, there is a type q(a) such that each formula in q contains only one ah

or is a binding formula, or the negation of a binding formula and is such that
qV- t(a; N) and if M \= R(a\ then t(a\ N) \- R(x). (The existence of this type is
guaranteed by the discussion preceding this lemma.) Now, a standard "double
compactness" argument shows that R(x) is equivalent to a disjunction of formulas
over a finite set No and that each of these formulas either contains at most one xi9
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or is a binding formula, or is the negation of a binding formula. Now, if D is No,
Ci picks out the solution set of the ith disjunct with only one xt; and, for each
binding formula φ^x, y, d\ the functions // for; < k (the number of solutions of
φi(a, x, n)) are defined so that {f{(a):j < k} = {b: φτ{a9 b, d)}). Then R is 1-1
determined by D, C o , . . . , Cp and// for i < m and; < k (for appropriate p, fc, m). D

We will complete the proof of Lemma 2.4 by establishing in the rest of Section 2:

2.4.6 Theorem. If Qu £ Qψ9 then for every (A,R) with Re0tψ(A) and for some
elementary submodel N of (A, R\ A is strongly decomposed by ~N. D

We will explain two proofs of the above result. The first is both the most natural
and the most useful. We will continue to use its methods later in the paper.
However, it requires a minimal knowledge of stability theory (for instance, the
first half of Lascar-Poizat [1979]) so for those who might be unfamiliar with
those basic facts, we have included in Section 2.6 an ad hoc but self-contained
proof of Theorem 2.4.6.

2.5 Theorem. IfQu ^ Qψ9 then for every A and every R e &tψ(A), (A, R) is strongly

decomposable. (1st Proof).

We first observe

2.5.1 Lemma. Qu ^ Qφ implies T is stable.

We give two arguments for this. Note that T being unstable implies there is a
definable linear ordering of rc-tuples. In Chapter VIII of Baldwin-Shelah [1982] it is
shown that in any theory with a definable linear order on π-tuples one can mon-
adically define a linear order on singletons. From this one constructs an equivalence
relation with infinitely many infinite classes and finishes by Lemma 1.3.3. Altern-
atively, we use more of the machinery set up in Section 2.6 and deduce directly
from the definable linear order on n-tuples the existence of a definable equivalence
relation on π-tuples with infinitely many non-pseudofinite (see Definition 2.6.3)
classes which contradicts Lemma 2.6.4. D

2.5.2 Definition (The Fundamental Equivalence Relation). Let N < M and M a
model of a stable theory. We define a relation EN on M — N by aENb just if
t(a; N u b) forks over N.

Now the standard properties of forking in a stable theory assure us that E is
reflexive and symmetric. In general, E is not transitive. However, in our situation
we obtain this and more.

2.5.3 Lemma. IfT is stable, N -< M and E is the fundamental equivalence relation
then M is decomposed over N by E.

Proof We must show that E is an equivalence relation and that condition (ii) of
Definition 2.4.1 is satisfied. We will give a brief outline of the argument.



462 XII. Definable Second-Order Quantifiers

2.5.4 Lemma. Suppose that in a model of T, there exists an element a and B =
<fef: i < ω> and C = (cj'.j < ω> such that

(i) B is a set ofindiscernibles;
(ii) C is a set of indiscernibles over B and there is a formula φ(x, y, z) such that

\= φ(a, bh Cj) if and only if ί = j .

Then T is codable.

This lemma is an easy reworking of the definition of codable given in Definition
1.3.1. Its proof as well as that of the following lemma are detailed as Sections IV.2.4
and IV.2.6 of Baldwin-Shelah [1982]. The following lemma is a fairly routine
calculation using the properties of the forking relation and Lemma 2.5.4.

2.5.5 Lemma. IfTis stable and either:

(i) There exists a subset A of a model of T and elements a, b, c such t{a\ A u b)
forks over A and t(b\ A u c) forks over A, but t{a\ A u c) does not fork over
A, or

(ii) There exists a subset A of a model of T and elements a,bl9...,bn such that
for each ί t(a; A u bf) does not fork over A but t(a; A u {blf..., bn}) forks
over A.

Then T is codable.

This result shows that if Qn ^ Qmon

 a n d R e &ψ(A), then Th(^, R) is decom-
posable (see Baldwin-Shelah [1982]). In order to show that it is actually strongly
decomposable, we will need one further fact from stability theory.

2.5.6 Lemma. // T is stable and there exist a, bεA \= T and B ^ A such that
t(a\ B u b) forks over B but t(b;B u a) is not algebraic, then on some subset of a
model of T there is a definable equivalence relation which has infinitely many infinite
classes.

(This result is Lemma VI.1.1 of Baldwin-Shelah [1982].) Now by Definition
1.2.4 we see the conclusion of Lemma 2.5.6 cannot hold unless Qn < Qψ (as we
have 2 l - i ^ Aψ). Thus, we have established Theorem 2.5.

We turn now to the other proof of Theorem 2.5.

2.6 Theorem. IfQu ^ Q^, then for every A and every R e $Ψ(A), (A, R) is strongly
decomposable. (2nd Proof)

We first use an argument similar to the ones given in Baldwin-Shelah [1982]
to show that for any model N9 ^Nis symmetric and thus is an equivalence relation.
For this, we will require a few other concepts. The first is given in

2.6.1 Definition. Let N £ A and p e S(A\ then p is finitely satisfied in N if every
formula in p has a solution in N.
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Using compactness it is easy to see that if A c B c C and p e S(B) is finitely
satisfied in A, then p extends to a p' e S(C) which is also finitely satisfied in A. Next,
we consider

2.6.2 Lemma. IfQn ^ Qφ and R e 3tψ(A), then for any N < (A, R) if neither a nor b
is algebraic in N and t(a, N u b) is algebraic, then t(b, N u a) is also algebraic.

