
Chapter IX

Larger Infinitary Languages

by M. A. DICKMANN

1. The Infinitary Languages J£κλ and ̂ £^λ

The motivations underlying the study of infinitary languages which are given in
the introduction to Chapter VIII will also serve well here, thereby relieving us of
the need to make further comments.

Recall that for infinite cardinals K, λ, with K > λ, the language Jέfκλ is con-
structed by prescribing a stock of individual variables of cardinality K and a list
τ of finitary non-logical symbols called the vocabulary. Furthermore, £?κλ contains
connectives and quantifiers permitting the formation of:

(i) the negation of any expression
(ii) conjunctions and disjunctions of any number (strictly) fewer than K

expressions;
(iii) existential and universal quantifications over any set of fewer than λ

variables.

The formal definition of the set of expressions of Jέf κλ is left as an exercise.
Formulas will be expressions containing less than λ free variables. This restriction
is made in order to provide the means for "quantifying out" all free variables in
a formula.

The class-language if ooA will have as its formulas those formulas of all the
languages <£fκλ, for K > λ (with the same vocabulary); that is, 5£^ooA allows con-
junctions and disjunctions of any set of its formulas but permits quantifications
only over fewer than λ variables. The language $£ ̂  contains as formulas those
formulas of the languages if ^λ for all infinite cardinals λ.

The semantics of J?κλ, ^^x a n d ôooo a r e defined by straightforward extra-
polation of the first-order definition of satisfaction, for instance, by declaring
that /\ieI φ{ is true iff each φt is true, etc..

In the remainder of this section, we will present a number of examples illus-
trating the use and the expressive power of the languages we have just introduced.
They were chosen so as to provide a foretaste of what general results we may
or may not expect from the model theory of these larger infinitary languages.
Indeed, some of the model-theoretic results in Section 3 are elaborations on some
of the examples which follow.
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LI The Notion of Cardinality

It is well known that in the first-order language for τ = 0 a fixed finite cardinal
can be characterized by a single sentence while, by compactness, no characteriza-
tion of the notion of finiteness is possible by any set of sentences.

In ££κ+κ(0) we can express the notion of cardinality less than K by the sentence:

σκ: V (3* Γ A)Γ Λ (Py Φ vδ) A Vy V (3> = vyj
λeCN γ,δ<λ γ<λ
λ<κ L y*δ

λ 6 CN means that λ is a cardinal, and i; f λ = <ι;y|y < λ> denotes a block of /I
variables. This sentence is in £fκ+κ, because the number of cardinals < K is at
most K. Whenever this number is strictly smaller than K, for instance, when κ = ωί

or K = ωω, σκ is in JS?KIC.
This example shows that an infinitary formula may not have a prenex normal

form. Indeed, if K is a limit cardinal, then σκ is not even equivalent to a conjunction
of prenex formulas of i f o o κ. This follows from the following simple fact.

1.1.1 Fact. A pure equality sentence of$£'^χ either holds in all structures of power
> A, or it holds in none. D

For the proof of this statement, see Dickmann [1975, p. 139]. The reader
should also see Theorem 4.3.1.

Assume now that {φ^i e 1} is a set of prenex =^ooK(0) formulas, say:

Φi' iQA \λ\)...(Qniυni [λ^φi,

where each Q is V or 3, and ψi is quantifier-free. Let λf be the largest of λ[,..., λj,..
Since K is a limit cardinal, then λ* < K. By its very definition, σκ has a model of
power λ* hence, if N σκ <-> /\ieIφi9 so does each φ f . By Fact 1.1.1, φ f is true in all
structures of power > λf. Hence, σκ has a model of power > K, which, of course,
is absurd. D

This example leaves undecided the question of the validity of a prenex normal
form theorem for JSfKIC, when K is a successor cardinal, for example, for J£?ω i ω i.
But this is false too, as has been proven by M. Jones. Roughly speaking. Jones'
argument runs as follows: He gives a coding of JSfωiωi-formulas on one binary
relation symbol e by hereditarily countable sets; and, using this, he then defines,
for each n e ω, a formula Tn(z, y) which expresses the notion

"z is (the code of) a prenex J5fωiωi(e)-formula with n alternations of
quantifiers satisfied by y in R(ω2)".

A standard diagonal argument then shows that the formula \Jneω Tn(z, y) cannot
have a prenex form. For details, see Dickmann [1975, Appendix B].
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7.2. Well-orderings

(1) We leave as an exercise for the reader to construct an JS?ωiωi( < )-sentence axio-
matizing the class of non-empty well-orderings. We will, however, observe that
the description of well-orderings needed here uses the axiom of choice.

(2) What of well-orderings in ££K(OΊ Consider the following formulas φa(v\
(α < κ\ which contain only the symbol < and are defined by transfinite induction:

Φo(v): ~i3w(w < v) A σ,

φa(v): Vw(w < v <-> \J φξ(w)) Λ σ for α > 0,

where σ stands for the (first-order) axioms for linear order. The reader can easily
verify that for a e A:

<X, <> f= φa[a] iff < is a total order on A and {x e A\x < a} is
of type α.

Let

1.2.1 Exercise. If A is of power < K, then (A, <> is a model of the Jέfκω-theory
{θa\oί < K} iff it is well-ordered. D

In particular, the proper class {θa | α e ON} of sentences does characterize

well-orderings. On the other hand, {0α|α < K} has non-well-ordered models in

every cardinal > K (Exercise).
As a matter of fact, Lόpez-Escobar showed (Theorem 3.2.20 below) that

there is no set of sentences in any language S^κω—that is to say, no single sentence
°f^ooω—which characterize well-orderings. This remains true if by characterizing
is meant not simply being an elementary class in J ^ κ ω ( < ) but also the much more
comprehensive notion of being a relativized projective class in J5fκ ω(<); s e e

Chapter II, Definition 3.1.1 for more on this notion.
(3) We want to have at hand the notion of ηλ-set (or set of type ηλ) for later use.

These are totally ordered sets (A, <> with the following property: Whenever X,
Y are subsets of A of cardinality < λ such that each member of X is smaller than
every member of 7, X < 7, there is an a e A such that X < a < Y. Observe that
here X or Y may be empty. If λ = Kα, sets of type ηλ are frequently called ηaSQts.

1.2.2 Exercise. Show that the notion of ^-set is axiomatizable by an &λλ(<)-
sentence if λ < Kλ, and by an i f A + Λ(<)-sentence otherwise. D
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1.3. Some Infinitary Theories of Trees

(1) The notion of a (well-ordered) tree is axiomatizable in «SfωiC0l by the sentence:

Vx Vi; Γ ω\ /\ (vn < x) -• V (vn < vn+t) Λ " < is a partial order".
\_n e ω neω J

Various special notions of tree of mathematical interest admit natural infinitary
axiomatizations; following are some examples:

(2) κ-Souslin trees, that is, trees of power K in which every chain and every
antichain is of power < K, can be characterized in &κ+κ +:

(3v r ιc)Γ Λ (vΛ Φ υβ) ΛVy\/(y = O~l,
α, βeK ιχeκ

LoiΦβ J

(Vϋ r κ)\ Λ (va < vβ v υβ < vj -. v («
α,)8eκ α,/Jeκ

L zΦβ

(Vi; p K ) I /\ (va£vp Λ vβ£ υΛ).
a,βeκ

OLΦβ

Based on these examples, the reader might try to find appropriate axioms for the
kinds of trees given in

1.3.1 Exercise, (a) Trees in which all branches have power < K, and each element
has < K immediate successors (in J?κ + K+).

(b) κ>Aronszajn trees, that is trees of height K in which every level and every
branch have power < K (in <5?κ+κ+).

(c) Trees with only one root, finite branching, and all branches of length < ω,
in the language having an individual constant 0 for the root, and the function P(x)
giving the node preceding x (in «Sfωiω). This example was proposed by Lόpez-
Escobar. D

1.4. Examples From Set Theory

Certain set-theoretical notions can be formulated in the infinitary languages we
are dealing with.

(1) Transitive sets (or, rather, structures isomorphic to them), coincide with
the models of an i f ω i ω i(£)-sentence expressing extensionality and well-founded-
ness; this follows from the Shepherdson-Mostowski collapsing theorem (see
Dickmann [1975, Appendix A]). We leave as an exercise for the reader to write
out this sentence.
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(2) The class of sets hereditarily of power < K can be characterized in ifκ+κ +

by the sentence of (1) in conjunction with:

(Vv ΐ κ)3yVz(z E y~ \ί (z = vξ)\
\ ξ<κ I

\/(z = υξ)\\.(3v [ K) Vzlz Ey~

(3) Certain substructures of <#(α), e { #(α)>, α e ON, can be axiomatized in
JS?κω, where K is the first cardinal larger than α. [Recall that R(0) = 0 and R(μ) =
Uξ<a P(R(ξ)\ for α > 0.] Indeed, if we set

K(x):Vy(yEx^\/Vξ(y)

and

σα: \txy\yz{z E x~z E y) - x = y] ΛVX V W >
β<oc

then any model of σα can be isomorphically embedded in R(oί) [Exercise: Use the
Shepherdson-Mostowski collapsing theorem]. In particular, any such model
has cardinality < 2a ( = the cardinality of #(α), for α infinite).

This example is interesting, since it sets some limits on the possibility of
extending the upward Lόwenheim-Skolem theorem to the languages J5fκω.
Recall that a set of first-order ( = «S?ωω) sentences which has an infinite model or
models of arbitrarily large finite cardinality, also has models of arbitrarily large
cardinalities. Naively, we may try to generalize this to S£κω by replacing "infinite"
for "power > TC"; the preceding example shows that one ought to go as high as
1K. We will see later (Section 3.2) that, in general, we ought to go considerably
beyond this cardinal, although, in the important case in which K = ωl9 we need
not do so.

Incidentally, questions of this type and many other model-theoretic problems
concerning the languages Jδf κ ω are of interest only when K is a regular cardinal.
For, if K is singular and λ < K, then the languages <£κλ and J5fκ + λ have the same
power of expression: Every ifκ+λ-formula can be converted into an j^fκA-formula
with the same meaning by transforming, for example, a conjunction of K formulas,
say /\ieIφi, into an iterated conjunction of < K formulas, /\a<c{{K) /\ieiuΦi,
where </α j α < cf(κ)> is a decomposition of / in cf(/c)-many sets, each of power
< K. For more details on this, see Dickmann [1975, p. 85J.
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7.5. Examples From Algebra

We will only mention here that many widely used algebraic structures and notions
can be axiomatized or treated in various other ways in the infinitary logics J5?κλ

and J^aoi although they cannot be treated in the same way in first-order logic.
Some outstanding examples of this are shown in Chapter XI.

For instance, common algebraic structures such as torsion groups, simple
groups, characteristically simple groups, finitely generated algebras, archimedean
fields, etc., can be axiomatized in JS?ωiω. For more on this, see Dickmann [1975,
pp. 74, 78-82].

The most important application to date of infinitary model theory to algebra
is a far-reaching extension of Ulm's theorem on the classification of abelian
/^-groups, due to Barwise-Eklof [1970]. Due attention is given to this application
in Chapter XI, Section 4. The technique employed—the so-called back-and-forth
method—is treated in detail in Section 4 of the present chapter, where other
relevant algebraic examples (for instance, real closed fields) and the infinitary
behaviour of some algebraic constructions are also discussed.

1.6. Examples From Topology

There are several possible ways of formalizing the notion of a topological space
in a language. Here we shall regard them as structures of the form <X u T, X,
T, £>, each of which is isomorphic to a structure < Y u ^ Y, SΓ, e>, where F is
a topology on the set Y and e is the standard membership relation. The correspond-
ing vocabulary, v, will have unary predicates Pt (for "point"), Op (for "open"),
and a binary predicate E.

The following topological notions, among others, can be expressed in this
formalism:

The class of spaces with a countable base (= separable) is axiomatized by the
conjunction of the following sentences of JS?ωiωi(v):

E y -> Pt(x) Λ

Vyz 3w[Op(y) Λ Op(z) -• Op(vv) Λ VW[W Ew+^uEy Λ U E Z ] ] ,

(3I; Γ ω)| Λ Opfa) Λ VyΓθp(j ) ~ Vx(x E y -> V (* E vi
\_ίeω |_ \ ieω

A VM(M E vt -• u E y))

together with the (first-order) extensionality axiom for the relation E. Indeed, by
extensionality, a model i = ( I u Γ , I , T, £> is isomorphic to {X u 2Γ, X,
&] e>, where ZΓ = {Oy\y e T} and Oy = {x e X\3C N x E y}, and the first three
axioms guarantee that &~ is a topology on the set X.



1. The Infinitary Languages <£κλ and ^£^λ 323

Further topological notions axiomatizable in this formalism are given in

1.6.1 Exercise, (a) Write down an axiom for compact, separable spaces in the
vocabulary v (but not necessarily in JS?ωiωi).

