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Chapter I

Groundwork

In this introductory chapter we review some of the prerequisites to the theory to
be studied in this book. In the first section we discuss the kinds of objects we
shall study — functions and relations with natural numbers and functions of
natural numbers as arguments. The second section outlines the application of
topological and measure-theoretic notions to these objects. In the third section
we discuss inductive definability, a notion which plays a dual role in our theory.
Most of our fundamental definitions are given inductively, but in addition we
shall study inductive definability as a means of classifying sets and relations.

The reader need not master all of Chapter I before going on to the theory
proper. Subsections 1.1-1.5, 2.1-2.4, and 3.1-3.11 will suffice for a reading of
Chapter II and most of Chapter III, and the other subsections may be used for
reference. A list of all of the global notational conventions is on page 467.

1. Logic and Set Theory

1.1 Functions and Sequences. A function φ is a set of ordered pairs (JC, y). The
domain of φ is the set Dm φ = {x: for some y (JC, y) E φ}, and the image of φ is
the set Im φ = {y: for some x (JC, y) E φ}. We often write φ (x) j or say φ (JC) is
defined to mean that JC E Dm φ. Similarly, φ (JC) \ means JC ^ Dm φ and is read
φ(x) is undefined. If φ and ψ are two functions, we write φ(x)— Ψ(x') to mean
that either both ψ(x) and ψ(x') are undefined or both are defined and have the
same value (φ(x) = ψ(x')). In particular, φ(x)— y means that φ(x) is defined
and has value y — that is, (JC, y) E φ. We write φ (JC ) = y only in contexts where it
is clear that φ(x) is defined. If Dm ψ and Dm ψ are both subsets of a set X, then
the statement (for all JC E X) φ(x) — ψ(x) means simply that φ and ψ denote the
same function. If the set X is clear from context, this may be written simply
<p(jc)— Φ(x). The restriction of ψ to X is the function φ \X = {(JC, y): JC E X and
φ(x)— y}. The image of X under φ is the set ψ" X = Im(<p fX).

We write φ: X —> Y to mean φ is a function, Dmφ C X, and I m ^ C Y . If
Dm <p=Xwe say φ is total; otherwise, φ is partial. The set of all total functions
φ: X-> Y is denoted by XY.
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If yx denotes an element of Y whenever x G Z C X , we use any of the

expressions x »-> yx, λx.yx and (yx: x E Z ) to denote the function {(JC, yx): x E

Z}.

The natural number m is the set {0,1,..., m - 1} of all smaller natural

numbers. The set of all natural numbers is denoted by ω.

For any set X, a finite sequence from X is a function x with domain a natural

number fc called the length of x (lg(x)) and image a subset of X. Hence x E kX.

For i < lg(x), x(i) is called the i-th component of x and is usually denoted by JC,.

To exhibit all the components we write (JC(), Xi,..., xk-ι) for x. Note that the

empty sequence 0 is the unique sequence of length 0. We make no distinction in

general between X and ιX. Note that if x = (x(>,..., xk_i) and y = (y 0 , . . . , y/-i) are

two finite sequences from X, then x C y just in case y extends x; that is, fc ^ / and

for all / < fc, x, = y, . The operation x*y produces the sequence

(xo,..., Xfc-i, y 0 , . . . , y/-i). If φ E ωX, then x * φ is the function φ E ωX such that

for /<lg(x), Ψ(i) = xi9 and for ι^lg(x), </>(0 = <p(i - lg(x)). If Z C X , we

sometimes write x E Z to mean that for all i < lg(x), x, E Z. Similarly, m < n

means that for all i < lg(m), m, < n. If <p: X—> Y and x E kX, then φ(x) denotes

the sequence (φ(x0), .. ,φ(Xk-ι)).

1.2 Functionals and Relations. For fc, / E ω we set M ω = kω x '(ωω). A function

F: k 'ω -> ω is called a functional of rank (fc, /). A functional of rank (fc,0) is also

called a function of rank fc and is identified with the corresponding function

F : kω-+ω. Elements of ωω are thus total functions of rank 1.

Elements of k / ω are ordered pairs of the form (m, a). However, if F is a

functional of rank (fc, /), we write F(m, α ) instead of F((m, a)) and think of m, a

as a list of arguments m0, . . . , m k - i , α0, . . . ,α/- i . Thus, for example, we write

F(m«,..., mk-u a) instead of F((w 0 , . . . , /nk_i), α ) and F(p, m, α, β, γ) instead of

of F((p) * m, a * (β, γ)). If F is a total functional of rank (fc 4-1, /), then F may

also be thought of as a function from kJω into ωω whose values are given by:

F[m, α ] = <F(/?,m, a): p E ω ) = λp. F(p,m, a).

A subset R of k / ω is called a relation of rank (fc, /). We usually write R(m, a)

instead of (m, a) E R. A relation of rank (fc, 0) is called a relation (on numbers) of

rank k and is identified with the corresponding subset R of kω. In accord with

the list notation for functionals, we write, for example, R(m, α ( ) , . . . , α ^ ) for

R(m,(α0, ...,0!/-,)) and R(p, qr,m, r, β, α ) for R((p, ̂ ) * m * ( r ) , ( β ) * α ) . For R C
k 'ω, the complement of R (with respect to k / ω ) is the relation ~R = {(m, a):

(m, a)Eklω and (m, α ) £ R}.

With each relation R of rank (fc, /) is associated its characteristic functional of

rank (fc, /) defined by

KR(m,«)=ί?' «
[1, ootherwise.
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Conversely, to each functional F of rank (k, I) corresponds it graph GrF

(occasionally Gr(F)), a relation of rank (k + 1, /) defined by

GrF(n, m, a) iff F(m, a) — n.

