
Chapter III

Characterizing Logics

by J. FLUM

The model theory of first-order logic is well developed. It provides general results
and methods which enable us to study and classify the models of systems of
first-order axioms. Among these general results of wide applicability are the
completeness theorem, the compactness theorem, and the Lόwenheim-Skolem
theorem. Thus, for example, the completeness theorem leads to decidability
results; in many cases we obtain for a given system of axioms models with special
properties using a compactness argument; finally the Lόwenheim-Skolem
theorem tells us that we can restrict to countable structures when classifying—with
respect to its first-order properties—models of a system of axioms.

Much effort was spent in finding languages which strengthen the first-order
language and which are

(i) sufficiently strong to allow the formulation of interesting systems of axioms
and properties of structures which are not expressible in first-order logic,
and

(ii) still simple enough to yield general principles and results which are useful
in investigating and classifying models.

Taking into account the situation for first-order logic, it is not surprising that many
logicians attempted to find logics satisfying the analogues of the completeness, the
compactness, and the Lόwenheim-Skolem theorems. That this search could not be
successful was shown by the following two results, both of which are due to Lind-
strόm[1969]:

(1) First-order logic is a maximal logic with respect to expressive power
satisfying the compactness theorem and the Lόwenheim-Skolem theorem.

(2) First-order logic is a maximal logic satisfying the completeness theorem
and the Lόwenheim-Skolem theorem.

Let us point out some consequences of these results.
(a) They tell us that first-order logic is a natural logic, if one accepts the

completeness (or the compactness) and the Lόwenheim-Skolem property as
natural properties. I suspect that most mathematicians do not accept the Lόwen-
heim-Skolem property as natural. Quite the contrary, as Wang [1974, p. 154]
remarked: "When we are interested in set theory or classical analysis, the Lόwen-
heim theorem is usually taken as a sort of defect (often thought to be inevitable)
of the first-order logic. Therefore, what is established (by Lindstrόm's theorems)
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is not that first-order logic is the only possible logic but rather that it is the only
possible logic when we in a sense deny reality to the concept of uncountability

(b) Lindstrόm's results show that it makes no sense to classify logics as
either good or bad, depending on whether they are complete (compact) and have
the Lόwenheim-Skolem property or not. On the contrary, Lindstrόm's result
gave special emphasis to the proposal—already expressed by Kreisel in 1963—that
there must be a balance between the syntax and the semantics of a logic and that
the semantic properties we consider must be adapted to the expressive power and
the special features of the given logic.

(c) Lindstrόm's results were the starting point

(i) for investigations which were trying to find some order in the diversity
of extensions of first-order logic, and

(ii) for a systematic study of the relationship between model-theoretic prop-
erties of logics.

In particular, these investigations have led to characterizations of other logics by
means of suitable model-theoretic properties.

(d) Robinson [1973] specified the following task ".. . to develop topological
model theory. What I have in mind is a theory which is related to algebraic-
topological structures, such as topological groups and fields, as ordinary model
theory is related to algebraic structures." There were some approaches to this
problem which led to different logics for topological structures. However, when
Ziegler [1976] proved that a certain logic !£t is a maximal logic—in the sense of
Lindstrόm's results—for topological structures, there was strong confidence in
the fact that S£t is the logic for topological structures corresponding to first-order
logic; and, in particular, that 5£x should prove helpful for the investigation and
classification of topological structures. It turned out that this is actually the case.

Section 1 of the present chapter is mainly devoted to a proof of Lindstrόm's
theorems. Section 2 contains some further characterizations of first-order logic
by means of model-theoretic properties. In Section 3 we show that i ? ω ω is a maxi-
mal logic satisfying properties which can be viewed as model-theoretic generaliza-
tions or substitutes for compactness and the Lόwenheim-Skolem property. In
Section 4 we prove that among the logics of the form ^ωω(Q) with a unary mono-
tone quantifier Q the logics i?ω ω(βα), where βα is the quantifier "there are at least
Kα-many" are the only ones with the relativization property. Finally in Section 5
an "abstract maximality theorem" is established. This result not only covers
Lindstrόm's result but it also tells us how to obtain maximal logics for other kinds
of structures, such as topological structures, for example.

1. LindstrδπC s Characterizations of
First-Order Logic

We first present a proof of Lindstrόm's first theorem ("compactness +
Lόwenheim-Skolem property characterize JS?ωω")> which does not presuppose
knowledge of any special model-theoretic results. We then try to minimize the
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assumptions and prove a lemma which, on the one hand, isolates the main step in
the derivation of Lindstrόm's first and second theorems ("recursive enumer-
ability for validity + Lόwenheim-Skolem property characterize £fωω") and, on
the other, makes visible the relationship between maximality and a separation
property. Later, when we are characterizing JS?^ and some other logics as maximal
logics, we will see that a proof of the maximality along the same lines leads to a
separation theorem. In this way we will obtain in a unified form some results which
now appear to be scattered throughout the literature. In the second part of this
section, we list some examples which show that it is not possible to strengthen
Lindstrόm's theorems in some more or less plausible ways. We will close this
section by giving a characterization of the monadic part of first-order logic (and
of some monadic extensions of first-order logic).

Throughout this chapter, given any vocabulary τ we denote by τ' a disjoint
copy of τ. For/, R, c in τ let/', R\ d be the corresponding symbols in τ'. If S£
is a logic and φ an j£?[τ]-sentence, then φ' will be the j£?[τ']-sentence associated
with φ by the renaming property. Finally, for a τ-structure 91 let 21' be the cor-
responding τ'-structure. If 95 = 21', we set 95" ' = 21.

For definiteness let us assume that all logics are one-sorted. In this section, if
not explicitly stated otherwise, all logics are assumed to be closed under (finitary)
boolean operations (that is, they are assumed to have the Boole property).

1.1. Lindstrόrrΐs First and Second Theorems

We begin by proving a version of Lindstrόm's first theorem.

1.1.1 Theorem. Let 3? be a logic, <£ωω < J^, with the compactness property and the

Lόwenheim-Skolem property for countable sets of sentences. Then J£f = &ωω.

Proof The proof proceeds in three steps. First, we will show that each if-sentence
depends on finitely many symbols. Then, in case φ e <£[τ] is not equivalent to a
first-order sentence, we will get elementarily equivalent structures 2ί and 95 such
that

( + ) SΆ\=φ and 9 5 N I I A .

Finally, we will see that it is even possible to obtain isomorphic 21 and 95 with
( + )—a contradiction.

Let us start with the first step (see Proposition Π.5.1.2).

Given φ e S£\τ\ there is a finite τ0 c τ such that for any τ-structures
(1) 21 and 95

2ί K s 95 K implies (21 \= φ iff 95 |= φ).
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To prove (1) let Φ c if [τ u τ'] be the set

φ = {Vx!... Vxn(Rx1 ...xn<->R'xι...xn)\n > 1, tfeτrc-ary}

u {Vx x... Vxnf(xl9..., xn) = f'(xu ...,xn)\n> 1,/e τ n-ary}

u {c = c'\ceτ}.

Clearly Φ μ f ^ f . Hence, by Jδf -compactness, there is a finite Φ o such that
φ 0 \=φ++φ'. But then any finite τx such that Φ o c ^ [ τ j leads to a finite τ 0

satisfying (1).

We now assume that the conclusion of the theorem fails; and, hence we sup-
pose that some φ e 5£\x\ is not equivalent to a first-order sentence. Choose a
finite τ 0 c τ according to (1). We now prove:

There are τ-structures 21 and 95 with

(2)
A = B, 2lNiA, S t = - ι ^ and 31 pτ 0 = 93 Γτ 0.

To establish (2), let φu φ2, . . . be a complete list of the J^ωω[τ0]-sentences. By
induction, we obtain a sequence Φi,φ2, - such that for each n, φn — φn or φn =
" Ί φ π , and φ A φγ A Λ φn is not equivalent to a first-order sentence. Then
also ~iφ A φ1 A Λ φn is not equivalent to a first-order sentence. Hence, both
φ A φt A ••• Λ i/^and-Ίi^ Λ φγ A ••• Λ ^Πaresatisfiable.LetΨ = {φn\n > 1}.
By ^f-compactness and by the assumed Lδwenheim-Skolem property for 5£
there are countable structures 21 and 95 such that 211= Ψ u {φ} and 95 |= Ψ u
{-IIAI But then 21 [ τ 0 = 93 Γ τ 0 and by (1), 21 Γ τ 0 ^ 95 [ τ 0 . Therefore, X and B
are countable and infinite. Hence, without loss of generality, A = B.

In the last step we obtain the desired contradiction passing in (2) to structures
having isomorphic—instead of elementarily equivalent—τo-reducts. For this
purpose, choose a disjoint copy τ' of τ and new (2n + l)-ary function symbols/„
a n d # π . S e t τ * = τ u τ' u {/„, gn\neω}.

For each w, fix an enumeration {Xi(xu... ,xn,x)\ίeω} of all J ^ ω ω [ τ 0 ] -
formulas with free variables among x l 5 . . . , xn, x. Let Γ consist of the «Sf[τ*]-
sentences

("the τ-reduct is a model of ^, the τ'-reduct a model of ~iφ'"\

φ<r+φ' for each ifω ω[τ0]-sentence φ

("the τo-reduct and the τ'0-reduct are elementarily equivalent"),

and of the following sentences which enable us to construct in a countable model,
step by step, an isomorphism of the τo-reduct onto the Xo-reduct (let x = x x . . . xn

and y = yx... yn)
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Vx Vy VxhyίΛ Wx, *) «- zXy, JO) )

(*)

Vx \fy \/y[ 3x[ /\ (χt(x, x) «
\i = 0

Λ te(χ> 0n(χ> ^ y)) ^ zίCv, y ) ) ) ? w,
f = 0 /

.reω.
ί = 0

Note that given a finite set Ψ o of sentences in (*) we can expand an arbitrary
τ 0 u τΌ-structure to a model of Ψ o . Hence, by (2) each finite subset of Γ is satisfiable.
Using the compactness and the Lδwenheim-Skolem property of J^, we obtain a
countable model D of Γ. Let 9Ϊ = t) [ τ and 95 = (D [ τ')~"' (where ': τ -> τ' is the
given renaming). Clearly, A = B = D, 9I^=^> 95μ=~i^ and 91 Γ τ 0 = © Γ τ 0 .
We will show that 91 [ τ 0 ^ © Γ τ 0 , which contradicts (1).

Let dx,d2,... be an enumeration of Zλ Since 91 fτ 0 = S I sτ 0, then we have

by(*)

(91 Γto.d

(ffl Γτ 0, di, QiidMdά dϊ), d2) =

Continuing in this way (see the proof of Theorem Π.4.3.1), one obtains sequences
au a2,. . and bl9b2,-.. such that 4̂ = {α jneω}, B = {bn\neω} and

( 9 i r x o ^ i , « 2 , . . - ) = (95 [τo,bl9b29...).

But then π: 91 [ τ 0 ^ 95 (" τ 0 for π defined by π{an) = bn for n e ω. D

The following lemma contains the main step in Lindstrom's derivation of his
theorems. We state it in the form of a "separation theorem". In this way, we will
be able to obtain some further applications.

Recall that a logic i f is said to have the finite occurrence property, if for arbi-
trary τ we have i f [τ] = (J {if [τ 0 ] | τ 0 c τ, τ 0 finite}.

1.1.2 Lemma. Let ^ be a logic with the finite occurrence property. Assume
yωω < 3* and that 5£ is closed under conjunctions and disjunctions but not neces-
sarily under negations. Let t£ have the Lόwenheim-Skolem property and suppose that
there are disjoint J£-classes which cannot be separated by an elementary class, i.e. for
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some τ 0 there are l£\τ ^-sentences φ and φ with Mod(φ) n Mod(φ) = 0 such
that there is no χe !£ωω[τ0] vWίft

Mod(φ) c Mod(χ) and Mod(χ) n Mod(^) = 0 .

Then there is for some vocabulary σ containing (at least) a unary relation symbol
U an 5£\<s\-sentence 9 such that (i) and (ii) hold:

(i) ι/9I |= 5 then UA is finite and non-empty,
(ii) for each n > 1 there is an 21 f= θ wίί/z 11/"41 = π.

Before proving this lemma, let us state some of its consequences.

1.1.3 Theorem. Let 5£ be a logic with the finite occurrence property, <£ωω < ϊ£,
and assume that <£ is closed under conjunctions and disjunctions but not neccessarily
under negations. If <£ has the Lόwenheim-Skolem property and is countably com-
pact, then any disjoint ^-classes can be separated by an elementary class.

Proof. Otherwise, there exists an if-sentence 9 satisfying (i) and (ii) of Lemma
1.1.2. But then

( + ) {5} u {"there are more than n elements x with l/x" |n > 1}

is a finitely satisfiable set which has no model. D

Recall that in this section we assume that all logics have the Boole property,
if not explicitly stated otherwise.