(b) Show that the complete, separable metric ( = Polish) spaces form a PC-
class in the vocabulary v, for an appropriate <£KX. [Hint: For each positive rational
number, q, use a new binary predicate Rq with the meaning:

Rq(x,y)"d(x,y)<q.]

1.7. Counterexamples From Topology

In all the preceding examples, a second-order quantifier which only needs to
range over sets of some bounded cardinality has been axiomatized in an infinitary
language. A priori, there is no reason for this to be true of other topological notions
which have an unbounded second-order definition, such as those of topological
space, compact space or, say Hausdorffor regular space. In Section 3.1, we shall
apply the infinitary downward Lδwenheim-Skolem theorem to show that these
and many other classes of topological spaces are not characterizable by infinitary
sentences. Indeed, they are not even RPC in J?κλ(v\ for any K, λ; and, therefore,
they are not RPC in J^^OO either. Among such classes we have the following:

Topological spaces.
Compact spaces.
Discrete spaces.
Ti spaces (f = 0,..., 5).
Regular, completely regular, normal, completely normal spaces.
Compact and any of the preceding separation axioms.
Metrizable spaces.
Stone spaces, extremally disconnected spaces.
Complete uniform spaces.

Similar non-axiomatizability results hold for certain algebraic-topological
notions such as topological groups, rings, modules, etc.

1.8. Further Counterexamples

(1) Variants of the general method used to prove the preceding results can be
used to prove that the following second-order notions are not RPC in any in-
finitary language <£κλ:

Complete partial and linear orderings.
Complete lattices and complete distributive lattices.
Complete boolean algebras and complete atomic boolean algebras.
Completely distributive boolean algebras.
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The general method used to prove these results as well as those of Section 1.7, is
due to Cole-Dickmann [1972].

(2) Let us briefly reconsider the last example. Saying that a boolean algebra

B is completely distributive involves, a priori, two different second-order assertions:

(a) (completeness): For every subset X c= β, the supremum \f X exists;
(b) (complete distributivity): For every family {Xt\i e 1} of subsets of B,

iel

and dually.

A result of Ball [1984] shows that only the first is genuinely a second-order
assertion. Let us call a lattice relatively completely distributive if only condition
(b) is required to hold, and this when all the indicated suprema and infima exist.

1.8.1 Proposition (Ball). Relative complete distributivity is expressible in the first-
order language of lattice theory. D

Ball proves similar results for other forms of (relative) infinite distributivity as
well.

(3) As a last counterexample, we mention the class of free abelian groups, a
class which is not axiomatizable by any class of C27

ooω-sentences in the vocabulary
for groups (this result is due to Kueker and Keisler). However, this class is PC in
ifω i ω. For details, see Dickmann [1975, pp. 379-384]. Further ramifications of
this example are treated in Chapter XI, Section 4.

7.9. Omitting First-Order Types

In the introduction to Chapter VIII it is noted that J5fωiω can express in a single
sentence the realization or omission of a first-order type—indeed, even of count-
ably many of them. Likewise, l£κ+ω can express the realization or omission of up
to K first-order types.

An interesting result of Chang [1968c] shows that a kind of converse holds as

well. To be precise, we have

1.9.1 Proposition. Given a sentence φ of J£κ + ω(τ\ where τ has cardinality < K,
there is an enrichment τ' of τ, also of cardinality < K, and a set S of power <κ of
<Sfωω(τ')-types such that for every structure 31,

$11= Φ iff there is an expansion 2Γ of 9ϊ to τ' such that 2Γ omits S.

That is to say, the result asserts that "satisfaction in J ^ κ + ω is PC in the omission
of up to K first-order types ".
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Proof of Proposition 1.9.1. We proceed in two steps:

(1) We construct τ' and a particularly simple formula 0' of J5?κ+ω(τ') such that

SI 1= φ iff there is an expansion 9Γ of 21 to τ'

so that SI' 1= 0';

and then,

(2) We construct the required set S of types so that

95 1= φ' iff 95 omits S,

for every τ'-structure 33.

Construction (1). In order to get τ', we add to τ a new π-ary relation symbol i?σ

for each subformula σ oϊ φ with « freee variables. This is possible since each sub-
formula of φ has finitely many variables. Since there are < K such subformulas,
τ' has cardinality < K. If σ has no free variables, then we regard Rσ as a proposi-
tional variable. If we do not like these (I personally do not!), then we take Rσ to
be a unary predicate, being careful to add the clause

\/xRσ(x)~3xRσ(x\

where φ is constructed so that Rσ takes only two values in each model.
As we want Rσ to reflect the structure of σ, we prescribe:

(i) VvCRσ(v) <-• σ(v)), if σ is atomic;
(ii) Vv(flσ(v)~ Ί ^ ( V ) ) , if σ is -iψ;

(iii) Vv(R,(v) ̂  Λ^<κ Λ^(v)), if σ is Λξ<κ Άξ;
(iv) Vv(Λσ(v) ^ 3y R^(v, y)\ if σ is

If σ does not have free variables, replace (i) and (iv) by:

(i') σ^VxRσ(x\

and

(iv') VxRσ(x)~3yRψ(y).

Finally, we set

(v) Vx Rφ(x).

Let φ be the conjunction of all these formulas; it is routine to check that (1) holds.
Construction (2). The set S contains a one-formula type for each axiom of the

form (i), (ii), (iv) or (v): the negation of the axiom with the outer quantifiers erased.
Furthermore, for each axiom of the form (iii), we throw into S the following K
types:

{-|(K,(v)->/^(v))} for each ξ < κ9
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and

{Rψζ(y)Λ ~ΊRσ(v)\ξ<κ},

The verification of (2) is easy and is left as an exercise. D

2. Basic Model Theory: Counterexamples

We will now begin to examine the model-theoretical behaviour of the larger
infinitary logics. As a first step, we will want to analyze the validity or the failure
of the most important properties arising from first-order model theory. By
Lindstrόm's theorem (see Chapter III) we cannot expect too many of these proper-
ties to hold simultaneously in any one of our languages. In fact, while some of
them fail very badly throughout the hierarchy of the larger infinitary logics, there
is a reasonable generalization of some of the others.

The present section collects those model-theoretic properties which tend to
fail in the infinitary context. From an organizational point of view, the more
optimistic side of the picture is left for the next section, and the heart of the subject
is postponed until the final section. In spite of the essentially negative tone of
the panorama we have given here, not everything is lost. Occasionally, something
can be salvaged by moderating the level of our ambitions.

2.1. Completeness and Definability of Truth

In the most general terms, the completeness problem for a language cSf is the
question of knowing whether there is a Hilbert-type system of axioms and rules
of inference so that for any set Σ u {φ} of =£?-sentences the following are equivalent:

(a) φ holds in all models of Σ; and
(b) φ can be deduced, using the axioms and rules of the system, from the set

Σ of premises.

Let us say that a system is adequate for deductions if the equivalence between (a)
and (b) holds for all φ and Σ. It is well known that one can construct such systems
for first-order logic. But this is not possible for j£?ωiω—and, a fortiori, for any of
the larger infinitary logics ifκ λ—even if the rules allow inferences from any
number of premises smaller than K, as does the rule:

Φo,φί9...,φξ,...(ξ < δ)

AΦξ
ξ<δ

The impossibility of constructing such a system follows at once from the existence
of sets Σ of J^ωiω-sentences which have no model, but every countable subset of
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which does have a model (setting φ to be any false statement violates the implica-
tion (a) => (b)). We give a simple example: The vocabulary has individual con-
stants cα, for all α < ωl9 and a unary function symbol F, and the set Σ is:

(i) ca φ cβ for α < β < ωl9

(ii) F is an injection of the universe into {cn\n e ω}.

The reader should consult Dickmann [1975, p. 136] for more details and other
examples.

In view of this situation, one possible line of retreat is to ask only for an axio-
matic system adequate for proofs, that is, such that a sentence φ is valid iff it is a
theorem of the system. In other words, the equivalence between (a) and (b) above
holds for arbitrary φ, but only for Σ = 0 (equivalently, for any Σ of cardinality
< K, if we are dealing with the logic &κλ). Deductive systems with this weaker
property do exist for various £?κλ. The known results are as follows, and all are
due to Karp [1964], who first examined the matter in that book.

2.1.1 Completeness Results. (1) J?ωιω admits an axiomatic system adequate for
proofs. D

This system is a straightforward extrapolation of the usual deductive systems
for first-order logic and is discussed in Chapter VIII, Section 3.2. Keisler [1971a,
Lecture 4] gives a nice proof of the theorem.

(2) For the logics listed below there are deductive systems of axioms and rules
of inference adequate for proofs:
(a) For ^ κ + χ9 whenever κ<λ = K (the exponent denotes weak cardinal

exponentiation); note that this includes the case J5fκ+ω.
(b) For 5£κλ, whenever, (i) K is strongly inaccessible, or (ii) K is weakly in-

accessible, λ is regular and μv < κfor all cardinals μ < K, v < λ. This
applies, in particular, to 5£κω with K (strongly or weakly) inaccessible. D

These deductive systems are all built by taking as axioms the version for 5£κλ

of the basic deductive system of (1), the axiom-schemes expressing certain infinite
distributive laws, and a combination of rules of inferences expressing various
principles of choice and of dependent choices. In particular, this means that as
soon as we go beyond the countable level, non-trivial set-theoretical principles are
needed to deal with the elementary infinitary predicate calculus.

These completeness results imply that the corresponding set Val(if ) of valid
if-sentences lies low in an appropriate hierarchy of definable sets. The situation is
quite analogous to that of first-order logic, where the Gόdel completeness theorem
implies that Val(JS?ωω) is recursively enumerable.

In order to make sense of this assertion, we need a coding machinery for
ifκA-formulas. The simplest and most natural coding structure is the structure
(H(κ), e [ H(κ)}, of all sets hereditarily of power less than K. This reflects the idea
of conceiving of Jέf κΛ-formulas as set-theoretical objects, rather than as (linear)
strings of symbols. We also need a coding map, that is, a one-one map from formulas
into the coding structure which, moreover, should satisfy some requirements of
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simplicity (we want to avoid complications due to a bad choice of the coding map).
A reasonable requirement is that the set of codes of formulas (that is, the range of
the coding map) be a Δ-definable subset of the coding structure. Here, and in the
rest of this section, "definable" means definable in the language of set theory (by a
formula of the indicated complexity).

Fortunately, such simple coding maps do exist—the reader might try to con-
struct one as an exercise. In any case, he will find such constructions described in
detail in Dickmann [1975, pp. 412-413]; the reader should see also Keisler
[1971a, pp. 40-41].

2.1.2. Definability Results. (1') Val(JS?ωiω) is Σ^definable over <JΪ(ω1),

(2') In the cases 2(a) and 2(b) (ii) of Section 2.1.1, Val(JS?KA) is Σ2-definable over

(2") In the case 2(b)(i) of Section 2.1.1, Val(^ κ λ ) is Σ ̂ definable over

<H(κ), ε Γ ff(κ)>. D

The result given in (Γ) is proven in Keisler [1971a, Lecture 9] the result in (2')
can be proven by methods similar to those presented in lectures 8 and 9 of that
book. It is the presence of the infinite distributive laws among the axioms which
forces the use of Σ 2 ( = 3V) formulas in (2'). In (2") the strong inaccessibility of K
makes it possible to bound the universal quantifier and, hence, to go down again
to Σ1 -definability.

The positive results discussed above leave open the question whether a Hilbert-
style system adequate for proofs exists for the language JSf KK, when K is a successor
cardinal. The impossibility of constructing such systems was shown by Scott in
1960, although it first appeared in print in Karp [1964, Chapter 14]. The method
consists in proving that the set Val(j£?κ + K + ) is not definable in any reasonable way
over the coding structure (H(κ+\ e [ //(κ+)>. Since a completeness result would
imply some kind of definability of Val(ĵ fκ + K + ) , this will suffice to establish that the
logics J?κ+K+ do not admit a satisfactory complete axiomatization.

2.1.3 Scott's Undefinability Theorem. Let E be a binary relation symbol. The set
Val(JSflc + κ + (£)) is not definable over <if(ic+), ε {H(κ+)} by any formula of
i f κ + κ + ( £ ) . D

The method of proof is an adaptation of Tarski's argument proving that the
set of sentences of first-order arithmetic valid in the standard model <N, + , , 0,1>
is not first-order definable over the coding structure <M, + , ,0, 1>. However,
there is one crucial difference: While, in the arithmetical case, the coding structure
<N, + , , 0, 1> is not characterizable up to isomorphism by any set of first-order
sentences, in the infinitary case, the coding structure <H(κ + ), ε {H(κ+)} is
characterized up to isomorphism by the J?κ+K + -sentence of Example 1.4(2). This
observation accounts for the additional strength of Scott's theorem—it applies to
all valid sentences, not just the arithmetical ones. The proof of this theorem is
given in Dickmann [1975, pp. 425-430].
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2.2. The Failure of Compactness

Any reasonable analogue of the compactness theorem of first-order logic fails
very badly in all infinitary languages. Let us begin with some simple examples.

