
Chapter IV

High/Low Hierarchies

Hierarchies on both D and the arithmetical degrees are introduced. Properties of
sets which lie in certain classes of this hierarchy are examined, and results obtained
are used to find automorphism bases for certain classes of degrees.

1. High/'Low Hierarchies

Post's Theorem implies that the arithmetical hierarchy gives rise to a hierarchy
{Όn:neN} for the arithmetical degrees, where D n = {deD d ^ 0(n)}. While this
hierarchy has its uses, it is not a very good hierarchy for studying the degrees. Two
of its drawbacks are that there are degrees which are not classified by this hierarchy,
and that the classes of the hierarchy have little to do with the properties of the
degrees in the classes. We therefore introduce new hierarchies which are better
suited to classifying properties of degrees. We prove basic facts about these
hierarchies in this section, and study some classes of the hierarchies in subsequent
sections.

1.1 Definition. Let n ^ 0 be given. Define Ln, the class of lown degrees by
Ln = {d < O':d(n) = 0(n)}, and Hn, the class of highn degrees by H n = {d ^ 0':
d(n) = 0 ( n + 1 ) }. Define I, the class of intermediate degrees by I = { d < 0 ' :
Mn e N(0in) < d ( n ) < 0(n + 1 >)}. {Hn: n e N} u {Ln: n e N} u {1} is the set of classes of
the high/low hierarchy.

The high/low hierarchy induces a partition of D|0,0']. The low,, degrees are the
degrees below 0' whose «th jump is as small as possible, and the highn degrees are the
degrees below 0' whose nth jump is as large as possible. A similar hierarchy can be
defined on D[a,a'] for each a e D .

1.2 Definition. Fix a e D and neN. Define Ln(a), the class of a-lown degrees by
Ln(a) = {d e D[a, a']: d ( n ) = a (n)}, and Hn(a), the class of *-highn degrees by Hn(a) =
{d G D[a, a']: d ( n ) = a(n + υ } . Define I(a), the class of ^-intermediate degrees by I(a) =
| d e D | a , a ' | : V«eN(a ( n ) < d ( n ) < a ( n + 1 ) )} . {Ln(a):«e7V} u {Hn(a):«e7V} u {I(a)}
is the set of classes of the ^-high/low hierarchy.

Figure 1.1 below gives a pictorial description of the a-high/low hierarchy for
a e D . The lower the degree in Fig. 1.1, the smaller it is in the ordering of D.
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H o (a) = a'

D[a,a']

>U{Hn(a):«ε7V}

Lo(a) = a

Fig. 1.1

The next proposition specifies some properties of the a-high/low hierarchy. The
proposition follows easily from Theorem III.2.3(v), and its proof is left to the reader
(Exercise 1.13).

1.3 Proposition. Fix aeD. Then

(i) Vm, n E N(m <n^ Lm(a) c Ln(a) & Hm(a) c Hn(a)).

Vm, /i e 7V(Lm(a) n Hn(a) = Lm(a) n I(a) = Hn(a) n I(a) = 0).

Vm, Λ G TVVb, c e D(m <n&be Lm(a) & c e Ln(a) - Lm(a) ->

Vm,neNVb,cGD(beLm(a)&ceH n(a) u I(A) -^ c ^ b).

VmGΛfVb,cGD(bGI(a)&ceHm(a) -> c £̂ b).

Vm, >2 E iV Vb, c G D(m < « & c e Hm(a) & b G Hn(a) - Hm(a)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

b).

b).

The a-high/low hierarchy partitions D|a, a'J into the classes {I(a), H0(a), L0(a),
Hn + i(a) - Hn(a), Ln + 1(a) - Ln(a):neN}: Proposition 1.3(vii) shows that L0(a)
and H0(a) are non-empty. The next theorem shows that the remaining classes of this
partition are also non-empty.

1.4 Theorem. Let aGD and neN be given. Then:

(i) L n + I ( a ) - L n ( a ) # 0 .

(ii) H n + I ( a ) - H n ( a ) # 0 .

(iii) I(a) ψ 0.
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Proof. Relativize Theorems IΠ.7.9 and IΠ.7.11. We note that the proofs of those
theorems are actually proofs of the relativized versions. 0

The a-high/low hierarchies are useful for studying local properties of D, but
have little connection with global properties of D. We are thus motivated to
introduce new hierarchies subsuming the ones already discussed which are more
closely related to global properties of D.

1.5 Definition. Let GL 0 = {0}. For n > 0, define GLn, the class of generalized lown

degrees by GLn = {d e D: d ( n ) = ( d u 0')(n~ υ } . For n ^ 0, define GHn, the class of
generalizedhighn degrees by GH n = {deD:d ( n ) = (duθ ' ) ( n ) } . Define GI, the class
of generalized intermediate degrees by GI = {d e D: \/n > 0((d u 0')(n " ! } <
d (n) < ( d u 0')(n))}. {GLn: n e N} u {GHn: n e N} u {GI} is the set of classes of the
generalized high/low hierarchy.

The generalized high/low hierarchy can be relativized to the degrees above a as
follows:

1.6 Definition. Let a e D be given. Define GL0(a) = a, and for n > 0 define GLn(a),
the class of generalized a-lown degrees by

GLn(a) = {dGD:d ^ a&d ( n ) = (dua ' ) 0 1 " 1 *} .

For n ^ 0, define GHn(a), the class of generalized a-highn degrees by

GHn(a) = { d e D : d 2 * a & d ( n ) = ( d u a ) (n)}.

Define GI(a), the class of generalized ^-intermediate degrees by

GI(a) = { d e D : d ^ a & V « > 0((d u a ' ) ( n ~l) < d ( n ) < ( d u a') ( n ) )}.

{GLn(a) :neN}v (GHn(a) :neN}u {GI(a)} is the set of classes of the generalized
a-high/low hierarchy.

The generalized high/low hierarchies are indeed extensions of the high/low
hierarchies, as is shown in the next theorem.

1.7 Theorem. Fix a e D and neN. Then Ln(a) = GL n (a)nD[a,a'l, Hn(a) =
GH n (a)nD[a,a] , and I(a) = GI(a)n D[a,a].

Proof. If d e D[a, a'], then d u a ' = a'. The theorem now follows from the definitions
of the respective hierarchies. D

If a e G L ! then we can replace the generalized a-high/low hierarchy with the
generalized high/low hierarchy in the statement of Theorem 1.7.

1.8 Theorem. Fix a e G L i and n > 0. Then Ln(a) = GLn n D|a, a'], Hn(a) =
G H n n D [ a , a ] , and I(a) = GI nD[a,a'] .

Proof. Fix a e G L i and ceD(a,a']. Then c u a ' = c u a u θ ' = cuO' . The result
now follows from Theorem 1.7. D

All the classes of the generalized a-high/low hierarchy are non-trivial extensions
of the corresponding classes of the a-high/low hierarchy. We prove such a result for
a = 0, leaving the relativization of the proof to the reader.
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1.9 Theorem. For all n > 0, GLn + 1 - GLn φ Ln + 1 - Ln; for all n ^ 0,
GHn + 1 - GHn Φ H n + 1 - Hn; and GI φ I.

Proof. By Theorem III.4.2, there is a degree a such that a' = a u θ ' = 0(2). Since
a u O ' > O ' , a ^ 0'. Hence a e GLj - L l 5 and no element of D[a, a'l is in any class of
the high/low hierarchy. Fix Ce{Ln + 1 - Ln:n > 0} u {Hn + 1 - Hn:n ^ 0} u {I},
and let GC be the corresponding generalized class. By Theorem 1.4, there is a degree
ceC(a). Hence by Theorem 1.8, ceGC - C. 0

Degrees in the generalized high/low hierarchy are high or low in the sense that
their nth jumps achieve the highest or lowest possible values. In the case of the
high/low hierarchy, high and low were also descriptive of the location of the degree
within the poset £^[0,0']. This is not the case for the generalized high/low hierarchy.
The next proposition shows that some of the properties proved in Proposition 1.3
for the high/low hierarchy remain true for the generalized high/low hierarchy. After
that, we prove a theorem which shows that all properties mentioned in Proposition
1.3 which relate the hierarchy to the ordering fail for the generalized high/low
hierarchy.