By the identification of functional of rank (1, 0) with functions from ω into ω

and of relations of rank (1, 0) with subsets of ω, if A C ω, then KΛ G ωω. We

write, for example, F(m, A, α, B) instead of F(m, KA, α, KB) and thus extend

functionals to admit subsets of ω as arguments.

Compositions of partial functionals and relations are taken to be defined

whenever possible. For example, F(G(m, α),m, a)— n just in case for some

p G ω, G(m, a) — p and F(p,m, a)— n. Similarly, F(m, α, λp. H(p,m, a))— n

just in case for some β G ωω, H(p,m, a) — β(p) for all p G ω, and F(m, a, β)— n.

Note that F(m, α, λp. H(p, m, «)) is undefined for any m and a for which

λp. H(p, m, α ) is not total. For relations, we have, for example, R(m, G(m, a), a)

is true iff for some p E ω, G(m, a) — p and R(m, p, α ) , and false otherwise (not

undefined).

Natural numbers are said to be objects of type 0. Functions from kω into ω

and subsets of kω are objects of type 1; functionals from kJω into ω and subsets

of klω (/ > 0 ) are objects of type 2. In general a function with natural number

values or a relation is of type n + 1 iff its arguments are objects of types at most n.

In practice, the arguments of types > 0 will almost always be total unary

functions. Thus the objects of type 3 discussed in § VI.7 and Chapter VII are

functions and relations on κ u ι ω = kω x / ( ω ω ) x ι (ωω). Elements of kJJ ω are

written (m, α, I), where I = (\u . . . lΓ_j). Functionals of type 3 are denoted by

letters F, G, H,. . . and relations of type 3 by R, S, T, . . . .

1.3 Logical Notation. We shall use the logical symbols Λ , v, — I , —>, and «-> as

abbreviations for the expressions 'and', Or', 'not', implies', and ςif and only if,

respectively. Although we are not, for the most part, dealing with formalized

languages, these connectives are to be understood in their usual truth-functional

sense. Thus, for example, an expression of the form > is true just in

case is false, or is true (or both).

The symbols 3 and V will be used as abbreviations for 'there exists' and 'for

all', respectively. In most cases the range of the quantifier will be indicated by

the type of variable following it in accord with the conventions listed on page

467. For example, an expression of the form 3m [—m —] is true just in case

— m — is true for some natural number m. Similarly, the condition for equality

of partial functionals is written

F = G o V m V α [F(m, a) - G(m, a)].

Further restrictions on the range of a quantifier may be indicated by use of a
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bounded quantifier. For example, (3 m < p)— m — is true iff — m — is true for

some m among 0,1,...,/? - 1; (Vγ E W) γ is true iff γ is true for

all γ belonging to W. We write 3 ! m [ — m —] to mean that — m — is true for

exactly one m.

Parentheses, (and) , and brackets, [ a n d ] , are used interchangeably in

sufficient quantity to ensure unique readability of expressions. In addition, a

single dot . may be used to set off two parts of an expression — for example,

(Vp<q).R(p,m) or λp.f(p,m) + g(p).

1.4 Sequence Coding. For each fc, kω is a countable set and may thus be put in

one-one correspondence with a subset of ω. Similarly for / > 0, '(ωω) may be put

in one-one correspondence with a subset of ωω. We define here some particularly

simple such correspondences which we call coding functions.

Temporarily we let /?, denote the i-th prime number: p0 = 2,pλ = 3 , . . . . For

each fc we define a total function < )k of rank fc by:

< >° = 1, and for any fc > 0 and any mG kω,

(m) k = ( m o , . . . , mfc-,>k = po

m°+1 pΓ 1 + 1 pT*V+ί.

The unique factorization theorem of arithmetic ensures that if (m)k = (n)', then

fc = Z and m = n. As the superscript is usually clear from the context, we shall

usually omit it.

For any 5, ί, and / E ω, let

(s)i = least m [m < s ApT+2 does not divide s];

lg(s) = least fc [k < s Λpk does not divide s]\

s * t = s -1', where t' arises from t by replacing each

factor pi in the prime decomposion of t by pΓg(s)+..

Then it is an arithmetical exercise to verify that for all fc, all m E kω, all n, and all

i < fc, ((m)), = m, , lg((m)) = fc, and (m) * (n) = (m * n). We denote by Sq the set of

all s such that 5 = (m) for some m. Note that for any fc and 5, s may be regarded

as coding a sequence of length fc, namely ((s) 0,.. .,(s)k-i). We often regard m

and (m) as interchangeable and write, for example, p C (m) instead of p C m. In

particular, 5 C t iff for some m and n, s = (m), t = (n), and m C n . For any

β E ωω, β(k) denotes the code for the sequence β\k — that is, β(k) =

We next define coding functions from '(ωω) into ω ω :

( )° = Am. 1, and for any / > 0 and any a E ' ( ω

(a)1 = ( α 0 , . . . , α/-i)' = λm . (ao(m),..., α/-i(m)).
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Again it is obvious that if (a)1 = (β)k, then / = k and a = β, and that we may
omit the superscript without ambiguity.

For any y and δ G ωω and any j G ω, let

= λm.(γ(m))y;

y * δ = λm. γ(ra)*δ(m).

Then for all /, all a G '(ωω), all 0, and all / < /, ««»,- = at, lg«α»= /, and
(a)*(β) = (a * β). We denote by Sqi the set of all γ such that y = (a) for some
a. For any / and γ, γ may be regarded as coding the sequence ((γ)0, .., (γ)/-i)

It will also be useful occasionally to code ω -sequences of functions. We set

<α(), α ι , . . . , α n , . . . ) = λw. <ximh((m )i), and

(yT(m)=y((nym)).