2.2.1 Example (Propositional incompactness). Consider the following proposi-
tional formulas of JS?κω5 where K is such that K < λμ for some cardinals μ, λ < κ\

(i) ΛVw
ξ<μ η<λ

(2) -i /\ pξf(ξ) for each map / : μ -• λ.
ξ<μ

If (1) holds, let/0(£) be the smallest η which makes pξη true. Then /\ξ<μPξf0(ξ) is
true, that is, (2) fails for/ = / 0 . But there is a model for all sentences of form (2),
for we can make pξη false for all ξ, η and, if we omit just one sentence of form (2),
then the remaining sentences (of both forms) also have a model. Observe here that
if the omitted sentence is given by the map/ 1 ? we can make pξη true if η = fx(ξ)
and false otherwise. D

This example takes care of the case when K is a successor cardinal (μ = λ =
the predecessor of K). However, it does not exclude the possibility of compactness
holding for a set of J^κω-sentences of power exactly K (unless some set-theoretical
assumption is made). Consider then the following:

2.2.2 Example (An incompact set of $£κω-sentences of power /c, when K is a
singular cardinal). Let K be the limit of the sequence (yξ\ξ < cf(κ)> of smaller
ordinals, and set

(3) < is a total ordering,

(4) V ^
ξ<cf(κ)

(5) 3x(φη(x) A P(x)) ϊorη<κ,

where P is an additional predicate, φη are the formulas of Example 1.2(2), and the
superscript denotes relativization to P.

In any model 21 of (3) through (5), Pm contains elements determining an initial
section (of 91) of any given order type < K. Hence, Pm has power > K. But (4)
above asserts that for some ξ < cf(κ), the subset Pm is well-ordered in type < γξ.
Hence, P® has power < K, a contradiction. Thus, (3) through (5) do not have a
model. We leave to the reader to construct a model of (3) and (4) and an arbitrary
subset of (5) of power <κ. D
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2.2.3 Example (An incompact set of ^κ ω-sentences of power K, when K is a
successor cardinal). Let K = λ+. Consider then the language containing the
symbols P, < (as before) and a new binary relation symbol, F. The required set
of sentences consists of (3) above and

(6) F is a one-one function with domain containing {x\P(x)}9

(7) Vx(P(x) -> V

(8) 3x(P(x)A^y(F(x,y)^φη(y))) for η < K.

Let 31 be a model of these sentences. By (7), each element of Pm determines (in 91)
a section of type < λ. Hence, P* has cardinality < λ <κ. But (8) asserts that for
every η < K there is an element of Range(F^ Γ Pm) which determines a section of
type η. Hence, R a n g e d [ P*) has cardinality > κ\ and, by (6), P% also has
cardinality > K. AS an exercise, the reader might try to construct a model for (3),
(6), and (7) as well as any subset of (8) of power < K. Should this not be successful,
he can fall back on Dickmann [1975, pp. 163-164]. D

The Failure of Compactness for Inaccessible Cardinals

The preceding examples show that the only possible chance for Jίf κ λ to be compact
is that K be (at least) weakly inaccessible. For some time, there was hope that a
restricted form of compactness could hold in £fκκ for at least some reasonably
sized inaccessible cardinals (for example, for the first such K). In a celebrated
paper W. Hanf [1964] crushed any such hope. He showed that the compactness
theorem for sets of $£κκ-sentences of size K is false whenever K belongs to any one
of a whole panoply of ever increasing classes of (strongly) inaccessible cardinals.

Let us briefly describe the extent and the significance of Hanf's results. He
considers the inaccessible cardinals which belong to some member of a certain
increasing transfinite sequence < M α | α e O N > of classes of cardinals. In a certain
sense, M α + 1 is "constructibly defined" from Mα. This method of construction of
larger and larger classes of inaccessible cardinals was invented by Mahlo in
1911-1913. Hanf proves:

2.2.4 Theorem. If KG Ma for some α < K, then 5£κκ contains a set of sentences of
power κfor which compactness fails. D

In order to give an idea of the comprehensiveness of the classes Mα, we will
consider the following hierarchy of inaccessible cardinals: We will say that K is
hyperinaccessible of type 1 if it is inaccessible and there are K inaccessibles below
K. In other words, if <0α | α e ON> enumerates the inaccessibles in increasing order,
then the hyperinaccessibles of type 1 are the 0α's such that θa = α. We can iterate
this definition into the transfinite by saying that K is hyperinaccessible of type
α + 1 iff it is hyperinaccessible of type α and there are K hyperinaccessibles of
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type α below K, and taking K to be hypeήnaccessίble of type α, for α limit > 0, iff
it is hyperinaccessible of type β for all β < α. The hyperinaccessibles of type 0 are
simply the inaccessibles. Now, all the hyperinaccessibles K of some type α < K are
in the first Mahlo class M 1 .

As a matter of fact, it is impossible to find inaccessible cardinals outside the
classes M 1 , M 2 , . . . , unless a very powerful axiom of infinity is added to the axioms
of ZFC, namely:

"Every normal function has a regular fixed point".

The reader may try to convince himself that this is a very powerful axiom indeed,
by deriving, as an exercise, the following consequences:

" The class of inaccessible cardinals is cofinal with the ordinal numbers ",

and also:

"For every ordinal α, the class of hyperinaccessible cardinals of type
α is cofinal with the class of all ordinal numbers."

Hanf's counterexample can be adapted so as to show the incompactness of
inaccessible cardinals belonging to even larger classes. Thus, if we set

κeMA iff K e (J Mα

0L<K

(so that Theorem 2.2.4 holds for all K e M Δ ) , we can start iterating the operation

M on the class M Δ again to get (M Δ ) Δ = M ( Δ ' 2 ) , then M ( Δ ' 3 ) , We obtain, then

2.2.5 Theorem. Ifκe M ( Δ 'α )/or some α < K, then the compactness theorem fails for
some set of Sέ'^-sentences of size K. D

The process of diagonalization sketched above can be iterated without an end,
producing larger and larger classes of inaccessible cardinals K for which 5£κκ will
be incompact. However, this does not suffice to prove that compactness fails for
all 5£κκ. But the cardinals K for which jSfKJC does have compactness (for sets of
sentences of size K)—the so-called weakly compact cardinals, if any—must be of
a size defying imagination. Incidentally, observe that we will not be any better
off by reducing the length of quantifications; the compactness property for sets
of JS?KίC-sentences of size K is equivalent to the same property for sets of 5£κω-
sentences of size K (see Dickmann [1975, p. 185]).

After Hanf's work the study of the compactness property for infinitary logic
departed the realm of the model-theorist to enter that of the set-theorist, or rather—
that of the mystic.
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2.2.6 Comment on Bibliography. There is a vast literature concerning weakly
compact cardinals. The equivalences of this notion with many other properties
appear in Dickmann [1975, Chapter 3, Section 3C] where we tried to adhere to
the model-theoretic aspect of the question, in Drake [1974, Chapter 10, Section 2],
and in Keisler-Tarski [1964]. The fastest road to weak compactness is via the
equivalent notion of Π}-indescribability. This road can be followed in Drake
[1974, Chapters 9, 10], which also contains a thorough study of the hierarchies of
Π^- and Σ^-indescribable cardinals; Devlin [1975] is also devoted to this subject.
The most important classes of large cardinals studied to date—Ramsey, measur-
able, compact, etc.—all find their place in this hierarchy.

The reader wanting to proceed along the set-theoretic road is urged to consult
Drake's excellent book [1974] and the very readable and witty survey paper of
Kanamori-Magidor [1978]. Devlin [1975] and Boos [1975] are also good sources
of information.

23. Interpolation and {Beth-) Definability

The interpolation and (Beth) definability properties of a logic have been defined
in Chapter II, Sections 1 and 7. Among the infinitary languages, these properties
hold only for i ? ω i ω and the countable admissible fragments of if ooω (see Chapter
VIII, Sections 3.3 and 6.3.8). They fail rather badly for all the others, as we shall
soon see.

In order to capture the exact extent of this failure (and then save what is left),
we will consider relative notions of interpolation and definability. A logic JSf'
allows interpolation for ££ if every valid sentence σ0 -> σx of if has an interpolant
in if'. Here, the definition of interpolant is as usual, and we are implicitly assuming
that <£' is at least as strong as 5£. Modifying in a similar way the definition of the
(Beth) definability property (see Chapter II, Definition 1.2.4(i)) we arrive at the
notion of $£' allows {Beth) definability for ϊ£. The usual proof of "interpolation
implies definability" also works in this relativized context.

We will begin with a simple example which due to Malitz [1971] and which
shows:

2.3.1 Example (The failure of the interpolation property in J£κω, for K >
Furthermore, we will exhibit a valid if κω-sentence σ0 -» σ1 which does not have
an interpolant in any language £faoλ with λ+ < K. TO this end, let

τ={ca\x<λ+},

σo:Vι; \/(v = ca\

V
λ<β<γ<λ+
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Since any model of σ0 has power < λ, the sentence σ0 -• σx is valid. An interpolant
σ for this implication has to be a pure equality formula. Then, |= σ 0 -> σ would
imply that σ holds in some structure of power λ, and by Fact 1.1.1 of this chapter,
σ would hold in all structures of power > λ. From \=σ -> σί9 the same would be
true of σί9 which is obviously absurd. D

This counterexample shows that in order to get a relative interpolation result
for JSf κ ω , we must allow interpolants having quantifiers of length close to K. AS a
matter of fact, there are some positive results in this direction:

2.3.2 Theorem, (a) (Malitz [1971]). If K is regular, then &{2<κ)+κ allows inter-
polation for J£κω.

(b) (Chang [1971]). Ifd(κ) = ω, then S£κl<*yκ allows interpolation for ^κ+ω.
In particular, we have

(c) For any infinite K, J£(2

K)+K+ allows interpolation for J?κ+ω.
(d) Ifκ is strongly inaccessible, then ££ κκ allows interpolation for S£κω.
(e) Ifκ is a strong limit cardinal of cofinality ω, then J?κ + K allows interpolation

forJ?κ+ω. Q

Of course, corresponding statements for relative definability follow auto-
matically. Counterexample 2.3.1 leaves open the possibility of an interpolation
result for i ? κ + ω in ^aoκ, for successor K. Since a counterexample to (relative)
definability is also a counterexample to (relative) interpolation, Example 2.3.12
below will dispose of this possibility also. Moreover, it will also show that the
preceding theorem is best possible as far as the length of quantifications is con-
cerned.

In order to deal with the definability property, we need some information
about

The Preservation of Infinitary Equivalence by Sum and Product Operations

We state here a few results which we will use, without touching the wider chapter
of model theory which deals with generalized product operations. We consider
only binary operations # which assign to each pair of (possibly disjoint) struc-
tures 91, 95, with (possibly distinct) vocabularies τl9 τ 2 , a new structure 91 # 95
with a vocabulary τ. We have in mind—and will use—the following:

2.3.3 Example. (1) Disjoint Sum (simple cardinal sum; disjoint union). Here τ1 =
τ2 = τ is a vocabulary containing only relation symbols, and 91, 95 are disjoint.
The operation is defined by:

= R* u K® for each Rsτ.
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(2) Full Cardinal Sum (extended cardinal sum). Here τί9 τ 2 do not contain
function symbols. By renaming, we can also assume that τ l 5 τ 2 are disjoint. The
vocabulary τ contains τ1 u τ 2 and two extra unary predicates Pί9 P 2 . ^ ® a r e

supposed to be disjoint. The operation is defined by:

|2I + 93| = |9l| u|93|,

and, for R e ^ u ^ , JR
9I+® is K* or Λβ, depending on whether R e τ x or K e τ 2 .

(3) Direct Product. This is a well-known construction. D

The preservation result which we shall need is due to Malitz [1971] and takes
the following form:

2.3.4 Theorem. Let # denote any one of the operations on structures described in
Example 2.3.3. Then the following is true for any cardinal λ:

(t)λ for every κ> λ and every sentence σ of !£κλ(τ), there is a cardinal
θ > K such that, for all structures 21; and 93f with vocabulary τf (i = 1,2).

« ! = * * » ! and SΆ2=θλ^

SΆ, # S&2 |= σ iff » ! # 932 N σ. D

Note that this result immediately implies the following

2.3.5 Corollary. The operations of disjoint sum, full cardinal sum and direct product
preserve ^^χ-equivalence. D

It is very easy to prove this corollary, using the back-and-forth criterion for
JSf ooΛ-equivalence given in Theorem 4.3.1 below. The proof of Theorem 2.3.4 is
syntactical (see Dickmann [1975, Chapter 5, Section 2]) and gives additional
information such as, for example, that the cardinal θ in (f)κ is of the order 2K.
This yields:

2.3.6 Corollary. The operations of disjoint sum, full cardinal sum, and direct product
preserve ^κλ-equivalence, ιfκ is strongly inaccessible. D

This result has an interesting converse which is due to Malitz [1971], namely,

2.3.7 Theorem. // ^^-equivalence is preserved by any one of the operations of
Example 2.3.3, then K is strongly inaccessible. D

For a more detailed account of preservation results of this type, see Dickmann
[1975, Chapter 5, Section 2].
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The Beth-Definability Property in Infinitary Logic

We begin this discussion with the following result.