1.10 Proposition. Fix aeD. Then:

(i) Vm, n E N(m < w -• GLm(a) <= GLn(a) & GHm(a) c GHn(a)).

(ii) Vm, n e N(GLm(a) n GHn(a) = GLm(a) n I(a) = GHn(a) n I(a) = 0).

(iii) GH0(a) = D[a', oo).

We leave the proof of Proposition 1.10 to the reader.

1.11 Theorem. Let aeD be given such that a<£GH0, and fix Ce{GH n + 1 - GHn,
GL n + 1 - GLn:π ^ 0} u {GI}. Then there is a beD such that b ^ a andbeC.

Proof By Theorem 1.8, it suffices to find a degree b ^ a such that beGLp If
aeGL 1 ? let b = a. If a^GLi, then since a ^ 0', it must be the case that
a < a u 0' < a'. By the relativization of the Join Theorem for 0' (Theorem III.5.8)
to D[a,a'], there is a beD(a,a') such that b u ( a u θ ' ) = b' = a'. Since b ^ a,
b u ( a u 0 ) = bu0 ' . Hence

1.12 Remarks. The high/low hierarchy was introduced by Soare [1974] and
independently by Cooper in a preprint of [1974]. This introduction followed work
by many people in which various concepts of Recursion Theory were related to
properties of degrees in the high/low hierarchy. The generalized high/low hierarchy
was introduced by Jockusch and Posner [1978]. Clauses (i) and (ii) of Theorem 1.4
follow from the Sacks Jump Inversion Theorem, and Theorem 1.4(iii) was proved
independently by Lachlan [1965] and Martin [1966]. Theorem 1.11 is a corollary
of the relativization of the Join Theorem for 0' (Posner and Robinson [1981]).

1.13-1.17 Exercises

*1.13 Verify Proposition 1.3.

1.14 State and prove a version of Theorem 1.9 for the generalized a-high/low
hierarchy.
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*1.15 Verify Proposition 1.10.

1.16 Prove the following facts for a, beD.
(i) aeGHn(b) implies aeGHn.

(ii) aGLn(b) and beGLn implies aeGLn.
(iii) ael(b) and b < 0' and bφl implies a el.

1.17 Show that the following statements are false for a, beD.
(i) a e I(b) and b e I implies a e I.

(ii) a e Ln(b) and b e GHm implies a e GLn.

2. GLX and 1-Generic Degrees

If a e L l 5 then a is close to 0 in the ordering of D, so we might expect ^[0,0'] and
^[a,0'] to be similar. In fact, the structure theorems proved for ^[0,0'] relativize
to similar results for £#[a, 0']. Since a is close to 0 in the ordering of D, we might also
expect ^[0, a] to be relatively simple. Although this is not always the case, it is true
that if ^[0, a] is relatively simple (in a sense to be made precise in the next section)
then a e GL2. Thus there is little that one can say about ^[0, a] which is true for all
a e L!. There is a nice subset of GLj, the set of 1 -generic degrees, for which ̂ [0, a] is
relatively rich in structure. Furthermore, 1-generic degrees share many properties.
This set of degrees is a useful set, and is studied in this section. We have already
come across these degrees; they are the degrees of sets A which force their jump.

2.1 Definition. A set A c N is 1-generic if for every recursively enumerable set
5 ς y 2 , either

(i) 3σ<

or

(ii) 3σ c ΛVτe«Sζ(σ c τ

A degree d is 1-generic if d is the degree of a 1-generic set.

2.2 Lemma. Let A c N be given. Then A is 1-generic if and only if A forces its jump.

Proof. Let A c ΛΓbea 1-generic set. Let S = {σe^ : Φσ

e{e)[). Then S is recursively
enumerable, so 2.1(i) and 2.1(ii) imply III.3.8(i) and III.3.8(ii) respectively.

Conversely, let A force its jump. Let S c ^2 be recursively enumerable. Define
the partial ^-recursive function fB (uniformly in E) by

fO if 3σeS(σc=B)

(j otherwise

for all XEN. Then by the Enumeration Theorem, there is an e e TV such that for all
B^N,fB = Φf. Fix such an e. Letting B = A, we now note that III.3.8(i) and
ΠI.3.8(ii) imply 2.1(i) and 2.1(ii) respectively. D
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We now show that all 1-generic degrees lie in GLj.

2.3 Lemma. Let a e D be given such that a is 1-generic. Then a e GLi. Hence if a ^ 0',
then

Proof. Since a is 1-generic, there is a 1-generic set A of degree a. By Lemma 2.2, A
forces its jump. The result now follows from Lemma III.3.9. D

The next lemma is a useful result about 1-generic sets. Its proof gives an easy
example of how to use the hypothesis of 1-genericity. We first give the following
definition.

2.4 Definition. We say that A c N is immune if A is infinite but has no infinite
recursive subset. (Since every infinite recursively enumerable set has an infinite
recursive subset, we see that A is immune if A is infinite but has no infinite
recursively enumerable subset.)

2.5 Lemma. Let A c N be given such that A is 1-generic. Then A is immune.

Proof Let R be any infinite recursive subset of TV, and let / be the characteristic
function of R. Let S= {σe^2^x(σ(x)l&xeR&σ(x) #/(*))}. Note that S is
recursive. Fix a 1-generic set A, and fix σ c A satisfying 2.1(i) or 2.1(ii) for S. σ
cannot satisfy 2.1 (ii) for S, since if σ φ S, we can define τ e S, τ 3 σ, by choosing y e R
such that y > lh(σ) and τ e Sf2 such that τ ^ σ and τ(y) Φ f(y). Hence σeS. But then
R is not a subset of A. 0

The next theorem shows that if a is a 1-generic degree, then ^ [ 0 , a] is relatively
rich in structure, since D(0, a) must contain an infinite set of independent degrees.

2.6 Theorem. Let a e D be given such that a is 1 -generic. Then there is a set {at: i e N}
of independent degrees such that for all ieN, ajeD(0,a).

Proof Fix a 1-generic set A of degree a, and for each ieN, let Ali] have degree a^ In
order to prove that {ai: ieN} is a set of independent degrees, it suffices to show that
for all i,eeN and all finite F c N such that iφF, φfF] φ A[i].

Fix i,eeN and a finite set Fc TV such that i'£F. Let

Then S is a recursively enumerable set. Fix σ cz A satisfying 2.1(i) or 2.1(ii). If σ
satisfies 2.1(i), then Φf[F] Φ A[ι]. Suppose that σ satisfies 2.1(ii). Fix xe N such that
σ [ ι l(x)|. There can be no ξ => σ such that for some τ c= £[F1, Φτ

e(x)i, else since / £ F, we
can find such a £ with £m(.x) = 0 and another ξ with exactly the same τ such
that ξli\x) = 1, so there will be some ξ ^ σ such that £ e S. Hence

The following corollaries are now proved exactly as in Chap. II.3.

2.7 Corollary. Let % be a finite poset, and let a be a 1-generic degree. Then

2.8 Corollary. Let a be a 1-generic degree. Then 3i ΠTh(^[0,a]) is decidable.
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The next theorem shows that 1-generic degrees are always recursively enumer-
able relative to some smaller degree. Thus we can relativize results about recursively
enumerable degrees to obtain similar results about 1-generic degrees. For example,
the proofs that ^ [ 0 , a] is not densely ordered and that Th(^[0, a]) is undecidable
for a recursively enumerable will now yield similar results for a 1-generic. Other
structural results about ^ [ 0 , a] can also be obtained in this manner, but frequently,
a direct proof using the 1-genericity of a is simpler than a proof using the relative
recursive enumerability of a.

2.9 Theorem. Let a e D be given such that a is 1-generic. Then there is a degree b < a
such that a is recursively enumerable in b.