Then clearly «α0, «i , . . . ,«„,. . . »n (m) = an (m).

1.5 Set Theory. Except where we specify otherwise, the results of this book are
all theorems of ZFC, Zermelo-Fraenkel Set Theory with the Axiom of Choice.
The (Generalized) Continuum Hypothesis is not assumed. We shall occasionally
want to replace the full Axiom of Choice (AC) by the weaker Axiom of
Dependent Choices:

(DC) Vx3y.(x,y)GX^3<pVm.(φ(m),φ(m + 1))GX.

We recall that this implies the principle of choice for countable families of
non-empty sets:

(ACω) Vm. Y w ^0-*3ψVm.ιMm)G Y*.

Most of our set-theoretic conventions are standard and we refer the reader to
(for example) Levy [1978] for further background. A set JC is transitive iff
Vy(y G x -> y C JC). x is an ordinal (number) iff x and all of its elements are
transitive. For ordinals π and p, π < p iff π G p the relation ^ is a well-
ordering on any set of ordinals. For any ordinal π, π + 1 is the set π U {TΓ}, the
ordinal successor of TΓ. p is a successor ordinal iff p = TΓ + 1 for some TΓ p is a
limit ordinal iff Vτr(τr < p—» TΓ + 1< p). Every ordinal is either 0, a limit, or a
successor. The natural numbers are exactly the finite ordinals and ω is the
smallest limit ordinal. Or is the class of all ordinals.

For any set X of ordinals we denote by inf X the ^ -least element of X.
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Although X need not have a ^ -greatest element, there is always an ordinal

greater than or equal to all elements of X and we denote by sup X the least such

ordinal. In fact, supX is exactly the union of the members of X. We set also

sup+X = sup{ττ + 1: π E X}. Then sup+X is the least ordinal strictly greater

than all elements of X and is the same as supX if X has no greatest element;

otherwise, supX is the greatest element and sup+X = supX-I-1. If φ is a

function from ordinals to ordinals and X C Dm φ, then

infπ€ΞXφ(π) = \ni{φ(π): π E X}, and

(vr): π E X}.

An ordinal p is a limit of members of X C Or iff (VTΓ < p)(3cr E X). π < σ <

p. Any limit of members of any set X is a limit ordinal. If also p E. X, then p is

called a limit point of X. We denote by LimX the set of limit points of X. A

subset y ς X i s cofinal in X iff (Vcr E X)(3τ E Y)σ ^ r.

If ?l is a proposition which may be true (?l(<τ)) O Γ ^ a * s e ('"~Ί^(σ")) of each

ordinal σ, then to prove Vcr?l(σ) we may use the method of proof by transfinite

induction: if Vσ([(Vτ < σ)9l(τ)]->9l(σ)), then Vσ9I(σ). We use frequently

also the parallel method of definition by transfinite recursion: for any total

k +2-place function ψ, there exists a k + 1-place function φ such that for all p

and x,

where

ψ\χP ={((π,x),z): π <ρ Λ φ(π,x)= z).

φ is not unique, but any other function φ' which satisfies this equation has

φ\σ,x) = φ(cr,x) for all σ and x.

Since any set X of ordinals is well ordered by the relation ^ , it is uniquely

order-isomorphic to an ordinal which we denote by ||X||, the order-type of X.

The function φx which realizes this isomorphism is recursively defined by:

ψx{ρ) = sup+{<px(ττ): π < p Λ π E X}.

We list here some elementary properties of φx which will be needed in Chapter

VIII:

(1) π,pEXΛπ < p -+φx(π) < φx{p)\

(2) p E X Λσ < φx(p)->3π[π E X Λ π < p /\ σ = φx(π)]\

(3) p e X
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(4) p C X ^ φ x ( p ) = p;

(5) X is an ordinal <-» (Vp G X).φx(p) = p.

An ordinal K is an initial ordinal or cardinal (number) iff there is no one-one
correspondence between K and any τ < K. From the axiom of choice it follows
that for every set X there is a unique cardinal K such that there exists a one-one
correspondence between X and K. We denote this K by Card(X), the cardinal of
X. Then there is a one-one correspondence between two sets X and Y just in
case Card(X) = Card(Y). The natural numbers are exactly the finite cardinals,
and ω is the least infinite cardinal. A set X is countable iff Card(X) ^ ω and
denumerable or countably infinite iff Card(X) = ω. The infinite cardinals are
enumerated by the function H defined by:

Mo = ω

Hσ = U {Hn: π < σ}, for limit σ.

In particular, Hi is the set of countable ordinals.
For any X, P(X) denotes the power set of X, the set of all subsets of X. If

Card(X) = K, then CardP(X) is denoted by 2\ If X is infinite, then Card(x2) =
Card(xω) = 2\ In particular, Card(ωω) = Card(k/ω) = 2M° for all k and all / > 0.
By Cantor's Theorem, K <2K for all cardinals K. The Continuum Hypothesis is
the statement that 2M° = M!.

1.6 Ordering Relations. For any set X and any Z C 2X, the field of Z is the set

Fld(Z) = {x:3y [(x, y)G Z v(y, JC)G Z]}.

Z is a pre-partial-ordering iff

(1) (VJC G Fld(Z))[(x, JC) e Z], (Z is reflexive),

and

(2) VxVyVz [(JC, y ) 6 Z Λ ( y , z ) G Z ^ ( x , z ) G Z ] (Z is transitive).