Proof. Suppose not and choose bt for i < ω, which are distinct, with ί(ftf; N u a) =
t(b; N u a). Let c0 = ba and choose cf for i < ω such that t(ct\ C, ) = ί ( c i + 1 ; Q)
and ί(c ι + j N u C ί + J is finitely satisfied in N. Here Cf = iV u {c,-: < ί}. Thus cf

has the form < b u : for; < ω>αt . Clearly at is algebraic in each bu by the same
formula φ. But no α7 is algebraic in N u bik with Ϊ > 7. For, if it were, we could, by
finite satisfiability, find a fc 'eN with at algebraic in JV u b' and hence, in JV, also,
which is impossible. But no at can be algebraic in bjΛ, with j < i since all ax with
/ > i realize the same type as at over JV u bjk. Thus, by adding predicates A and B
to pick out the α's and fr's, we can define an equivalence relation on B with infinitely
many infinite classes by E(x, y) <-• (3z)φ(x, z) A φ(y, z) A A{Z). This contradicts
Lemma 1.3.3 and establishes the lemma. D

We now want to show that if N is chosen appropriately, then ~N actually
determines a strong decomposition of (A, R). To accomplish this, we return to the
original Shelah argument. We will proceed by extending the properties of strongly
minimal sets to finite sequences. We will accordingly arrive at a notion reminiscent
of the weakly minimal formulas that are examined in Shelah [1974a].

2.6.3 Definition. The family F = {f'.i < α} is pseudo-finite, if there is a finite set C
such that for every i, C n fΦ 0.

The formula φ(x, a, R) is pseudo-algebraic in (A, R) if its solution set is pseudo-
finite. The sequence a is pseudo-algebraic over B, if for some formula φ(x) with
parameters from B, \= φ(a) and φ is pseudoalgebraic.

Note that a is not-pseudo-finite over B means that we can find arbitrarily many
disjoint finite sequences which realize t(a; B).

2.6.4 Lemma. IfQu £ Qψ, then for any A and any RG&ψ(A), there is no formula
Φ(x, y> c, R) which defines an equivalence relation with infinitely many non-pseudo-
finite equivalence classes.

Proof If lg(x) = lg( y) = 1, then this assertion is only Lemma 1.3.3. Using
δi.-i ^ Qψ> w e will reduce the case n > 1 to the case n = 1 and thus finish the
argument. By induction choose sequences aitj such that aUj is equivalent to akΛ just
if i = k and such that the au j having distinct indices are pair wise disjoint and all are
disjoint from c. Now, define for each m < n a permutation fm of A which exchanges
the first and mth members of each sequence au j and which fixes all other elements of
A. Let B* consist of the first coordinates of the atj. Now the formula

φ*(x, y, c, R, Λ,..., /„) = 0(/i(x),..., /„(*), /iGO, , fniyX c, R)
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defines on £ * an equivalence relation with infinitely many infinite equivalence
classes. This is, of course, contrary to Lemma 1.3.3 and we are done.

2.6.5 Definition. The formula φ(x, c, R) is φ(x, y, r)-minimal, if φ is not pseudo-
finite but for every d either φ(x) Λ φ(x, d, R) or φ(x) Λ ~Ί φ(5c, 3, R) is pseudo-
finite.

The search for a φ-minimal formula is similar to the search for a strongly
minimal formula in an ω-stable theory. We will show that we cannot build a
complete binary tree of instances of φ and negations of φ such that each path is not
pseudo-finite. The main step for this is

2.6.6 Lemma. IfQu ^ Qφ then there are no A and R e &Φ(A) such that there exist a
φ(x, y, R) and anfor n < ω so that for each n < ω, the formula

θn = Λ <K*> άm, R) Λ -iφ(x, an9 R)

is not pseudo-algebraic.

Proof Assume that the lemma fails. By the compactness theorem, we can assume
that each θn is satisfied by more than 2No disjoint sequences. Let B be the collection
of elements which appear in any of the parameter sequences an. Define two sequences
5, c from A to be e equivalent just if for every a from B φ(b, a, R) <-> φ(c, ά, R). Now,
for each n and m, if n φ m a sequence satisfying θm and a sequence satisfying 0n

are not equivalent so that e has infinitely many classes. But each of these classes is
not pseudo-finite. For, there are more than 2X o disjoint sequences satisfying θn and
at most (since B is countable) 2X o classes of e so that some e-class intersects θn in
uncountably many disjoint sequences and thus that class is not pseudo-finite.
Thus, for each n, we find a distinct class of the definable equivalence relation e which
is not pseudo-finite. By Lemma 2.6.4, Qu < Qφ. D

2.6.7 Lemma. IfQu ^ β^, then for any φ(x, y, r) there is an integer m(φ) and there
are formulas χ^x, z, r) (depending on φ) for i < m(φ\ such that for any A and any
Re$ψ(A), there is a ce A such that the formulas χ^x, c, R) partition A and each
χ(x, c, R) is φ-minimal.