Proof. Let A c TV be a 1-generic set of degree a. We recursively identify TV2 with TV,
and so will treat sets C <= TV as if they are also subsets of TV2, and strings σ e ̂  as if
they are also partial functions TV2 -» {0,1}. We also write k = </,x} under this
identification.

We will define B = Ψ(A) <= N2 of degree b to satisfy the lemma. We set aside
column 0 of TV2 to detach it from the coding which will have to be done. We will
satisfy the following condition:

(1) ieAoBίi+1] Φ 0.

Thus ieAo3x((i + 1,X}EB), so A will be recursively enumerable in B.
In order to make B recursive in A, we must let A determine the elements which

are to be placed into B. We do this according to the following rule:

(2) (U>eio/>0Λ/-l6M(U)M.

Thus A and B will partition column / of TV2 whenever / — 1 EA. Note that, by
Lemma 2.5, A is immune, so for every /, there are infinitely many x such that
O,x>φA. Hence (1) will hold.

The most difficult problem will be to show that A ^TB. The 1-genericity of A is
used to verify this fact. We note that for any set C, we can define a set D = Ψ(C) as
in (2) with C and D in place of A and B respectively, where Ψ is a recursive
functional. Hence by the Enumeration Theorem, there is an n e N such that for all
C c TV, Ψ(C) = Φc

n. If we assume that A = Φ*, then we must be able to force
A = ΦB to be true by specifying some finite σ a A. The specification of σ would
then determine the value of ΦΏ

e (x) for all x and all D such that D = Ψ{C) and σ a C.
We thus pick a free z in column 0 of TV2 (which is not used for coding in (2)), and
obtain a contradiction by showing that there are τ, v ID σ such that τ(z) Φ v(z),
Ψ(τ) = Ψ(v), and Φψ

e

{τ\z)l We fix z so that τ(z) = 0 and v(z) - 1. Setting v(z) = 1
forces us to do some coding on column z + 1 of TV2. But if we place
k = <z + 1, x> e D, we must be allowed to do so by not having keC. Since we have
the freedom to define v(&), we can arrange the definition of v so that kEBokED.

Formally, we proceed as follows. For each σ e ^ and </,x> < lh(σ), we define
of length lh(σ) as follows:

ιl if i> 0&σ(i - 1) = l & σ « / , x » = 0

(O otherwise.
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(We assume that the correspondence of N2 with N has the property that for all
ij\ keN,iϊ </,y> = k, then ij ^ k. Hence Ψ(σ) is well-defined for each σ e 5ζ.) For
each C ^ N, define the set

Ψ(C) = {</,*>:/> O & i - leC&O,x>ΦQ.

Note that for all σ, τ e % C c N and z

(3) σ c τ cz C => <F(σ) c <F(τ) c

(4) iφC=>Ψ(C)ίi+ί] = 0.

(5) ie C => C[i+ί] and y(C) [ ί + 1 ] partition N.

We have already noted that A is recursively enumerable in B and B ^TA. We
now show that A ^ Γ ¥>04) = 5.

Suppose that 4̂ ^ τ B for the sake of obtaining a contradiction. Fix eeN such
that A = ΦB

e. Let 5 = { σ e ^ : 3JC(Φ^ ( < T )(X)| # σ(x)j)}. Since ^ is a recursive
functional, S is recursively enumerable. There can be no σ cz A such that σeS, else
Φ* Φ A. Hence by Definition 2.1, there is a σ cz A such that for all τ ^ σ, τ £ S. Fix
such a σ. Fix the least x such that σ«0, x » | andxφA, and let the correspondence
match <0,x> with i. Note that such an x must exist since, by Lemma 2.5, A is
immune. Fix τ,βe^2 such that τ c y 4 , ^(τ) = β, and Φf (/)|. Such τ and β must exist
since Φf is total. We define v e ^ 2 such that σ c v, ^(v) = β, and v(0 φ τ(i) by
induction on {z: z < lh(τ)}. Note that once we prove that such a v exists, then since
v ^ σ and veS, we will have contradicted the choice of σ, and so will have
completed the proof of the theorem.

We assume that at the beginning of step z of the induction, we will have defined
vz cz v of length z, and if we let τ z = τ ί z, then the following conditions will hold:

(6) {U;τz{u)=\}cz{u'.vz(u)=\}.

(7) Ψ(τz) = Ψ(yz).

We begin by defining v(z) = τ(z) for all z < /. Clearly (6) and (7) hold. Consider step
z of the induction, and assume that (6) and (7) hold. Let z correspond to (j\y} We
proceed by cases:

Case 1. 7 = 0. Define vz + 1 ZD VZ by vz + 1(z) = 1. Since y = 0, Ψ(τz+1) = Ψ(τz) =
ψ(yz) = ^(v z + 1 ) by (7). (6) clearly holds with z + 1 in place of z. Note also that
Φf(OI Φ vί + i(0 = 1 since τ(z) = 0.

Case 2.j>0 and v(j - 1) = 0. Define v z + 1 =) vz by v z + 1(z) = 0. By (3) and (7),
Ψ(vz+1)(μ) = Ψ(τz+ι)(u) for all u < z. Since; - 1 < z and v(j - 1) = 0, it follows
from (6) that τ(J - 1) = 0. Hence by (3) and (4),

τ z + 1 (z) = Ψ(τz+1)(z) = 0= Ψ(vz + 1)(z) = v z + 1(z).

Thus (6) and (7) hold for z + 1 in place of z.
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Case 3. y > 0 and v(j - 1) = 1. Define v z + 1 ^ vz by vz + 1(z) = 1 - β(z). If
τ(j- 1) = 1, then by (5), v(z) = 1 -β(z) = τ(z), so Ψ(vz + ,)(z) - β(z) = ^(τ z + 1)(^ If

τ(y - 1) = 0, then by (4), β(z) = 0, so v(z) = 1. Hence by (5), Ψ(vz+ί)(z) = 0
= ^(τz+i)(^) Thus we see that in either case, (6) and (7) hold for z + 1 in place
ofz.

This completes the induction, and hence the proof of the theorem. I

We have just proved some results about 1-generic degrees. These degrees, and in
fact the ̂ -generic and generic degrees have been studied by Jockusch [1980], and we
refer the reader to that paper for more information about connections between
genericity and degrees. As Jockusch notes, some of his proofs, including the proof
of Theorem 2.9 are based on ideas and proofs of Martin, who took a topological
approach to the degrees in terms of Baire category (see Yates [1976].)

The original presentation of forcing and genericity for arithmetic appears in
Feferman [1965]. In that presentation, forcing is defined by induction on the
logical complexity of sentences, and one then builds generic sets which force every
sentence or its negation. Hinman [1969] first considered w-genericity, or forcing for
restricted classes of sentences. The equivalence of the original approach with that of
Jockusch was proved by Posner [1977]. We have followed Jockusch's approach in
this section.

We now list some (but not all) of the results which appear in Jockusch [1980].
Proofs of some of these results are left as exercises for the reader. We first note that
Definition 2.1 is easily modified by changing the complexity of the class of sets from
which S comes. Thus we say that A is n-generic (generic) if for every Σ°
(arithmetical) set S of strings, either 2.1(i) or 2.1(ii) holds. A degree is n-generic
(generic) if it contains an ^-generic (generic) set.

2.10 Further Results
(i) Generic sets exist. Furthermore, for alln^ 1, there is an n-generic set A of

degree a ^ 0(n).
(ii) If a is n-generic, then a(n) = a u 0(n).

(iii) If a and b are n-generic, then 3n Π Th(® [0, a]) = 3n Π Th(® [0, b]).
(iv) If a is 1-generic, then ^ [0, a] is not a lattice.
(v) Ifn^l and a is n-generic (generic) and b < a, then there is an n-generic

(generic) degree c such that c < b.
(vi) Ifii is 2-generic, then a does not bound a minimal degree (i.e., a degree b such

that Ό(09b) = Φ).
(vii) If a is 2-generic, then there is a degree b < a such that bGGL2 — GI^.