2.3.8 Example (Failure of the definability property in J£?ωiωi). We shall exhibit
an <£ωiωi-sentence which implicitly defines a relation which is itself not explicitly
defined by any formula of JS?^. This drastic counterexample shows that there
is no definability result for infinite-quantifier logics relative to any other logic of
the same sort. Its basic ingredients are that JS?ωifi)1 expresses well-order and that
there is at most one isomorphism between well-ordered structures.

Let σ be the J£?ωiωi-sentence on a unary predicate U and two-binary predicates
i7, <, which says:

(a) < I" U is a (non-empty) well-ordering,
(b) < { —i U is a (non-empty) well-ordering,
(c) F is an isomorphism of <[/, < { U} onto <[/, < [ —ι [/>.

Here ~ι U stands for {x | ~i (7(x)}.
Note that < may not be an order of the universe, and that if for (isomorphic)

well-orders (A, <> ^f <£, -<> we set:

then <SI © 95, / > is a model of σ.
As the isomorphism between two well-ordered sets is unique if it exists, it

follows that the relation F( , •) is implicitly defined by σ.
Now assume that there is a formula </>(•, •) in ^f ^^((7, < ) explicitly defining

the relation F( , •) relative to σ. If σ* denotes the substitution of φ for F in σ, then
σ* is in ifκ κ(l7, <), for some K > ωl9 and for disjoint, non-empty well-orders
<τ4, <>, <J5, -<>, and 9Ϊ, 95 defined as above, we have:

(*) 91 © 95 \= σ* implies that φ®®® (. 5.) is an isomorphism between

Applying Theorem 2.3.4 to the sentence σ* gives a cardinal θ > K such that (f)κ

holds. Consider the following structures:

(A2, < 2 > = a disjoint copy of <^ 1 ? < x > ,

and, using the downward Lδwenheim-Skolem theorem for jSfθβ (Theorem 3.1.2
below), get < β 2 , <2} <θθ (A2, < 2 > such that B2 has cardinality 2Θ. Since <Άί ®
5I2 |= σ * by (f)κ it follows that 95x © 952 1= σ*9 and by (*) above we conclude that
<B l 9 •<!> is isomorphic to <2*2> "<2>? which is absurd for cardinality reasons. D

Gregory [1974] settled the question for finite-quantifier languages beyond
JS?ωiω in a negative way by the use of rigid structures—that is, structures having
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the identity as their only automorphism—instead of well-ordered sets. Extending
certain counterexamples due to Morley and Tait (see Section 4.3.6), he proved

2.3.9 Theorem. Let K be a regular uncountable cardinal There are rigid structures
2Ϊ, 93 of power K in a purely relational vocabulary involving < K symbols, such that

21 = ^ 9 3 and 21^93. D

Any such example has the following special feature:

2.3.10 Lemma. Let 21, 23 be structures with the properties of the preceding theorem.
Then 93 contains an ^ ^indefinable element, that is, an element b such that for
each 5£ ̂ -formula φ(x),

93 t= φ[b] and 93 |= 3v(v Φ b A φ(v)).

Proof. Let τ be the vocabulary of 93. If the conclusion is false, then every b e 1931
is definable by an i f ooκ(τ)-formula, say φb(x). Let φ be the conjunction of

(i) Vv\/bem

(ii) 3 ^ . . . vnt/\U i ΦbJίVi) Λ σ(υl9..., vj\, for each bi9..., bn e |93| and each
atomic or negated atomic formula σ such that © \= σ[b1, ...,/?„].

Obviously φ is in 5£ ̂ κ(τ) and 931= φ. Since Ώ Ξ ^ S , then 21 1=
Φ Λ /\be|sB| 3! vφb(v). And this implies that the map of © into 2Ϊ defined by

b i—• "the unique element of φb"

is an isomorphism, a contradiction. D

We shall also need the result given in

2.3.11 Lemma. An element b e 1931 is not <£^-definable iff there is a e |23|, a Φ b,
such that <93, a} = ^ <93, b}.

Proof. The implication from right to left is obvious. For the other direction, by
Theorem 4.4.6 below, there is an JS? ̂ -sentence φ<9tb> = φ(c) involving a new
individual constant c, such that for any structure 21 of the appropriate vocabulary
and any a e |2I|,

(*) <%a>\=φ(c) iff < S , b > Ξ o o κ < 2 I , f l > .

Since b is not i?^-definable, then © \= - ι 3 ! vφ(v), that is, © |= φ[a] for some
aΦb. And, by (*), <93, a} EE OOK <», b}. D
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Now we can give Gregory's counterexample:

2.3.12 Example (Failure of the Beth-definability property for JS?κ+ω, when
K > ωx). In fact, we will show that Ĵ fooκ does not allow definability for J^κ + ω .

Let 95 be a structure (with vocabulary τ) meeting the conditions of Theorem
2.3.9. By Lemma 2.3.10, let b0 e | SB | be an if^CO-undefinable element. Let τ"
contain the vocabulary τ' appropriate for full cardinal sums of structures with
vocabularies τx = τ u {cb\b e |93|} and τ 2 = τ (see Example 2.3.3(2)), and a new
binary predicate F. Consider the conjunction σ of the following J^κ+ω(τ")-
sentences:

(a)
(b) the elementary diagram of 93 (in the vocabulary τ j ,
(c) F is an isomorphism between <{x|Pi(x)}, τ> and <{x|P2(

χ)}» τ )

Thus, if 33' is a disjoint copy of 93 and/denotes the copying isomorphism, we must
have

where C = <»,fc> f t 6 | β, + » /.
Since 93 is rigid, the sentence σ implicitly defines the relation F( , •)• Assume

then that there is a formula φ( , •) of if^Cr') which explicitly defines this relation
relative to σ:

(**) σ |= Vxy[F(x, JO ̂ > 0(x, y)].

Since b0 is J^^^τ^undefinable, by Lemma 2.3.11 there is b1 e |93|, bγ φ b0,
such that:

and, since / is an isomorphism, we also have

As J^'ooκ-equivalence is preserved under full cardinal sums (Corollary 2.3.5), we

conclude that

<»,&>». | | + <®'./0»θ)> =.«<». *>»β|«| +

In the terminology introduced above, this can be rephrased as:

(***) <<
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Now, (*) and (**) imply:

which, by (***), yields

But, as (**) and (c) imply that φ(-, •) is a function, we can conclude f(b0) =
and, hence, b0 = bv This is a contradiction. D

This counterexample does not settle the following questions, which, to our
knowledge are still

2.3.13 Open Problems, (a) Can one prove in ZFC that J£κ+K (or j£?κ + κ + ) allows
interpolation (definability) for i f κ + ω , whenever cf(fc) = ω and K > ω?

(b) Does i f o o κ allow interpolation (definability) for J?κ+ω when K is a singular
cardinal of uncountable cofinality? D

In connection with question (a) above, Gregory [1974, p. 22] mentions that
Friedman had shown that J£?κ+K+ does not allow definability for J£κ+ω, whenever
cf(κ) > ω.

3. Basic Model Theory: The
Lόwenheim-Skolem Theorems

In this section we will deal with the infinitary analogs of the Lόwenheim-Skolem
theorems. These basic results of first-order model theory do admit reasonable
generalizations. However, in the case of the upward theorem, these are neither
naive nor immediate.

3.1. The Downward Lόwenheim-Skolem Theorem

This is one of the few results from first-order model theory which generalizes
practically without restrictions to the infinitary languages Jέfκλ—although not
to 5£^λ. Since the proof is a straightforward generalization of the first-order
argument, we will only state the results and provide some counterexamples and
applications.

The following is a very general form of the theorem; it implies all the known
forms and is useful in its own right.
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3.1.1 Main Theorem. Let 33 be an infinite structure with vocabulary τ, X c 1331,
and Γ a set of <£ κλ(τ) formulas closed under subformulas. Furthermore, let:

p = the supremum o/K 0 and the number of free variables of formulas
inT,

μ = an arbitrary cardinal > 2,

v = an arbitrary cardinal > p.

Assume that one of the following alternatives hold:

(1) max{I, T, Γ} < μv < § ,

or

(2) p is larger than the number of variables of formulas in Γ, p < cf(v) and

max{f,τ, Γ} < μ< v < S.

Then there is a structure 91 such that:

(a) X c \SΆ\and 21 c= 93;
(b) For every φ eΓ and every assignment gfor φ in 91,

(c) S = μv in case (1), and S = μ<v in case (2). D

Observe that condition (b) is stronger than 91 < Γ 3 3 , which for an arbitrary
set of formulas Γ, only requires the implication from left to right to hold. As a
consequence, we have.

3.1.2 Corollary. Let 33, τ, X be as in Theorem 3.1.1 and assume that

max{f, τ} < λ = λκ < S.

Then there is a structure 91 such that X c 1911, 91 <κκ 23 and 9Ϊ = A. //, m addition,
K is regular, then the same conclusion follows from the weaker assumption λ = λ<κ.
Under the GCH, and ifκ< cf(A), the assumption λ = λκ is superfluous.

Proof. Set Γ = the set of all JέPκκ(τ)-formulas and, then perform the necessary
cardinal computations. D

3.1.3 Corollary. Let λ <κbe regular cardinals satisfying that

μ < K and v < A imply μv < K.

Then every sentence of 5£κλ which has a model, also has a model of power < K. If, in
addition, τ < K, then the latter can be chosen to be a {first-order) elementary sub-
structure of the former.
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Proof. Set Γ = the set of all subformulas of the given sentence. For the last asser-
tion, we also include in Γ all 5£ωω(τ)-formulas. Π

3.1.4 Corollary. Let K be a regular uncountable cardinal Then any 5έ'κω-sentence
having a model, has a model of power <κ. D

3.1.5 Corollary. // K is strongly inaccessible > ω, then every sentence of JS?K,
having a model, has a model of power <κ. D

The smallest cardinal for which Theorem 3.1.1 proves the existence of a model,
is 2P in case (1) and 2<p in case (2). In general, these bounds cannot be improved.

3.1.6 Counterexamples. (Γ) In case (1), take φ to be the c£fκ+/c+-sentence axio-
matizing the notion of ^κ+-set (see Example 1.2(3)) and let Γ be the set of all sub-
formulas of φ. This is a counterexample, because a set of type ηκ+ has cardinality
> 2K (Gillman [1956]).

(2') In case (2), take K to be a singular beth number and φ the J^KK-sentence
of Example 1.4(2) which characterize, up to isomorphism, the structure <//(κ),
e { H(κ)} of all sets hereditarily of power < K. Details are left to the reader; (see
Dickmann [1975, pp. 213-214]).

Application. As an application of the infinitary downward Lδwenheim-Skolem
theorem, we shall prove one of the nonaxiomatizability results from topology
that were announced in Example 1.7. The idea is to consider a class K of struc-
tures—topological spaces in the present situation—containing a member of
sufficiently large cardinality which is "generated" by a set of smaller cardinality.
If IK were RPC in some J5fκλ, then an application of Corollary 3.1.2 to <£κλ would
quickly produce a contradiction.

3.1.7 Theorem. Let IK be a class of topological spaces (viewed as structures with
vocabulary v, as in Section 1.6) which contains discrete spaces of arbitrarily large
cardinality. Then K is not RPC in S£κλ,for any K, λ.

Proof. Suppose that the contrary holds. Then there are a vocabulary τ 3 v, a set
Σ of S£κλ(τ)-sentences, and an ̂ κ A(τ)-formula φ(x) such that for any v-structure 31,

(*) 31 e IK iff there is a τ-structure 3Γ such that 3t'1= Σ and

31 = (31' Γ Φv) \ v.

Let μ be a cardinal > τ such that μκ = μ (for example, μ — 2p with p = max {?, K}).
Let 31 = < Y u P(Y), Y, P(Y), e> be a discrete space in IK of cardinality > μ. By
(*) above, 31 = (31' [ φ*')J v for some 3Γ t= Σ. Let Y' c y, Ϋ' = μ , and X =
Y' vj[{y}\y e Y'}. Thus, X = μ. Now apply Corollary 3.1.2 to get 33' <κλ 31' such
that B' = μ a n d l c | » ' | . Set 93 = (95' [ φ*') \ v. Since 93' N Σ, then 93 e IK by
(*). Hence, $ ^ ( Z u « f , Z , 2Γ, e> for a topology 9~ on some set Z, and we identify
these structures. Also, we have that 93' <κλ 31' implies that φ9' = φm' n 193'| = 1311 n
|93'|. Hence, X c |93| = Z u F and we get T £ Z, a n d U ^ e Y'} c ^ Since
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9~ is closed under arbitrary unions, it follows that P(Y') c ^ and therefore we
must have

δ' > 1 = zTTW > 2μ.