1.1.4 Lindstrόm's First Theorem. Let <£, Jδfωω < if, be a logic with the finite
occurrence property. If $£ has the Lδwenheίm-Skolem property and is countably
compact, then <£ωω = <£.

Proof Given any if-sentence φ the model classes of φ and ~i φ are disjoint, hence,
by the preceding theorem, there is a first-order sentence χ separating Mod(φ)
and Mod(~~ι φ). But then χ is equivalent to φ. D

1.1.5 Lindstrόm's Second Theorem. Assume that i f is an effectively regular logic
(see Chapter II for definitions). If !£ has the Lδwenheίm-Skolem property and is
recursively enumerable for validity then if ι

ω ω effectively contains $£.

Proof For the sake of contradiction, suppose that some if-sentence φ is not equi-
valent to a first-order sentence. Since the model classes of φ and —i φ cannot be
separated by an elementary class there is an if-sentence 5, θ e ^\β\ with prop-
erties (i) and (ii) of Lemma 1.1.2. By a theorem of Trahtenbrot [1950], for some
finite τ—we can assume τ n σ = 0 - t h e set Φ of i f ωω[τ]-sentences true in all
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finite models is not recursively enumerable. On the other hand, we have for

(*) φeΦ iff \=3 -> φv

where φu denotes the relativization of φ to U (see Definition II. 1.2.2). i f is ef-
fectively regular and recursively enumerable for validity, hence by (*), the set Φ is
recursively enumerable—a contradiction. To show that jSfωω effectively contains
$£, given an if-sentence φ, we enumerate the validities of i f until we arrive at a
formula which expresses the equivalence of φ to a first-order sentence. D

1.1.6 Remarks, (a) If i f effectively contains ifω ω then the set ( + ) of if-sentences
in the proof of Theorem 1.1.3 is recursive. Therefore, in this case, the assumption
"J^ is countably compact" which was made in Theorems 1.1.3 and 1.1.4 can be
replaced by "5£ is compact for recursive sets".

(b) In Theorems 1.1.3 and 1.1.4 we can drop the assumption "Ί£ has the
finite occurrence property", if we assume that 5£ is compact and not merely
countably compact. In fact, suppose that φ and φ are 5£\τ\ classes with disjoint
model classes, then we can obtain a finite τ 0 c: τ such that

91 \= φ and 91 Γ τ 0 ^ 95 Γ τ 0 imply non 95 |= φ.

(Here we apply if-compactness to the unsatisfiable set Φ u {φ, φ'} where Φ is the
set introduced in the first step of the proof of Theorem 1.1.1). Using this finite
τ 0 , one obtains—as in the following proof of Lemma 1.1.2—a formula S with (i)
and (ii).

Proof of Lemma 1.1.2. Let J£,τo,φ and φ be given as in Lemma 1.1.2. Suppose by
contradiction that there is no if-sentence θ with the properties (i) and (ii). Then
we can show:

xjv If x is an if-sentence not equivalent to a first-order sentence, then χ
has a model of power K o .

In fact, given such a χ choose a finite τ such that X is an i f [τ]-sentence. If χ has an
infinite model, then for a new unary function symbol / the if-sentence

χ Λ "/is one-to-one but not onto"

is satisfiable and by the Lowenheim-Skolem property has a countable model,
which must be of power K o . Now suppose χ has only finite models. Since τ is
finite, for each n e ω, there are only finitely many (non-isomorphic) τ-structures of
size < n, and each one can be characterized by a first-order sentence. Therefore,
for each π, χ must have a model with at least n elements (otherwise it would be
equivalent to a first-order sentence). But in this case, 9-=χ A 3x Ux for a new
unary relation symbol U is a sentence satisfying (i) and (ii). This completes the
proof of (1).
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By assumption, the J^[τo]-sentences φ and φ have disjoint model classes which
cannot be separated by an elementary class. We can assume that τ 0 is finite. Let
φι,φ2,'" be an enumeration of the set of i?ωω[τ0]-sentences. Then:

For each n > 1 there are τo-structures 91 and 95 of power Ko such that

A = B, 9I |=φ, %>\=φ a n d f o r i < π (311= (pf iff 93 *= <pf).

To establish (2), by induction choose φί9 φ29. - such that for each n, φn = φn or
φn= —\φn and such that the model classes of φn -= φ A φγ A ... Λ φn and
φn -.= φ A φ1 A ... Λ φn cannot be separated by an elementary class. In particu-
lar, neither φn nor φn is equivalent to a first-order sentence. Thus, we obtain the
desired models 91 and 95 applying (1).

Using the notions of partial isomorphism, /c-partial isomorphic, ... and the
corresponding results (see Section II.4.2) we may rewrite (2) in the following form:

For each keω, there are τo-structures 91 and 93 of power No such that

A = B, 91 N φ, 93 N φ and 91 ̂ k 95.

In the last step, we pass in (2') to isomorphic structures 91 and 95. To achieve
the corresponding result in the proof of Theorem 1.1.1, we applied the Lowenheim-
Skolem property to a set Γ consisting of two if-sentences and a recursive set of
J5?ωω[τ*]-sentences in a vocabulary τ* including τ 0 u τό By a theorem of Craig
and Vaught, there is a finite set of $£ωω-sentences having the same τ0 u τΌ-reducts.
Therefore one really needs the Lδwenheim-Skolem property only for single
sentences. Nevertheless, we show here explicitly how to obtain isomorphic
structures in (2'), since, in this way, we can become acquainted with a proof
technique which is frequently used in soft model theory in general and in this
chapter in particular.

For keω, take 91 and 95 as given by (2') and choose (/Jm<k such that (Im)m<k:
91 ^k 95. By the results of Section II.4.2 we can assume that (Jm<fc Im is countable.
Moreover, suppose without loss of generality that {0,..., k} c A. Choose a one-
to-one mapping from (Jm< fc/m into A. In the sequel, we shall identify p e {Jm<kIm

with its value under this mapping. Take new relation symbols (7, P (unary), <, /
(binary) and G (ternary) and let σ = τ 0 u τ'o u {P, <, /, G}, where τό is a disjoint
copy of τ 0 . Let & (= Ck) be the σ-structure with domain A given by

£ [ τ0 = 91, e Is τό = 95' (93' denotes the τ'o-structure
corresponding to 93),

Uc = {0,..., fc},

< c is the natural ordering on {0,..., k},

Pcp iff pel)lm,
m<k

Icmp iff m < k and pe/ m ,

Gcpab iff p e (J Im and p(a) = b.
m<k
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Then (£ is a model of the conjunction 5 of the following if [σ]-sentences

φ,Φ\

" < is a discrete ordering with first and last element",

" U is the field of < " ,

"Each p on P is a (partial) injective mapping"

that is, V/?(P/? —• Vx \/y Vw ^υ{Gpxu A Gpyv -> (x = y <-> w = f))),

" Each p in P preserves all symbols in τ 0 "

for example, for a binary R in τ 0

Vp(Pp -• Vx Vy Vw Vv(Gpxu A Gpyv -> (#xy <-•

"For each win (7 the set Iu is non-empty"

that is, \/u(Uu -• 3p(Pp Λ /W/?)),

"The sequence of /u's has the forth property"

that is, Vw Vv(v < u -• \fp(Iup -> Vx 3̂ f 3y(/i;^ Λ

Λ Vz Vw(Gpzw -> G f̂zw)))),

"The sequence of/u's has the back property".

Clearly, by (2') the sentence 3 has property (ii). In fact, {£k is a model with | U^ \ =
k + 1. We show that S also satisfies (i). Otherwise, $ has a model with infinite
t/-part. Let /be a new unary function symbol. Then,

S A "/maps the (7-part one-to-one onto a proper subset"

has a model, and hence a countable model T) by the Lόwenheim-Skolem property.
< φ being a discrete ordering with last element of the infinite set U® contains an
infinite descending sequence

Let Sl0 = X) Γτ0, ©0 = Φ ΓτΌ)~' a n d J = {pl^«P f o r s o m e neω}. Since
D 1= 9, we can identify pe P® with the partial isomorphism {(a, b) \ G^pab} from
SΆ0 to 33O. Moreover, by T) 1= 9, we have <Ά0\= φ, S80\= ψ and J : 9I0 =P®o' >
that is, ?I 0 and 2?0 are partially isomorphic via J (that J has the back and forth
property can be easily seen by using the fact that the d^s form an infinite descending
sequence). But D is countable and countable partially isomorphic structures are
isomorphic (see Theorem Π.4.3.1). Hence, 9I0 ^ 23O. In particular, 2ϊ0 N {φ, φ}
and therefore 9Ϊ G Mod(φ) n Mod(ι/^)—a contradiction. D

1.1.7 Examples, (a) Take as i f in Theorem 1.1.3 the set of Σ}-sentences over
JS?ωω (that is, sentences of the form 3/?!... 3Rnφ, where φ is first-order). Then
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Theorem 1.1.3 yields the if ωω-interpolation theorem: Any two Σ}-sentences with
disjoint model classes can be separated by an elementary class.

(b) For n > 1 let Qn be a quantifier binding rc-ary relation variables. Fix the
interpretation of Qn by the clause

Sa\=QnRφ iff \{RΛ\(%RA)\=φ}\>2^.

Qn is a kind of "second-order Lindstrόm quantifier". Call an JS?ωω(βJw > 1)-
formula positive, if it is a member of the smallest set containing the first-order
formulas and closed under Λ , v, 3x, Vx and QnR. Let if consist of the positive
^ωω(Qn\

n ^ l)-sentences. Using the local Chang-Makkai theorem for recur-
sively saturated structures (see Schlipf [1978]), one can show that if has the
Lόwenheim-Skolem property and is countably compact (it is even compact!).
Hence, by Theorem 1.1.3, it follows that any two disjoint if-classes can be sepa-
rated by an elementary class.

The following proposition is related to a result obtained in the course of the
proof of Theorem 1.1.1.

1.1.8 Proposition. Let <£<!£' where $£ and if' are logics and where ^[τ] is a set
for any vocabulary τ. If i£' is compact and

(*) 91 = ^ 95 implies 91 =^ 93

then & = 5£'.

Proof. For an arbitrary satisfiable if'[τ]-sentence φ we have by (*)

l=φ<- V Λ Φ-

Now standard compactness arguments will show that the disjunction and the
conjunctions on the right-hand side can be replaced by finite ones. D

For further reference we state:

1.1.9 Remark. The preceding proof shows that if 5£' has the finite occurrence
property and &[τ] is countable for finite τ, then it suffices to assume that 5£' is
countably compact. Moreover, if <£' has the Lόwenheim-Skolem property down
to K for countable sets of sentences, then (*) must only be required for structures of
cardinality <κ.

1.2. Some Counterexamples

In this part we list some more or less strange examples which will show that certain
strengthenings of the theorems of Lindstrόm are not possible. A further example
is contained in Section 2.3. Already in Chapter II it has been shown that if ω ω(βω),
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the logic with the cofinality ω quantifier, is compact, recursively enumerable for
validity, and has the Lowenheim-Skolem property down to Kt. The reader should
consult Shelah [1975d] where further examples of compact extensions of first-order
logics are given. In particular, there a logic ^ωω{Q) is introduced, which is regular,
compact, and more expressive than first-order logic even for countable structures:
Let λ be the first weakly compact cardinal. The binary quantifier Q is then defined
as follows:

91 (= Qxyφ(x, y) iff φ* -.= {(a, b) \ 911= φ[a, b]} is an ordering and
there is a Dedekind cut (Au A2) of φm with
cofinalities in {No, λ}.

A Dedekind cut of an ordering (B, <) is a pair (Bί9 B2) such that Bx n B2 = 0 ,
JBJ u B2 = B and bx < b2 for bι e Bu b2eB2. The cofinalities of a Dedekind cut
are the cofinalities of(Bί9 <) and of (B2, >).

Note that (Z, <) and (Z, <) + (Z, <) are not if ωω(β)-equivalent. &ωω(Q)
does not have the Lowenheim-Skolem property.

1.2.1 Example. Let jSf be the logic obtained from J5fωω by adding a new "atomic"
sentence χs. Let χs be in J5?[τ] for each τ and set

91 f= χs iff IAI is a successor cardinal.

Then <£ is compact, has the interpolation property and the Lowenheim-Skolem
property down to N^

1.2.2 Example. Given a τ-structure 91, say 91 = (A, Rl9R29... ,fi,f2, > cu •)
denote by 9IC the τ-structure (A, Rc

l9 Rc

2, . . . , / i , / 2 , . , c l 9 . . . ) , where for n-ary
Rt, Rcι = ̂ "\K t . Let ^ c be the logic with the same syntax as Jέfωω and with the
semantics given by

91 \= φ, if A is infinite,

9Ict= φ, if A is finite.