(Hence if'a is 2-generic, then there is a degree b < a such that b is not 1-generic.)
(viii) If A is 2-generic, then there is a set B ^TA such that AeΣ\ — U\.

(ix) If* is 3-generic, then there is a b < a such that b e GL3 — GL2. Hence there
is a degree in GL3 — GL2 which does not bound a minimal degree.

2.11-2.15 Exercises

2.11 Prove that generic sets exist. Show that for all « ^ 1, there is an w-generic
degree a for which a ^ 0(n).

2.12 Show that if a is ^-generic, then a(n) = a u 0 ( n ) .
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2.13 Show that if a and b are ^-generic, then

3n ΓΊ Th(® [0, a]) = 3n Π Th(® [0, b]).

*2.14 Let a be a 1-generic degree. Show that ^[0, a] is not a lattice. (Hint: Fix a
1-generic set A of degree a, and view A as a subset of N 2 . It suffices to find an exact
pair <b,c> for the ideal I generated by {A[3i]:ieN}. We define B and C having
degrees b and c respectively. Let B[i] = A[3i] for all ieN. Define F c N2 by

F[i] = {jeA[3i+1]:Vk ^j(keA[3i + 2])}

and define C [ ί ] = (5 [ ί ] ΔF [ i ] ). Now use the 1-genericity of A to show that b and c
form an exact pair for I.)

2.15 Show that if a is 2-generic, then there is a degree b < a such that
beGL 2 — GL^ (Hint: First note that the notion of «-genericity can be relativized
to any set C. The proof of Theorem 2.9 relativizes to show that if A is 1-generic over
C, then there is a set B < τ A such that A is recursively enumerable in B and
A ^TB® C. Note that by Post's Theorem, 2-genericity is the same as 1-genericity
over 0'. Choose C = 0' and b as the degree of B in the relativized version of Theorem
2.9, and use Exercise 2.12.)

3. GL 2 and Its Complement

The degrees in GL2 are, in a sense, closer to 0 than the degrees in any other class of
the generalized high/low hierarchy except for GL^ As we saw in the previous
section, D[0, a] for a e L2 can still be fairly complicated. However, we will show in
the next chapter that there are some degrees a e GL2 such that D[0, a] is finite in
fact, such degrees can be found in GL2 — GLj. In this section, we prove the
converse to that result, namely, if D[0, a] is finite, then a e GL2. Thus we are really
proving a theorem about GL2 = D — GL2. For we show that if a e GL2, then there
is a 1 -generic degree b < a. We then apply results for 1 -generic degrees which were
proved in Sect. 2.

GL2 is closely connected with relativized Hi. For

a e G L 2 o a ( 2 ) = (a u 0')' o a u O ' e H^a).

Our investigation of GL2 relies on a domination property for degrees in Hi(a). This
domination property is also a useful tool for studying degrees in H 1 ? and so is also
used in the next section. Before proving the domination lemma, we need the
following definition and lemma.

3.1 Definition. Let/: 7V-> TV be given. Define Tot(/) = {eeN: Φ{ is total}.

3.2 Lemma. For allf:N^N, Ύot(f)eΠf

2 and Tot(/) has degree f2).
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Proof. We note that

e e Tot(/) o Vx 3σ(σ a /& Φσ

e(x)i).

Hence Ίot(f)eΠ{ <= Λ{. By Post's Theorem, Tot(/) ^ Γ / ( 2 ) .
In order to show that/ ( 2 ) ^ τ Tot(/), we construct, uniformly in/, a set B ̂  N2

such that B is recursively enumerable in / and for all n e N,

(1) nefi2)^B[n] is finite;

(2) nφf{2)^>B[n] = N.

By the Enumeration Theorem, there will be a recursive function g such that for all
neN and/: N-* N, B[n] = dom(Φ£(π)). Thus

It remains only to construct B. Let {σ,:/eΛ/} be a one-one recursive
correspondence of 5^ with N.f is recursively enumerable in/ so is the range of a
function h recursive in/ Let/^ = {yeN: 3x ̂  5 (/z(x) = }>)}. Note that

(3) σ c/ 'oBsVί ^ s(σ c/ ; )oVί3ί

and

(4) « 6 / ( 2 ) ^ 3 / ( σ ^

Let 5° = 0. We place <«, /> e 5 s + 1 if <w, /> e ̂ s or, at stage s, it is determined
that for ally ^ /, σ} does not seem to be a candidate which will witness that n e/', i.e.,
/ ̂  s and either σ, φf's or Φσ

n

j(n)t Let B = U{Bs:seN}. Note that 5 is recursively
enumerable in/ uniformly in/ If « e/', then by (3) and (4) there will be some / e TV
such that σ, prevents (n,k} from entering B for all sufficiently large k e TV, so (1)
holds. And if n φf, then it follows from (3) and (4) that (n, k} will enter B for all
ke N, so (2) holds. 11

3.3. Domination Lemma for H^a). Let a, b e D be given such that a < b. Then there is
a function of degree ̂  b which dominates every function of degree ̂  a if and only if
b' ^ a(2).

Proof. First assume that b ^ a and that / is a function of degree ^ b which
dominates every function of degree ^ a. Let A,B ^ N be given having degrees
a and b respectively, and let {σi'.ieN} be a one-one recursive enumeration
of 6^2- Note that if g:N->N is recursive in A, then for some keN
{x: g(x) ^/(x) + k} = N. Furthermore, if Φf is total, then the function he:N -• N
defined by he(x) = μ/[σt <= A&.Φσ

e

i{x)\,~] is recursive in ̂ 4. Hence for all eeN

Since a,f^b, Ύot(A)eΣf

2®
A c zf. By Lemma 3.2, TotG4)e/7^ c iJf hence

f, i.e., Tot(^) ^τB
f. Again by Lemma 3.2, Ύot(A)=τA

i2\ so a(2) ^ b'.
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Conversely, assume that b ̂  a and that b' ̂  a ( 2 ). Fix sets A and B having
degrees a and b respectively. Then Tot(^4) ^ τ B'. By the Limit Lemma, there is a
function g:N2 -> TV recursive in B such that Tot(v4) = lims g. We define f:N -+ N
dominating every function of degree ^ a. Fix xeN. Let/(x) = max({^*: i ̂  x})
where y* is defined as follows: Fix the least s ^ x such that either g(s, i) = 0, or
σs a A and Φf s O)| . (Note that such an s must exist since if Φf (JC)|, then /<£ Tot(^)
so lims^(^, x) = 0.) Let

1 {θ otherwise.

Note that f^τB. Furthermore, if ieTot(A) then \imsg(s,i) = I so for all
sufficiently large JC, y? = Φf{x)\ hence/dominates Φf. D

For a,beD, if a < b ̂  a' then b' ̂  a ( 2 ) if and only if b e H ^ a ) . Furthermore,
a ^ a u O ' ^ a ' , and we have already noted that a e GL2 if and only if a u 0' e H^a).
We thus obtain the following corollary of the Domination Lemma for H^a).

3.4 Corollary. Let a e D f e given. Then there is a function of degree ^ a u O ' which
dominates every function of degree ^ a if and only z/aeGL 2 .

We use the above characterization of GL2 to show that every degree in GL2

bounds a 1-generic degree.

3.5 Theorem. Let aeGL 2 be given. Then there is a degree d < a such that d is
l-generic.

Proof. Fix aeGL 2. By Proposition 1.10(i), Lemma 2.2, and Lemma 2.3, it suffices
to construct a set D of degree d ̂  a such that D forces its jump. Let

x N:Φσ

e(e)l),

and let

Q = {(σ,e}e^2 x 7V:Vτ Ξ> σ(Φ

D will force its jump if for all e e N there is a σ e ̂  such that <σ, e> e P U β. We
construct D = U{δs:seN} through the use of an oracle of degree a. It will thus
suffice to have D satisfy the following requirements for each eeN:

Re:3σaD((σ,e)ePUQ).