Proof Build a binary tree of instances of φ(x, y, R) and its negation. Either, for
some π, each path of length n defines a (/>-minimal set or, for arbitrary /c, we can find
at for i < k such that taking λt(x, y, R) as φ(x, y, R) or ~i φ(x, y, R) (depending on i)
A {λi(x, ai,R):i < k} is not pseudo-algebraic. If k = 2m + 2, the formula θm from
Lemma 2.6.6 is not pseudo-algebraic and we violate Lemma 2.6.6.

We will need one more nice property of pseudo-algebraic formulas to complete

the proof.

2.6.8 Lemma. If a = < α 0 , . . . , απ> is pseudo-algebraic overB, then some atis algebraic

over B.
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Proof. Let φ(x, b, R) be a pseudo-algebraic formula satisfied by a. Let C be a set
with minimal cardinality n such that if A \= φ(a\ b, R), then a* n C φ 0 . Recall
from Example 2.1.5 that if 0 π (z o , . . . , zπ_ l 5 y, f) is

( x ) φ(x09 ...9xm,ί9y9r)-+ V
|

V ** = yj>
<« J

then {θπ: π < ω} is a malleable family. Now, by applying Lemma 2.1.6, we see that
some component of a satisfies the algebraic formula θ*(x, b, R) and we are done. D

2.6.9 Theorem. IfQn ^ Qψ, then for any A and any R e $ψ(A), there is an elementary
submodel N of (A, R) such that ^N strongly decomposes (A, R) over N.

Proof For each φ(x, y, f\ choose a sequence c and formulas χt as in Lemma 2.6.7
and let N contain all the c. By induction on n we will prove that if a and b with length
n are similar for ~N and for each ai9 bt (see notation in Definition 2.4.1) ί(αf; N) =
t(6i\ N), then t(ά; N) = t(B; N). If n = 1, this assertion is tautogical. Suppose that
we have proved the claim for n. To prove it for n + 1, we consider a formula
φ(x, y, z, f) with lg(j ) = n, and let n be in N. If all elements of a are in the same
~ N equivalence class, then there is nothing to prove. Let ax be a maximal pairwise
equivalent subsequence of a—as is indeed implied by our notation. Then, if we let a!
(respectively b') denote a without aγ (respectively b without δ j , no component of a'
(respectively b') is algebraic in N u ~ax (respectively in N u b^) and thus ar (bf) is
not pseudo-algebraic in N u aγ (in N u bx\ (by Lemma 2.6.8).

We must prove that for any he N, A\= φ(au a\ n, R) <^> φ(bu b\ H, R). By
Lemma 2.6.7 and the choice of N, we can find a d e N and a ^-minimal χ(x, d, R)
such that A \= χ(a\ d, R). By the definition of φ-minimality, one of

χ(x, d, R) A φ(ax, x, c, R) and χ(x, d, R) A ~Λφ{au x, c, R)

is pseudo-algebraic. Without loss of generality, we can take it to be the second one.
By a simple application of compactness, this means that for some m^φ), the
formula is satisfied by no more than m^φ) pairwise disjoint sequences. As a' is not
pseudo-algebraic over au we have A \= φ(aί9 a\ n, R'). By induction, a' and b' have
the same type over N so A h- χ(b\ 3, R). Since ά1 and bγ have the same type over AT,
χ(x, rf, R) A —\φ(lbu x, «, R) is not satisfied by more than πiγiφ) pairwise disjoint
sequences. Since V is not pseudo-algebraic over N u Bί9 we thus have A \=
φ(bl9 b\ n, R) as was required. D

3. Infinitary Monadic Logic and
Generalized Products

Our primary focus so far has been on the classification of theories of equality, Q^.
Now we will consider the following question: What are the possibilities for theories
of the form (7, Qψ), where T is a complete first-order theory and Qψ is one of the
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four second-order quantifiers? The notion of a decomposable model is a key tool
in the proof of Lemma 2.4. We will develop a generalization of this idea and use it,
for example, to compute the Hanf numbers of some logics (see Sections 4.5 and 5.2).
The major device for these computations is a Feferman-Vaught type theorem for
monadic logic. As Gurevich pointed out to me, this is a natural development of the
original Feferman-Vaught theorem which described the first-order properties of a
generalized product of a family {Mf: i e 1} in terms of the first-order theory of the
factors and the monadic theory of the index set (enriched by unary predicates
which pick out the indices whose models have the same theory). The material in this
section is largely taken from Shelah [1975e] and Gurevich [1979a].

In many cases, it is artificial to consider the first-order monadic theory of a class
of structures, because this theory already encodes a certain amount of information
that we would normally think of as "Lωuω" information. For example, we can
monadically define the closure of a subset of a group. Or, consider the class of all
structures containing two infinite classes, P0,Pί9 and a binary extensional relation,
£, between them. (That is to say, one is the set of subsets of the other). Now, if T is
the monadic theory of this class, any model of the monadic sentence

(X) c: P0(3y)ePx(z)eP0(zeX^zey)

has models only of power > ] x This kind of argument shows that the Hanf number
of Lω>ω(<2mon) > the Hanf number of Lωuω; furthermore, it leads us to consider
infinitary monadic logic. We are going to prove a Feferman-Vaught type theorem by
way of a back-and-forth argument. This requires some means of handling variables.
Rather than deal with variables explicitly we will expand the language by adding
additional constant symbols. Since this is monadic logic, we must add not only
names for individuals but for subsets as well. We want to describe a specific sentence
in L^ Λ(βmon) which contains the information we need in order to make our
induction. Individuals are considered to be subsets with only one element. Note
that if (A, R) and (£, R) are equivalent for existential first-order sentences, then R is
a singleton in A iff it is a singleton in B.