But this contradicts the choice of 93'. D

The classes of topological spaces, discrete spaces, 7J-spaces (i = 0, . . . , 5),
regular spaces, etc., obviously satisfy the assumptions of the theorem. But the
class of compact spaces certainly does not. In order to deal with this case, we use
the same method, letting the Stone space of a power-set algebra play the crucial
role, instead of a discrete space. For the details of these and other applications of
this method, see Cole-Dickmann [1972] or Dickmann [1975, pp. 219-223].

An application of the downward Lόwenheim-Skolem theorem for ίfω i ω

(Corollary 3.1.4, with K = ω t ) to group theory is given in Chapter XI, at the end
of Section 7.

3.2. The Upward Lowenheίm-Skolem Theorem and
Hanf Numbers

Example 1.4(3) revealed some of the constraints on possible generalizations of the
upward Lόwenheim-Skolem theorem to infinitary languages. A further constraint
stems from the existence of infinitary sentences which do not have models of some
specific but arbitrarily large cardinalities, such as in the following:

3.2.1 Exercise. Construct an j£?ωiωi-sentence having models of cardinality K iff
cf(κ) φ ω. D

These examples are about the strongest obstacle—at least, in principle—to
the existence of some sort of extension of the upward theorem to infinitary logic
as well as to any language whose sentences form a set. This is shown by a simple
but astute remark, which shows that the Hanf number of any such language
exists. For the sake of easy reference, we include

3.2.2 Definition. Given a set X of sentences of an arbitrary language if, we define
its Hanf number, h(X), to be the smallest cardinal λ such that any sentence of X
which has a model of power > A, has model of arbitrarily large cardinality. If the
sentences of $£ form a set, its Hanf number is called the Hanf number of <£ and
is denoted by A(JS?). D

See Chapter II, Theorem 6.1.4 for the existence of h(X). Note that in the above
definition "language" means "syntactical structure + vocabulary". Thus,
A(i?ωω(τ)) = max{K0, τ}. In order to get a more invariant notion, we shall be
rather concerned with

) = sup{h(J?κλ(τ))\τ < K}.
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The panorama concerning the values of the Hanf numbers h(&κλ) is very
different, depending on whether we are dealing with finite or infinite quantifier
languages.

The Hanf Number of Finite Quantifier Languages: An Introduction

(1) In this case, it is possible to give upper and lower bounds for h(J?κ+ω) in terms
of the cardinal arithmetical operations of ZFC, namely

and in some cases, to even give its exact value

Assuming the generalized continuum hypothesis, we also have

H^K+ω) = ^κ+ f° r aU K of cofinality ω.

Furthermore, when cf(κ) > ω, the following holds:

(2) Along these same lines, it was shown by Barwise, Kunen, and Morley that
we can express the exact value of h(J£κ+ω), for all K, in terms of certain recursive
operations on ordinals depending o n κ + . This, shows (in ZFC) that whenever
cf(κ) > ω, the value of h(J£K+(a) is much larger than 3K+—larger, for example,
than 3 α , where α is the 1st, 2nd,. . . , nth, . . . iteration of ordinal exponent at ion on
κ+ and, even more generally, it is larger than 3 / ( l c + ) , where / is any recursive
function on ordinals.

(3) However, this does not mean that the axioms of ZFC suffice to give a pre-
cise location for the value of h(^κ+ω) in the hierarchy of the beth numbers no
more than they suffice to locate the value of 2X α in the hierarchy of the aleph
numbers. Indeed, by using forcing techniques, Kunen proved that by making 2K

large with respect to K, we can consistently make /i(ifκ + ω) small or large within
the interval Q κ + , 3 ( 2κ ) +). More precisely, we have

3.2.3 Theorem. Assume that ZFC is consistent and let K, θ be regular cardinals such
that ω < K < θ. Then there are models 9JI, 91 of ZFC in which the values of the
continuum function are as follows:

2λ = λ+ for ω < λ < K,

and

2λ = max{/l+,θ} for λ > κ\
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but

while

The Hanf Number of Infinite Quantifier Languages

The situation is much more hopeless in this case. For, although the Hanf number
of these languages has been proven to exist in ZFC, the expedient of giving bounds
for them in terms of the cardinal arithmetical operations of ZFC fails. The mere
possibility of expressing the size of h(^κλ), λ > ωl9 in terms of known set-theo-
retical notions seems to require the adjunction to ZFC of extremely powerful—
hence, rather dubious—set-theoretical axioms. But, whatever these additional
axioms may be, all known results underline the fact that the size of h(J?κλ) for
uncountable λ is extremely large.

We remark, in passing, that Barwise [1972b] and Friedman [1974] have
analyzed the strength of the set-theoretical axioms needed to prove the existence
of the Hanf number h(<£) and to express bounds for it in set-theoretical terms for
various logics <£, including JS?ωiωi.

(1) Upper Bounds. The only upper bounds for the Hanf number of infinite quanti-
fier languages provable in ZFC are the following, and they are obtained by very
simple compactness arguments:

3.2.4 Proposition. Assume that there is a strongly compact cardinal K (that is, a
compact cardinal for which <£κκ has the compactness property for sets of sentences
of any size). Then, we have

) ^ κ for any λ < κ;

and

H&λλ) < K for λ<κ.

In particular, h(^ωιωι) is smaller than the first strongly compact cardinal, and

τ)) = κ for any vocabulary τ. 0

Some relative consistency results for upper bounds for the Hanf number of
^ωιωi

 a r e a l s o known. In the first place, Magidor [1976] proved that the equality
"first strongly compact cardinal = first measurable cardinal" is consistent with
ZFC, provided there is a strongly compact cardinal. Together with the preceding
bounds, this immediately yields

3.2.5 Proposition. If ZFC + "there is a strongly compact cardinal" is consistent,
then so is ZFC + "Λ(i? ω i ω i ) is smaller than the first measurable cardinal". D



344 IX. Larger Infinitary Languages

Starting from a different assumption, Vaananen [1980c] proves another relative
consistency result, namely

3.2.6 Proposition. // ZFC + " there is a proper class of measurable (respectively,
weakly compact and strongly inaccessible) cardinals" is consistent, then so is ZFC +
"h(J£ωιωι) is smaller than the first measurable (respectively, weakly compact and
strongly inaccessible) cardinal". Π

Of course, these results do not exclude the possibility of obtaining much
smaller upper bounds for the Hanf number of smaller, but interesting, sets of
infinitary sentences. This question has hardly been investigated. Nevertheless,
there is the following result of Silver [1971a], a result which uses the construction
of models from indiscernibles.

3.2.7 Proposition. The Hanf number of the set of all prenex-unίversal sentences of
££\λ(τ) does not exceed the first cardinal μ with the partition property μ -* (λ)^™,
where v = max{K0,f}, provided such μ exists. For λ = ωί and countable τ, this
bound can be reduced to the first μ such that μ -^ (0^1)2 ω Π

(2) Lower Bounds. Following is a brief account on the results concerning lower
bounds for the Hanf number of infinite quantifier languages which have been
obtained under additional set-theoretical assumptions. For the sake of simplicity,
we confine ourselves to J£?ω i ω i.

3.2.8 Theorem (Kunen [1970]). If ZFC + "there is a measurable cardinal" is con-
sistent, then so is ZFC + "h(J£ωιωι) exceeds the first measurable cardinal". D

In particular, this result implies that no upper bound for h(J?ωίωι) can be
expressed in ZFC exclusively in terms of the partition cardinals used in Proposition
3.2.7. Propositions 3.2.6 and 3.2.8 imply

3.2.9 Theorem. The statement "ft(JS?ωiωi) is smaller than the first measurable
cardinal" is independent of ZFC + "there is a proper class of measurable car-
dinals". D

3.2.10 Theorem (Silver [1971a]). ZFC + "there is a cardinal K such that K ->
( ω ) ^ ω " proves: the Hanf number of the set of all prenex-unίversal sentences of
^?ωίωί—hence also h(J£ωiωi)~exceeds the first weakly compact, strongly inacces-
sible cardinal. D

A similar result holds for any ^ λ + λ+.

3.2.11 Theorem (Silver [1971a]). ZFC + V= L + "there is a cardinal which is
TΓm-indescribable for all n, meω" proves: h(S£ωω) is larger than the first such
cardinal. D
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Since Π}-indescribable cardinals are just the same as weakly compact, strongly
inaccessible cardinals, and this notion relativizes to L, from Theorem 3.2.11 and
Proposition 3.2.6 we may infer

3.2.12 Theorem. The statement "h(<£ωiωχ) is smaller than the first weakly compact,
strongly inaccessible cardinal" is independent of ZFC + "there is a proper class of
weakly compact, strongly inaccessible cardinals". D

The Hanf Number of Finite Quantifier Languages (Continued)

The remainder of this section is devoted to a sketch of the main ideas and tech-
niques used in the computation of the Hanf number of finite quantifier languages.

Example 1.4(3) shows directly that Hκ + < h{^κ+ω). The remaining results are
more difficult by at least an order of magnitude. Some of the steps that lead to
them are more easily visualized in the terminology of omitting (first-order) types
which exploits the equivalence proved in Proposition 1.9.1. In these terms, the
analogue of the Hanf number h(J?K + (O) is given in

3.2.13 Definition. The Money number mκ is the least cardinal λ such that every
set of < K first-order types which is omitted in some model of power > λ is also
omitted in models of arbitrarily large cardinality. D

Proposition 1.9.1 implies immediately that we have

3.2.14 Proposition. h(&κ+ω) = mκ. D

Another basic tool in this theory is an elaboration on Example 1.4(3). Since
this has been treated with some detail in Chapter II, we will merely state the result,
referring the reader to Definition 5.2.1 of that chapter for the definition of the
expression " a sentence pins down an ordinal", and to Theorem 6.1.6 for the
proof itself.

3.2.15 Theorem. Assume that an ordinal α is pinned down by an J?K+(O-sentence;

ω)>χ. Ώ

There is an omitting-types version of this theorem which it is obtained by
replacing in the definition of pinning down the words " model of an j£?κ+ω-sentence "
by the words "model of a first-order theory T omitting a set S of < K types", and
changing the conclusion to read "m κ > Hα".

A first application of Theorem 3.2.15 is given in

3.2.16 Theorem. // cf(/c) > ω, then κ+ is pinned down by an ϊ£κ+ω-sentence.

Hence, 2K+ < h(J?κ+ω).

Hint of Proof. Although pinning down ordinals < K is easy—the reader can
convince himself of this by using the sentences θa of Example 1.2(2)—pinning
down ordinals larger than K requires a subtle argument, the gist of which is as
follows.
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Recall that every α E K is a subset of K. Let r c K x fc be a linear order of K.
If r happens to be a well-order (although not necessarily the canonical one), then
r I α is also a well-order of α, for all αe/c. Since # < K, there is a β e K such that

This shows that (a) implies (b), where

(a) r well-orders κ\ and

(b) for every α e κ9 there is β EK such that <α, r Γ α> £ </?, E Γ /?>.

If cf(κ) > ω, then the converse is also true. For, if r does not well-order K, there is
an infinite r-descending sequence

. . . r α B r α B . 1 r . . . r α 1 r α 0

of ordinals απ E K. Let α E K: be such that απ < α for all n. Then r does not well-
order α and <α, r Γ α> cannot be isomorphic to any <β, E f β>

The point here is that (b) can be "said" by a first-order theory and the omission
of K types, thus allowing us to single out well-orderings of K—that is, ordinals
below κ+— amongst linear orderings. The details of this part of the proof are
given in Dickmann [1975, pp. 241-242]. D

The foregoing argument is due to Chang [1968c], although the result was first
proven by Morley-Morley [1967], using V = L.

The inequality Λ(JS?ωiω) < 3 ω i —and hence the equality—was proved by
Morley [1965b] by a very subtle combination of the construction of models from
indiscernibles (Ehrenfeucht-Mostowski [1956]) and the Erdόs-Rado [1956]
theorem of partition calculus as a device for producing sets of indiscernibles of
large cardinality. His proof was later extended by Chang [1968c] to obtain the
inequality Λ(JSPκ+ω) < 3 (2κ )+ for all κ9 and by Helling [1964] to obtain the in-
equality fc(j£?K+a>) < 1K+ and, hence, the equality when cf(/c) = ω.