Define the partial recursive function φ: ^f2 x TV -• N as follows: Given
<σ, e}e^2 x N, let ψ(σ9 e) be the length of the shortest τ e £f2 such that τ ̂  σ arid
<τ, e} e P if such a τ exists. φ(σ, e) is undefined otherwise. Define f:N -+ N by

f(s) = max({0} U {y: 3e ^ s3σe^2(\h(σ) ^ s&ψ(σ,e)l = y)}).

Since φ is partial recursive,/has degree ^ 0'. Thus since aφ GL 2, by Corollary 3.4,
there is a function g: TV -> N of degree < a such that {x: ̂ f(x) ^ /(x)} is infinite. Fix
such a 0. Without loss of generality, we may assume that g is increasing, i.e., for all
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x,yeN, if x < y then g(x) < g(y). Fix a recursive one-one correspondence
{σr.ieN} of N with ^2.

The construction of D is similar to the construction given in Proof III.5.6; we
use a slowdown procedure to take advantage of the fact that/does not dominate g,
and so appoint targets for requirements. We use a priority argument construction in
order to guarantee that all requirements are satisfied.

Given <σ, e> e 5^ χ N, we define the e-target for σ at stage s as follows: Search
for τe^2 of shortest length such that τ => σ, lh(τ) ^ g(s), and <τ,e>eP; the first
such τ in the above ordering of 5^ is the e-target for σ at stage s. If no such τ exists,
then σ has no e-target at stage s. Note that we can determine whether or not σ has an
e-target at stage s, and find this e-target if it exists, using g as an oracle hence this
determination is made using an oracle of degree < a.

The construction proceeds as follows. Set δ0 = 0 and i0 = 0.

Stage s + 1. Fix the least e e N such that Re is not yet satisfied and δs has an e-target
τ n> δs at stage s + 1. If no such e exists, let <5S+1 = (5s*0 and 4+1 = s + 1.
Otherwise, let 4+1 = e and let δs+ί be the unique ξ e^2 such that <5S cz £ c τ and
\h(ξ) = \h(δs) + 1. If δs+! = τ, then Re becomes satisfied at stage s + 1.

This completes the construction. We note that if 4 + 1 = e, then either Re

becomes satisfied at stage s + 1, or δs+ x has an e-target at stage s + 2 which is not
longer than its e-target at stage s+1, and so is + 2 < 4+i Furthermore, if, in the
latter case, it ^ z"s + x for all t ^ s + 1, then Λe becomes satisfied at some stage t > s.
It follows from an induction proof and the fact that if Re becomes satisfied at stage t
then /s Φ e for all s > t, that liminfs is = oo.

We complete the proof of the theorem by verifying that D forces its jump. Fix
eeN. If Re becomes satisfied during the construction, then (δs, e}eP for some
seN. Suppose that Re does not become satisfied during the construction. Since
liminfs 4 = oo, there is an seN such that for all t ^ s, it > e. Fix t ^ s such that
g(t) >/(/)• Then δt-ι cannot have an e-target at stage t, so by the definition of/,
<<5S, e> G Q. (Note that lh(<5s) = s for all s e iV.) It is easily checked that D has degree
< a. O

The function/used in the proof of Theorem 3.5 has the property that for all
a e D, if there is no b ^ a such that b is 1-generic, then/dominates every function of
degree ^ a. The facts we proved about 1-generic degrees in the previous section can
now be used to obtain the following corollaries.

3.6 Corollary. Let a e D f e given such that D[0,a] is finite. Then a e G L 2 .

Proof. Immediate from Theorem 3.5 and Theorem 2.6. D

If we relax the condition of Corollary 3.6 that D[0, a] is finite and only require
that ^ [ 0 , a] have a finite maximal chain, then we still can conclude that a e GL 2 if
we also assume that a < 0'. We do not know whether the same is true if a ^ 0'.

3.7 Corollary. Let a ^ 0' be given such that ^ [ 0 , a] has a finite maximal chain. Then
aeL 2 .

Proof. Let 0 = a0 < a! < < an = a be a finite maximal chain of
Theorem 3.5 relativizes to show that ai + 1 eGL2(ai) for all / < n. By Theorem 1.8,
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ai + 1 eL 2 (a0 for all / < n. Hence 0 ( 2 ) = a<>2) = a<2) = = a^2). Thus
an = a e L 2 . D

Theorem 3.5 yields a great deal of information about all degrees in GL 2 .

3.8 Corollary. Let aeGL 2 be given. Then ^ [ 0 , a] has an infinite set of independent
degrees.

Proof. Immediate from Theorem 3.5 and Theorem 2.6. (1

3.9 Corollary. Let a e GL2 be given, and let % be a finite poset. Then °lί ci» ̂ [ 0 , a].

Proof. Immediate from Theorem 3.5 and Corollary 2.7. 0

3.10 Corollary. Let aeGL 2 be given. Then 3X DTh(^[0,a]) is decidable.

Proof Immediate from Theorem 3.5 and the proof of Corollary 2.8. D

3.11 Corollary. Let aeGL 2 be given. Then ^ [ 0 , a ] is not a lattice.

Proof Immediate from Theorem 3.5 and Exercise 2.14. D

3.12 Corollary. Let a e D be given. Then there is a degree d ^ a such that deGL2.

Proof. If a e G L 2 , choose d = a. Otherwise, let d be a 1-generic degree such that
d < a. Such a d exists by Theorem 3.5, and by Lemma 2.3 and Proposition 1.10(i),

3.13 Remarks. The Domination Theorem for H^a) was proved by Martin [1966a].
The remaining results of this section and the results mentioned in the exercises
below were proved by Jockusch and Posner [1978], with the exception of Exercise
3.19 which was proved by Posner and Robinson [1981], and Exercise 3.18.

3.14-3.19 Exercises

*3.14 Let a e GL2(e) and c ^ a u e ' b e given such that c is recursively enumerable
in a. Construct degrees b,d ^ a such that b' = d' = c and b n d = e. {Hint:
Combine the proof of the Shoenfield Jump Inversion Theorem with the proof of
Theorem 3.5 and the use of ^-splittings.)

3.15 Let a e GL 2 and c > a be given. Construct a degree b e GLt such that b | a and
b u a = c. (Hint: Combine the proof of the Join Theorem for 0' with the proof of
Theorem 3.5.)

*3.16 Let a e G L 2 be given. Construct 1-generic degrees b and c such that
b u c = a. (Hint: Modify the proof of Theorem 3.5 to construct two 1 -generic sets C
and D and code in A of degree a on {x: C(x) φ D(x)}.)

3.17 Let a e GL2 be given. Construct a 1-generic degree d < a such that for every
degree c > a there is a 1-generic degree b such that b ^ a and b u d = c. (Hint:
Combine the idea of the proof of Theorem 3.5 with the hint to Exercise 3.15. Revise
the construction in such a way so as to build a set D of degree d simultaneously with
the construction of all possible sets B of degree b. Allow for all possible choices of C
of degree c by using a tree construction.)
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*3.18 Let a e G L 2 and c0, Ci, . . . , cn ^ a be given such that cs φ 0 for all i ^ n.
Construct a 1-generic degree d such that d < a and for all / ̂  n, d ^ cs.

3.19 Let a e L 2 be given. Construct a degree b < 0' such that a n b = 0 and
a u b = 0'. (Hint: The basic construction follows the construction given in the Join
Theorem for 0', but additional requirements must be satisfied. Let A be given of
degree a. Construct B having degree b. A typical new requirement has the form: If
Φ* = φβ then Φ* is recursive. Given βs a B, try to satisfy this requirement by
finding an ^-splitting of βs. If none exists, then Φ* is recursive. If one exists, then we
can satisfy the requirement if we know that Φf(x)l for the x on which the strings just
found «-split. Unfortunately, this question cannot be answered by an oracle of
degree 0' unless a e Li. However, Tot(^) e Δf, so by the Limit Lemma, we have an
approximation to Ύot(A) which is recursive in 0'. Use this approximation in a way
similar to its use in the Domination Lemma for Hi(a) to complete the construction.)

