TRANSFORMATIONS ON TENSOR PRODUCT SPACES

Marvin Marcus and B. N. Moyls

1. Introduction. Let U and V be m - and n-dimensional vector spaces over an algebraically closed field F of characteristic 0 . Then $U \otimes V$, the tensor product of U and V, is the dual space of the space of all bilinear functionals mapping the cartesian product of U and V into F. If $x \in U, y \in V$ and w is a bilinear functional, then $x \otimes y$ is defined by: $x \otimes y(w)=w(x, y)$. If e_{1}, \cdots, e_{m} and f_{1}, \cdots, f_{n} are bases for U and V, respectively, then the $e_{i} \otimes f_{j}, i=1, \cdots, m, j=1, \cdots, n$, form a basis for $U \otimes V$.

Let $M_{m, n}$ denote the vector space of $m \times n$ matrices over F. Then $U \otimes V$ is isomorphic to $M_{m, n}$ under the mapping ψ where $\psi\left(e_{i} \otimes f_{j}\right)=$ $E_{i j}$, and $E_{i j}$ is the matrix with 1 in the (i, j) position and 0 elsewhere. An element $z \in U \otimes V$ is said to be of rank k if $z=\sum_{i=1}^{k} x_{i} \otimes y_{i}$, where x_{1}, \cdots, x_{k} are linearly independent and so are y_{1}, \cdots, y_{k}. If $R_{k}=$ $\{z \in U \otimes V \mid \operatorname{rank}(z)=k\}$, then $\psi\left(R_{k}\right)$ is the set of matrices of rank k, in $M_{m, n}$. In view of the isomorphism any linear map T of $U \otimes V$ into itself can be considered as a linear map of $M_{m, n}$ into itself.

In [2] and [3], Hua and Jacob obtained the structure of any mapping T that preserves the rank of every matrix in $M_{m, n}$ and whose inverse exists and has this property (coherence invariance). (In [3] F is replaced by a division ring, and T is shown to be semi-linear by appealing to the fundamental theorem of projective geometry.) In [4] we obtained the structure of T when $m=n, T$ is linear and T preserves rank 1, 2 and n. Specifically, there exist non-singular matrices M and N such that $T(A)=M A N$ for all $A \in M_{n n}$, or $T(A)=M A^{\prime} N$ for all A, where A^{\prime} designates the transpose of A. Frobenius (cf. [1], p. 249) obtained this result when T is a a linear map which preserves the determinant of every A. In [5] it was shown that this result can be obtained by requiring only that T be linear and preserve rank n. In the present paper we show that rank 1 suffices (Theorem 1), or rank 2 with the side condition that T maps no matrix of rank 4 or less into 0 (Theorem 2). Thus our hypothesis will be that T is linear and $T\left(R_{1}\right) \subseteq R_{1}$. We remark that T may be singular and still its kernel may have a zero intersection with R_{1}; e.g., take $U=V$ and $T(x \otimes y)=$ $x \otimes y+y \otimes x$.
2. Rank one preservers. Throughout this section T will be a linear transformation (l.t.) of $U \otimes V$ into $U \otimes V$ such that $T\left(R_{1}\right) \subseteq R_{1}$. Here

[^0]U and V are m - and n-dimensional vector spaces over F. Let e_{1}, \cdots, e_{m} aud $f_{1} \cdots, f_{n}$ be fixed bases for U and V, and set
\[

$$
\begin{equation*}
T\left(e_{i} \otimes f_{j}\right)=u_{i j} \otimes v_{i j}, \quad i=1, \cdots, m ; j=1, \cdots, n . \tag{1}
\end{equation*}
$$

\]

Note that no $u_{i j}$ or $v_{i j}$ can be zero. We shall show, in case $m \neq n$ that there exist vectors u_{i} and v_{j} such that $T\left(e_{i} \otimes f_{j}\right)=u_{i} \otimes v_{j}$, and hence that the l.t. T is a tensor product of transformations on U and V separately. In case $m=n$ it will be shown that a slight modification of T is a tensor product.

Denote by $L\left(x_{1}, \cdots, x_{t}\right)$ the subspace spanned by the vectors x_{1}, \cdots, x_{t}, and let $\rho\left(x_{1}, \cdots, x_{t}\right)$ be the dimension of $L\left(x_{1}, \cdots, x_{t}\right)$.

Lemma 1. Let $x_{1}, \cdots, x_{r}, w_{1}, \cdots, w_{s}$ be vectors in U, and let y_{1}, $\cdots, y_{r}, z_{1}, \cdots, z_{s}$ be vectors in V. Let

$$
\begin{equation*}
\sum_{i=1}^{r}\left(x_{i} \otimes y_{i}\right)=\sum_{j=1}^{s}\left(w_{j} \otimes z_{j}\right) . \tag{2}
\end{equation*}
$$

If $\rho\left(x_{1}, \cdots, x_{r}\right)=r$, then $y_{i} \in L\left(z_{1}, \cdots, z_{s}\right), i=1, \cdots, r$; and similarly if $\rho\left(y_{1}, \cdots, y_{r}\right)=r$, then $x_{i} \in L\left(w_{1}, \cdots, w_{s}\right), i=1, \cdots, r$.