Neither ifωω < ifc nor ifc < ifωω holds. i^ c is a compact logic with the Lowen-
heim-Skolem property and is also a maximal logic with these two properties. We
leave it to the reader to adapt the preceding proofs to show that <£c is a maximal
logic.

13. The Monadic Case

Throughout this part of the discussion we will restrict ourselves to monadic
vocabularies; that is, we will assume that all vocabularies only contain unary
relation symbols. We will give Lindstrom-type characterizations of monadic
first-order logic and of some extensions.
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When analyzing the arguments of Section 1.1 for the monadic case one should
note the following differences:

(a) For a finite vocabulary, any two elementarily equivalent structures are
isomorphic (thus the last step in the proof of Theorem 1.1.1 is actually
redundant).

(b) Using a single monadic if ωω-sentence, one cannot force a structure to be
infinite (as by "/is one-to-one but not onto" in the general case).

(c) For any monadic recursive vocabulary τ, the set of if ωω[τ]-sentences
valid in all finite models is recursively enumerable (it is even recursive).

In fact, while the characterization of 5£ωω given in Theorem 1.1.1 carries over
to the monadic case (see Theorem 1.3.2 below), the following examples show that
in this characterization the Lowenheim-Skolem property is really needed for
countable sets (and not just for single sentences), and that Lindstrόm's second
theorem no longer holds.

1.3.1 Examples, (a) The monadic part of the logic in Example 1.2.1, with the new
atomic sentence χs true in structures, the cardinality of which is a successor cardinal,
is an example of a logic more expressive than first-order logic which is compact
and has the Lowenheim-Skolem property. The Lowenheim-Skolem property
follows from the fact that every satisfiable monadic ifωω-sentence has a finite
model.

(b) Let if be the logic obtained from $£'ωω by adding a new "atomic" sentence
which is true just in the models of even finite cardinality. Then the monadic part of
5£ properly extends ifωω, is decidable, and has the Lowenheim-Skolem property
for countable sets of sentences.

(c) Let 5£ be obtained from i? ω ω by adding a new "atomic" sentence which is
true in models of even finite or uncountable cardinality. Then the monadic part
of 5£ is countably compact, decidable, and each satisfiable sentence has a finite
model.

It is easy to extend the above-mentioned maximality result for the monadic
part of $£'ωω to a more general situation. For the rest of this section, however,
we restrict ourselves to monadic logics 5£ with the finite occurrence property. For an
ordinal β denote by Qβ the unary quantifier "there are X^-many". Fix an ordinal α
and let ^£ = !£(Qβ | β < α, β successor ordinal). Since in a structure 9ϊ of finite
vocabulary τ0 = {Ru . . . , Rn}, the cardinalities of the boolean atoms P1 n
n PM, where Pt = Rf or Pt = A\Rf, determine the isomorphism type of 91, we
have for τo-structures 91 and 93

(*) 9ί=^93 and | Λ | , | £ | < K α imply 91^93.

Hence, for any logic !£' with the finite occurrence property and an arbitrary
monadic vocabulary τ, we obtain from (*)

(*) 9 I Ξ ^ 9 3 and μ | , | J 5 | < K α imply 91=^93.



1. Lindstrόm's Characterizations of First-Order Logic 89

We will make use of (*) and (*) in proving the following maximality theorem.

1.3.2 Theorem. For a countable ordinal a the monadic part of i f = J£ωω(Qβ\β <
α, β successor ordinal) is (among the monadic logics) a maximal countably compact
logic with the Lδwenheim-Skolem property down to Kα for countable sets of sen-
tences. Furthermore, J? has the interpolation property.

Before undertaking the proof of Theorem 1.3.2, let us state some consequences.

1.3.3 CoroUary. (a) (Tharp [1973]) The monadic part of <£ωω is a maximal logic
with countable compactness and the Lδwenheim-Skolem property for
countable sets of sentences.

(b) (Caicedo [1981b]) The monadic part of ifω ω(Qi) is a maximal logic with
countable compactness and the Lδwenheim-Skolem property down to ttifor
countable sets of sentences. Moreover, this logic has the interpolation property.

(c) (Caicedo [1981b]) The monadic part of <£ωω(Q\) and of i?ω ω(aa) are equiv-
alent. (The reader is referred to Example 4 of Section 2.2, Chapter II for the
definition o/if ω ω(aa)).

Proof of Theorem 1.3.2. We prove the "separation property" corresponding to
the maximality assertion : Let JSP', i ? < S£\ be a countably compact logic with the
Lόwenheim-Skolem property down to Kα for countable sets. Suppose that
Mod(φ) and Mod(ι/0 are disjoint j£? '-classes not separable by an if-class. Since for
a finite vocabulary τ there are only countably many if-sentences—this is the point
where we need the restriction to a countable ordinal α—we obtain as in the proof
of (2) in Lemma 1.1.2, using the countable compactness of if', structures 91 and 95
of cardinality < Kα with

91 =# 93, 911= φ and 93 |= φ.

This is a contradiction in view of (*) above. It still remains to show that 5£ is
countably compact, and this will be accomplished by the next theorem. D

1.3.4 Theorem. Let α be an arbitrary ordinal and <£ = i f ω ω (6^ |0 < β < α,
cofinality of β Φ ω). Then the monadic part of & is countably compact and has the
interpolation property.

Proof. Suppose each finite subset of Φ = {<pu φ2> } is satisfiable. Choose
τ = {Rl9 R2,..} such that Φ cz i^[τ] . We want to obtain a model 91 of Φ, fixing
step by step, the cardinalities of the boolean atoms determined by {Rl9..., Rn}
in such a way that for any finite subset Φ o of Φ these cardinalities are realized in
some model of Φ o . For this let

F = {/|there is k > 0 such that/ : {!,...,*}-• {0, 1}}.
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For a τ-structure 91 a n d / e F define Af by

/ _ M , if/=0,

^ '""l^n.-.nPfc, if/: {1,...,*}-{0,1},

where

έ

Suppose given pairwise distinct/, gu . . . , gx eF with dom(gf{) <= dom(/) for all i,
and cardinals λί9..., Λ,7. For neω let

Cn = C(nJ,gί9...,gι,λί,...,λι)

We show that

(a) sup{κm\me ω} e Cn9 for any sequence κγ < κ2 < of cardinals in Cn.

(b) C o ^ Ci =)
(c) If Cπ # 0 for all « e ω , then f ) {C π | neω} Φ 0.

To prove (a), choose m0 large enough such that in ψx A Λ φn no quantifier
β^ with κmo < κβ < sup κm appears (and hence by definition of i f no quantifier
Qβ with κmo < κβ < sup κm). We assume that κmo is infinite and leave the case
"κ m o finite" to the reader. Take 91 *= {φl9..., φn} such that l^9'1! = λl9 . . . ,
|Affl I = λι and 1^1 = /cmo. Suppose / : {1,. . . , k} -• {0, 1} and choose fc' > k
such that φ t Λ Λ φn e i£[{Ru . . . , Λk'}] Since l ^ l = κm o, there is a boolean
atom determined by Rl9..., Rk,9 of power κ:mo, which is a part of Af. Obtain 2Γ
from 91 blowing up this boolean atom to a set of cardinality sup κm. Then 2Γ shows
that sup κm e Cn (since κm G C Π for all m, we have sup /cm < λf for any i with gff cz / ) .
(b) is clear by definition of the Cπ's, and (c) follows immediately from (a) and (b).

We now construct the desired model 9Ϊ = (A9 Ri,...) of Φ. Let/ 0 = 0 . Choose
κ0 e Pj {C(n,/0)|n e ω} and let ,4 be a set of cardinality κ0. Denote by fx and/ 2

the functions given by fuf2: {1} -> {0, 1} with / x ( l) = 1 and /2(1) = 0. Choose
K i e f l {C(nJ1Jo,Ko)\neω} and κ2 6 f) {C(nJ2J0 ,/i, κ 0 , KiJlneω}. Let i?f
be a subset of v4 of cardinality κx with complement of cardinality κ2 Now one
defines R2 choosing cardinalities for the subsets Af

9 where dom(/) = {1, 2} with
the help of the appropriate sets C(...). In this way, one can fix inductively all the

We leave it to the reader to verify the interpolation property. Observe that since
in any 5£-sentence only finitely many Qβ occur, one can restrict to a countable
sublanguage and argue as in the proof of Theorem 1.3.2). D
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1.3.5 Notes. Theorems 1.1.4 and 1.1.5 were proven by Lindstrom [1966a], [1969]
Theorem 1.1.4 was later rediscovered by Friedman, to whom assertion (1) in the
proof of Theorem 1.1.1 is due. The examples listed in 1.3.1 are due to Tharp [1973].
Example 1.2.2 and the results given in Theorems 1.3.2 and 1.3.4 on monadic logics
are new here, (although the countable compactness of the monadic part of
^ωω(βαi> > QJ f o r α l 9 . . . , απ > 0 was proved by Fajardo [1980]. Added in
proof: Theorem 1.3.2 can be generalized to uncountable α, as will be shown
elsewhere.

2. Further Characterizations of Ί£ωω

In this section we present some further characterizations of first-order logic, first
examining those logics having the Lόwenheim-Skolem property or a related
property, the Karp property. In the second part we drop these assumptions. We
close this section with the study of compact sublanguages of S£^ω.

Throughout parts 1 and 2 we will assume that all logics j£? under consideration
are regular and have the finite occurrence property (even though many results
would continue to hold under weaker assumptions). Recall that a regular logic j£?
has the substitution property (and hence possesses the relativization property)

2.1. The Lδwenheim-Skolem Property and the
Karp Property

By definition, a logic !£ has the Karp property if partially isomorphic structures
are if-equivalent, that is, if

91 ^p 95 implies 21 =^ 95.

In the presence of the substitution property, we can replace in Lindstrom's first
characterization of first-order logic the Lόwenheim-Skolem property by the
weaker Karp property (The reader is referred to Proposition 2.1.7 below for the
relationship between the Lόwenheim-Skolem and the Karp properties). Indeed,
we have:

2.1.1 Theorem. // j£? has the Karp property and is countably compact, then

°^ ωω — a£y

Since the ordering (ω, < ) cannot be defined in a countably compact logic, this
theorem is a consequence of the following lemma.
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2.1.2 Lemma. // i f ω ω < i f and <£ has the Karp property, then (ω, < ) is RPC in <£

(that is, there is a satisfiable <£-sentence φo(U, < , . . . ) such that in each model 91

ofφ0 the relativized reduct (UA, <Λ) is isomorphic to (ω, <)).

Proof. Let φ be an if-sentence not equivalent to a first-order sentence. Choose a
finite τ 0 such that φ e i f [τ 0 ] . Then, for finitely many φί9..., φn e i f ω ω [ τ 0 ] , there
are 91 and 33 such that

91 \= φ, 93 f= -i φ and (9ί N <p£ iff 93 |= φ,) for i < n.

Hence,

for each k e ω, there are 9lk and 93k such that

(*)
9l k ^ k 93 f c , 9 1 , ^ φ and <Bk\= ~iφ.

Let ί7, <, V, Wbe new relation symbols, U unary, <, Fand VF binary. Coding
partial isomorphisms as in the proof of Theorem 1.1.2, we obtain in a suitable
vocabulary τ, an ^-sentence φ0 expressing

" < is a discrete linear ordering of its field U with first but no last
element; for each x in U the set Vx (i.e. {y\ Vxy}) is a model of φ, the
set Wx is a model of ~Ί φ, and Vx and Wx are x-partially isomorphic,
i.e. there is a sequence, indexed by the < -predecessors of x of non-empty
sets of partial isomorphisms with the back and forth property."

(Compare Chapter II Proposition 5.2.4 to see how we can formulate this statement
by an if-sentence). By (*), φ0 has a model 91, where (UA, <A) is isomorphic to
(ω, < ) and where attached to the fc-th element a of the ordering <Λ are the models
9I f cand93 k;thatis,

({b\VAab},...)^SΆk and ({b\ WAab},...) ^ 93,.

Now let S3 be any model of φo; we must show that (UB, <B) is isomorphic to
(ω, <) . If (UB, <B) qk (ω, <), a "non-standard" element x in (UB, <B\ gives
rise—as in the proof of Lemma 1.1.2—to partially isomorphic models Vx of φ
and Wx of —i φ. This is, a contradiction, however, since we assumed that ^£ has
the Karp property. D

In case S£ has the Lόwenheim-Skolem property, the structures 9Ik and 93k in
(*) of the preceding proof can be chosen of power Ko and hence (*) can be coded
in a countable model of φ0. Thus we can require that < is an ordering of the
universe of the model. Accordingly, we obtain:

2.1.3 Corollary. // if'ωω < ^ and <£ has the Lόwenheim-Skolem property, then
(ω, <) is PC i« if.
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This corollary can also be derived from the results of the preceding section:
Since jSfωω < $£ there is a sentence 5 = 5(17,...) having properties (i) and (ii) of
Lemma 1.1.2. Now it is not difficult (using the substitution property of i?) to
write down a sentence PC-characterizing (ω, < ) : This sentence will express that
attached to each element x of the ordering < is a model of 9 whose [/-part has as
many elements as the set of < -predecessors of x.