4.

If deGHi, and especially if deH 1 ? then ^[0,d] seems to closely resemble
Most of the results which we have proved for ^[0,0 '] have already had their
counterparts proved for ^ [ 0 , d ] , d e G H i in Sect. 3. The two major exceptions are
the Join Theorem for 0' which we prove in this section, and the Maximal Chain
Property: All maximal chains are infinite. It is not known whether ^[0,d] has the
maximal chain property for all d e G H 1 ? but by Corollary 3.7, if d e Hi then ^ [ 0 , d]
has the Maximal Chain Property.

The Join Theorem for GH! follows from the Join Theorem for Hι and other
results which we have already proved. The proof of the Join Theorem for H t

involves an application of the Recursion Theorem. We now discuss the way in
which the Recursion Theorem is used.

4.1 Remark. The Recursion Theorem will be used in the following way in the proof
of the Join Theorem for Hi. Let d e G H i be given, and fix a set D of degree d.
Starting with ΦΌ

e, we recursively construct, uniformly in e, a set D* which is
recursive in D. Hence there is a recursive function/such that D* = Φ/ (e) for all e e N.
By the Recursion Theorem, there is an e e N such that ΦΌ

e = Φf{eV We fix such an e,
and can then assume that the set Φf which we are using during the construction is
the same as the set Φ^{e) = D* which we are constructing.

Given Φ® as in Remark 4.1, we will need a certain function defined from Φ^ in a
uniform way. This function is described in the following remark.

4.2 Remark. Let deGH! be given, and fix a set D of degree d. Note that for all

σ c ΦD

e olτe<f2 Vx < lh(σ)(τ c D&σ(x) = Φτ

e(x)[\

so the relation σ c ΦΌ

e is in Σf. Hence the function Qe:N^> N (Qe(n) determines
whether the divergence of Φ^(n) is forced where A = ΦD

e) defined by
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[Ί if

[0 otherwise

is the characteristic function of a set which is in Σ?@0'. Since d e GH 1 ? QeΔζ hence
by the Limit Lemma and the Enumeration Theorem, there is a function qe:N

2 -• N
such that qe is recursive in D with an index which can be found uniformly recursively
from e, and for all xeN, Qe(x) = limsqe(s,x).

We now prove the Join Theorem for H^

4.3 Join Theorem for H!. Let d e H ! andbGD(0,d] be given. Then there is a degree
a G D(0, d) such that a' = 0' and a u b = d.

Proof. We modify the proof of the Join Theorem for 0'. Thus instead of being able
to use Q, we use the approximation qe to Qe when we are trying to decide how to
force the jump on n. qe, in the limit, tells us whether we will ever succeed in forcing n
out of the jump of A. While qe predicts failure, we try to find an extension of ocs

which forces n into the jump. When qe predicts success, we abandon this attempt
and assume that we have already succeeded in forcing n out of the jump of A. If we
make infinitely many attempts for n, and if qe is the correct predictor, then the
construction will succeed. We will make sure that qe is the correct predictor by
defining A on all arguments at one stage if qe makes a prediction which is incorrect
in the limit and which tells us that we can force n into A'. The Recursion Theorem
will then guarantee that for some eeN,qe is the correct predictor for the set A being
constructed. The reader should be familiar with the proof of the Join Theorem for 0'
before continuing with this proof.

Let d G Hi and b G D(0, d] be given. Fix a set B of degree b, and a set D of degree d.
By the Upward Domination Lemma, we can fix a function g of degree ^ b which is
not dominated by any recursive function. For each m e N, let 0m be the string of
length m such that 0m(x) = 0 for all x < m, and let Am = 0 w * l . Let
P = {{σ,e}e^2 x N\Φσ

e{e)[}. P is recursively enumerable, so we can fix a
recursive enumeration {(α^e,): ieN} of P, and let Ps = {<σ, , et >:/ ^ s) for all
seN.

Let e G TV be given. Starting with Φf, we construct a set Φ£(e) where k is a recursive
function. By Remark 4.1, we may assume that for some ee N, Φf = Φf(ί>). Fix such
an e, and let Q and q be the Qe and qe of Remark 4.2 respectively.

We construct a set A = Φ%{e) = D* directly (instead of using the Bounding
Principle for Forcing and Coding) in order to be able to apply Remark 4.1. We will
have A = \J{as:seN}, where αs is defined at stage s of the construction. Let
{{js,ms}:seN} be a one-one recursive enumeration of N2.

We begin the construction at stage 0, setting α0 = 0. The construction then
proceeds as follows:

Stage s + 1. Let (js,ms} = <7,m>. We simultaneously try to forced into A and
follow the prediction made by q, stopping the attempt to force j into A when q
predicts that this attempt will fail. Since q makes correct predictions only in the
limit, at each attempt fory we follow only sufficiently late predictions made by q.
Thus we define

i(s) = μr\_q(s + rj) = 1 or 3σ => αs * 0Γ«σ,y> eP e ( r ) )] .
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While we search for i(s) checking out r = 0 ,1 , . . . in order, as we determine that
i(s) > r, we specify that α s + 1 ^ α s * 0 r . Thus if i(s) is undefined, then the
construction terminates at this point with A defined by

f αs(x) if x < lh(αs)
A(x) = .

(0 otherwise.

Thus we may assume that i(s) has been found. Suppose first that
3 σ ^ θLs*0i{s)((σJ)eP9{i{s))). Fix the least ieN such that for such a σ, <σi57i>
appears in p»(ί(s»5 and define α s + 1 = σ* 1 */)(.?). Otherwise, we let α s + 1 =
αs * λi(s) * D(s).

The reader should, at this point, convince himself that Remark 4.1 is applicable
to this construction. We now show that i(s) is always defined. Under the assumption
that this is not the case, we obtain a contradiction. Let the construction terminate at
stage s + 1 withy, = j . Let 0^ = U{0m: meN}. Then A = αs * 0^ but Q(j) = 0. By
the definition of Q, every σ c A can be extended to some τe^2 such that Φ){j)[.
Define h:N^N by Λ(x) = μ / [ 3 τ e ^ 2 « σ j ) e P f & σ 2 α s * 0 J ] . h is a total re-
cursive function, hence by the Upward Domination Lemma, there is an xe N such
that g(x) ^ h{x). Thus i{s) ^ x yielding the desired contradiction.

We next show that A forces its jump. Fixy e TV. Fix s e N sufficiently large so that
for all t ^ s, q(tj) = q(sj), and fix t ^ s such that <j ί ? mt} = <y, ra> for some meN.
Since /(/) is defined, either (aLt + 1J} e P and so Φf(j)i, or q(r,j) = 1 for some r ^ t,
in which case, by the choice of s, q(rj) = ^(^j) = β(y) = 1 and so
3σ a A Vτ ^ σ(Φ](y)|). Thus 4̂ forces its jump, so by Lemma IΠ.3.9, a' = 0'.

Finally, we show that D =TA® B. Since g ^TD, A® B ^TD. To see that
D ^ 7 A © 5, we assume by induction that we have found αs, and wish to compute
D(s) through the use of A and B oracles. Let <ys, ms> = <j, ra>. Since {Λ,k: A: e TV} is a
set of pairwise incompatible strings, we can use the A oracle to find the unique keN
such that oLs*λkcz A. Such a A: will exist as, in all cases, α s + x Φ αs * 0m for all m. Fix
this k. We now use the A and 5 oracles to determine whether there are σ a A and
/ < k such that σ 3 αs * 0; and <σ,y> e i ^ 0 . If the answer is yes, fix the first such
<σj> found and let τ = σ * 1 if the answer is no, let τ = αs * λk. In either case, the A
oracle now gives us the unique n e {0,1} such that τ * « c ^ 4 ; α s + 1 = τ*« and s e D if
and only if « = 1. D

We note that the only place in the proof of Theorem 4.3 where we used the fact
that a e H i rather than a e G H ! was to obtain the function g provided by the
Upward Domination Lemma. Hence the following corollary to Theorem 4.3 is
immediate.