Z is a pre-linear-ordering iff (1), (2), and

(3) VjcVy[jc,y G Fld(Z)Λ x ^ y -»(*, y)G Z v(y, JC)G Z] (Z is connected).

Z is a pre-wellordering iff (1), (2), (3), and
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(4) V Y ( Y C F l d ( Z ) Λ Y/0^>(3x<Ξ Y)(Vy G Y ) [ ( y , x ) G Z - H > ( J C , y ) G Z ] )

(Z is we// founded).

Z is a partial- (linear-, well-) ordering iff Z is a pre-partial- (linear-, well-)

ordering and

(5) Vx Vy [(*, y) G Z Λ (y, JC) G Z -* JC = y] (Z is antisymmetric).

From the Axiom of Dependent Choice (DC) it follows that (4) is equivalent to

(4') Vφ[Vm.(φ(m + 1), φ(m)) G Z ^ 3m. (φ(m

If Z is a pre-wellordering, then there is a unique function | | z , the norm

associated with Z, from Fld(Z) onto an ordinal such that for all JC, y G Fld(Z),

(6) ( x , y ) G Z H * | z ^ | y | z .

In fact, for any y G Fld(Z),

|y | z = sup+{|x|z:(x,y)GZΛ(y,λ)£Z}.

Conversely, if | | is any function from a set Y into the ordinals, the relation Z( |

defined by

(7) (x,y)<ΞZι , H * M y |

is a pre-wellordering. If the image of | | is an ordinal, then | | is the norm

associated with Z\ \.

Z is a well-ordering just in case | | 2 is injective (one-one). The image of

I \z is called the (pre-)order-type of Z and is denoted by | | Z | | . Clearly | | Z | | < K,

where K is the least cardinal greater than Card(X). In the context of of set theory

without the Axiom of Choice, a useful measure of the size of a set X in terms of

ordinals is o(X) = sup+{||Z||: Z is a pre-wellordering and Fld(Z)CX}.

Orderings will generally be denoted by symbols ^ or < with various sub-

and superscripts. In any such context, the symbols < or < always denote the

associated strict ordering defined by:

With any γ G ωω we associate a binary relation = r̂ by

γn *+ γ«m, n)) = 0.
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We shall mainly be interested in γ such that ^ y is a partial ordering. We then set

W = {γ: ^ Y is a well-ordering};

M . = ίlKII. if r^w;
7 1 1 I*,, otherwise;

w fθ, if m^yiτ /\n<Ύp',

The following facts are easily verified: for any γ E W and any p,

(8) r Γ p ε w 9 and if | | r l l>0, then ||yΓp|| < | |y||;

(9) for any σ < | | γ | | , there is a unique p E Fld(γ) such

that | | γΓp | | = σ\

(10)

(11)

1.7 Notes. The idea of coding finite sequences of natural numbers by prime

powers goes back (at least) to Godel [1931]. For readers less familiar with set

theory we recommend Levy [1978], Zuckerman [1974], or the handiest recent

text.

2. Topology and Measure

We begin our study of the spaces kJω by defining a natural topology and measure

theory for them. We define first a topology based on viewing kιω as a product of

copies of ω, show that with this topology ωω is homeomorphic to the set of binary

irrational numbers between 0 and 1 with the topology induced from the reals,

and using this homeomorphism, carry Lebesgue measure over to ωω.

The set ωω may be viewed as a product ω X ω X XωX of denumer-

ably many copies of ω. To ω we assign the discrete topology: all sets are open

(and hence all are also closed). Then to ωω we assign the induced product

topology: a set A C ωω is a basic open set iff for some n and some (open) subsets

Bo,.. . , £ „ - ! of ω,

A = Bo X B, X X Bπ_, XωX XωX .

In other words, for all α,
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a 6 A o ( α ( 0 ) E B « ) Λ ( α ( l ) E £,) Λ Λ (a(n - 1)E £„_,).

The open subsets of ωω are then, of course, arbitrary unions of basic open sets.

Finally to klω we again assign the product topology: R C k ' ω is a basic open

relation iff for some A ( ) , . . . , A k - i C ω and some open sets A o,..., A/_i C ωω,

R = (Λ« x x Λk-X) x (Ao x x A,-,).

For any finite sequence m = (mih..., mn_i), the interval [m] is defined by:

a E [m] <->(a(0) = m()) Λ Λ (a(n - 1)= mn-x).

If m C n , then [n] C [m] is a subinterval of [m]. Clearly each interval is a basic

open subset of ωω. Conversely, if A is the basic open set determined by

Bo,...,Bπ-i, then

A = U {[m]: m ( )E β«Λ Λ mn_iE Bn_,}.

Thus the set of intervals is also a base for the topology on ωω.

A partial functional is partial continuous iff for all n,

F-I({n}) = {(m,α): F(m, α ) - n }

is open. This is equivalent to the more usual condition that F" !(B) be open for

any open set B C ω. F is continuous iff it is partial continuous and total.

2.1 Lemma. For any R C M ω ,

(i) R is open iff R is the domain of some partial continuous functional',

(ii) R is closed-open iff KR is continuous.

Proof If F is partial continuous, then Dm F = U {f'ι({n}): n E ω) is a union of

open sets and hence is open. Conversely, if R is open, let

i-/ v ίθ, if R(m, α ) ;
F(m, a) - \ ' Λ , . .

(undefined, otherwise.