The details of these proofs go far beyond the scope of this guide to the subject,
and they can be consulted in the original papers or in Dickmann [1975, Chapter
4, Section 3]. The basic result is

3.2.17 Theorem. Let T be a first-order theory and S a set of (first-order) types. If
for every ζ < (2K)+ there is a model of T of power > 2ζ omitting 5, then there are
models of T of arbitrarily large cardinality omitting S. Π

The statement is independent of the cardinality of S. However, it gives us the
following

3.2.18 Corollary. mκ < 3 ( 2κ ) +.

Proof. There are 2K sets of types of power < κ i n a language with < K symbols,
say (Sξ\ξ < 2K>. Let μξ be the omitting-types cardinal (as defined in Definition
3.2.13) of the set Sξ; then mκ < sup{^ |ξ < 2K}. Note that μξ < 2{2K)+ for if Sξ

is omitted by a structure of power > 3 ( 2κ ) +, then by Theorem 3.2.17 it is omitted
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by structures of arbitrary large cardinality. And, by the downward Lowenheim-
Skolem theorem for J£?ωω, it is also omitted by a model of power < 2{2K)+. Since

cfθ ( 2 * ) + ) = ( 2 T > 2\

it follows that

mκ < sup{μξ |ξ < 2K} < 1{2K)+. D

Helling's result is similar to Theorem 3.2.17; however, it is assumed that E < K
and that K = Hα, with cf(α) = ω, and 2K is replaced by K. Since ω is of this form and,
under the GCH, every cardinal is a beth number, we immediately have

3.2.19 Corollary, (a) mω = ft(JS?ωiJ = 3 ω i . D
(b) (GCH) Ifd(κ) = ω, then mκ = Λ(JS?κ+ω) = 3 K + . D

An outstanding corollary of these upper bounds is the following theorem
due to Lόpez-Escobar [1966a, b].

3.2.20 Theorem. The class of all (nonempty) well-orderings is not RPC in any
finite quantifier language i f κω.

Hint of Proof. If this class were RPC in, say, J£?κ+ω, then by using a few additional
predicates and constants, we could easily manufacture another J5?κ+ω-sentence
which pins down the cardinal λ = 22* . By Theorem 3.2.15, this would force

ω) > ^λ> which manifestly contradicts Corollary 3.2.18. D

In order to complete this account, let us briefly look at tne argument leading
to the computation of the exact value of h(<£κ+ω). This argument was discovered
by Barwise-Kunen [1971] and, independently, by Morley (an unpublished result).
The techniques reviewed above are all used here along with a number of other
key refinements.

Let P(κ+) denote the class of all ordinals pinned down by some ifκ + ω-sentence;
it has the following properties:

(a) P(κ+) is an initial segment of ordinals without last element (see the re-
marks following Definition 5.2.1 in Chapter II)

(b) P(κ+) c (2K)+, by Theorem 3.2.15 and Corollary 3.2.18;
(c) κ+ c P(κ+χ by Example 1.2(2);
(d) If cf(κ) > ω, then κ+ e P(κ+\ by Theorem 3.2.16;
(e) (Karp-Jensen): P(κ+) is closed under primitive recursive operations on

ordinals.

3.2.21 Exercise. Prove (e) above for ordinal addition and multiplication. D

Let a(κ+) be the first ordinal not in P(κ+). By Theorem 3.2.15, 3 α ( κ + ) <
K&K+ω)- T n e converse is also true, although it is a much more delicate matter.

The notion of pinning down considered above is too coarse for our purposes.
A more manageable notion along the same lines is obtained, first, by relaxing the
well-orderedness requirement to well-foundedness; and, second, by adding the
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metatheoretic requirement that the well-founded structures under consideration
be reasonably well-behaved set-theoretical objects. A first, nontrivial step consists
of proving that the new notion coincides with the older one. See Dickmann [1975,
Chapter 4, Section 5C]. Once this is done, we then prove

3.2.22 Theorem. Let φ be an <$fκ+ω-sentence whose models have bounded cardinality.
Then there is a well-founded structure <«̂ ~, -< > definable in ZFC by a bounded
quantifier formula with parameters from H(κ+), such that if a denotes its height,
then all models ofφ have power < '2δ+ω.{a+ί),for some δ < κ+.

Denouement. By the remarks preceding the statement, α e P(κ + ); by (c) and (e),
δ + ω(a + 1) e P(κ+\ and hence this ordinal is smaller than a(κ+). By the defini-
tion of the Hanf number, the inequality h(^κ + ω) < 2a(κ + ) thus follows. D

Concerning the Proof of Theorem 3.2.22. A few remarks on this argument's main
ingredients are destined (at least, we hope) to sharpen the reader's appetite for
more on this subject. In fact, the full meal is served up in Barwise-Kunen [1971]
and in Dickmann [1975, pp. 274-281].

(1) The members of 9~ are certain sets of sentences belonging to a fragment Ψ
of ifκ+ω contained in H(κ+). All of these sets contain φ and are chosen in such a
way that they are rich enough to make the following work:

(i) an analogue of the model existence theorem of Chapter VIII, Section 3.1
(ii) the essentials of the indescernibility arguments involved in the proof of

Theorem 3.2.17.

The order -< of SΓ is reverse (proper) inclusion.
(2) If & had an infinite -< -decreasing sequence, Σί >- Σ 2 >•..., the indescern-

ibility arguments mentioned in (ii) above can be used to produce models of \Jn Σn—
hence also of φ—of arbitrarily large cardinalities, contrary to the assumption on
the cardinalities of the models of φ.

(3) An induction argument on the foundation rank of members of < ^ •<>
(involving also the Erdόs-Rado theorem to get sets of indiscernibles of large
cardinality) is used to show that the models of any Ί±_e 2Γ have power <
3ω.(0+i)(A), where β is the < ^ -<>-rank of Σ and λ = 2Ψ. In particular, every
model of φ has power < 3ω.(a+1)(λ). Since Ψ e H(κ+), there is γ < κ+ such that
Ψ e R(y), so that Ψ < Dy and λ <Ίγ+ί. The conclusion follows by setting δ =
γ+1. Ώ

4. The Back-and-Forth Method

4.1. Introduction and History

The method of extension of partial isomorphisms originated with Cantor who
used it for the stepwise construction of an isomorphism between any two count-
able dense linear orderings without endpoints. Since then, this type of argument



4. The Back-and-Forth Method 349

has been used to construct isomorphisms in a large variety of mathematical con-
texts. For example, some celebrated uses of this method are:

— The proof that a countable reduced abelian p-group is characterized up to
isomorphism by its Ulm invariants (see Kaplansky [1969, Theorem 14]).

— Hausdorff's generalization of Cantor's theorem showing that two ηλ-sets
of cardinality λ are isomorphic, for regular cardinals λ.

— The proof that two real closed fields of cardinality Ki whose underlying
orders are of type ηωι are isomorphic as fields (Erdos-Gillman-Henriksen
[1955]).

— The proof that two saturated, elementarily equivalent structures of the
same cardinality are isomorphic.

These examples illustrate two rather different situations. In the countable case
(Cantor's and Ulm's examples), the method produces an isomorphism rather
naturally and without additional assumptions. In the uncountable case (the three
last examples), one frequently needs to introduce cardinality hypotheses ex-
traneous to the problem in order to end up with an isomorphism (for example, in
the two examples involving ^-sets, the assumption is vacuously verified unless
GCH is used). The theory developed in this section gives a very satisfactory
explanation for this state of affairs. Moreover, it provides a machinery which
renders the exact content of the proofs, thus eliminating the extraneous cardinality
assumptions in the problematic cases.

A different use of the back-and-forth method was inaugurated by Langford
[1926]. He used it to show that any two dense linear orderings without endpoints
are elementarily equivalent, regardless of their cardinalities. Fraϊsse [1955a] and
Ehrenfeucht [1961] generalized Langford's use of the method (and result as well)
by giving a purely algebraic characterization of elementary equivalence in terms
of families of partial isomorphisms with the back-and-forth properties (Theorem
4.3.4). Furthermore, Ehrenfeucht gave a game-theoretical interpretation of the
method which subsequently became very popular. However, it was Karp [1965]
who conclusively showed that the mathematical framework where the basic
("one-at-a-time") back-and-forth technique is naturally expressed is infinitary,
rather than first-order, logic. More precisely, it is the class-logic ^£ ̂ ω. Karp's
results tied neatly in with Scott's earlier characterization of the countable iso-
morphism type of a countable structure by a singled?ωiω-sentence (see the end
of Section 4.4 below). This connection was developed and generalized by Chang
[1968c]. Barwise-Eklof [1970] and Barwise [1973b] gave a unified form to all
these arguments and provided the basis for a more general treatment. Benda
[1969] and Calais [1972] generalized the work of Karp to the class-logics i ? ^ .
The general theory of back-and-forth arguments is presented in Dickmann [1975,
Chapter 5]. This is the subject matter of Sections 4.3 and 4.4 below.

A third and quite different use of partial isomorphisms is for building em-
beddings—rather than isomorphisms—or even other kinds of maps, as in the
following examples:

— The proof that every A-saturated structure is A-universal, that is, it contains
an embedded copy of every structure of power < λ with the same first-
order theory.
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— The so-called countable embedding theorem (Barwise [1969c]) which shows
that for any two countable structures 91 and 95, 91 can be embedded in 93
iff every universal jS?ωiω-sentence which holds in 95 also holds in 91.

This kind of use hardly falls under the denomination "back-and-forth"; for, fre-
quently one moves in only one direction. However, it fits very naturally into the
general setting developed in Section 4.4 below.

4.2. Basic Facts

4.2.1 Definition, (a) Let 91, 93 be structures with the same vocabulary. A m a p /
from a subset of 91 into a subset of 93 will be called a partial isomorphism
from 91 to 95 iff either:

(i) / is the empty map and 91, 95 satisfy the same atomic sentences or,
(ii) Dom(/) is a substructure of 91, Range(/) is a substructure of 33, and

/is a monomorphism, that is, for every atomic formula φ(v1 ... vn) and
every χί9..., xn e Dom(/),

SIN <£[>!... x j iff 23 N </>[/(*!),...,/(*„)].

(b) Given a cardinal A, a λ-partίal isomorphism is a partial isomorphism,
where Dom(/) is generated (as a substructure of 91) by fewer than A
elements.

Notice that in other chapters (for example, in Chapter II, Section 4.2) the
domains of partial isomorphisms need not be substructures of 91; the difference
is not essential, because if Dom(/) Φ 0 , or if the language has at least one in-
dividual constant, then/extends to the substructure of 91 generated by Dom(/).

The extension relation between maps will (also) be denoted by c . As a mo-
tivation for later arguments, we prove the theorem of Hausdorff that was mentioned
in the introduction.

4.2.2 Example and Theorem. Let λ be a regular infinite cardinal. Then any two
ηλ-sets of cardinality λ are isomorphic.

Proof. The argument separates into two parts, and we first consider

Part I: Let {A, <>, (B, •<> be ηλ-SQts of power A, and consider the set 0 of all

A-partial isomorphisms (that is, in this case, order-preserving maps with Dom(/)

< A). 1 has the following properties:

(i) λ-extension property: Any subfamily of 0 of power < A, totally ordered
under the order of extension, has an upper bound in 0.
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(ii) One-at-a-time back-and-forth properties:
(a) Forth property: For every / e θ and aeA, there is geO such that

f ^ g and α e Dom(g);
(b) Bαc/c property: For every / e θ and fceβ, there is # e θ such that

/ c g and ft G Range(g).

Condition (i) is clear by the regularity of A, but (ii) is more delicate. We will do
(b), the proof of (a) being symmetric. Thus, assume that b φ Range(/), and let
(Y, Z) be the cut of Range(/) determined by b:

Y={ye Range(/)|y <b}, Z = {z e Range(/)|fc -< z}.

Since/is order-preserving, we h a v e / - 1 [ Y ] < / - 1 [ Z ] (see Example 1.2(3) for

this notation); and, since Dom(/) < λ, these sets have power < λ. Since <4, < >

is of type ηλ9 there is a e A such t h a t / - 1 [ Y ] < a < f~x[Z]. Thus, the map

Domfo) = Dom(/) u {a},

g[Όom(f)=f9

does the job. Part I now established, we turn to

Part II. Given a nonempty family 0 of partial isomorphisms with properties (i)
and (ii), we construct an isomorphism of (A9 < > onto <£, -< >. To this purpose, we
enumerate A and B without repetitions :

A = (aa\θi<λ\ B = (ba\oi< λ}.

Starting with any f0 e 0, we now construct a sequence

of partial isomorphisms by taking fa to be:

(i') If α is a limit ordinal, then fa = any map g e D extending all fδ, δ < α.
Here we use (i),

(iir) If α is a successor ordinal, then fΛ = any map g e D extending / α _ 1 ? and
such that:
(a') aβ+n G Dom(gf), if α = β + 2n + 1, /? limit,
(b') &/,+„€ Rangefo), if α = )8 + 2n -h 2, j8 limit.

Here we use (ii)(a) and (ϋ)(b), respectively.

As an exercise, the reader might check t h a t / = ( J α < A /α is an isomorphism, as is

required. D
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Clearly, Part II is a general theorem which has nothing to do with orderings
(Proposition 4.2.5). In order to analyze the situation, it is convenient to introduce

4.2.3 Definition and Notation. The notation

1: 91 ~ D 95 means that D is a nonempty family of partial
isomorphisms from 9ί to 95 with the
back-and-forth properties given in (ii)(a)
and (ii)(b) of Theorem 4.2.2 (caution:
property (i) is not required to hold).