4.4 Corollary. Let d e GHi and b e D(0, d] be. given. Assume that there is a function g
of degree < b which is not dominated by any recur sive function. Then there is a degree
aeD(0,d) such that a' = a u θ ' and a u b = d.

Corollary 4.4 has the following relativization:

4.5 Corollary. Let c e D , d e GHj(c), and b e D(c, d] be given. Assume that there is a
function g of degree ^ b which is not dominated by any function of degree ^ c. Then
there is a degree aeD(c,d) such that a' = a u c ' and a u b = d.
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The proof we give for the Join Theorem for GHt relies on a version of the Join
Theorem for H! in which the degree a constructed does not lie above a prespecified
degree c > 0. We state this theorem, and indicate how to expand the proof of the
Join Theorem for H! to obtain a proof.

4.6 Theorem. Let d e Hi and b, c e D(0, d] be given. Then there is a degree a e D(0, d)
such that a' = 0', c ^ a, and a u b = d.

Sketch of Proof. We proceed as in the proof of the Join Theorem for H l 5 acting at
stage 2s as we previously acted at stage s. We add requirements {Φf Φ C: eeN}
where C is a set of degree c. The requirement Φf Φ C is attacked at those stages
2s + I of the construction where <ys, ms> = <e, ra> for some meN. Counterparts S
and Te of Pand Qe are defined as follows: S = {{σ,τ,n}e£^l x N: σ and τ are an
^-splitting} and Te = {{σ,n}e^2

 x N: σ cz Φ^&Vτ, p n> σ (τ and p are not an n-
splitting of σ)}. S is recursively enumerable, so has a recursive approximation
S = U{Ss:seN}, and Γ e e l ? @ 0 ' ^ Λ? If there is some σ a A such that σe Te and
Φ* is total, then Φ^ must be recursive.

We use the Recursion Theorem to get T = TeΐovA = ΦΌ

e. At stage 2k + 1, while
attacking Φ^ Φ C, we simultaneously run the approximation to Γand search for an
^-splitting of a2k * 0r e S9(r). If an ^-splitting is found first, take the half of the n-
splitting, σ, which will force Φ* φ C, and let oc2k+i = σ* 1 *D(2k). The reader
should now be able to complete the proof along the lines of the proof of Theorem
4.3. 0

There are corollaries to Theorem 4.6 which correspond to Corollary 4.4 and
Corollary 4.5. We state the counterpart to Corollary 4.5.

4.7 Corollary. Let aeD, deGHjίa), eeD(a,d] and ceD(0,d] be given such that
c 0 . Assume that there is a function g of degree ̂  e which is not dominated by any
function of degree ^ a. Then there is a degree b e D(a, d) such that b' = b u a ' , c 0 ,
and e u b = d.

There is one more result which will be used in the proof of the Join Theorem for
GH,.

4.8 Theorem. Let d e GH! and c e D(0, d] be given. Then there is a degree b e D(0, d)
such that c ^ b , b ' = d υ θ ' (hence deGH^b)), andd is recursively enumerable in b.

Proof. Since GHj c GL2, it follows from Exercise 3.18 that there is a 1-generic
degree e < d such that c ξ̂ e. By Theorem 2.9, there is a degree a < e such that e is
recursively enumerable in a. Since deGH 1 ? 0 < a < e and e is 1-generic,

d' = (duO'y ^ (dua') ' < (due') ' = (dueuO') ' = ( d u θ γ = d'.

Hence deGH^a). Since a < e and e is recursively enumerable in a, by the
relativization of the Upward Domination Lemma, there is a function of degree < e
which is not dominated by any function of degree ^ a. Hence by Corollary 4.7,
there is a degree beD(a,d) such that b' = b u a ' , c 0 , and b u e = d. Since e is
recursively enumerable in a < b, both e and b are recursively enumerable in b, so
d = b u e is recursively enumerable in b. Hence b < d ^ b', so d u O ' ^ b'.
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Furthermore,

b' = b u a Ό u e' = b u e u 0' = d u 0'.

Hence b' = d u θ ' and b ( 2 ) = (du0')', so deH,(b) c GH^b). 0

We are now ready to prove the Join Theorem for GH^

4.9 Join Theorem for GH!. Let d e GHj andc e D(0, d] be given. Then there is a degree
aeD(0,d) such that a' = d u θ ' and a u c = d.

Proof. By Theorem 4.8, fix a degree beD(0,d) such that c 0 , b' = d u θ ' and
d e GHi(b). Let e = b u c. Note that b < e ^ d < b' Since d e H^b), we can apply
the relativization of the Join Theorem for H t to obtain a degree aeD(b,d) such
that a u e = d and a' = b'. Now d = a u e = a u b u c = a u c . Furthermore,
a' = b' = d u θ ' . D

We do not know if we can require that aeGLj in the Join Theorem for GHj.
In the next section, we will apply some of the results proved in this chapter to

show that certain classes of degrees are automorphism bases for structures of
degrees.

4.10 Remarks. The type of application of the Recursion Theorem made in this
section originated with Jockusch [1977]. The results of this section are due to
Posner [1977], with the exception of Exercise 4.17 which was proved by Shore
[1981].

4.11-4.17 Exercises

4.11 Let άeHi and b 0 , b l 5 . . . , bneD(0,d] be given. Construct a degree aeD(0,d)
such that a' = 0' and a u bi = d for all / ̂  n. {Hint: See Exercise III.5.20.)

4.12 Let d e GHX and c0, c l 5 . . . , cn e D(0, d] be given. Construct a degree
aeD(0,d) such that a' = d u θ ' and a u C | = d for all / ̂  n.

4.13 Let deGHi be given. Show that all non-trivial antichains of D[0,d] are
infinite.

4.14 Let deGHj be given. Let B^D(0,d] be finite but non-empty, and let
C c D[0, d] be uniformly of degree ^ d. Construct a degree a e D(0, d) such that
a' = d u θ ' , a u b = dfor all beB, and c ^ a for a l l c e C - {0}.

4.15 Let d e GHi and b e D(0, d) be given such that b ( 2 ) ^ d'. Construct a degree a
such that b u a = d and b n a = 0. (Hint: Tot(2?) is uniformly of degree < d if B has
degree b. Apply Exercise 4.14.)

*4.16 Let n ^ 1 and a,beD be given such that a ^ b ( n ). Construct a finite set of
degrees {Ci: / < k} such that u f o : / ̂  k} = a and for ally ^ k, b ^ Cj and cjn) ^ a.

4.17 Let A, X ^ N be given such that Xe Σ* and for all xeX, Φ* is total. Let A
have degree a and for all xeX, let ax be the degree of Φ*. Let I = {d e D: 3F c TV (F
is finite & d ^ u {af: / e F}). Let e e GHj(a) be given, and suppose that I is an ideal of

]. Construct an exact pair <co,Ci> for I such that co,C! < e. (Hint: Use the
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approximation to Tot(A) which has degree e to modify the proof of Theorem
III.8.6.)

5. Automorphism Bases

In this section, we begin our study of automorphisms of various structures of
degrees. We show that almost all classes of the high/low and generalized high/low
hierarchies are automorphism bases for the appropriate structures of degrees.

5.1 Definition. Let s/ be any algebraic structure. An automorphism of sf is an
isomorphism of s/ with si.

5.2 Example. Let * = < U, ^ > be a poset, and let * * = < U, < , v> be a usl. Define
Id: U -• U by lά(x) = x for all xeU. Then Id is a poset automorphism of * and a
usl automorphism of * * . Id is called the identity automorphism.

5.3 Example. Let * = < {/, ^ > be a poset and let/: £/ -• (7 be a poset automorphism
of*. Def ine/" 1 : £/-> t/ b y / " 1 (x) = >> if and only if f(y) = x. T h e n / " 1 is also a
poset automorphism of*, and is referred to as the inverse off. (A similar example
can be given for usls.)