Clearly F is partial continuous and R = Dm F. (ii) follows immediately from the

definitions. D

A set A C ωω is dense in an interval [m] iff for every subinterval [m * n] C [m],

A Π [m* n] / 0 . A is dense iff it is dense in the interval [0] = ωω. A is nowhere

dense iff it is dense in no interval. A is meager (first category) iff it is a countable

union of nowhere dense sets. A is non-meager (second category) iff it is not
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meager. A is comeager (residual) iff ~ A is meager. An element a of A is isolated

in A iff there exists a neighborhood [a \ k] of a such that [a \ k] Π A = {a}. A is

called perfect iff it is closed, non-empty, and has no isolated elements.

We mention first some simple direct consequences of these definitions. A

singleton is nowhere dense so any countable set is meager. A countable union of

meager sets is meager. A subset of a meager set is meager. A set is nowhere

dense iff its closure includes no interval. The complement of an open dense set is

nowhere dense. A perfect set has power 2M°.

2.2 Baire Category Theorem. No non-empty open set is meager; no comeager set

is meager.

Proof. Both statements follow from the assertion that no interval is meager.

Suppose to the contrary that for some p and some nowhere dense sets

An, [p]= U{An: n E ω}. Ao is not dense in [p], so for some sequence m°,

Ao Π [p * m°] = 0 . Ai is not dense in [p * m°], so for some m1, Ai Π [p * m° * m1] =

0 . In this way we construct mn such that for all n,

(Ao U U An) Π [p* m°* * m"] = 0 .

There is a function a E Π {[p*m°* *πΓ]: n E ω} and a E [p] but α £ An

for all n, a contradiction. D

We shall have occasion to consider the subspace ω2 consisting of all a which

assume only the values 0 and 1. ω2 is just the set of characteristic functions of

subsets of ω and thus in a natural one-one correspondence with P(ω). The

interval [m] has a non-empty intersection with ω 2 iff m is a binary sequence — all

m, are either 0 or 1. If X is a set of finite sequences we say X is closed downward

iff whenever n C r a G X , also n E X.

2.3 Infinity Lemma. For any set X of binary sequences which is closed downward,

if X is infinite, then X contains an infinite branch — that is, for some a E ω 2,

α f l c G X for all k.

Proof. Let X satisfy the hypotheses and consider the set

Y = {m: m E X and {n: m C n Λ n E X} is infinite}.

By hypothesis 0 6 7. For any m and any n ^ m,

m C n o ( m * ( 0 ) C n ) ) v ( m * (1) C n).

Hence if m E Y, then at least one of m * (0) and m * (1) also belongs to Y. Thus

there exists a unique function a such that for all fc,
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a(k) = least p. (a \k)*(p)E Y.

Since Y C X, this a satisfies the conclusion of the lemma. D

2.4 Theorem, (i) ω2 is a compact subspace of ωω;

(ii) for any k and /, (k2)x ι(ω2) is a compact subspace of klω.

Proof We prove (i) by showing that any open cover & of ω2 has a finite
subcover. Let X be the set of all finite binary sequences m such that [m] is
included in no member of $\ Clearly X is closed downward; suppose X is
infinite. Then by the Infinity Lemma, X contains an infinite branch a. Since & is
a cover, αGA for some A G f. As A is open, for some fc, [αffc]CA, a
contradiction. Hence X is finite, so for some fc all members of X have length less
than fc. Let m°,... , m 2" 1 be a list of all binary sequences of length fc. For each
i < 2k we may choose an A, E 3F such that [m1] C A,. Then 2F0 = {A,: i < 2k} is
the required finite subcover. The proof of (ii) is similar. D

Note that the proof of Theorem 2.4 depends only on the fact that for any
mE X, {p: m*(p)E X} is finite. Hence, for example, "q is a compact subspace
of ωω for any q E ω.

The original aim of Descriptive Set Theory was the study and classification of
sets of real numbers and their properties which are of interest for mathematical
analysis. It was early discovered that little is lost and much is gained in simplicity
and elegance if one studies sets of irrational numbers. Indeed, for most
properties of interest to analysis — measurability, having the power of the
continuum, being meager, etc. — the exclusion of a countable set of points (the
rationals) has no effect. On the other hand, there are important topological
differences between the reals and the irrationals which simplify the theory of sets
of irrationals: the irrationals are of topological dimension 0, there is a base for
the topology on the irrationals which consists of closed-open sets, and the
irrationals are homeomorphic to their own Cartesian powers. Further simplifica-
tion was obtained by the discovery that the space of irrationals is homeomorphic
to ωω with the topology described above. Thus many results concerning ωω and
the product spaces k /ω have immediate consequences for the spaces of irrational
and real numbers (cf. end of § IV.3).

Temporarily, let ωω denote (ambiguously) the topological space described
above (as well as its underlying set). Let Ir denote similarly the set of irrational
numbers x such that 0 < JC < 1 together with the topology induced by the
standard topology on the set of real numbers: Y C Ir is open iff Y = Ir Π Z for
some open subset Z of the real interval (0,1). Then the fact we mentioned is: ωω
and Ir are homeomorphic. We leave the proof of this to Exercise 2.8 and
construct here instead a homeomorphism of ωω with another subspace of (0, 1),
the space BIr of binary irrationals. This correspondence will serve just as well in
transferring results from ωω to (0, 1) and is somewhat more natural.
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A finite binary decimal is a representation of a real number in the form:

where each rt = 0 or 1. The real numbers which have finite binary representa-

tions are exactly those which can be written as a quotient p/q of natural numbers

such that q is a power of 2. Clearly such numbers are dense in (0, 1). An infinite

binary decimal is a representation

where each r = 0 or 1. Any such series converges to a real number between 0

and 1 and every such real number has an infinite binary representation. Two

infinite binary decimals represent the same real number iff they are of the forms

.nrz...* 1 0 0 . . . 0 . . . ,

and

. r , r 2 . . . r /01 1 . . . 1 . . . .