This section repeats the discussion in Section 3 of Chapter XIII in a superficially
more general situation. The chief differences here are that Chapter XIII restricts
itself to finitary logic and, for expository purposes, merely works out the preserva-
tion theorem for ordered sums. Here, however, we will give an abstract notion of
product in Section 3.4, a notion which focuses attention on exactly those properties
(for example, of the ordered sum construction) which allow the argument for the
preservation theorem to go through. In Chapter XIII monadic logic is interpreted
into a first-order logic; here, on the other hand, the monadic logic is taken as basic.
The following glossary connects the two chapters.

Chapter XIII Chapter XII
a sequence ξ an ordinal α = lg(ξ)

an /-tuple of elements a A-tuple of elements
ξ-Ύh(M,al9...9aι) ta,λ(M,Q)

ξ - /-Box ίβ f λ(L)
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Observe that the correspondence suggested by the tabular arrangement is not
exact since a ξ — /-Box depends on a (suppressed) theory T.

Xγ,...,Xt < β f : ί e λ > ,
P(ξ, X, t) Qt(I),
P(ξ,X) <&(/): reία,A(L)>.

Another difference in the presentation of results arises from the fact that one
chapter emphasizes decidability results, while the other stresses preservation results.
In Chapter XIII, the bounded theories are viewed as objects in their own right and
the ^-theory of the product is computed from the H(ξ, I) theory of the index set. In
this chapter, however, the bounded theories are viewed as properties of structures
and the theorem has the following form: lithe bounded theories of two index structures
are the same, then so are the theories of the product structures.

3.1 Definition. We define by induction the set of formulas ία,A(M) as follows:

(i) For any L-structure M, let tOtλ(M) = {θ: M N θ}.

Here θ ranges over existential first-order formulas with at most A variables.
Note that tOtλ(M) is the same for all infinite A. We would just say the existential
theory of M, but the decidability results require that if A is finite, then so is t o λ . We
require existential rather than quantifier-free formulas in ί0 A(M) in order that we
may know the cardinality (mod Ko) of every subset of M defined by a boolean
combination of unary predicates.

Now, for any α and A, we define ία A(M) as follows: ία+1 A(M) = {ία A(M, Q):
lg(Q) = λ}

ί ί ι A(M) = (J {ία, λ(Λf): α < δ}9 if δ is a limit ordinal.

(ii) For any α and A, let taλ(L) denote {ία A(M): M is an L-structure}.

Thus, ί α + l ϊ λ ( M ) describes the L^ ϊ A(βm o n)-theory of the expansion of M by λ
unary predicates. Similarly, tatλ(L) denotes the set of all possible L1^ λ(Qmon)-
theories.

Observe here that if α, A, and L are finite, then so is ία A(L). Moreover, for each
L-structure M, rα A(M) is equivalent (that is, it holds of the same structures) to a
sentence in L](α A + )L() A. The following lemma illustrates the expressive power of the
t*, λ(M). And, interestingly enough, it also provides the key technical step for our
Feferman-Vaught like theorem.

3.2 Lemma. Let A, X and K be cardinals with λ + λ <κ. Let J and / be structures
{having, for the sake of simplicity, a finite language) and universes I and J respectively.
Suppose the sets I and J are partitioned by the sequences Qt(I), Qt(J), respectively, for
t G A, and suppose further that

λ}) «/ ρ,(J): reA».
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'. i 6 λ'> is a partition of I refining the partition (Qt(I): t e λ>, then there exists

> ieλfy9a partition of J, such that:

f: ί e A, i e λ'» = rα, κ«/, βf(J), 7,: ί e A, ie λ'». D

3.3 Generalized Products. We begin our treatment of the Feferman-Vaught
theorem by giving a rather "soft" definition of a generalized product. This notion
differs from that in Feferman-Vaught in several respects. Perhaps the most basic is
that it is designed to describe only operations taking a set of L-structures to an
L-structure. Thus, the definition focuses on the relation between the truth of basic
relations in the language L (as opposed to arbitrary definable relations) in the
factor structure and the product structure. The intent of this definition is to
emphasize those properties of the definition of the basic relations in the product
structure which allow the assertion, "truth of basic relations depends on truth in the
factors" to propagate to, "truth of all sentences in first-order logic (in infinitary
monadic logic) depends on their truth in the factors". This definition is abstracted
from the accounts of the monadic preservation theorem in Shelah [1975e] and
Gurevich [1979b]. The emphasis here differs from that in Feferman [1972] where
the role of functors from one similarity type to another is of central importance.

Examples of the notion of generalized product defined here—not of minor
modifications of it—include direct product, disjoint union, ordinal sum of linear
orderings, ultraproduct, and reduced product. Observe that in the last two, the
language for the index set contains symbols binding subsets. Note also that the
notion we are here examining does not include the concept of a sheaf over a
boolean space.

Following is the key idea of the definition. Since we are going to give a proof by
induction on quantifiers, we must describe how the product operation behaves with
respect to structures obtained by naming elements and—since we will work in
monadic logic—subsets. In fact, the notion of projection which we formulate below
would be harder to explicate if we were to deal with elements rather than with sets
since (for example, in disjoint unions) we frequently want to project to the empty set.