91 ~p 95 means that there is an D such that 0: 91 £ D 95.

Q: 91 ~p

λ'
e 95 means that 0 is a nonempty family of partial

isomorphisms with the back-and-forth-
properties of Theorem 4.2.2 and the
extension property for ^-chains of
power < A.

0: 91 ~ p

λ 95 means that D is a nonempty family of partial
isomorphisms with the fewer than λat a
time back-and-forth properties; that is, for
every / e 0 and A c |9I|? A < λ, there is
g e D such that / c g and A c Dom(#),
and similarly for the "back" part.

Observe that the extension property and the back-and-forth properties do not
always occur together as they do in Theorem 4.2.2. The following connections
between the notions just introduced are easily proven and are left as an exercise.

4.2.4 Fact. For any family 0 of partial isomorphisms, the following holds:

(a) 0: 91 ~ p

;;
e 95 implies 0: 91 ^ p

λ 95 implies 0: 91 ^ £ 9 5 for any K < A, implies
Q : 9 ί - p 9 5 ;

(b) 0: 91 ^ p 95 # 0 : 2 1 ^ 2 3 ;
(c) // 91 ^f 95, then {/}: 91 -f e 95/or any λ. D

With this notation the second part of Theorem 4.2.2 becomes

4.2.5 Proposition. 7/91 and 95 are of power < A, or generated by sets of power < A,
then

91^95 Ϊ J 9I-£ ' e 95.

//, m addition, cf(A) = ω, ί/zerc

91^95 i# 91-595.



4. The Back-and-Forth Method 353

Hence, all four relations = , ~ p , ̂ p

ωand ~%e a r e equivalent on countably generated
structures. D

Later we will see that for regular uncountable cardinals A, the relation ~ J e

is much stronger than the relation ~ J .

4.3. Partial Isomorphisms and Infinίtary Equivalence

The fundamental result of thσ theory presented in this section is due to Karp
[1965]; it shows that the relation ~p

λ of partial isomorphism is identical with
the relation = aoλ of i f ^-equivalence. We will give a sketch of its proof.

4.3.1 Theorem. For all structures 91 and 23, 91 ~p

λ 23 is equivalent to 91 = o o Λ 23.

Proof. For the sake of notational simplicity, we will assume that λ = ω (hence,
~p

ω becomes ~p) and that the vocabulary has only relation symbols.
(1) We assume that D: 91 ̂ p 2 3 and prove that 91 = o o A S . By induction on

the structure of i f ^-formulas, one shows that any fe D is an i f ooω-map, that is,
for any φ with < n free variables and any au . . . , an e Dom(/),

(*) 91 N φίai9 . . . , f l J o 8 N Φίfia.l •. -, f(an)l

This is quite immediate except, possibly, in the case in which φ = 3yψ where the
following sequence of equivalences settles the matter:

For some a e \ 911,

911= ψ[aί9 ...9an9ά]o(Forth Property).

For some α e |2l | and g e D such that f^g and a e Όom(g).

911= φlau ..., an, a] o (Induction Hypothesis).

For some a e 19Ϊ | and g e D such that / c g and a e Dom(#),

25 N ψlgiaj,..., g(an), g(a)~] o (Back Property).

For some b e | © |,

(2) We prove now the converse. The preceding implication tells us that the
members of any back-and-forth set D: 91 ̂ p 2 3 are necessarily i ^ - m a p s . Let
0 be the family of all such maps with finite domain. Since 91 = aoω 23, the empty
map is in 0, and D Φ 0. Let us prove, for example, that 0 has the forth property.
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To this end, let / e θ , with Dom(/) = {al9..., an}, and α e | S I | , aφa{

(ί = i , . . . , n). If we find b e |93| such that

(**) 91 N φ[au . . . , an, a] => 93 h= φ [ / ( f l l ) , . . . , /(*„), 6]

holds for every !£ooω-formula </> with < n + 1 free variables, then the map

Dom(0) = Dom(/) u {a},

g[Όom(f)=f9

g(a) = fe,

would solve the problem, because (**) implies its own converse. If this is not the
case, then for each b e 1931, there would be an if ̂ -formula φb such that 911=
Φtίal9 , an, ά] but 95 N= ̂ φhU{a,\ ... J(an\ V\. Set

Then, 911= φ[au . . . , an, α], and this, of course, implies that

while

But this clearly contradicts the definition of/. D

Show as an exercise that for a fixed map h: 91 -> 93, the condition "/z is an
if ^-embedding" can be characterized in a similar manner.

A minor modification of the same argument gives a back-and-forth charac-
terization of the important notion of $£'^^equivalence up to bounded quantifier-
rank.

4.3.2 Definition, (a) To each ££ooA-formula φ, we inductively assign an ordinal
qv(φ) called its quantifier rank:

qr(φ) = 0 if φ is atomic;

if φis-iφ;

qτ(φ) = sup{qr(ι/O\i e 1} if φ is /\ ̂  or V ^
i e/ i e/

-hi if φ is (VΛ# or

When λ = ω the proviso X = 1 is frequently added to the last clause.
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(b) By 91 = ̂ k 93, we mean that 91 and 95 satisfy the same i f ^-sentences of
quantifier-rank < β. Π

4.3.3 Theorem (Karp). If 91 and 93 have the same vocabulary, and β is an ordinal,
then the following are equivalent:

(2) there is a sequence 3Γ = <0α |α < β} with the properties:

(a) each Dα is a nonempty family of partial isomorphisms from 91 to 93;

(b) 0αc: 0 y , / o r y < α < j 8 ;
(c) Back-and-forth property: if OL + 1 < β,then

(i) /or every / e 0α+1 and 4̂ ^ |9I|, A < λ, there is g e Da suc/z ί/iaί
/ ^ g and ^ c Dom(g);

(ii) /or et ery / e 0 a + 1 and B c |93|, 5 < A, ίferβ is # e Da swc/i that
f ^gandB c Range(gf). D

As was remarked in the introduction to this chapter, the back-and-forth
characterization of elementary equivalence is another important result along
these lines. Thus, we have

4.3.4 Theorem (Ehrenfeucht-Fraϊsse). // 91 and © are structures in a finite vo-
cabulary without function symbols, then the following are equivalent:

(1) 91 Ξ S ;
(2) there is a sequence of length ω,$~= <0π | n e ω>, with properties of Theorem

4.3.3(a)-(c), where the sets A, B of power < λ in (c)(i) and (c)(ii) are replaced
by one-element sets.

Gist of Proof. For the proof that (2) implies (1), we proceed as in the first half of
the proof of Theorem 4.3.1, showing by induction on n that the maps in 0π preserve
first-order formulas of quantifier-rank < n.

For the argument that (1) implies (2), we put in Dk all partial isomorphisms
preserving formulas of quantifier-rank < k. Observe that the infinitely many
formulas {φb(vu . . . , vn-{)\b e |93|}—all of quantifier-rank < k—separate into
only finitely many classes modulo (logical) equivalence. By selecting representa-
tives of these classes, φ then becomes a first-order formula. This is because in a
finite vocabulary without function symbols there are only finitely many classes
modulo (logical) equivalence of formulas of bounded quantifier-rank with a fixed
finite number of free variables (Exercise and Hint: Use induction on the quantifier-
rank). D

4.3.5 Remark. The restriction to a finite vocabulary without function symbols is
unavoidable. For more on this, see Dickmann [1975, Example 5.3.12]. We note
that in the proof given in that book (Theorem 5.3.11, pp. 321-322) the clause
"without function symbols" was inadvertently omitted.
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4.3.6 i f ooA-Equivalence and Isomorphism. The fact that partial isomorphism
implies isomorphism for structures of power < λ, when cf(λ) = ω (see Proposition
4.2.5), does not extend to other values of λ. The first examples of, say, non-iso-
morphic =2?

ooωi-equivalent structures of power Kx were constructed by Morley
(see Chang [1968c, p. 45], Nadel-Stavi [1978]), and Tait (see Dickmann [1975,
pp. 350-360]). The same construction applies to any regular uncountable cardinal,
but not to singular cardinals of cofinality > ω. For the latter the problem is still
open. Gregory [1974] showed how to transform any example with these properties
into one which, in addition, is rigid—and this even for any infinite cardinal.

The example of Morley and Tait is a tree. Later on, Paris [1972, unpublished]
gave an example of a total ordering with the same property. More recently,
Shelah [1981b, 1982b] has made a more conclusive study of the number of structures
JS? ̂ -equivalent to a given structure of power λ. His results are given in

4.3.7 Theorem and Example. Let λbe α regular cardinal.

(1) Under the assumption that V = L, if λ is not weakly compact, then the
number of isomorphism types of models of cardinality λ which are $£^λ-
equίvalent to a given structure of cardinality λ is either 1 or 2λ.

(2) If λ is weakly compact, then for any cardinal 1 < K < λ there is a structure
of cardinality λ which, up to isomorphism has exactly K structures of car-
dinality λ that are $£^χ-equivalent to it. This construction also applies to
any supercompact cardinal K such that λ < K < 2λ. D

A recent paper by Kueker [1981] investigates the ways in which <£t

O0(Oi-
equivalent structures of power Kx can be built up from increasing, continuous
chains of isomorphic countable substructures.

4.3.8 The Strong Partial Isomorphism Relation. As the relation ~%e of strong
partial isomorphism arises spontaneously in mathematical practice as much as
the relation ~p

λ of partial isomorphism does, it is natural to ask whether it also
has a metamathematical interpretation. This question was posed, independently,
by Dickmann [1975, p. 316] and Kueker [1975, pp. 34-35]. Nevertheless it
remains largely open—even to the point that we do not yet know whether or not
the relation ~p

λ'
e is transitive.

However, Karttunen [1979] has made a partial step in this direction, by
giving a back-and-forth characterization of equivalence in infinitary languages
of a different type, which was first introduced—rather informally, too—in
Hintikka-Rantala [1976]. These are the languages N^λ A precise definition of
these and the corresponding languages Nκλ is to be found in Rantala [1979] and
in Karttunen's paper. Roughly speaking, their characteristic feature is that formulas
are defined by giving the tree of their subformulas, and that this tree may have
branches of infinite height (contrary to the case of =£? ̂ -formulas, where the tree
of subformulas is well-founded; see Dickmann [1975, pp. 87-88]).

Karttunen characterizes JV^-equivalence in terms of a certain relation
~™'e; this being a priori weaker than ^ e . Briefly stated, 0: 91 ~w

λ>
e 95 holds iff

the family of partial isomorphisms D has a tree order < finer than the extension
order c 5 and the (same) back-and-forth and extension properties hold for the
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order <, instead of that of extension. It is not known how much weaker is the
relation ~ A

w? e. However, Karttunen does show

(1) ~ Λ

w ' e implies ~ $ , and
(2) for structures of cardinality < λ, we have that ~ 7 ' e implies isomorphism.

Hence, in view of the comments in Section 4.3.6, the relation ~ Λ

w ' e is seen to be
much stronger than ~p

λ.

4.4. A General Setting for Back-and\ or-Forth Arguments

In this section we will consider the problem of using extensions of partial iso-
morphisms as a tool for constructing maps other than isomorphisms. This kind
of application ties in with the question—a priori a different one—of whether there
are back-and-forth characterizations of semantical relations between structures
other than if^ requivalence. What we have in mind are semantical relations
induced by classes of infinitary formulas other than the class of all such formulas.
A first example, the relation of i f ^-equivalence up to bounded quantifier-rank,
was already considered in Theorem 4.3.3. As a matter of fact, both these problems
have a common solution; the connecting thread is the countable embedding
theorem stated at the end of Section 4.1.

Let us begin by properly defining the semantical relation 9Ϊ (Φ) © induced by
a class Φ of !£ ^-formulas. In the examples that we already know, the relations
= ooA and = ^ A are induced by classes Φ of formulas closed under negation, so
that the condition

(f) for every sentence φ e Φ, 911= φ implies 93 |= φ,

entails its own converse. This is not true of other classes of formulas (for instance,
Φ = the existential i f ^ rformulas). This indicates that (f) defines the appropriate
semantical relation between 91 and 95, which we will denote 91 (Φ) 95.

We should also expect that if an appropriate characterization of the relation
91 (Φ) 95 is to exist, the class Φ ought to have some closure properties. It turns
out that these requirements are very mild.

4.4.1 Definition. A class Φ of i f ^-formulas is normal if it satisfies the following
requirements:

(Nl) v0 = v0 is in Φ;
(N2) If φ is in Φ, then some reduced form of φ is also in Φ (a reduced form of

φ is obtained by "pushing" all negation symbols to their innermost
places);

(N3) Φ is closed under subformulas;
(N4) Φ is closed under conjunctions and disjunctions of sets of its formulas;
(N5) Φ is closed under substitutions of (some occurrences of) variables by

terms;
(N6) For every ordinal α, if Φ contains a formula of quantifier-rank α + 1,

beginning with 3 (respectively, V), then any quantification of the same
type on a formula in Φ of quantifier-rank < α is in Φ. D
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The clause (N2) is designed to allow inductions on the structure of formulas

in Φ.