A binary irrational is a real number between 0 and 1 that does not have a

finite binary representation. BIr is the topological space consisting of the binary

irrationals with the topology induced from (0, 1).

2.5 Theorem. ωω and BIr are homeomorphic.

Proof. For any a E ωω, let θ(a) be the infinite binary decimal:

θ(a) = A 1...10 0 0 . . . 0 1 1 1 . . . 1 0 0 0 . . . 0 1 . . . .

From the preceding remarks it is obvious that θ maps ωω one-one onto BIr. θ is

continuous because if a \ k = β \ k, then | θ(a) - θ(β)\ < 2~\ For the continuity

of θ~\ suppose that x E BIr and k are given. To insure that ^~1(jc)ffc = θ'ι(y)\k

it suffices to take | j c - y | < 2 " , where n = θ-ι(x)(0) +

- - + θ~ι(x)(k - 1)+ k. Hence θ is a homeomorphism. D

To compute the image of a given interval [m] in ωω, note that θ(a) has the

following representation:
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θ(a)= A 1...1 1

- ( . 0 0 . . . 0 0 1 1 . . . 1 1)

+ ( . 0 0 . . . 0 0 0 0 . . . 0 0 1 1 . . . 1 1)

α ( 0 ) + l α ( l ) + l α ( 2 ) + 1

Thus θ induces the following correspondence between intervals of ωω and of

BIr:
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To extend these results to the spaces k 'ω, it suffices to show that for each k

and /, klω is homeomorphic to ωω. For this we need sequence coding functions

which are onto ω. Set

«m, n))2 = \(m2 +

and, recursively, for / > 1,

We leave it as an exercise (2.9) to check that the map 0 k / defined by:

0 k / (m, α ) = (m)* λp .«α ( ) (p) , . . . , α,

is the desired homeomorphism.

The homeomorphism θ induces a natural measure on ωω. Let mesLb denote

Lebesgue measure restricted to BIr. For A C ωω, we set

mes(A) = mesLb{0(α): a G A}

and say A is measurable just in case its 0-image is Lebesgue measurable.

Because θ is a homeomorphism, all open and closed sets are measurable. The

measure is clearly countably additive and has the property that all subsets of a
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set of measure 0 are measurable (completeness). This measure may also be

described as the product measure on ω ω generated by the measure on ω which

assigns {n} the measure 2~(π+1). Thus for any sequence m = (ra ( ) , . . . , rak_i),

mes([m]) = 2-(m<«+1) 2 " ( m - + 1 ) = 2- ( mπ+-+^-.+ k>.

Similarly, we may define a measure on kJω either via the homeomorphism θkl

or directly by setting

mes({m0} x x {mk-,} x [p°] x x [p'~1])

= 2-(m"+1) 2 " ( m - + 1 ) mes([p0]) m e s ^ 1 " 1 ] ) .

2.6-2.13 Exercises

2.6. Let a * range over ω2. Show that for any set X of finite sequences of O's and

Γs,

2.7. For any A C ωω, let 5 * A = {5 * α: α E A } and A(s) = {a: 5 * α E A}. The class

Ka of Kalmar sets is the smallest class X of subsets of ωω such that 0 , ωω E X

and if for all n,An E X, then U {<n)*An: nEω}EX. Show for all A and 5,

(i) AEKa-*A ( s ) EKa;

(ii) A G K a ^ 5 * A 6 K a ;

(iii) Vn.A ( < n ) ) EKa^AEKa;

(iv) Vβ 3 n. A(β(n)) E Ka-^ A E Ka;

(v) AEKa<->A is closed-open.

2.8. Prove that the topological spaces ωω and Ir are homeomorphic. (Since the

sets of rationals and binary rationals are each countable and dense in (0, 1), there

is a one-one order-preserving correspondence between them. This may be

extended in a unique way to a homeomorphism of (0, 1) with itself. The

restriction of this homeomorphism to Ir is a homeomorphism of Ir with BIr.)

2.9. Show that θkJ is a homeomorphism of klω onto ωω.

2.10. (The Zero-One Law). Show that for any measurable set A C ωω, if for all 5,

mes(A Π [5]) = mes(A) mes([s]),

then mes(A) is either 0 or 1. (Show that this equation holds with [5] replaced by

any measurable set.)
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2.11. Show that in the usual topology on the real interval (0, 1), Ir and BIr are Gδ

sets (countable intersection of open sets) but not Fσ sets (countable union of

closed sets).

2.12. Show that a relation R C k / ω is open iff for some 5 C k + 1 ω ,

R(m, α )

2.13. Show that a homeomorphism between ωω and Ir may be constructed

directly. (To each finite sequence m assign a rational number 0(m) recursively by

the rules:

0(0) = 0 and

For all α, θ(a \ k) converges to a limit 0*(α).)

3. Inductive Definitions

Let X be any fixed set. A function Γ from the power set of X into itself is called

an operator over X. Γ is said to be inclusive iff for all YCX, Y Q Γ(Y),

monotone iff for all Y C Z C X, Γ(Y)CΓ(Z), and inductive iff Γ is either

inclusive or monotone. An operator Γ defines inductively a subset Γ of X as

follows. We define by transfinite recursion the sequence Γσ by Γσ =

Γ( U {Γ: r < σ}) and set Γ = U { Γ : σ E Or}. We write Γ ( σ ) for U {Γ: r <

σ} so that Γ σ = Γ(Γσ))._

We think of the set Γ as being "built up" in stages. Starting from the empty

set we get successively Γ(0) , Γ(Γ(0)),.... Γ^ is called the σ-th stage or level.