3.4 Definition. A generalized product is a function (or a family of functions) which,
to each language L and each sequence (At: ie /> of L-structures, assigns an
L-structure F«v4f: i e /» = A* satisfying the following conditions:

(i) For each i there exists a function p f: 0>(A*) -* ^(At) such that if P is a
sequence of subsets of A*9 then

F«(Ah Pί(P)}: ί e /» = (F(At: ί e /), P>.

(ii) For any sequence a (of arbitrary length < \A*\) and for each L-symbol
R, letting KR(a) = {i: Ax \= ̂ (^(α))} and analogously in £*, if
ίo.A«/, KR(a)» = to,λ«f,KR(b)}\ then A* \= R(a) if and only if
B* 1= R(b).
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Here and below, when a is a sequence of individuals, we will simply write
pι(a) for <Pi({α0}),..., p i({αk-1})>. Each p({αj) has cardinality at most 1. Now
we can state our version of the Feferman-Vaught theorem. The proof is similar
to that of Theorem 2 of Chapter XIII.

3.5 Theorem (Preservation Theorem). Suppose F is a generalized product operation
and suppose also that (At: i e /) and (Bj'.jejy are families of L structures.
For ίeί α , Λ (L), let Qt(I) = {/: ία>Λ(Λ;) = t] and let Q,(J) = {j t«,x(Bj) = ί}.
Moreover, let W = {ίβiA(/4, ): iel} u {txλ(Bj):jeJ}. There exists a K = κ(α, \W\)
such that if

, Q,(I):teW)) = t.

then

ta,x(A*) = t^x(B*). D

As a corollary, we get a result mentioned in Chapter IX.

3.6 Corollary. If K is strongly inaccessible, then Lκ λ-equίvalence is preserved by
generalized product.

Proof If φeLKtλ(Qmon) then for some μ<κ,φεLμ. But then φ e L«, λ(Qmon)
where α < μ+ (this is a straightforward computation). Thus, the truth of φ in M
is determined by tΛf λ(M) which is equivalent to a formula in Lκ λ since K is strongly
inaccessible. D

This argument also yields the results in 3.3.4, Corollary 2.3.5, and 3.3.6 of
Chapter IX.

We will now describe a generalization of disjoint union which is the example of
generalized product that is of most use in the study of second-order quantifiers.
This is a generalization of the notion of decomposition that was employed in
Lemma 2.4. If we form a disjoint union, no relation holds between sequences ά, b
from different constituents of the union. We want to allow such relations to hold
but we also want to require that whether R(a, b) holds shall depend only the separate
properties of a and b. To make this notion precise, we require several preliminary
definitions.

3.7 Definition. (1) If <M£: i e /> is a sequence of L-structures with Mt n Mj - N,
we call the M t a sequence with heart N.

(2) Let ( M f : i e /> be a sequence with heart N. To define the free union (with
respect to σ) over N of the Mt, we first need the following auxilliary notions:

(i) An ^-condition τ is a pair <P, (φ0,..., </>fc_i>> consisting of a partition,
P, of n into sets Po,..., Pk_ x and a fc-tuple of first order formulas such
that φι has | P f | free variables.

(ii) σ is a map which assigns to each m-ary relation symbol R of L a finite
set of m-conditions.
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(iii) Let M be (J{M;:ie/}. If αeM, then a satisfies the n-condition
<P, <0o,...,0 fc_i>> if for some Mio,..., Mik_ί9 we have Pj =
{m: ame M^} and, letting a} = {am: m e Pj}, taken in increasing order
of subscript, Mtj \= φ/aj).

Now the free union of the Mt over N is the structure whose universe is
u {Mj : iel}, where RM = {a: a satisfies an m-condition inσ(R)}.

It is easy to see that such a free union satisfies the definition of generalized
product. Technically, we note that one must make allowance for the amalgamation,
but this is straightforward. The details of Theorem 3.3.5 are, in this special case,
carried out in IΠ.1.13 in Baldwin-Shelah [1982]. In that paper, the free union is
defined in terms of t(a; N). An easy application of compactness shows that when
every model of T containing N can be decomposed in the sense of Definition 2.4.1,
then each such model can, in fact, be written as free union over N in the sense of
3.7.3.

4. The Comparison of Theories

This section discusses a nuance in Shelah's argument, reported in Theorem 1.2.5,
that Qn £ βi _ i Namely, we consider the exact role of the assertion that interpreta-
tions preserve Hanf number. We show that a similar in form but technically easier
argument shows Qu ^ (Th( <, βmon), the monadic theory of order. This last
remark is apparently paradoxical in the light of the proof (Gurevich-Shelah
[1982]) that it is consistent to interpret Qn into (Th(<), βmon). To resolve this
paradox we must distinguish the usual notion of interpretation from the stronger
notions used in this paper.

4.1 Definition. The theory Tγ is syntactίcally-ίnterpretable in the logic T2 if there is a
map* assigning to each Tj-sentence φ a T2-sentence φ* such that Tx \- φ iff
T2 h- 0*.

Clearly, if* is recursive the Turing degree of 7\ is less than or equal to the Turing
degree of T2. However, this map need not preserve model-theoretic properties.
Thus, using the Feferman-Vaught theorem for monadic logic, we will show that
the Hanf number for monadic sentences on linearly ordered models (the Hanf
number of the monadic theory of order) is strictly less than the Hanf number of
second-order logic. It is easily seen that this implies that there can be no strong
interpretation (in the sense of Definition 3.2) of Qn into Th(<), Qmon, (see
Baldwin-Shelah [1982, VIΠ.2.12]). Nevertheless, Gurevich-Shelah [1982] have
shown that it is consistent—indeed, it follows from the GCH—that there be a
syntactic interpretation of Qu into the monadic theory of order. The reader should
consult Chapter XIII for more details on the monadic theory of order.