In the following theorem, we collect some model-theoretic properties .that
characterize jSfωω among the logics with the Lόwenheim-Skolem property.
However, we state the theorem in such a way that it provides information on the
expressive power of proper extensions of i f ω ω .

2.1.4 Theorem. For a logic j£? satisfying the Lόwenheim-Skolem property the
following conditions are equivalent.

(i) &ωω< <£.
(ii) i f is not countably compact.

(iii) (The class of structures isomorphic to) (ω, < ) is PC in ££.
(iv) Each countable structure in a countable vocabulary is PCδ in S£\ that is, it

is char act eriz able using additional symbols by a countable set of sentences.
(v) ifHF < R P C if, where ifHF is the second-order logic with quantification on

hereditarily finite sets over the universe, and J?\ < R P C £έ\ means that each
class of relativized reducts in 5έ\ is such a class in 5έ\.

(vi) There is an ̂ -sentence with an infinite but no uncountable model.
(vii) J^ ω ω <^<£\ that is, there are 91, 95 such that 91 = 93 but 91 φ<? 93.

Proof Clearly each of the conditions in (ii)-(vii) implies (i). Hence, it suffices to
show that (ii)-(vii) follow from (i).

(i) => (ii). This was shown in Section 1.
(i) => (iii). See the preceding corollary.
For the proofs of the following implications let φ0 always denote an i f [τ 0 ]-

sentence PC-characterizing (ω, <) .
(iii) => (iv). Given a countable structure 91 choose a one-to-one enumeration

<απ I n e ω> of A, write down the algebraic diagram Φ of 91, where an is represented
by the n-th element of an ordering < of type ω. Then {φ0} u Φ is a PQ-character-
ization of 91.

(iii) => (v). Use φ0 (and hence (ω, <)) to code the hereditarily finite sets over the
universe.

(iii) => (vi). φ0 has no uncountable model.
(iii) => (vii). Let 91 be a countable model of φ0. Then any uncountable model

of Th(9ί), the first-order theory of 91, is elementarily equivalent but not <£-
equivalent to 91. D

2.1.5 Remarks, (a) In case ^£ has the form i f ω c o ( β 1 ? . . . , Qn) where Qu . . . , Qn

are Lindstrόm quantifiers we can add in Theorem 2.1.4 the condition

(viii) ^£ does not have the definability property (Beth property).

The reader is referred to Chapter XVII for a proof of this result.
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(b) We want to draw the reader's attention to the notion of an ω^securable
quantifier (see Makowsky [1975b]) which captures the properties of the existential
quantifier needed to prove that each structure has a countable elementary sub-
structure. In fact, Makowsky proved the following: If !£ — ifω ω(β;|ϊe/) *s obtained
from first-order logic adding α^-securable quantifiers, then i? has the Lόwenheim-
Skolem property. Hence, for such an S£, the equivalences in Theorem 2.1.4 hold.

We use Theorem 2.1.4 to derive a further characterization of ifωω. A logic <£
is said to have the Robinson property if the following holds: Let τ, τx and τ 2 be
vocabularies with τ = τx n τ 2 . Let Φ be a set of if [τ]-sentences and Φ( a set of
if [τj-sentences for i = 1, 2. If Φ is complete and Φ u Φ t and Φ u Φ 2 are satis-
fiable then s o i s Φ u Φ 1 u Φ 2 . In Chapter XIX it is shown that this is a very strong
property of a logic. In fact, it is proved there that in case there are no measurable
cardinals the Robinson property implies the compactness property.

2.1.6 Theorem. // <£ has the Lόwenheίm-Skolem property and the Robinson
property then J£ωω = if.

Proof. Since we have the general assumption that if has the finite occurrence
property there are countable structures 91 ί and 512 i

n a countable vocabulary τ
such that

2Ϊ! -ce 9Ϊ2 and ^ £ 9ί2

(e.g., take non-isomorphic SΆ1 and 3I2 such that for any finite τ 0 c τ the τ0-
reducts SΆ1 [τ0 and ?I2 |"τ0 are isomorphic). Suppose by contradiction, that
ifωω < Jίf. Then, by the equivalence (i)o(iv) of Theorem 2.1.4, there are PQ-
characterizations Φx and Φ 2 in !£ of <Ά1 and 2l2. We use distinct additional
symbols for SΆ1 and 9I2. Since (Ά1 =#> 9ί2, Φ u Φx and Φ u Φ 2 are satisfiable; but
Φ u Φ 1 u Φ 2 has no model, as <Ά1 φ SΆ2.

Note that in case we restrict attention to finite vocabularies, the preceding
proof shows:

If JS?ωω < if and <£ has the Lόwenheim-Skolem property and the
Robinson property for countable sets of sentences (that is, countable
Φ, Φx and Φ2), then = ^ coincides with the isomorphism relation on
countable structures.

In particular, we see that weak second-order logic does not have the Robinson
property; ££ωχω is a logic satisfying the hypothesis of this result.

We close this discussion with a result that clarifies the relationship between the
Karp property and the Lδwenheim-Skolem property.

2.1.7 Proposition, (a) // 5£ has the Lδwenheim-Skolem property, then <£ has the
Karp property.

(b) Assume 5£ has both the Karp property and the interpolation property, then
$£ has the Lόwenheim-Skolem property.
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Proof. The proof of (a) is by contradiction. Suppose that 5£ has the Lowenheim-
Skolem property but that for some if-sentence φ, we have

(*) 21 ^,93, 2 I | = φ and 9 3 | = ^ φ .

Coding partial isomorphisms as in the precedings proofs, we obtain an if-sentence
ψ expressing that

"the F-part is a model of φ, the W-part is a model of ~πφ, and the
K-part and the W-part are partially isomorphic".

By (*), the sentence ψ has a model, and hence one of power < Ko. But then we
obtain countable structures 2Γ (the F-part) and 95' (the W-part) such that 91' \= φ,
SB' ί= —iφ and 91' ^p 23'; hence 21' ^ 23', a contradiction.

Turning now to the proof of (b), we let S£ be given as in (b) and suppose
JS?ωω < & (if <£ωω = if, the conclusion holds). Since !£ has the Karp property,
by Lemma 2.1.2 (ω, <) is RPC in if, say φo(U, <, . . . ) is an if-sentence RPC-
characterizing (ω, <). If if does not have the Lόwenheim-Skolem property, then
there is an if-sentence φγ having only uncountable models. Consider the classes

ft0

 ; = {(A, UA)\ there is <Λ, such that (A, UA, <A, ) |= φ0},

Λ1 := {(A, UA)\there is . . . such that (UA,...) \= φ j .

Since (A, UA)eR0 (resp. (A, U^eRJ implies that UA is countable (resp. un-
countable), ft0 and Λi are disjoint PC-classes of ^£. Take an arbitrary (A, UA) in
Ro and choose (B, UB) in ^ such that \B\UB\ = \A\UA\. Then (A, UA) and
(B, UB) are partially isomorphic. Hence, there is no if-class separating Ro and Λ1?

since !£ has the Karp property. But this contradicts the assumption that !£ has the
interpolation property. D

22, The Tarski Union Property and the
Omitting Types Property

The following characterization of ^ωω shows that an important model-theoretic
tool of first-order logic, the Tarski union lemma, is not available in any proper
compact extension.

First we introduce some terminology. Suppose given a logic !£. A structure 93
is said to be an S£-extension of 21, 2ϊ <# 93, if 93 is an extension of 21 and if for any
finite a0, . . . , an-γeA, we have (21, aθ9..., an-x) ^ ( S B , a0,..., ^ . J . (For
if = jSf ω ω we say that 23 is an elementary extension and write 21 < 23.)

Denote by Th^(2I) and D^(2I) the if'-theory of 21 and the ^-diagram of 21,
respectively; that is,

:= {φ I φ if-sentence, 2ί \= φ}, D^(2l) .= Th^((2ί, (a)aeΛ)),
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where in the latter case we consider the if-theory in an expanded vocabulary
containing a new constant for each aeA. In case $£ = J£ωω, write Th(2I) and

As for first-order logic, one can easily prove both (+) and (+ +) below (recall
that all our logics are assumed to be regular and to have the finite occurrence
property).

( , The (reducts of) models of D^(2I) are—up to isomorphism—the
if-extensions of 21.

/ , , x Assume if is compact. Suppose given 2ί and a set of Φ of if-sentences
( + ) If Th(2I) u Φ is satisfiable, then there is 93 such that 21 < 93 and 95 1= Φ.

Now we say that if has the Tarski union property, if whenever

then 3In <<? (Jm 2lm for each n.
S£ωω and JS?ωω(<2i) have the Tarski union property. Moreover, we have (see

Makowsky [1975b] for further examples and results):

2.2.1 Theorem. IfΊ£ is compact and has the Tarski union property, then J?ωω = <£.

Proof. If not t£ ωω = <£, then there is an if-sentence φ and structures 21, 93 such
that

(1) 2 Ϊ Ξ 9 3 , 21 \= φ and 9 3 | = ^ φ

(see Proposition 1.1.8). We construct by induction a sequence 2I0, 2I 1 ? . . . such
that

21 = 2{o < 2lx < 2I2 < 2I3 < •;

and 21 ί \= ~\φ as follows:
By (1), Th(2ί) u {-ιφ} = Th(93) u {-ιφ} is satisfiable. Hence, by ( + + )

there is 21 x such that 21 -< 21: and 21 j \= ~iφ. Now suppose 2ίπ has already been
defined. Since

Th((2In, ( a ) ^ ^ ) ) = Th((2IM_1? {a)aeAn_J)

we have that
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is a satisfiable set of if-sentences. Using ( + + ) once more, we therefore obtain an
elementary extension (3ίπ + 1, (a)aeAn_1) of (5IΠ, (a)aeAn_ι) which is a model of

Let D = (JΛ 2l2 n = \Jn 9l2«+i By the Tarski union property, we have 3ϊ0 -<# £>
and 9ίx <&Ί). But since 9I0 |= φ and 21 j |= —i<p, we obtain the contradiction:
T>\= φ and T> \= ~iφ. Q

Lindstrόm [1983] introduced a kind of union property for direct limits
and showed by refining the previous proof, that a logic is equivalent to first-order
logic if it has this generalized union property and is countably compact.

We now turn to a characterization of S£ωω by means of a single property, the
omitting types property for an uncountable regular cardinal.

Let K be an infinite cardinal and i f be a logic. Given a set Φ of if-sentences and
a set Γ(x) of if-formulas having at most the free variable x (see II. 1.1.2), we say
that Γ(x) is a κ-free type ofΦ, if the following hold:

IΦ u Γ(x) I < K, Φ is satisfiable and for every set Ψ(x) of if-formulas
such that I Ψ(x) | < K, if Φ u Ψ(x) has a model, then for some χ(x) e Γ(x)
the set Φ u Ψ(x) u {~ιχ(x)} has a model.

We say that i f has the κ-omίttίng types property, if whenever Γ(x) is a /c-free type of
Φ, there is a model of Φ omitting Γ(x).

Thus the "classical" omitting types theorem is the result that <£ωω has the ω-
omitting types property. In Keisler [1971] it is shown that also <Sfωιω has the ω-
omitting types property. A logic with the ω-omitting types property has the
Lόwenheim-Skolem property for countable sets of sentences: Given a countable
and satisfiable set Φ, apply the ω-omitting types property to the ω-free type Γ(x) of
Φ, where Γ(x) ••= {—\x = cn |n e ω} for new constants cn.

The κ>omitting types property is strongly related to the construction method
of models from constants (the reader should consult Barwise [1980] where a dif-
ferent notion of omitting types property—more precisely, of ω-omitting types
property—is introduced, which is more sensitive to the specific features of a
given logic). Using the method of construction of a model from constants, one
can show that £?ωω has the κ>omitting types property for all K (see Chang-Keisler
[1977]). Moreover, we have

2.2.2 Theorem. // K is an uncountable regular cardinal and <£ has the κ-omittίng

types property then if'ωω = J£.



98 III. Characterizing Logics

Proof. First, we show

Suppose the set Φ of if-sentences, | Φ | < K, has a model 31 such that
(*) (I/31, <®) is an ordering without last element. Then Φ has a model 95

such that (I/93, <®) is an ordering of cofinality K.

To prove (*), take new constants cα, α < τc; then

Γ(x) = {£/x}u{cα < x | α < κ\

is a κ-free type of

Φj = Φ u {" < is an ordering of U without last element"}

u {cβ < ca\β <cc<κ}.