3.1. Lemma. For any inductive operator Γ and any ordinal σ,

(i) Γ ( σ ) C Γ ;

(ϋ) rσ+1 = Γ(Γσ);
(iii) Γ(σ) = Γσ^Γ = Γσ = Γ for all τ^σ\

(iv) Γ ( σ ) = Γσ for some σ such that Card(σ) ̂  Card(X).

Proof. For inclusive Γ, (i) is immediate from the definitions; for monotone Γ it

follows from the obvious fact that for r ^ σ, Γ ( τ ) C Γ(σ\ (ii) is immediate from the

observation that by (i), Γ(σ+l) = Γσ. (iii) is proved by induction on r: for r = σ,

clearly Γ τ = Γ σ ; for τ > σ, the induction hypothesis yields f(τ) = Γσ and we

have Γ = Γ(Γiτ)) = Γ(Γσ) = Γ(Γiσ)) = Γσ. For (iv), suppose that for each σ with

Card(σ) ^ Card X, Γ(σ)^Γσ, and let xσ be an element of Γσ - Γiσ). lίτ^σ, also
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xT7^ xσ, and this defines an injection of {σ: Card(er) ̂  Card(X)} into X. But this
set is exactly the least cardinal larger than CardX, so this is impossible. D

We denote by \Γ\ the least σ such that Γ ( c r )= Γσ, the closure ordinal of Γ.
Then

3.2 Corollary. For any inductive operator Γ over X, Card(|Γ|)=s= Card(X) and
Γ = Γ( |Γ|). D

Thus we need not think of the sequence Γσ as extended over all ordinals but
only over those less than \Γ\. In particular, if X = ω we need only consider
countable ordinals.

Note that for any inductive Γ, Γ(Γ) = f; but for σ < | Γ | , Γ(Γ ( σ ) )^ Γ(<τ). In
other words, Γ is the first fixed point of Γ in the sequence Γσ.

3.3 Theorem. For any monotone operator Γ over a set X, Γ is the smallest fixed
point of Γ — that is,

Γ= Π{Z:ZCX ΛΓ(Z)=Z}.

Proof. By the preceding remark, ΓE{Z: Z C X Λ Γ ( Z ) = Z } SO that the in-
tersection of this set is included in Γ. Conversely, let Z be any subset of X such
that Γ(Z) = Z; we prove by induction on σ that for all σ, Γσ C Z. Assume as
induction hypothesis that this holds for all r < σ so Γ(or) C Z. Then by
monotonicity, Γσ = Γ(Γ(σ)) C Γ(Z) = Z. D

Note that the proof yields also that for monotone Γ,

Γ= Π { Z : Z C X Λ Γ(Z) C Z}.

These results have two distinct aspects. First, they give a characterization of Γ
which does not involve ordinals. Second, they provide a very convenient way of
proving that all x E Γ have some property: one shows that the set Z of all x E X
which have the property satisfies Γ(Z) C Z. In applying this method we say that
the proof is by Γ-induction or by induction over Γ.

In many contexts where we are defining inductively a particular set Y it will
be convenient to avoid direct reference to the inductive operator involved. Thus
if Y is defined as f, we may write Yσ and Y{σ) instead of Γσ and Γ(or) and
describe proofs by Γ-induction as proofs by induction over Y.

In the remainder of this section we consider the properties of two special
classes of inductive definitions. Let Y be a subset of X and 9 a family of finitary
functions on X — that is, for each <p6f, there is a natural number k(φ) such
that Dm<ρ =k(φ)X and Imφ C X. For each such pair (Y, ^ ) , we define an
inductive operator Γγ,& by:
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ΓY.*(Z) =YU {φ(z): φ G 9 Λ Z G M * > Z } .

The resulting set Γ v ̂  is called the closure of Y under 9. Since Γγ& is clearly

monotone, ΓY3P is also the smallest set including Y and closed under 9.

3.4 Lemma. For any Y and 9 as above, \ΓYtS\ ̂  ω.

Proof. Let Y and ^ be fixed and write Γ for Γγ,«* By 3.1 (i) it suffices to show

Γ ω C Γ ( ω ). Let JC be any element of Γ ω = Γ(Γ(to)). If x G Y, then JC G Γ°C Γ ( ω ).

Otherwise, for some ^ E f and some z G k(*>(Γ(ω)), x = <p(z). For each

i<k(φ), let r̂  be the least natural number such that zt E Γr\ and set r =

max{r,: i<k(φ)}. Then z G k ( φ ) Γ Γ so JC G Γ(Γ r ) = Γ r + 1 C Γ ( ω ). D

The method of inductive definition is a generalization of the definition of the

set ω of natural numbers in set theory: ω is the smallest set including {0} and

closed under the successor function, SC(JC) = X U{JC}. Many of the fundamental

notions of elementary logic are most naturally defined inductively, often by

operators of the form ΓY3F. For example, the set of formulas of a (finitary)

first-order formal language is the closure of the set of atomic formulas under

functions corresponding to the propositional connectives and quantifiers (cf.

§ III.5). The set of formal theorems of an axiomatic theory is the closure of the

set of axioms under functions corresponding to the rules of inference. An

example which is not a closure under finitary functions is the class of formulas of

the infinitary language Lωω (cf. Keisler [1971]).

We shall also need a generalization of the method of definition by recursion.