Several variants on the notion of interpretation and their roles are discussed in
Baldwin-Shelah [1982]. We will use here only interpretations which satisfy the
following condition.
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4.2 Definition. The logic Γx is semantically interpretable in the logic T2 if there exist
a pair of maps (both denoted by *) taking Tγ-sentences to T2-sentences and the
models of T2 onto the models of T2 such that:

(i) M c M*;
(ii) M μ

If, in addition, we have

(iii) IM* I can be computed from | M |,

then we say 7"i is strongly semantically interpretable into T2.

We will now show how bounds on the Hanf number of a theory can be used to
show that there is no strong semantic interpretation of one theory into another.
This, however, requires the technical notion given in

4.3 Definition. We say that the Hanf number of 7\ is bounded in terms of the Hanf
number of T2 and write B(TU T2) if there is a second-order definable function f(x)
such that H(TX) < f(H(T2)).

Observe that this relation is obviously transitive. Now, if B(Qlh T), it is fairly
easy to see that there can be no strong semantic interpretation of Qn into T. Since
our notion of < is a strong semantic interpretation, this gives a more general
explanation for Theorem 1.2.5. We will now show that that theorem can be extended
to the monadic theory of order.

In some respects, Silver [1971] begins this program with his explicit computa-
tion of an upper bound for the Hanf number for logic with the well-ordering
quantifier (Chapter XVII). This shows that fewer classes of cardinals are charac-
terized as cardinals (that is, as, well-ordered sets) in the monadic theory of order
than in second-order logic. This leaves open the possibility that we might be able to
characterize the missing classes as sets of cardinals in which a sentence in the
monadic theory of order has a model (although not necessarily a well-ordered
one).

We use the following notation.

4.4 Notation. We denote the Hanf number of (Th( <), Qmon), the monadic theory of
well-orderings, and Qu respectively by HL, HW, and Hu.

We write H{T) for the Hanf number of theory T. If H(T) can be bounded by a
cardinal definable in second-order logic (for example, HW\ then Hu cannot be
bounded in terms of H(T). As, we would then have a second-order definable
bound on Hll9 which is clearly impossible. Thus, the assertion HL < Hn follows
immediately from the next lemma.

4.5 Lemma. HL is bounded in terms ofHW.

Proof. Specifically, we will show that HL < Σ {2λ: λ < HW}. Let (M, < ) be a
linear order and suppose that λ can be embedded in M as (at\ i < λ). Now, M is a
free union (in the sense of Theorem 2.6) of the intervals determined by the at. For
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any fixed monadic sentence φ, say with quantifier depth m, we can find a k such that
h.kih Qt(λ)\ where t ranges over the finitely many monadic theories of quantifier
depth n, determines whether M satisfies φ. Since λ > HW, we can replace λ with an
arbitrarily large λ with t2Λ(λ, Qt{λ)) = t2tk(λ9 At) for appropriate subsets At oϊλ.
But it is an easy matter to find an M' such that M' is a free union of intervals indexed
by X and so that Qt(λf) = At. But then M' |= φ.

Since, for any linear order M, if | M | > 2λ, there is an order embedding of either
λ or λ* into M—and since the preceding argument works equally well for Λ,*—we
see/fL < A

Clearly, if Qu could be strongly interpreted in (Th( <), g m o n ), then Hn would be
bounded in terms of HL. Thus, we have

4.6 Theorem. There is no strong semantic interpretation ofQn into (Th( <), β m o n ). D

5. The Classification of Theories by
Interpretation of Second-Order
Quantifiers

We will not investigate the partial order of interpretability among theories (T, Qφ).
That order refines the interpretability order of among first-order theories and so
defies model-theoretic analysis. Rather, we will discuss the following question for a
given first-order theory T: Do the four second-order quantifiers coalesce when
restricted to models of Γ? The answer to this question can be viewed either as a
comment on the quantifiers or as a comment on the theory T. We will adopt the
latter viewpoint here. The non-interpretability of second-order logic imposes an
extremely strong structure theory on the models of T. This structure theory and
some of its consequences are outlined below. In particular, we measure the com-
plexity of (T, Qφ) by computing Hanf and Lδwenheim numbers.

5.7. Outline of the Classification

In making such a classification, we consider those theories for which (T, Qmon)
interprets Qu as being beyond analysis. The remainder can then be divided into
four classes as follows. Assume Qu ^ (T, β m o n ).

Th( <, ρ m o n ) < (Γ, β m o n ) prototype impossible
(unstable) (Th(<,Q m o n )

Th( <, β m o n ) ^ (T, ρ m o n ) tree decomposable strongly
(stable) prototypes decomposable
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We could discuss the desirable properties of a particular entry of this table in
two ways. We could prove a specific theorem (for example, that: the Lόwenheim
number of a countable theory such that Qu ^ (T, 1 -1) is No) Even when such precise
information cannot be obtained, we may be able to reduce such questions to the
computation of, for instance, Lόwenheim numbers for a specific theory To by
showing, for example, that if β π ^ (T, Qmon), then (T, Qmon) is bi-interpretable with
the models of To. In some cases, we will prove a slightly weaker reduction than the
second alternative: We will replace the theory To by a class of structures which is
not first-order definable. In some respects, of course, such a reduction is actually
stronger than proving a particular theorem since it provides a "normal form" for
models of T; the strength of the reduction depends on how well we are able to
analyze the class to which we reduce.