Example 5.2 and Example 5.3 describe poset automorphisms which are also usl
automorphisms if the poset on which the automorphism is defined happens to be a
usl. The next proposition shows that this is always the case.

5.4 Proposition. Let < U9 < , v > be a usl and letf: U -• U be a poset automorphism of
(JJ, ^ > . Then f is also an automorphism of the usl (JJ, ^ , v>.

Proof It suffices to show that for all a, beU, f(a v b) =f(a) v f(b). Fix a,beU.
Let d =f(a) v f(b). Then there is a ce U such that/(c) = d. Since/(α) ^ d and
f(b) ^ d, it must be the case that a ^ c and b ^ c. Hence a v b ^ c. Since / is a
poset automorphism, f(a v Z>) ̂ f(c) = J. But a ^ a v b and b ^ a v b so
/(Λ) </(α v 6) and /(ft) ̂ / ( a v A). Hence d=f(a) v f(b) *ζf(a v b) ̂  d, so
f(avb)=f(a)vfφ). I

The only known automorphism of either ^ or ^[0,0 '] is the identity
automorphism, but additional automorphisms have not been ruled out. The results
we give about automorphism bases show that automorphisms are difficult to
construct for structures of degrees; for all automorphisms of such structures are
uniquely determined by their values on relatively small sets of degrees.

5.5 Definition. A set B c U is an automorphism base for the poset * = < U, ^ > if

every/: B -» B has at most one extension/: U -> U such that/is an automorphism

of*.

We note that by Proposition 5.4, the study of poset automorphisms and usl
automorphisms is identical for posets which are also usls. Thus we restrict our study
of automorphisms to poset automorphisms.
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The next lemma gives a useful characterization of automorphism bases.

5.6 Lemma. Let % = (U, ^ > be a poset and let B c JJ. Then the following are
equivalent:

(i) B is an automorphism base for %.
(ii) If f is an automorphism of % such that f(x) = x for all xeB, then f = Id.

Proof (i) => (ii) is immediate from Example 5.2.
(ii) =>(i): Suppose that /, g:U-• U are automorphisms of °U such that

f{x) = g(x) for all x e B. By Example 5.3,/g~1 is an automorphism of °lί. It is easily
verified lh&ίfg~ι(x) = x for all xeB. Hence by (\\),fg~ι — Id, and sof=g. 0

We begin with a study of automorphism bases for ®[0,0']. One technique for
showing that a set B is an automorphism base is to show that B generates the set of
degrees in the following sense.

5.7 Definition. Let B c p c D be given. We say that B generates P if P is a subset of
the smallest set E c D satisfying the following conditions:

(i) B ς E .
(ii) Va,beE(aubeE).

(iii) Va,beE(if a n b exists then a π b e E ) .

5.8 Remark. It follows from the proof of Proposition 5.4 and the dual proof for n
that if B generates P then B is an automorphism base for <P, ̂  >.

It will be shown that for any a ^ 0', J(a) = {b ^ 0': b' = a'} generates 010,0']
and hence is an automorphism base for ^[0,0']. We begin by showing that certain
classes in the high/low hierarchy generate D|0,0']. We recall Exercise 3.14 which will
be a key tool in identifying generating sets.

(1) Let eeD, aeGL2(e) and c ^ a u e ' be given such that c is recursively
enumerable in a. Then there are degrees b, d ^ a such that b' = <Γ = c and
bnd = e.

5.9 Lemma. L2 generates D[0,0'].

Proof. It suffices to show that H! generates L2. Fix e e L2. Applying (1) with a = 0'
and c = 0(2), we obtain b, deH! such that b n d = e. I

5.10 Lemma. L! generates D[090'].

Proof By Lemma 5.9 it suffices to show that L2 generates Lx. Given d e Hi we apply
Exercise 3.16 to obtain 1-generic degrees a and c such that a u c = d. Since a, c ^ 0',
a,ceLj by Lemma 2.3. D

We can now show the all the jump classes J(a) generate D[0,0'].

5.11 Theorem. For all p ^ 0', J(p) = {b ^ 0': b' = p'} generates D|0,0'].

Proof Fix p ^ 0'. By Lemma 5.10, it suffices to show that J(p) generates Lt. Fix
eeLi, and apply (1) with a = 0' and c = p' to obtain b,d < 0' such that b,de J(p)
and b n d = e. D

5.12Corollary. LetC^ {I}u{Ln + 1 - Ln:neN} u {Hn+1 -Hn:neN}. ThenCis
an automorphism base for D[0,0']; in fact, C generates D[090'].
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Proof. By Theorem 1.4, no such class C is empty, hence J(a) c C for some a ^ 0'.
Apply Theorem 5.11. 0

We now show that almost all classes of the generalized high/low hierarchy
generate D and hence form automorphism bases for <&.

5.13 Lemma. GL 2 generates D.

Proof. Let e e D be given. Apply (1) with a = e' and c = e ( 2 ) to obtain degrees

b, d e H^e) such that b n d = e. We show that b e GL 2 . By symmetry, it will follow

that deGL^. Since e < b ^ e f , b u 0 ' ^ e ' . Hence (b u 0')' ^ e ( 2 ) < e ( 3 ) = b ( 2 ) . D

5.14 Lemma. GLi generates D.

Proof Immediate from Lemma 5.13 and Exercise 3.16. D

5.15 Theorem. Let Ce{GI} u {GLn + 1 - GLn: neN) u {GHn + 1 - GH n : nεN) be

given. Then C is an automorphism base for Q). In fact, C generates D.

Proof. Fix C. It suffices to show that C generates GL^ Fix e e GLi. Fix the symbol
X such that C has the form GX. By the relativization of the proof of Theorem 5.11,
there are degrees b,deX(e) such that b n d = e. By Theorem 1.8, X(e) =
GXnD[e,e] , so b,deGX = C. 0

Other automorphism bases for classes of degrees are discussed in the exercises
below and in later chapters. We list some additional automorphism bases below.
These results are due to Jockusch and Posner [1981] with the exception of (viii)
which was proved by Posner. Along with the results listed, Jockusch and Posner
show that if a set of degrees is large in the appropriate sense of category or measure,
then it is an automorphism base.

5.16 Further Results. The following sets generate D[0,0'] hence are automorphism
bases for ®[0,0'].

(i) {b ̂  0': b is 1-generic).

(ii) {b ̂  0': b > a} for any a e D(0,0'].

(iii) { b ^ 0 ' : b n a = 0} for any aeL 2. (Posner shows this for a < 0'.)

(iv) { b < 0 ' : b u a = 0'} for all a < 0'.

(v) {b ^ 0':b ^ c or b ̂  d} for some choice o/c,deD(0,0').

(vi) {b ^ OibeLj&bua = 0'} for all a < 0'.

(vii) { b ^ 0 ' : b u a = 0 '&bna = 0}/brα//aeL2 - {0}.

(viii) {b ̂  0': b is minimal).

The following sets are automorphism bases for Q).

(ix) {aeD:a(n) = auO(n)}/orfl//Ol.

(x) {aeD: Vb ̂  a(b is not minimal)}.
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(xi) {aeD a ^ b } for some choice of b > 0.

(xii) {aGD: a is minimal).

5.17 Remarks. The study of automorphism bases for structures of degrees began
with results of Lerman [1977] who studied bases for the recursively enumerable
degrees. Automorphism bases for the lattice of recursively enumerable sets had
previously been studied by Shore [1977], following up on a suggestion of Nerode.
The results proved in this section come from Jockusch and Posner [1981].

5.18-5.21 Exercises.

5.18 Show that {d ^ 0':d is 1-generic} generates DI0,0'].

5.19 Show that for every aeD(0,0'], {b ^ 0':b > a} generates D[0,0'].

5.20 Show that for all a e L2, {b ^ 0': b n a = 0} generates D[0,0'].

5.21 Show that for all a < 0', {b < 0': b u a = 0'} generates D|0,0'].