Roughly speaking, for any set X* we may define a function 0: ω—»X* by

specifying a value 0(0) and a method for calculating θ(m + 1) from θ(m). The

corresponding generalization will allow us to define a function θ: ΓY,<F—> X* by

specifying the values 0(y) for y G Y and methods for calculating θ(φ(x)) from

0(xo),. , θ(xk(φ)-ι) for all φ G 9 (the JC* should be thought of as the immediate

predecessors of φ(\)). In the case of ω, m is uniquely determined by m + 1, but

for arbitrary Y and 9 it may happen that φ(x) = φ'(x') or <p(x)G Y so that the

rules would not determine a unique value for θ(φ(x)).

We call the pair (Y, 9) monomorphic iff all φ G 9 are one-one and the sets Y

and {Im φ: φ E. 9} are pairwise disjoint. The inductive definitions of ω and the

class of formulas of a first-order language are monomorphic whereas that of the

class of formal theorems is not.

3.5 Theorem (Definition by Recursion). For any monomorphic pair (Y, 9) and

any set X*, suppose that ψ: X*^X* and for each ψ G 9, <p*: k(φ)X*^>X*.

Then there exists a unique function 0: ΓY>3F—>X* such that

(i) forallyGY, β(y)=ψ(y);

(ii) for all φ <Ξ 9 and all x G kiφ)Γγ,*,
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Proof. Let Γ = Γγ^X*,φ, and <p* be given as in the hypothesis. We define

functions 0r: Γ
r - » X * by ordinary recursion as follows. θo= ψ. Suppose θr is

defined and x G Γr+\ lϊ x E Γ we set 0Γ+1(x) = θr(x). If JC G Γ r + 1 ~ Γr, then by

the assumption that (Y, ̂ ) is monomorphic there exist unique < p G ^ and

z G k ( φ ) Γ such that x = φ(z). We then set 0Γ+1(x) = φ*(0 r (z o ), . . . , 0r(zM*>-i)).

Finally, 0 = U{f t : r E ω}. We leave to the reader the easy verification that θ

satisfies conditions (i) and (ii) (Exercise 3.11). D

Our second special class consists of operators over a product space X x Y.

Operators of this type will be used in defining subsets of M ω .

3.6 Definition. An operator Γ over X x Y is decomposable iff there exists a

family of operators Γy over X, indexed by y E Y, such that for any Z C X x Y,

Γ(Z) = {(x, y ) : ^ E Γy({z :(z,y)G Z})}.

3.7 Lemma. For any decomposable operator Γ over X x Y,

(i) f = {(x,y):yE Y Λ X G Γ , } ;

(ii) | Γ | = sup{|Γy | : y G Y } .

Proo/. Both parts follows easily from the assertion that for all σ

Γ-={(x,y) : y G Y Λ X G Γ - } .

To establish this by induction, suppose that it holds for all τ < σ. Then

Γ(σ) = U τ < σ{(x, y): y E Y Λ X G Γ;} = {(x, y): y G Y A x G Γ(

y

σ)},

and

Γ = Γ(Γ'>) = {(x, y ) : y G y A x G Γ y (/T)} = {(x, y): y E Y A x G Π). D

Decomposable inductive operators over klω are given by families of

operators Γa over kω. By Corollary 3.2 each |Γ«| is countable and thus \Γ\ ̂  Mi,

whereas the closure ordinal of an arbitrary operator over κιω is bounded only by

the least cardinal greater than 2K°. This fact will play an important role in § III.3.

3.8-3.13 Exercises

3.8. Show that any monotone operator over a set X has a largest fixed point Γ.
In fact, Γ = ~Γ°, where Γ° is a monotone operator defined by Γ°(Y) =
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3.9. Construct an example of a non-monotone inductive operator which has no

smallest fixed point.

3.10. An operator Γ is called K-compact (for any cardinal K) iff whenever

x E Γ(Y), also x E Γ(Z) for some ZQY with Card(Z) < K. Note that any Γy, <*

is ω-compact. What can be said in general about the closure ordinal of a

K -compact inductive operator?

3.11. Complete the proof of Theorem 3.5. Sketch an alternative proof in which θ

is defined inductively as the smallest set of pairs (JC, x*) such that . . . .

3.12. Suppose Y C X and $F is a family of finitary functions on X such that

(Y,2F) is monomorphic. For each x E ΓYt9, define Sρ(jc), the support of JC,

recursively by:

Sp(y) = 0 , for y<ΞY\

Sp(φ(x))= U {Sp(x,): i < fc(<p)}U{jc,: i < k{ψ)}.

Establish the following principle of proof by course -of -values induction over Γγ9\

for any ZC/V,*, if (VJCEΓY,<?)[Sp(x) C Z - > x E Z], then Z = ΓY^.

3.13. There is also a natural notion of definition by course-of-values recursion

that says roughly that we may define a function 0: Γγ,<?-*X* by specifying the

values θ(y) for y E Y and methods for calculating θ(x) from values 0(z) for

z E Sp(jt). Formulate precisely a principle of this kind as general as possible and

prove that it is valid.

3.14 Notes. Inductive definitions have long played a fundamental role in many

areas of mathematics but have been studied as objects only much more recently.

Definitions in Algebra of the subgroup, subring, etc. generated by certain

elements are all inductive. The class of Borel sets of a topological space is

inductively defined as is (the complement of) the perfect kernel of a set of reals

(cf. Exercise 3.8). The principal objects of study of Logic and Recursion Theory

are all inductively defined. The general study of inductive definability begins

explicitly with Spector [1961] but it is close to the surface in many earlier papers

of Kleene, especially [1955] and [1955a]. Moschovakis [1974, pp. 3-4] gives a

more extended history of the subject.