The first line of the table distills an argument for the importance of studying the
monadic theory of order. First, interpretability of the monadic theory of order is
related to the important distinction between stable and unstable first-order theories.

5.1.1 Lemma. If the complete first-order theory T is unstable, then (Th( <), Qmon) <

(T, βm o n).

This result is proven in detail in Baldwin-Shelah [1982]. In outline, the proof
proceeds by noticing (see Shelah [1978a]) that T is unstable iff T admits a definable
linear ordering of an infinite set of ^-tuples. A fairly complicated analysis of order
indiscernibles (see Baldwin-Shelah [1982, VIII.1.3] shows that with additional
unary predicates a linear ordering of a definable subset can be specified.

A second reason for the intensive study of the monadic theory of order as
opposed to (Th(<), Qψ), for some other ψ, is that no other φ is really possible. We
have already shown in Section 2 that the only possibility for Qψ is Qί-1. The
next theorem rules out even that. It is fairly easy to deduce from Lemma 1.2.9
that Qn < (Th(<), 1-1). Combining this result with Section 5.1, we obtain

5.1.2 Theorem. IfTίs unstable, then Qu < (T, βi-i)

Further expansion of the argument that Th(<, Qmon) is the prototype for those
monadic unstable theories which can be analyzed occurs in Shelah [198 ?b, 198 ?d].

We will now discuss the situation characterized by bottom line of this table:
The situation in which T is stable. In Section 2.5, we outlined the argument that if
δπ £ (T, (?!_!) and Tis stable, then Γis strongly decomposable. If Qn < (T, Q ^ ) ,
the argument that the fundamental equivalence relation is the same as algebraic
closure and thus that each class is small (see Lemma 2.5.6) does not apply so that the
classes may indeed be large. In this case, we iterate the procedure by choosing
submodels inside each equivalence class and decomposing the class over this model.
Since T is stable, this process cannot be iterated more than | T | times (see Baldwin-
Shelah [1982, IV.2.1]). This decomposes each model by a tree of height < | T | in the
sense of the following definition.

Before we examine the definition in detail, observe that the notation τ " denotes
the result of deleting the last symbol from a sequence.
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5.1.3 Definition. The model M is tree-decomposed by the tree / of sequences of
length at most K if there exist models {(Mη, Nη}\ η e /} such that:

(i) liVJ = I T | for every 17.
(ii) lfη^p then ΛΓ, <Ξ Np <= Mp c Mη.

(iii) For each τeI there are index sets J and functions σ such that:
(a) Mτ is the free union of the {Mτ-j\jeJ} amalgamated over Nτ and

taken with respect to σ.
(b) M is the free union over Nτ (with respect to σ) of {Mτ-j .jeJ} u

{Mp u iVτ: p Φ τbut p~~ = τ~};
(iv) M<> = M; if Ig(^) is a limit ordinal then Nη = (J {Nτ: τ c 77}, M , =

ΠίAίτ τSi j } ;
(v) M = U { N t : τ G / } .

If a theory is K tree-decomposable (that is, every model of T is tree-decomposed
by a tree of height κ\ then the models of T are short in the sense that no matter
how large a model is, complete information about a finite sequence of elements
from the model depends only on the less than K elements which precede it in the
tree.

5.1.4 Definition. The theory T is shallow if every model of T can be tree-decom-
posed by a well-founded tree. Otherwise T is deep.

If T is shallow, then we assign a rank to models of T, namely, the ordinal rank
of the tree.

Now we can describe our prototypes.

5.1.5 Notation. Let Ko be the class of all trees {λ<ω: λ e Ord} and Kx the class of
all trees {λ~ω: λ e Ord}. If Qu < (T, Qmon), then the models of T are very closely
tied to the trees which arise as skeletons when the models are tree-decomposed.
Specifically, we have

5.1.6 Theorem, (i) // T is a countable superstable deep theory and Qu < (T, Qmon\
then (T, Lωi>ω(Qmon) and (Ko, Lωuω) are bi-ίnterpretable.

(ii) // T is a countable stable but not superstable theory and Qu ^ (T, βmon),
then (T, Lω>ω(βmon) and (Kί9 Lω,ω) are bi-interpretable.

This is Theorem VII.2.1 of Baldwin-Shelah [1982].

5.2. Computations of Hanf and Lδwenheim Numbers

In this section we will briefly discuss the results on Hanf and Lόwenheim numbers
which can be derived from the preceding classification. We will then indicate how
such computations are made. For the sake of simplicity, we will discuss only the
case of countable languages here. The results extend to uncountable languages and
such extensions are considered in Baldwin-Shelah [1982].
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5.2.1. Finitary Monadic Logic

Lόwenheim Number Hanf Number

λ<ω shallow
d e p t h = β mmQβ, ]ω) minQ,, ] J

strongly decomposable ], ]j

* Shelah [1983b] has shown that there are superstable deep theories such that the Lόwenheim number

of (Γ, Qmon) is (assuming V = L) the same as that of second-order logic.

This table and the one in 5.2.3 reports the Hanf number for sets of sentences.
For a single sentence the < + ' can be dropped in some cases. See III.2 of Baldwin-
Shelah [1982].

In order to completely determine the Lowenheim number, we must consider
one further property. This we do in

5.2.2 Definition. The free union of <M,: i e /> over N is nice if for each / there exist
finite subsets Ht of N and t/f of Mi such that for any meM, t(m; Ht u C7f) h-
t(m;N).