In fact, if | Ψ(x) | < K and Φt u Ψ(x) u {l/x} is satisfiable, then choose α sufficiently
large such that cβ does not occur in Ψ(x) for β > α. In a model of Φί u Ψ(x) u {Ux}9

all these c^ may be interpreted by a fixed element bigger than x. Thus Φ x u Ψ(x) u
{~ιcα+1 < x} is satisfiable. Now, since i f has the /c-omitting types property there
is a model 95 of Φ x omitting Γ(x). But then (I/ β , < β ) has cofinality K.

In particular, (*) shows that the ordering (ω, < ) is not RPC in 5£. Using
Lemma 2.1.2, we see that in case S£ωω < ££, the logic i f does not have the Karp
property; that is, there are 21 and 95 such that

(*) 91 ̂ ,33 and 21 #^23.

We will code (*) in a model in such a way that use of the κ>omitting types property
leads to isomorphic but not if-equivalent structures—a contradiction. Choose
an if-sentence φ such that 911= φ and 33 1= —\φ. Let cα, da, pa, for α < K, be
new constants and V, W, I be new unary relation symbols. Let Φ be a set of
if-sentences, | Φ | = K, expressing the following:

"V nW = 0",

"the F-part is a model of φ",

"the W-part is a model of ~\φ",

"the F-part and the P^-part are partially isomorphic via /",

"/p α , cα is in the domain of pa and da in the range of p α " for a < K,

"pβ is an extension of p α " for α < β < K.

βy (iX Φ is satisfiable (choose a partial isomorphism p in / where /: 91 = p S, p
with non-empty domain, say a e dom(p), and set for all α, pα = p, cα = α, and

Let Γ(x) be the type

Γ(x) = {Vx v Wx} u { Ί X = ca A -ιx = <^|α, jS < K:}.
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Clearly, in a model of Φ omitting Γ(x), the function \Ja<κpa is an isomorphism of
the K-part onto the W-part. Therefore, it suffices to prove that Γ(x) is a κ>free
type of Φ.

Let Ψ(x) be a set of if-formulas, | Ψ(x) | < K and suppose Φ u Ψ(x) is satis-
fiable, say (£ \= Φ and £ [= Ψ[α]. We must show that Φ u Ψ(x) u {~iχ(x)} has a
model for some χ(x)eΓ(x). If aφVc u Wc, then (£ \= ~ιχ[α] for χ = Vx v
WOc 6 Γ(x). Let aeVcu Wc, say α e Vc. Choose α < K large enough so that for
β > α, the constants p^, ĉ  and dβ do not occur in Ψ(x). Using the forth property,
we see that there is a partial isomorphism q in the model extending pa and with a
in its domain. For β > α, change the interpretation of ^ to q, of ĉ  to α, and of dβ

to g(α). This shows that Φ u Ψ(x) u {x = cα+ J is satisίiable. D

2.5. Compact Sublanguages of <£ooω

Let φ 0 be an ifωiω-sentence and denote by <&ωω(φ0) the smallest set of sentences
containing φ0 and closed under first-order operations. Clearly, ^ωω(φ0) has the
Lόwenheim-Skolem property. But, in general, J^ω ω(φ0) does not have the re-
naming property. Therefore, in case ^ωω{φ0) is countably compact, we cannot
apply the theorems already proven to conclude that ^ωω(φ0) = ^ ω ω > a n d hence
that φ0 is equivalent to a first-order sentence. Indeed we will show that there is
a φ0 such that ^ωω{ψo) is countably compact but stronger than first-order logic.
On the other hand, if ^ωω(φo) ^s assumed to be compact (that is, is fully compact
and not merely countably compact) then φ0 already expresses a first-order property.
Finally, we will see that this result does not generalize to 5£coω: There is φ0

such that ^ωω(φ0) properly extends ££ωω and is compact.
To be precise, for an ^?

ooω[σ]-sentence, define <£ = ^ ω ω ( φ 0 ) by

if[τ] =

0, ifσ

smallest subset of S£^[T] containing φ0 and the
atomic ifωω[τ]-formulas and closed under first-
order operations (say ~i, v, 3x), if σ

Given any Φo^^ooωM s e t &i = Modσ(φ0) and Λ2 = Modσ(~Ίφ0). Then
if ω ω(φ 0) is compact (countably compact) if and only if Rί and ft2 are compact
(countably compact). Here a class 5ί of σ-structures is called compact (countably
compact) if the following holds: Given any set of ifωω[τ]-sentences Φ, with
IΦI = Ko J where σ <z τ, if every finite subset of Φ has a model with σ-reduct in ft,
then so has Φ.

2.3.1 Example. We will give an example of an ifωiω-sentence φ0 such that
ifω ω(φ0) is a proper countably compact extension of 5£}

ωω. Let each natural
number code in an one-to-one and effective way a finite sequence of natural
numbers. Define the binary relation << on ω by

n -< m iff the sequence corresponding to n is an initial segment of
the one corresponding to m.
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There is a recursive functional T which assigns to each X c ω a tree
<= (ω, -<) recursive in X with an infinite branch but with no branch hyperarith-
metic in X (see Rogers [1967]). In particular, for n G ω, there is p(rc) c Pω(ω)
x Pω(ω), where Pω(ω) denotes the set of finite subsets of ω, such that for any
X c ω

(1) * e T(X) iff there is (Xl9 X2) e p(n) with I 1 c l a n d l 2 π l = 0 .

Moreover, the binary relation 91 on P(ω), the power set of ω, given by

MXY iff 7 is an infinite branch of T(X)

has the property

VXeP(ω)3YeP(ω)9lXY,
(2)

VX G P(ω) -i 37 G P(ω) (5RX7 and 7 hyperarithmetic in X).

Let σ = {Rn\neω}, where Rn are unary relation symbols and let 9I0 be the σ-
structure (P(ω), (Rf°)neωl where

RpX iff MGX.

By (1) we have for n e ω and X e P(ω),

where ψn(x) is the ifωiω(σ)-formula

= V ( Λ Rm* Λ Λ
(JVi, X2)ep(n) \meXi meX2

Now

holds for

( Λ V Rmy) A Λ (Λι.3̂  - ΨnW)
\neω meω J neω

n<m

Λ Λ Unv^ A(Rmy^φm(
\

meω
m<n
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Moreover, one can easily verify that for any σ-structure 91 and a, be A,

S ί N ^ M iff neT({m\Ria})

and hence, we have

(3) 9lN=φ[a,ft] iff K{n\Rfa}

Finally, take as φ0 the j£?ωiω[σ]-sentence

where Th(9l0), the theory of 9I 0, denotes the set of first-order sentences holding in

Clearly, φ0 is not equivalent to a first-order sentence. But <$fωω(φ0) is countably
compact: Set 5*! = Mod σ(φ 0) and ft2 = Mod σ (- ιφ 0 ) To prove that Rί is count-
ably compact (even compact) it suffices to show that every ω-saturated model
31 of Th(9l0) is a model of Vx 3y φ(x, y). But for each Y a ω, 91 being ω-saturated
contains an element a such that Y = {n\R*a}. Then by (2) and (3),

911= Vx 3y φ{x, y).

Toprove that S<2 = Modσ(~\φ 0) is countably compact, it suffices to show that if
Φ u Th(9I0) is satisfiable, where Φ is a countable set of first-order sentences, then
there is a model of Φ u Th(9ί0) u {~ι Vx 3y φ(x, y)}: Take a subset X a ω such
that Φ u Th(9l0) is recursive in X. Inside Hyp(X), the smallest admissible set
containing X, construct a model 95 of

ΦvΎh(!llo)u{Rnc\neX}v{^RHc\nφX}9

where c is a new constant. Hyp(X) only contains subsets of ω hyperarithmetic in
X. Therefore by (2), 95 |= ~ι 3y φ(c, y). D

On the other hand we have:

2.3.2 Theorem. Suppose φ0 is an ϊ£^u^-sentencefor some countable σ. If^ωω(φ0)
is compact, then φ0 is equivalent to a first-order sentence.

Observe that for each ^fωiω-sentence φ0, there is some countable σ such that

Ψo e ̂ ω i ω [ σ ] .

Proof. First, we prove:

/ x Suppose that Mod(φ) is compact, where φ e ̂ ooω[σ] and |σ | < Ko. If
911= φ then there is an ω-saturated 91' such that 9Γ = 91 and 9Γ |= φ.
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To establish this, for each (n + l)-type p a JSf ω ω[σ],

P = (W^i ^ j ) N e ω } ,

take a new π-ary function symbol fp. Now, set

Φ = {vx!... vxjay Λ M*i> > *«> >0

/\ψi(xl9 ...,XnJp(Xι, . . . , X

, n e ω , p = {φm(xu ...,xn,y)\m < ω}(n + l)-type}>.

Clearly, Th(9I) u Φ u {φ} is finitely satisfiable and hence satisfiable, say 33 \=
Th(9I) u Φ u {φ}. Let 91' = 95 {σ. Then 91' = 91, 9ί' N φ, and 91' is ω-
saturated since 95 \= Φ.

Now let φ0 and σ be given as in the theorem and suppose that <&ωω(φ0) is
compact. By (the proof of) Proposition 1.1.8, it suffices to show that

91 = 95 implies 91 =<?ωω{φo) 95,

or, equivalently, that

91 = 95 implies (91 \= φ0 iff 95 1= φo)

For the sake of argument, suppose that 91 N= φ0 and 95 1= π φ 0 . Applying (*)
twice, we obtain co-saturated 91' and 95' such that

91' = 95', 9ϊ' |= φ0 and 8 ' 1=

But this is a contradiction, since any two ω-saturated elementarily equivalent
models are if ^-equivalent. D

2.3.3 Example. We will now show that Theorem 2.3.2 does not remain valid, when
we drop the assumption that σ is countable. In fact, we can give an example of a
sentence φ0 e ^ω2ίO such that ^ωω(φ0) properly extends ifωω and is compact.
For α < ωu let RΛ be a binary relation symbol and set σ = {RJoί < ω^. Call a
pair 3F — (J%> ^\) °f finite sets ^ 0 and 3Fx of non-empty finite subsets of ωx

good, if F Φ E holds for all Ee&0 and F e &v (£, F, £ α , . . . will always denote
finite non-empty subsets of coj). Denote by φ^(x) the formula

= /\ 3y/\.Rαx}; Λ / \ ^ 3 y / \ # α x y
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and set Φo = {3x φ&{x)\tF good}. Let φ0 be the sentence

Ψo = /\Φo-+φθ9

where

= Vx((/\ 3y/\Raxy) - 3y /\ Raxy\
\\ F aeF ) %<ω\ /

Clearly, φ0 e &ωiω. Furthermore, (1) and (2) below show that ^ωω(φ0) properly
extends J^ω ω and is compact.

(1) φ0 is not equivalent to a first-order sentence.

To show (1), we prove that there are elementarily equivalent structures 21 and 93
such that 21 h= —\φ0 and 23 1= φ0. Choose an enumeration (^β\β < ωλy
of all good pairs, say, J ^ = (J^g, &{) with J^g = {£?,..., Eβ

mβ}. Also let the
σ-structure 9ϊ be given by:

A = (Oγ u {ωj, and

R^ωxy iff α < γ < ωί9 and for β < ωx:

Λ̂ jSy iff y<m^ and <*eEβ

y+1.

Then ?ί |= φ#β[β]. Hence 21 N Φo, and x := ω1 shows that 91 \φ ψ0. Therefore,
2ί ^ φ0. On the other hand, any ω-saturated structure 95 elementarily equivalent
to 21 is a model of φ0 and hence of φ0 also.

Set ftx = Modσ(φ0) and ft2 = Modσ(-iφ0).

(2) &! and Λ2 are compact.

Since any ω-saturated structure is a model of ψ0, the class 5^ is compact. Now,
assume that Φ u {~iφ0} i

s finitely satisfiable, where Φ cz ifω ω[τ] with σ c τ. We
must show that Φ u {~ιφ0} has a model. We may assume that the consistent set
Φ u Φ 0 has built-in Skolem functions. Let Γ0(x) be maximal among the types
Γ(x), Γ(χ) cz Jί?ωω[τ], with the property:

For any good / Φ U Φ Q U Γ(X) U {φ&{x)} is consistent.

(Note that Γ(x) ••= 0 has this property.) By first-order compactness, there is a
model 21 and a e A such that

and 2ί *= Γ0(x) u j / \ 3y/\RΛxy\[a].

Let 23 be the submodel generated by a. We will complete the proof by showing
that 93 |= Φ u {-ιφo}

 s ί n c e 8 h Φ u Φ 0 , it suffices to prove that B ̂  -\φ0.
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In fact, we show 23 #= 3y/\a<ωι Λαxy[α], where this assertion is obtained proving
that for any unary Skolem function/

there is some α such that —\Raxf(x) e Γ0(x).