4.4.2 Examples, (a) The following classes of <5?«,λ-formulas are normal: all
formulas, all reduced formulas, all quantifier-free formulas [(N6) holds vacuously]
all existential formulas [(N6) holds vacuously for V], all universal formulas, all
positive formulas. Furthermore, if Φ is normal, then the class Φβ of all formulas in
Φ of quantifier-rank < β is also normal.

(b) The following classes are not normal: all prenex αSfooΛ-formulas [(N4)

fails], all i?ιcω-formulas [(N4) fails]. D

The notion of partial isomorphism must also be adapted to the present setting,
and the appropriate notion for this is that of a (partial) Φ0-morphism, that is, of a
map preserving all quantifier-free formulas φ in Φ:

91 N φ\β] implies 93 |= φ[f o g\

for every assignment g in Dom(/).
The following result is a common generalization of Theorems 4.3.1 and 4.3.3,

and its proof is similar to that of the latter.

4.4.3 Theorem. For any normal class Φ of $£ ̂ χ-formulas and for any structures 9t,

95 with the appropriate vocabulary, the following are equivalent:

(1) 91 (Φ) 8 ;

(2) There is a sequence <Dα |αeON> of nonempty families of partial Φ o-
morphisms from 91 to 95, such that;
(a) ifot< y,theniγ c Qα;
(b) for every α e ON,

(i) if Φ contains a formula of quantifier-rank α + 1 beginning with an
existential quantifier, then the forth property holds: For every
f e 0 α + 1 and A ^ \W\, Ά < λ, there is g e Dα such thatf c g and
A c Domfo);

(ii) if Φ contains a formula of quantifier-rank α + 1 beginning with a
universal quantifier, then the back property holds: For every

fe Dα+1 and B c | © | , B < λ, there is g e 0β such that f^g and
β c : Ranged). Q

4.4.4 Some Important Remarks, (a) If Φ has the additional property that, when-
ever it contains one formula of quantifier-rank > 0 beginning with 3 (respectively
V), then it contains formulas or arbitrary large quantifier-rank beginning with 3
(respectively, V), then the sequence <0 α |αeON> can be replaced by just one
family of partial morphisms. Obviously, this is the case if Φ is any one of the follow-
ing classes: All formulas (see Theorem 4.3.1), existential formulas, universal
formulas, positive formulas.
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(b) For normal classes of the form Φ^, where β is an ordinal—see Example
4.4.2(a)—the sequence <0 α |αeON> can be cut down to <Dα|α < β>. In this way,
a generalization of Theorem 4.3.3 can be obtained.

These and other variants are discussed in detail in Dickmann [1975, Chapter
5, Section 3.C]. D

An argument of this type leads to results such as:

4.4.5 Proposition. Let λ be a fixed infinite cardinal. To every cardinal μ there
corresponds a cardinal K which depends only μ and λ such that Ϊ/93 < μ, then for
arbitrary 91 the following holds:

(a) (Chang) 91 (Exκλ) 93 implies that 91 (Ex ̂ 9 3 ;
(b) (Kueker) 91 =κλ 93 implies that 91 Ξ ^ 93
(c) (Chang) 93 (Un κ J 91 implies that 93 ( U n ^ ) 91;
(d) (Chang) // also 91 < μ, then

9I(PosκΛ)93 implies 9I(Poso o Λ)«.

Here, the symbols Ex, Un, Pos, respectively denote the classes of existential, uni-

versal, and positive formulas of the corresponding languages. D

See Chang [1968c] or Dickmann [1975, pp. 335-339] for proofs of this.
These results hold regardless the number of symbols in the vocabulary.

Bringing this parameter into consideration yields a generalization of Scott's
famous countable isomorphism theorem.

4.4.6 Theorem. Given a vocabulary τ and cardinals μ and λ, where λ is infinite, let
K = max{μ< λ, τ} + . Then for each τ-structure 91 of cardinality < μ, there is an
<£κλ(τ)-sentence φ^ such that

S8\=φΆ iff 2 1 = ^ ®

holds for any structure 33. D

When μ = λ = τ = Ko, φy is in JS?ωiω. If, in addition, 93 is also countable, then
Theorem 4.3.1 and Proposition 4.2.5 give

9 3 ^ ^ iff 91^93.

This is Scott's isomorphism theorem (see also Chapter VIII, Section 4.1).
Theorem 4.4.6 holds for relations which are slightly (?) more general than

if ^-equivalence. However, we do not know of any interesting application of this
additional information; see Dickmann [1975, p. 340].
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The connection between isomorphism and J£? ̂ -equivalence given by Theorem
4.3.1 and Proposition 4.2.5 when cf(A) = ω does have analogs in the present
general setting:

4.4.7 Proposition (Chang). Let cf(λ) = ω. Then

(a) 1 < λ implies that 91 ( E x ^ ) 33 iff 91 c 95.

(b) 93 <^_λ implies that 91 ( U n ^ ) 95 Qf» £ 91.

(c) 9Ϊ, 5 < λ imp/}; ίftαί 91 ( P o s ^ ) 95 iff 95 is α homomorphic image of 91. D

Propositions 4.4.5 and 4.4.7 can be combined in an obvious way to improve
the left-hand side of the result, when 91 and/or 95 are of bounded cardinality. We
immediately obtain a proof of the countable embedding theorem (see the end of
Section 4.1).

4.5. Some Applications

No account of the back-and-forth method would be complete without at least
some mention of concrete mathematical applications. And such we will briefly
give here. Further examples will be found in Chapter XI, where several important
applications to algebra are discussed—especially in Sections 1-5.

The Functoriality of Back-and-Forth Methods

A little practice with the application of the techniques presented in this section
reveals that some of the back-and-forth relations we have considered (such as,
~ 5) t e n d to be preserved by many standard algebraic constructions. As an example
of this, the reader may try

4.5.1 Exercise. Using Theorem 4.4.3, prove that if Φ normal class and 91; (Φ) 25;
for all i e /, then

Π9Xί(Φ)Π®ί and ©9l i (Φ)©» I ,
iel iel iel is I

Warning: Direct sums only make sense if the vocabulary contains an individual
constant, 0, such that F ( 0 , . . . , 0) = 0 for every operation F. D

This exercise should convince the reader that only "general nonsense" argu-
ments are used, which is an indication of some kind of functoriality. The extent
of it was worked out by Feferman [1972], who showed:

4.5.2 Theorem. IfF is a λ-localfunctor (see below), then F preserves $£ ^^equivalence
and also S£ ̂ χ-equivalence up to quantifier-rank β for any ordinal β. D
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A λ-local functor is an operation on structures (of possibly infinitely many
arguments) and on maps between them, satisfying:

(i) in each coordinate, its domain of definition is closed under substructures;
(ii) F preserves inclusion (of both structures and maps)

(iii) for every subset Z c |F«9I. |ΐ e / » | of power < λ there are substructures
SB,- c 21. (/ e I\ each generated by < λ elements, such that

Granted properties (i) and (ii), one variable ω-local functors are precisely those
which preserve direct limits.

From Theorem 4.5.2 we thus infer

4.5.3 Corollary. For the indicated values of λ, <£\^λ-equivalence is preserved by the
following algebraic and model-theoretic constructions (among others):

(1) The polynomial ring in one indeterminate over a ring (any λ);
(2) The ring of formal power series in one indeterminate over a ring (any λ > Kx)

(3) The field of fractions of an integral domain (any λ);
(4) The free group generated by a set (any λ);
(5) Tensor products of modules (any λ);
(6) Generalized product operations; including direct products, direct sums, and

the various cardinal sum operations considered in Section 2.3 (any λ);
(7) The structure ξ>Σ(X, <) , with blueprint Σ, generated by the set of order-

indiscernibles <X, < > (any λ). D

Several warnings ought to be sounded here. In particular, we caution.
(a) That these preservation results are derived by explicit description of each

of the operations, rather than by use of their universal properties. This relates to
Hodges' λ-word constructions, constructions which also preserve ££^-equivalence
(see Chapter XI, Section 6).

(b) That in (1) and (7) the functor is ω-local (hence, it is A-local for every
λ > ώ), while in (2) it is ωx-local. In the other cases it is not local as it stands.
However, the construction can be put in equivalent form as a composition of a
local functor and other operations which preserve <£ ̂ -equivalence.

(c) That although the method is quite general, there are certain forms of the
back-and-forth argument to which it does not apply. For example, elementary
equivalence is not preserved by the operations (1) and (4). See Feferman [1972,
pp. 92-93].

(d) That the construction in (7) is delicate, and we will refer the reader to
Morley [1968] for the details. However, the preservations results are quite general
in this case. For example, this construction preserves the strong partial iso-
morphism relation ~p

λ'
e (see Dickmann [1975, pp. 393-397]). As a matter of fact,

an analysis of these results will show that we obtain the following extension of
Theorem 4.5.2.

4.5.4 Theorem. Let F be a unary λ-local functor sending τ-structures into τ'-struc-
tures. Let Φ and Ψ be normal classes of <£^χ-formulas with vocabularies τ, τ',
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respectively. Assume that F transforms partial Φ0-morphisms into partial ^
phίsms. Furthermore, let us assume that these classes are correlated in the following
way: For every ordinal α, if Ψ contains a formula of quantifier-rank α beginning with
3 (respectively, V), then Φ contains at least one formula of the same type, also of
quantifier-rank α. Then, for structures 91, 95 in the domain of F,

Sl(Φ)S implies F(9l) (Ψ) F(S). D

As an exercise, the reader may try to derive some consequences of this theorem
in the style of Theorem 4.5.3.

Partial Isomorphisms and Reduced Products

The foregoing results also apply to the operation of reduced product modulo a
filter. Indeed, it is easy to verify that we have

4.5.5 Exercise. The reduced product operation (modulo a fixed filter) is an ω-
local functor. [Certain precautions will be observed in defining the reduced product
of a family of maps.] D

However, Benda [1969] proved a much stronger result whenever the filter
satisfies some mild conditions:

4.5.6 Theorem. Suppose we are given an infinite set I, a fixed infinite cardinal λ, a
vocabulary τ of power < λ and a λ-regular filter 3F on I. If the τ-structures {9I£ | i e 1}
and {93j| i e 1} satisfy:

% = 33i for each i e /,

then

Π
iel ίel

In other words, elementary equivalence is strengthened to S£aΰλ+-equivalence.
A filter 3F is λ-regular just in case it contains a family of λ sets such that the

intersection of any infinite number of them is empty. For more information on
this matter, see Chang-Keisler [1973, Section 4.3]. The theory developed there
shows that A-regularity is a rather mild condition. For example, ω-regular and
ω-incomplete (obviously) coincide, and the notions of non-principal and co-
regular ultrafilters are coextensive on sets of power less than the first measurable
cardinal. This proves at once:

4.5.7^ Corollary. If 3F is an ω-incomplete filter or if 3F is a non-principal ultrafilter
and I is smaller than the first measurable cardinal, then 9lf = 95,/or all i e I, implies

iel iel

for structures with a countable vocabulary, ϋ
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Since a single j£VA + -sentence involves at most λ symbols, Theorem 4.5.6
also yields the conclusion

is I iel

for structures with a vocabulary of arbitrary cardinality.
Benda [1972] proved that the conclusion of Theorem 4.5.6 can be strengthened

to i f aoλ+ + -equivalence for filters with additional properties. A proof of Theorem
4.5.6 which is, we think, easier than Benda's and which is more in keeping with the
spirit of the theory that has been developed here can be found in Dickmann
[1975, Theorem 5.4.15].

Real Closed Fields

As a final example, let us consider the following classical theorem of Erdόs-

Gillman-Henriksen [1955].

4.5.8 Theorem. Any two real closed fields of cardinality Kx whose underlying orders

are of type ηωι, are ίsomorphic. D

This statement has a major drawback: It is totally vacuous unless the con-
tinuum hypothesis holds (see Gillman [1956]). An analysis of the proof reveals,
however, that something is proven which has nothing to do with the cardinality
of the fields, let alone with the continuum hypothesis. As in other situations, the
machinery developed in this section makes it possible to formulate a statement
which renders the exact content of the proof.

4.5.9 Theorem. Let λbe a regular cardinal and F, F' two real closed fields of type
ηλ (no restriction are placed on their cardinalities). Then F ~ 5 ' e F'

Hint of Proof. This combines the argument used in Theorem 4.2.2, together with:

(i) The fundamental result of Artin-Schreier that an isomorphism between
ordered fields extends uniquely to their real closures (see Jacobson [1964;
pp. 285-286]); and

(ii) the fact that if / is a partial isomorphism from F to F\ x e F, y e F' are
transcendental over Dom(/) and Range(/) respectively, and, for all
z e Dom(/),

x > z iff* y > f(z),

then/can be uniquely extended to the subfield generated by Όom(g) u {x}
in such a way that x is sent onto y. ϋ

For details on this line of inquiry, the reader should see Dickmann [1977].