If the decomposition is nice, then the Lόwenheim number of a shallow theory
is Ko otherwise, it is 2No. Details on this nicety are given in VI.2 of Baldwin-Shelah
[1982].

5.2.3 Infinitary Monadic Logic (L^ ω). For the sake of simplicity, assume that
α > ω l 5 then the following arrangement is possible.

Lowenheim Number Hanf Number

rωdeep * {{+\
λ<ω shallow Q y Qy

shallow: depth = β β β

strongly decomposable G1)+ G1)+

* Shelah [198?b] has shown that for every superstable deep theory such that the Lόwenheim number in

infinitary logic of (T, Qmon) is, assuming that V = L, the same as that of second-order logic.

5.2.4 Outline of the Argument. These computations depend on (i) the decomposi-
tion of the models; (ii) the generalized Feferman-Vaught theorems; and (iii) the
computation of the cardinality of tatλ(L). The general program is simply this: to
decompose a model as free union of structures Nt for i e /. Suppose we are trying to
extend (Hanf number) or restrict (Lowenheim number) M for a sentence with λ
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quantifiers (either individual or monadic) and α alternations. Let W = \JieI ία>Λ(ΛΓf).
Then, by Theorem 2.5, we can find a K such that taλ(M) is determined by
ta,κ(i^^ Qt(I)> te W)). Thus, if we can guarantee the cardinality of/ to be sufficiently
greater than \W\, there will be a large number of indices with the "same theory".
We can then expand or contract this set at will. The full details are given in Chapters
III, VI, and VII of Baldwin-Shelah [1982]. One sample is perhaps instructive. If T
is strongly decomposable, then each model is a free union of countable structures.
Since there are only ] x possible Lωω(Qmon) theories of a countable structure, this
reduces both the Hanf and Lowenheim numbers of (T, β m o n ) to ] j precisely. In
fact, for theories with a nice decomposition these numbers can be reduced to Ko.

The situation when T is only tree-decomposable is somewhat more subtle. We
can compute the Hanf number for L^ λ by noting that if \M\ > ] α + x somewhere
in the tree, we have a free union with more that | ία> λ(L) | factors and then extend M.
But this argument yields no information on the Lowenheim number. If T is shallow
and β is the sup of the ranks of models of T, then we obtain the bound min(]^, ]ω)
for both the Hanf and Lowenheim numbers by induction on this rank.

6. Generalizations

This work can be extended in several directions. In particular, the results in
Section 5 can be sharpened, and the notion of quantifier can be extended. With
respect to the first direction, Shelah [198 ?d] confirms the close connection between
Hanf number and interpretability by showing

6.1 Theorem. For any first-order theory T the Hanf number o/(T, β m o n ) is at most

ffπ iffQu £ (Γ, QmOn). •

In the other direction, we again return to the definition of a second-order
quantifier.

1.2.2 Definition. If φ(r) is a formula of pure identity theory, then Qψ(r) is the second-
order quantifier whose semantics are given by:

M |= Qφ(f)φ(r) iff for some sequence R e 3#Ψ(M), M \= φ(R).

There are several ways to extend this definition. Perhaps the most obvious one is
to replace the requirement that φ be a first-order formula by introducing a param-
eter for the language. Thus, we have been discussing first-order definable second-
order quantifiers. One could discuss infinitarily definable second-order quantifiers,
or second-order quantifiers defined in stationary logic, or second-order definable
second-order quantifiers etc. ad nauseum. A second possibility is to partition the
variables r into a sequence si. Then, by freezing the s, we move out of pure logic and
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are thus able to discuss automorphisms, congruences and other algebraic concepts.
Finally, we could remove the restriction that the relations r be subsets of An, for
some n, and allow them, for example, to be families of subsets. Thus, we would
obtain definable third-order quantifiers. At this level, we spread our net to include
L(aa). Another approach is to relax the definability requirement and allow the
class of subsets defining a quantifier to be any class that is closed under isomor-
phism. This is the line adopted by Shelah [1983a]. Thus, we identify a quantifier
with a class K of subsets of (J An. Naturally, we may also deal with a finite sequence
of quantifiers (classes) K = (Ko,..., Kn}.

In discussing this widened class of quantifiers, Shelah weakens the notion of
interpretability somewhat.

6.2 Definition. We say K is expressible in K if for each Re K there is a formula
φ(x, r) (with quantifiers over the Kt) such that for some R0,...,Rn each in one of
the Kh R(x) <-+φ(x, R) The problem—already hinted at in Shelah [1973c]—was
finally addressed in Shelah [1983a], and it asks the following: Is every quantifier
(that is, class K) bi-interpretable with a finite sequence K, where each K( is an
equivalence relation? The main result on this is given in

6.3 Theorem (Expressibility with Equivalence Relations), (i) If V = L, then every
K is bi-expressible with an equivalence relation (see Shelah [1983c] p. 53).

(ii) It is consistent that there is a K which is not biexpressible with an equi-
valence relation. (Shelah [1983c]; pp. 48-57).

There is still another way these methods might be used. In many of the technical
successes of stability theory over the last few years—for example, Vaught's con-
jecture for ω-stable T (Harrington-Makkai-Shelah [1983]) and the solution by
Shelah [1982f, 198 ?c] of Morley's conjecture that (with the obvious exception) the
spectrum function is increasing—the part of the proof showing there are many
models can be viewed as an interpretation of Qn into the L ω i f ω ( β m o n ) theory of T.