Otherwise, for each α there is a good ^βia) such that

(*) Φ u Φ o u Γ0(X) U {φpβwix)} \= Raxf(x)

But then by a combinatorial argument which uses a result of Erdδs and Hajnal, one
obtains α, α' eωuu.Φ a! such that for /? := β(a) and /?' := β(α') the following hold:

<x'φE fo

EψF for (£, F) e (J^g x ^ f ) u

Hence, & = (J^g u J^g', &\ u ^ f u {α, α'}) is good, and \=φ^(x)
φ^^(x)),

But then, using (*), we obtain

Φ u Φo u Γ0(x) u W x ) } N RΛxf(x) Λ Λ

But this is a contradiction, since Nφ^(x) -> ~ι3_y(JRαx); Λ

2.3.4 Notes. Nearly all results of Section 2.1 are contained in Barwise [1974a] or
in Lindstrόm's papers [1966a, 1969]. The characterizations of JS?ωω in Section 2.2
are due to Lindstrόm [1973a, 1974]. The reader will find a further interesting
characterization of JS?ωω in Barwise-Moschovakis [1978]: <£ωω is the unique
logic with "uniformly inductive" satisfaction relation. Observe also that
criteria for first-order axiomatizability of classes of structures such as

ίl is an elementary class iff ft and its complement are closed under
ultraproducts and isomorphisms,

may be rewritten as characterizations of first-order logic. We owe Example 2.3.1
and Theorem 2.3.2 to Gold [1978]. Example 2.3.3 is due to Ziegler (personal
communication).

3. Characterizing
ooω

This section is devoted to characterizations of J^O^ by means of model-theoretic
properties.

The property of a logic <£? of being bounded is a weakening of the compactness
property (^f is bounded, if for any if-sentence φ( < , . . . ) having only models with
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well-ordered <, there is an ordinal α such that the order type of < is always
less than α). As has been already mentioned in Chapter II this property may be
regarded as a model-theoretic substitute for compactness. In fact, for some
bounded logics results on non-axiomatizability, preservation thorems, upward
Lόwenheim-Skolem theorems and so on may be obtained in a way similar to the
corresponding results for first-order logic provided one replaces compactness
arguments by suitable applications of the boundedness property. This is also
illustrated by the proof of Theorem 3.1 given below—a proof the reader should
compare with the proof of Lemma 1.1.2.

One may regard the almost-all Lόwenheim-Skolem property—the so-called
Kueker property, which is introduced below—as a substitute for the Lόwenheim-
Skolem property in this model theoretic sense. Based on an interesting set-
theoretical notion of countable approximations to uncountable objects, the
Kueker property acts symmetrically on models and sentences. The reader should
examine Kueker [1977, 1978] for a more penetrating view of the role of this
property in model theory.

JSfαoω is bounded and has the Kueker property; and if the compactness and
Lόwenheim-Skolem property in Lindstrόm's theorem are replaced by these
substitutes, we obtain a characterization of if ^ as a maximal logic. We will derive
this result as a consequence of Theorem 3.1, a theorem which shows that if aoω is a
maximal bounded logic with the Karp property. The reader should also consult
Chapter XVII, where these results are discussed from a set-theoretical point of
view and where further characterizations of 3? ̂ ω are obtained.

First, we define !£ ^-sentences which characterize the "α-isomorphism type"
of a structure: Given an arbitrary τ and a τ-structure 91, for each ordinal α, we
introduce an if ooω[τ]-sentence φ^ such that for any 95 the following are equivalent
(compare Chapter VIII or Section Π.4.2, in which for finite α, the corresponding
formulas are introduced for the logic ^ωω(QR) with monotone QR):

(0 S N φ J .
(ii) 9ί =α 93 (that is, 91 and 95 are α-isomorphic).

(iii) 91 and 95 satisfy the same ^ ^-sentences of rank <α.

To define φ^, we first introduce by induction on α, for each finite sequence a =
aγ ... an e A, an ^^[τ]-formula φl(xu . . . , xn):

φl = /\ {ψ(xl9..., xn)1911= φ[a] and φ has the form

(-i) Rxh ... xij or (-i)/(x f l,..., xtj) = xt or

(-ι)c = xioτ(-i)xj = xi}9

ψl+1 = f\lXn+1 φla A VXΛ+1 V<PL>
aeA aeA

φl = f\φi for a limit ordinal α.
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Now let ψw be the sentence φ0^, where 0 denotes the empty sequence. An easy
induction on α shows the following: in case either | τ | or α is infinite there are not
more than H α + 1 ( | τ | ) sentences (pairwise non-equivalent) of the form φ^ and
each such sentence φ^ belongs to ^ α ( | τ | ) + ω [ τ ] . Otherwise their number is finite
and each is a first-order sentence. Recall that the sequence of beth cardinals
3α(κ), where K is a cardinal and α an ordinal, is defined by: H0(κ) = K, 3α+1(κ;)
= 23 α ( κ ) and X(κ) = sup{2β(κ)\β < α}, if α is a limit ordinal. Write X for Πα(0);
in particular, 3 ω = ω.

We adapt the proof methods used in Section 1.1 to show

3.1 Theorem. Assume !£ is a regular logic with <£>

aoω < 5£. IjΊ£ is bounded and has

the Karp property, then <£ = 5£]

aDω.

Proof. By contradiction suppose that φ is an i ? -sentence not equivalent to an
if ^-sentence. For an ordinal α, let

Then, by the preceding remarks, χa is an i f ^-sentence and \=φ -• χα. Therefore
tfχα -> φ. That is, for some ©α, 95α |= χα, but 93α |= ~iφ. By the definition of χα

there exists 2ία such that 9Iα \= φ and 93α |= φ^. Hence, 9lα = α 95α. Summarizing,
we thus have:

for each ordinal α there are 9Iα and 93α such that

(•)

and 9 ϊ α ^ α 95 α .

Coding partial isomorphisms (as in the proof of Lemma 1.1.2), we obtain an <£-
sentence which contains among others relation symbols V9 W (unary) and <, /
(binary), and which expresses:

"the F-part is a model of φ, the VF-part a model of ~ι φ; < is an order-
ing, for each x in its field Ix is a non-empty set of partial isomorphisms
from the F-part to the W-part, and the sequence Ix with x in the field
of < has the back and forth property."

By (*), for each ordinal α, φ has a model such that < is well-ordered of order type
> α. Since J^ is bounded, φ has a non-well-ordered model I). Then V^ is a model
of φ, W® a model of —\φ. And, as in the preceding proofs (see Lemma 1.1.2), by
choosing an element in the field of < with an infinite descending sequence of
predecessors, one shows that V® and W® are partially isomorphic. But this is a
contradiction, since ^£ was assumed to have the Karp property. D

Observe that in case ^£ has the finite occurrence property, we can omit the
hypothesis ^ooω < i f in the preceding theorem and obtain 5£ < ^^ω as con-
clusion. We state some results that are obtained by slight changes in the last proof.
For K = ω the following theorem is essentially the characterization of J£ωω as



3. Characterizing^^ 107

given in Theorem 2.1.1. (Consult Section Π.5.2 for the definition and properties
of the well-ordering number of a logic.)

3.2 Theorem. Suppose K is a cardinal and K = 2K. Assume also that J£ with
^κω < ££ isa regular logic with occurrence number <κ. If the well-ordering number
of ^ is <κ and ££ has the Karp property, then i ? = i^ κ ω .

Proof We employ the notations used in the proof of Theorem 3.1 and note that in
case the well-ordering number of i f is <κ this proof shows that any φ e i^[τ] with
I τ I < K is equivalent to some χa with α < K. For any /?, λ < K we have 1β(λ) <
2λ + β < 1K = K. Hence, χae ££K(U by the above remarks on the number of non-
equivalent sentences of the form φ^. D

3.3 Remarks, (a) Clearly, one can generalize Theorems 3.1 and 3.2 in the spirit of
the "separation theorem" 1.1.3 and, for example, derive: Assume that <£ with
Z£ooω < ££ is a logic with the relativίzation property and closed under (finitary)
conjunctions and disjunctions. If S£ is bounded and has the Karp property, then
any two disjoint ^-classes can be separated by an $£ ̂ ω-class (the reader should
consult Makowsky-Shelah-Stavi [1976], where this result is stated for <£ =

In fact, if Mod(φ) and Mod(φ) are disjoint if-classes not separable by an
Jδf ̂ -class, for each α define χα as above. Then there are 9lα and 93 α such that
9Iα N φ, 33α \= φ, and 95α μ= φ^ , and we obtain a contradiction as in Theorem
3.1.

(b) Suppose i f is a regular logic with the Karp property. For an if-sentence
φ and an ordinal α, let f = V ί φ ^ l 9 1 1 = <p} T h e n ^(Λ«ordinai f) -^ <f>> In fact,
suppose for the sake of argument that for all α, 33 \= χa and © 1= ~Ί φ. Let K =
\B\ + . Choose SΆ \= φ such that 91 ^κ 93. We show that 91 ^p 93 which—in view
of 93 |= ~iφ and 911= φ—contradicts the assumption " i f has the Karp property".
From 91 ^ κ 93, we obtain 91 = #κω ©, since each i f κω-sentence has quantifier
rank < K. Hence, 91 = ̂ o o ω S, because each ^£^-sentence is equivalent in Th^κω(3?)
to an i f κω-sentence (see Flum [1971c]). Thus 9I = p33. Summarizing, we have
shown: Assume ££ is a logic with the Karp property. Then for any &-sentence φ
we have ϊ=φ<-+ f\*ordinal tf, where f = \/{(p«m\M N φ}.

Since <£^G is a logic with the Karp property, this result applies to <£^G (see
Keisler [1968a] and compare with Chapter XVII for a more general version).

(c) For a generalized quantifier Q one can extend the preceding results to
logics ^ of the form & = ^^(Q) or i f = ^κω(Q), if there is an appropriate
characterization of if-equivalence by means of partial isomorphisms and if there
are if-sentences which play the role of the formulas φ^. For example, if Q = Ql9

that is, in case Q is the quantifier "there are uncountable many" and if we define
the " K r K a r p property" as suggested by the corresponding back and forth notions
for i f ω ω (Qi) (see Section Π.4.2), we then obtain (the reader is referred to Caicedo
[1981b] for further results in this direction)

If Se with i f ooJβi) < i f is bounded and has the " X r K a r p property",

then ^£ = JfUQi).



108 III. Characterizing Logics

From now on in this section we will assume that all logics under consideration are
built up by set-theoretical principles so that their sentences are sets.

We will quickly review some definitions and results concerning the notions of
approximations of sets and of the closed unbounded filter, and ask the reader to
consult Bar wise [1974b] for details.

We work in a universe of sets and urelements and define for any sets x and s the
approximation xsofxins by e-recursion:

ps = p if p is an urelement,

x s = {ys\yeχ n s}, if x is a set.

Let M be a transitive set and let / be the set Pωι(M) of all countable subsets of M.
The closed unbounded filter on M consists of all I c / such that for some X° c X:

(i) every s e / is a subset of some sf e X° and
(ii) X° is closed under unions of countable chains.

Let 91 be an n-ary predicate of sets and urelements. For given xί9..., xn in a transi-
tive set M, we say that 9t x\ . . . xs

n holds for almost all countable s, if the set

{sεPωι(M)\Kx\...xs

n}

is a member of the closed unbounded filter on M. This notion is independent of the
particular transitive set M containing x l 5 . . . , xn.

We say that a predicte 9ϊ of sets and urelements is Σ, if it is definable by a
Σ-formula of set theory. Barwise [1974b] generalized Levy's Absoluteness Lemma
and showed :

3.4 Proposition. Let 9ί be an n-ary Σ-predicate. IfWxi... xn, then 9 t x i . . . xs

nfor
almost all countable s. D

We assume that vocabularies and universes of structures consist of urelements
only. Then for almost all countable s:

W is the τs-substructure of 91 [ τs with universe A n s,

and for any i f ^-sentence φ and almost all s,

φs = Ψ[s\

where φ[s] = φ, if φ is atomic;

(3xφ)[s] = 3xφ[s];

and

( V Φ ) [ S 1 = \/{<p [ s l l<P G φ n s }
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Here—as also in the proof of Theorem 3.6 below—we assume that the operations
φ\-^-\φ, φ\-+3xφ, ... are "simple" operations, say Σ-operations. Thus, for
example, (~~\φ)s and ~~ι(φs) are equal for almost all countable 5.

"21 ^p 93" and "21 \= φ" for an if ^-sentence φ are Σ-predicates of 21 and 33,
resp. 21 and φ. Therefore, using Proposition 3.4, we obtain (see Barwise [1974b]):

3.5 Proposition, (a) 7/21 ^p 93, then 21s ^ 93s/or almost all countable s.
(b) If φ is an <£ ̂ -sentence, then

211= φ implies 21s |= φs for almost all countable s. D

We say that a logic if has the Kueker property, if for any if-sentence φ, 211= φ
implies 21s N= φ s for almost all countable s. Thus, in particular, we assume that
φs is an if-sentence for almost all countable s.

In particular, if ooω is a logic with the Kueker property. Moreover—as was
announced in the troduction to this section—this property together with the
boundedness property characterize 5£aoω.

3.6 Theorem. Let <£ be a regular logic with <£ςβω < <£. If <£ is bounded and has the
Kueker property, then <£ = <£aoω.

Proof By Theorem 3.1 it suffices to show that i? has the Karp property. So let φ
be an if-sentence and suppose that 211= φ and 21 =p 33. For the sake of argument
suppose that 93 \= —\ φ. Then, by Proposition 3.5 and the Kueker property, we have
for almost all countable s

21s ^ 93s, 21s 1= φs and 93s N Ί ^ ,

a contradiction. D

What is the corresponding separation property of ^£ x ω ? Let φ and φ be sen-
tences of a logic with the Kueker property. Consider the following properties (i) and
(ii) of φ and φ:

(i) Mod(φ) n Mod(φ) = 0;
(ii) Mod(φs) n Mod(^s) = 0 for almost all countable 5.

Clearly, (ii) implies (i). However, in general, (i) does not imply (ii); for otherwise
the next theorem would show that ^?

ooω has the interpolation property. This
theorem contains the separation result corresponding to the maximality result
of Theorem 3.6.

3.7 Theorem. Suppose J? with ££ooω < <£ is a logic closed underfinitary conjunctions
and disjunctions and has the relativizatίon property. Assume that ϊ£ is bounded and
has the Kueker property, and let φ and φ be J?-sentences. If Mod(φ s) n Mod(φs)
— 0 far almost all countable s then for some χ e i f ^ and almost all countable s

Mod(φs) c Mod(χs) and Mod(χs) n Mod(φs) = 0,
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and consequently,

Mod(φ) cz Mod(χ) and Mod(χ) n Mod(φ) = 0 .

Proof. For an ordinal α, let χa = \J {φίJSl ϊ= </>}. Then χα is an ££ ̂ ω- sentence
with |= φ -> χα. If Mod(χα) n Mod(ι/^) = 0 holds for some α, then we let χ = χα.
Otherwise, for each α there are structures 2Iα and 93α such that 9Iα |= φ, 93α |= ι/f,
and 2Iα = α S α . Using the boundedness property of i f and arguing as in the proof
of Theorem 3.1, we obtain structures 21 and 93 such that

21|=<p, 95 |= φ and 51 = p 93.

Hence, 91s |= φ\ 93s |= φ\ and 9ίs ^ Φ s for almost all countable s—a contradic-
tion. D

Taking as i f the Σ}-sentences over ^?

aoω, Theorem 3.7 above is Theorem 2 in
Kueker [1978].

3.8 Notes. Theorems 3.1 and 3.2 are due to Barwise [1974a]. JS?ωiω is a well-
behaved logic with a fruitful model theory. For the problem of characterizing
JS?ωiω, the reader is referred to Barwise [1972a], Gostanian-Hrbacek [1980], and
Harrington [1980].

4. Characterizing Cardinality Quantifiers

In this section we characterize the logics <£?ωω(βα) with the quantifier "there are
Kα-many" among the logics of the form JS?ωω(β), where Q is a unary quantifier.

Given a unary Lindstrόm quantifier Q and a non-empty set A, let Q(Λ) be the
set of "big" subsets of A,

In the terminology of Chapter II, Q is the quantifier associated with the class
ft = {(A, X)\AΦ0,Xe Q(A)}. Clearly

(1) if (A,X)*(B,Y), then (X e Q(A) iff 7 e β(B)).

Throughout this section all quantifiers are assumed to be unary. We call a quanti-
fier Q monotone, if

X E Q(A) and X a Y cz A imply Y e Q(A).
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We now list some examples of monotone quantifiers:

the existential quantifier 3, 3(A) = {X c A\X Φ 0 } ,

the quantifier β α , QΛ(A) = {X c A\ \X\ > K J ,

the Chang quantifier QC,QC(A) = {X c A\\X\ > N 0 > l * l = \A\},

the "non-cofinal complement" quantifier β n c c , where

Qncc(A) = {X ^ Λ\\A\X\ < d(\X\)}.

The dual quantifier β d of a quantifier β is defined by

Q\A)={Xc:A\(A\X)φQ(A)}.

Observe that Qdyφ(y) is equivalent to ~Ί Qy ~Ί φ(y) and that β d is monotone, if Q
is monotone. Clearly, we have

(2) ^ ω ω ( β d ) = ^ωω(Q)

The main result of this section is the following characterization of the logics of
the form 5£ωω(Qa).

4.1 Theorem. Suppose <£ = ^ωω(Q) is a regular logic where Q is a monotone
quantifier. Then

J? = J?ωω or i ? Ξ ^ ω ω ( β α ) for some α.

As an immediate consequence of this theorem, we obtain:

4.2 Corollary. Suppose $£ = ^ωω(Q) with ̂ ωω < ££ is a regular logic, where Q is a
monotone quantifier. If' 5£ has Lδwenheίm number Kα, then 5£ = J^ω ω(6α). D

(if has Lόwenheim number K, if any satisfiable if-sentence has a model of
power < K, and K is the least cardinal with this property.)

To prove Theorem 4.1, we must introduce some terminology and notation.
For n e ω let 3-", β", and Q™ be the monotone quantifiers definable in J5fωω

and JS?ωω(βα), respectively, by:

3-"xφ:^> "there are at least n elements x satisfying φ " ;

(~ιβ α xχ = χ-+3

(- ιβ α xx = x-> 3

where 3< M means "there are less than n".
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Clearly, 3-", β", and Qc" are monotone and

(3) ^ωΛ^n) = ^ ω ω ; ^ ω ω ( δ α ) = &ωω(Q*y,

(For example, that i f ω ω (β α ) < i f ωω(β5!) holds is shown by

= ^ v ••• v y = *„)).)

Let β be an arbitrary monotone quantifier. By the isomorphism condition (1)
stated at the beginning of this section, whether X e Q(A) holds or not only depends
on the cardinalities of the sets A, X and A\X. We associate with β a function
9 ( = 9Q) defined on the class of non-zero cardinals which maps each cardinal
λ Φ 0 on a pair of cardinals, g(λ) = (μ, v), where for any A with | A | = A,

μ = λ and v = 0, if Q(A) = 0 ,

and otherwise

μ = inf{|X| \XeQ(A)}9 v = sup{|A\X\+\XeQ(A)}.

Then, by monotonicity,

Q(A) = {X cz A\\X\> μ,\A\X\ < v}9

and hence Q is uniquely determined by g. Moreover, note that μ < λ, v < λ+ and
μ + v < λ+.

In particular,

Given monotone quantifiers Q and Q\ we say that β and Q' are eventually equal,
if there is n0 e ω such that for all λ>nθ9 gQ(λ) = gQ\λ). Clearly,

(4) if β and β' are eventually equal, then J? ω ω (β) = Jίfωω(Q').

In view of (2)-(4), Theorem 4.1 is an immediate consequence of the following
lemma.

4.3 Lemma. Suppose <£ = ^ωω(Q) is a regular logic with a monotone quantifier β.
Then for some ordinal α and some neω, β or its dual is eventually equal to

1-" or Q: or Q™.
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Proof. Denote by g the function gQ. We establish the lemma by showing the follow-
ing claims (i)-(v):

(i) If ω < A < μ and g(λ) Φ (A, 0), then g(μ) # (μ, 0).
(ii) Suppose A > ω and neω.

If g(λ) = (A, rc) then there is m0 e ω such that for all m > m0

g(m) = (m - n + 1, w).

If #(A) = (n, A+) then there is m0 e ω such that for all m > m0

= Oi, m - π + 1).

By (i) and (ii) we see that in case there is no λ > ω such that g(λ) = (μ, v) with
infinite μ and v, then Q or Qd is eventually equal to 3-n.

Now, let λ0 = inf Λ where Λ = {λ\g(λ) = (μ, v) for some infinite μ, v} is
assumed to be non-empty.

(iii) g(λ0) = (λ0, λ ί ) or g(λ0) = (λ0, λ0).
(iv) If λ0 = ω then for some m0 and neω we have

for all m > m0, f̂(m) = (π, m — n + 1) or

for all m > m0, #(m) = (m — n + 1, n).
(v) If g(λ0) = (λ09 λ£) then for λ > λ0, ^(λ) = (λ0, A+).

Let us show, for example, for the case ω < λ0, g(λ0) = (λ0, λ0) and g(ω) = (n, ω + ) ,
how we obtain from (i)-(v) the assertion of the lemma. For the dual quantifier ζ)d,
we have gd(λ0) = (Ao, XQ ) and g\ω) = (ω, ή). Hence, by (v)

flfd(A) = (A0,A+) forA>A 0 ,

and by (ii) there is m0 e ω such that

g\m) = (m - n -f 1, ή) for m > m0.

Thus for α with Kα = 2 0 we have

Qd is eventually equal to Qc".

The proofs of (i)-(v) make essential use of the relativization property. We sketch
the idea underlying these proofs. Suppose, for example, that g(λ) = (μ, A+), where
μ = Kα; that is, Q is the quantifier Qa in models of power A. Then each ^ωω(Q)-
sentence is equivalent to an c2

?

ωω(Qα)-sentence in models of power A. Now for unary
relations symbols U and P let φ be the relativization of QxPx to U; that is, we let
φ = (QxPxf. Then for 91 = (A, UA, PΛ) with UA ^ PA we have

(•) (A, UA, PA) \= φ iff PAeQ(UA).

Let ι/̂  be an $£ωω(Qα)-sentence equivalent to φ in models of power λ. By (*), we
obtain the possible values of gQ(p) for p < A—if we determine the expressive
power of J£?ωω(gα)-sentences in structures of cardinality A of the above form. This
can be done with the back-and-forth methods of Chapter II. D
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4.4 Remark, (a) One can use the idea of the preceding proof to determine the
logics with the relativization property in more general cases, for example, in the
cases of logics of the form i ? ω ω ( β \ . . . , Qn) with unary monotone Q1,..., Qn.

(b) Since the proof of Lemma 4.3 is given in a way that only unary relation
symbols are used, we see that in case we restrict to logics for monadic vocabularies
the statement corresponding to Theorem 4.1 is true.

We now state yet another immediate consequence of Theorem 4.1.

4.5 Theorem. Suppose S£ = ̂ ωω(Q) with <£ωω < <£ is a regular logic with a
monotone quantifier. IfQ is trivial for finite sets, that is, Q(A) = 0 for finite A, then
for some a

Q = Q« or Q = Ql

If moreover,

XKJYG Q(A) implies X ε Q(A) or Ye Q(A),

thenQ = Qa. D

Caicedo [1981b] calls a monotone quantifier a cofilter quantifier, if for any A
and X, Y a A

XuYe Q(A) implies X ε Q(A) or Y ε Q(A).

Then for finite A we have Q(A) = P(A), Q(A) = P(A)\{0} or Q(A) = 0. Denote
by Card and Card^ the class of non-zero cardinals and the class of infinite cardinals,
respectively. If/: Card -* {0, 1} u Card^ is a function, let Qf be the quantifier
given by

QjiA) = {X ^ A\\X\>f(\A\)}.

Clearly, Qf is a cofilter quantifier (observe that we do not require that ^ωω(Qf) has
the relativization property). Moreover, we have

4.6 Theorem. If Q is a cofilter quantifier, then Q = Qf for some/: Card -+ {0, 1}

Proof Note that a function/: Card -> {0,1} u Card^ is well defined by

Cmϊ{\X\\XeQ(A)} UQ(A)Φ0,
f(\A\) =<

Uup{ω,\A\ + } iϊQ(A) = 0.

We show that for arbitrary A

(*) Q(A) = {X czA\\X\>f(\A\)},

that is, we show that Q = Qf.
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Clearly, (*) holds if Q(A) = 0. Now suppose Q(A) # 0. Iϊf(\A\) is finite,
then/( |v4|) is either 0 or 1, and (*) holds by monotonicity. Let / ( | ̂ 41) = μ be
infinite. Then, by monotonicity (*) holds, once we have established:

(*) There is an X e Q(A) such that | X \ = μ and | A\X \ > μ.

Otherwise, by definition of μ, we have \A\ = μ. Take any Y a A with \Y\ = μ and

\A\YI = μ. Since Y u (A\Y) = A and A e Q(A\ we must have, by the cofilter

property, YeQ{A) or (A\Y)eQ(A). But then X ••= Y or X-.= A\Y satisfies

(ί). •

4.7 Notes. Theorem 4.1 is new here. As is shown by its proof, the theorem tells us
that relativization is a strong property. Theorem 4.6 is due to Caicedo [1981b].

5. A Lίndstrόm-Type Theorem for
Invariant Sentences

Lindstrόm's theorem tells us that for algebraic structures of the logics satisfying
the compactness and the Lόwenheim-Skolem theorem, first-order logic is a
maximal logic. Are there maximal logics with these properties for other kinds of
structures—for instance, for topological structures? By isolating the main as-
sumptions and ideas of the proof of Lindstrόm's theorem, we will be able to prove
an abstract maximality theorem for ordinary structures. The general character of
this theorem will enable us to obtain maximal logics for certain classes of structures,
in particular, for the class of topological structures.

Let R be a binary relation between structures and φ a sentence of a logic <£.
We say that φ is R-ίnvarίant if

9I#93 and 91 \= φ imply 931= φ.

Denote the class of ^-invariant sentences of $£ by J£?R. In case i f = ifΛ, we say
that i f is a logic of R-invariant sentences. In particular, if a logic !£ is given, then
<£R is a logic of ^-invariant sentences.

5.1. Let 5£bea logic with the Lδwenheim-Skolem property and suppose that R1 and
R2 are binary relations between structures. IfR± and R2 are PC in i f and agree on
countable structures, then &Rx = ^ R l . D

Let R be the relation ^p of partial isomorphism. Logics of ^-invariant
sentences are precisely logics with the Karp property. Thus, Theorem 2.1.1 can
now be stated in the following form:

5.2. Among the logics of ^p-invariant sentences £*=£ is a maximal compact logic.
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(Observe that in Theorem 2.1.1 we needed only countable compactness, since
we restricted to logics with the finite occurrence property). Since =p and the
relation ^ of isomorphism agree on countable structures, we obtain from 5.2
using 5.1:

5.3. Among the logics of =-invariant sentences J^0?ω is a maximal logic with the
Lδwenheim-Skolem and the compactness property.

But JSf- = JSf holds for any logic, hence the result in 5.3 is precisely Lindstrόm's
first theorem.

Similarly, Theorem 3.1 can be stated in the form:

5.4. Among the logics of =p-invariant sentences JSfgg, is a maximal bounded logic.

^p is a relation between structures PC in JS?ωω. For each ordinal α, the relation
^ α of α-isomorphism is an "approximation" of ^p. For finite n, =n is explicitly
definable in j£?ωω in the sense that for any structure 91, there is a sentence φ^ e S£ωtύ

such that for arbitrary 93,

» | = φ j iff 91^,93.

The following "abstract maximality theorem" is obtained from 5.2 replacing
^ p by an arbitrary relation R having all the properties of ^ p and its approxima-
tions ^ n that are used in the proof of Lindstrόm's theorem. Essentially, Theorem
5.5 tells us that in case R is itself definable by ^-invariant first-order sentences
and has definable approximations, then j£?£ω is a maximal compact logic of R-
invariant sentences.

Note that Theorem 5.5 deals with many-sorted logics. For the sake of simplicity,
we restrict to finite vocabularies. In the following, the term "logic" will always
mean "many-sorted logic" in the sense of Chapter II. Furthermore, if it is not
otherwise stated, we will always assume closure under boolean operations.

5.5 Theorem. Suppose there is given for any vocabulary τ, a set Φτ c= J£?ωω[τ] and
let Λτ = Mod(Φτ). Assume that R is a binary relation between structures such that
9IK93 implies 91, 33 e 9? for some τ. Suppose that

(1) R {restricted to τ-structures) is an equivalence relation on ftτ.
(2) If p: τ -> τ is an injective renaming, then for all τ-structures 91 and 23

911*93 implies 9TpK93-p.

(3) ("R is ίnvariantly definable and has definable finite approximations.") Given
τ there arefor someτ*,τ a τ*, £f ωω[τ*]-sentences φ0, (Pi, φ2,.. .suchthatfor
arbitrary τ-structures 91 and 93 the following hold:

iff (9ί, 93,...) \= {Ψi \ i e ω} for some choice of {the
universes and relations in)...,
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and for neω the relation Rn on ftτ given by

<ΆRn 93 iff (21, 95, ) |= {φt \ i < n} for some

has the following two properties:

(i) Rn is an equivalence relation on ftτ.
(ii) For 21 e ftτ, there is φn

m e JSfωω[τ] such that for 93 e ftτ

2ίKπ® iff 8 1 = ^ .

T/ierc among the logics of R-invariant sentences and semantics restricted to structures
in (J {ftτ I τ vocabulary} ί/ze logic J ^ ω o/ R-invariant first-order sentences is a
maximal compact logic.

Moreover, ifΊ£ with &foω < ^ is a compact logic of R-invariant sentences which
is closed under conjunctions and disjunctions (but not necessarily under negations),
then any two ^-classes can be separated by an Jίf*ω-class.

Proof Clearly J5?*ω with semantics restricted to ft:= [j {ftτ|τ vocabulary} is
compact. Moreover, i ?£ ω is closed under boolean operations (since R is an equi-
valence relation) and has the reduct and renaming property (by (2)). Note that for
91 e ftτ, the sentence φ^ mentioned in assumption (3) (ii) is ^-invariant. In fact,
let 93#e and 93 |= ψn

m. Then 2ίKn93. Since R ^ Rn and Rn is an equivalence rela-
tion, we obtain 2IKΠ(L Hence, d\= φ^.

It suffices to prove the separation claim in the theorem, since this claim implies
the maximality property of JS?ωω Let i f be as above and choose φ,ψ e <^[τ] such
that Mod(φ) n Mod(ι^) = 0 , where Mod(...) denotes the class of models of... in
ftτ.

For neωwQ have

By the preceding remark, ψ^ is ^-invariant. Hence, by if-compactness it follows
that the disjunction in (*) can be replaced by a finite one. That is, there is such a
finite disjunction χn e J ^ ω with N φ - ^ χn.

By if-compactness it suffices to show that {χn\neω} u {φ} has no model in
ft, for it will then follow that for some neω, Mod(φ) c Mod(χ° Λ Λ χn) and
Mod(χ° Λ Λ χn) n Mod(ι^) = 0 . By contradiction, suppose that 93 in ft is a
model of {χn\neω} u {φ}. Then, for each n, there is 2lπeft with SΆn |= φ and
93 l- φn

mn. Whence 21,, 1^93. By (3), we now have

( « ! „ , » , )\={q>i\i<n}

for appropriate . By if-compactness, there are 2ϊ, S and appropriate . . . such
that
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with 2Ϊ \= φ and 23 |= ι/Λ_But then 2IK23. Hence it must be that 8μ<p, since φ is
^-invariant. Therefore, 95 e Mod(φ) n Mod(φ)—a contradiction. D

5.6 Remarks, (a) Note that the preceding proof shows that each if *ω-sentence is
equivalent in Λ to a disjunction of sentences φ^. Thus, if if is a compact logic of
R-invariant sentences containing all first-order sentences Ψ&, then i^*ω = !£.

(b) Theorem 5.5 also holds for if ooω instead of Sέ'ωω, if for each ordinal α, we
introduce the corresponding relations Ra and also assume that each Rα has set-
many equivalence classes. The conclusions will then read as follows:

Among the logics of R-invariant sentences, ̂ £\ω is a maximal bounded
logic; and

ω < if and if is a bounded logic of K-invariant sentences, closed
under conjunctions and disjunctions, then any two disjoint i^-classes
can be separated by an 5££ω-class.

(c) One can even prove a more general theorem that will cover the cases in
Theorem 5.5 and in the preceding remark, replacing i^ω ω by an arbitrary logic 5£
and explicitly using the well-ordering number of ^£. This theorem would also
include the corresponding results (indicated in Section 3) for the logic with the
added quantifier "there are uncountably many".

We now give the applications of Theorem 5.5 to topological structures and to
other types of structures as well.

A topological structure is a pair (2ϊ, μ) consisting of an (algebraic) structure 21
and of a topology μ on A. Topological spaces and topological groups are
examples of topological structures. Let Top denote the class of topological struc-
tures. We obtain a logic for Top which is neither compact nor has the Lόwenheim-
Skolem property, if we take the two-sorted first-order language corresponding to
structures of the form (21, μ, e), where (21, μ) e Top and where e is the membership
relation between elements of A and open sets. In particular, quantified variables
of the second sort range over open sets.

Now, consider arbitrary structures of the form (21, μ, E), where A and μ are the
universes and £ is a binary relation with E a A x μ. For U e μ, put

UE= {a sA\aEU} and μE = {UE\Ueμ}.

Let

Bas = {(21, μ, E) \μE is basis of a topology on A},

and, for (21, μ, E) e Bas denote by (21, μ, E) the induced structure in Top.
Bas consists precisely of the models of the following (two-sorted) first-order

sentence

φBas = Vx 3X x e X Λ Vx VX V7(x 6 I Λ X G 7 - > 3Z(x e Z Λ

\/z(z £Z^(zeXAZE 7)))).
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Let ^ be the relation of topological homeomorphism on Bas. That is, ^ is
the relation given by the isomorphism relation of induced topological structures:

Observe that a sentence φ is ^'-invariant just in case

(1) (%μ,E)\=φ iff

holds for (21, μ, £) e Bas. Therefore, we also speak of basίs-ίnvarίant sentences in-
stead of ^-invariant sentences.

If^f is any logic for topological structures, then, using (1) as definition, we obtain
a logic for structures in Bas which will consist only of basis-invariant sentences.
On the other hand, if $£ is a logic for structures in Bas which consists of basis-
invariant sentences, then—using again (1) as definition—we obtain a logic for
Top. Because of this one-to-one correspondence, maximal logics for Bas " a r e "
maximal logics for Top.

We apply Theorem 5.5 to obtain maximal logics for Bas—it being clear how
the notion of one-sorted and many-sorted type and structure must be redefined in
our case. For this, choose Φτ such that Mod(Φτ) is the class of structures in Bas
of type τ, for example, Φ τ = {φBas} for "one-sorted" τ. As R and Rn take the relation
=p of partial homeomorphism and the relation ^J, of n-homeomorphism, respectively
(they correspond to the relation of partial isomorphism and n-isomorphism of
induced topological structures the reader is referred to Chapter XV or to Flum-
Ziegler [1980, p. 18]). By Theorem 5.5, i f =£ is a maximal compact logic of ^p-
invariant sentences. Since ^ and ^ are first-order definable relations which
agree on countable structures, we obtain from this result and from 5.1:

5.7 Theorem. The logic of basis-invariant first-order sentences is maximal among the
logics for topological structures with the compactness property and the following
Lόwenheim-Skolem property: ifφ has a topological model, then there is (21, μ) e Top
such that (21, μ)\= φ, A is countable and μ has a countable basis. D

5.8 Remarks, (a) Since ^ p and Ξ 1 ' agree on countable structures, one can get
from the proof of Theorem 5.5, the interpolation theorem for the logic of basis-
invariant first-order sentences in a way similar to that for first-order logic given
in Example 1.1.7(a).

(b) By the preceding results and Remark 5.6(a), any logic containing sentences
φ"^ σ) characterizing the ^-isomorphism type of any topological structure (21, σ)
already contains all basis-invariant first-order sentences. This result will be used
in Chapter XV.

Similarly, one can obtain maximal logics for other types of structures. We will

give two further examples.
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A uniform structure is a pair (91, μ) where μ a A x A is a uniformity on A A
monotone structure is a pair (21, μ) where μ c A is a monotone system on A,
that is, a non-empty set of subsets of A such that X e μ and I c 7 c A imply
Yeμ.

Using in both cases the corresponding notions of basis and the corresponding
Lόwenheim-Skolem properties we obtain in the same way as for topological
structures the following result:

5.9 Theorem. Among the logics for uniform structures (monotone structures) with
the compactness and the Lowenheim-Skolem property, the logic of basis-invariant
first-order sentences is maximal. D

5.10 Remarks, (a) In Chapter XV the reader can find syntactic characterizations
of the basis-invariant sentences for the above cases.

(b) Observe that the result which we obtain from Remark 5.6(b) for the cor-
responding infinitary logics are not satisfactory. For example, Remark 5.6(b) tells us
that among the logics for topological structures, JS?=& is a maximal bounded
logic of ^-invariant sentences. And it is not hard to give a "syntactic" charact-
erization of the sentences in j£?sS\ But is ifjg, = if J«? That is, is J2?|£, the class of
basis-invariant 5£^ -sentences?

ooω

5.11 Notes. The Lindstrδm-type results for topological structures, monotone
structures, and so on are due to Ziegler [1976]. Theorem 5.5 is new here. The
reader should compare our approach to maximal logics with that given by Sgro
[1977b]. Sgro's main result—when translated into our terminology—reads as
follows: Given a relation R between structures, the logic JS?£ω is, among the logics
of K-invariant sentences, a maximal logic satisfying a "-Los ultraproduct theorem".
Since the ultraproduct operation commutes with the operation which associates
to each model in Bas the induced model in Top, we obtain: The logic of basis-
invariant sentences is a maximal logic for topological structures satisfying a ί:os
ultraproduct theorem.