Proof. Suppose that $\rho\left(x_{1}, \cdots, x_{r}\right)=r$. Let θ be a linear functional on U such that $\theta\left(x_{1}\right)=1, \theta\left(x_{i}\right)=0, i \neq 1$, and let α be an arbitrary linear functional on V. For $x \in U, y \in V$, define

$$
\begin{equation*}
g(x, y)=\theta(x) \alpha(y) . \tag{3}
\end{equation*}
$$

Applying (2) to g, we get

$$
\alpha\left(y_{1}\right)=\sum_{i=1}^{s} \theta\left(w_{j}\right) \alpha\left(z_{j}\right)=\alpha\left(\sum_{j=1}^{s} \theta\left(w_{j}\right) z_{j}\right)
$$

where each $\theta\left(w_{j}\right)$ is a scalar. Since α is arbitrary, y_{1}, and similarly y_{2}, \cdots, y_{r}, are contained in $L\left(z_{1}, \cdots, z_{s}\right)$. The second part of the lemma is proved in the same way.

Lemma 2. If $T\left(R_{1}\right) \subseteq R_{1}$, and T satisfies (1), then for $i=1, \cdots$, m, either

$$
\begin{equation*}
\rho\left(u_{i t}, \cdots, u_{i n}\right)=n \quad \text { and } \quad \rho\left(v_{i t}, \cdots, v_{i n}\right)=1 \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\rho\left(u_{i 1}, \cdots, u_{i n}\right)=1 \quad \text { and } \quad \rho\left(v_{i 1}, \cdots, v_{i n}\right)=n \tag{5}
\end{equation*}
$$

Similarly, for $j=1, \cdots, n$, either

$$
\begin{equation*}
\rho\left(u_{1 j}, \cdots, u_{m j}\right)=m \quad \text { and } \quad \rho\left(v_{1 j}, \cdots, v_{m \jmath}\right)=1, \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left(u_{l j}, \cdots, u_{m j}\right)=1 \quad \text { and } \quad\left(v_{1 j}, \cdots, v_{m \jmath}\right)=m \tag{7}
\end{equation*}
$$

Proof. Suppose that $u_{i \alpha}$ and $u_{i \beta}$ are independent. Then

$$
T\left(e_{i} \otimes\left(f_{\alpha}+f_{\beta}\right)\right)=\left(u_{i \alpha} \otimes v_{i \alpha}\right)+\left(u_{i \beta} \otimes v_{i \beta}\right)
$$

must be a tensor product $u \otimes v$. By Lemma $1, v_{i \alpha}, v_{i \beta} \in L(v)$. Since all $v_{i j} \neq 0, L\left(v_{i \alpha}\right)=L\left(v_{i \beta}\right)$. For $\gamma \neq \alpha, \beta, L\left(v_{i \gamma}\right)=L\left(v_{i \alpha}\right)$, since $u_{i \gamma}$ must be independent of at least one of $u_{i \alpha}, u_{i \beta}$. We have shown that if $\rho\left(u_{i 1}, \cdots, u_{i n}\right) \geq 2$, then $\rho\left(v_{i 1}, \cdots, v_{i n}\right)=1$.

Suppose next that $\rho\left(u_{i 1}, \cdots, u_{i n}\right)=1$, viz., $u_{i \alpha}=c_{\alpha} u_{i 1}, c_{\alpha} \neq 0, \alpha=$ $1, \cdots, n$. If

$$
\rho\left(v_{i 1}, \cdots, v_{i n}\right)<n, \text { let } \sum_{\alpha=1}^{n} a_{\alpha} v_{i \alpha}=0
$$

be a non-trivial dependence relation. Then

$$
T\left(e_{i} \otimes\left(\sum_{\alpha=1}^{n} \frac{a_{\alpha}}{c_{\alpha}} f_{\alpha}\right)\right)=\sum_{\alpha=1}^{n}\left(c_{\alpha} u_{i 1} \otimes \frac{a_{\alpha}}{c_{\alpha}} v_{i \alpha}\right)=u_{i 1} \otimes\left(\sum_{\alpha=1}^{n} a_{\alpha} v_{i \alpha}\right)=0
$$

which is impossible by the nature of T. Hence $\rho\left(u_{i 1}, \cdots, u_{i n}\right)=1 \mathrm{im}-$ plies $\rho\left(v_{i 1}, \cdots, v_{i n}\right)=n$.

It follows by a similar argument that if $\rho\left(v_{i 1}, \cdots, v_{i n}\right)=1$, then $\rho\left(u_{i 1}, \cdots, u_{i n}\right)=n$. Hence either (4) or (5) must hold. The second part of the lemma is proved similarly.

We remark that if $m<n$ (or $n<m$), then (4) (or (7)) cannot hold.
Lemma 3. Either (4) and (7) hold for all i, j; or (5) and (6) hold for all i, j.

Proof. We show first that either (4) or (5) holds uniformly in i. Suppose that for some i and $k, 1 \leq i \leq k \leq m, \rho\left(u_{i 1}, \cdots, u_{i n}\right)=n$ while $\rho\left(u_{k 1}, \cdots, u_{k n}\right)=1$. Then for some $\alpha, 1 \leq \alpha \leq n, \rho\left(u_{i \alpha}, u_{k \alpha}\right)=2$. For $\beta \neq \alpha$ consider

$$
\begin{aligned}
\eta & =T\left[\left(e_{i}+e_{k}\right) \otimes\left(c f_{\alpha}+f_{\beta}\right)\right] \\
& =c\left(u_{i \alpha} \otimes v_{i \alpha}\right)+\left(u_{i \beta} \otimes v_{i \beta}\right)+c\left(u_{k \alpha} \otimes v_{k \alpha}\right)+\left(u_{k \beta} \otimes v_{k \beta}\right),
\end{aligned}
$$

where c is an arbitrary scalar.
By hypothesis and Lemma 2, $v_{i \alpha}=a v_{k \alpha}$ and $v_{i \beta}=b_{1} v_{i \alpha}=b v_{k \alpha}$ for suitable non-zero scalars a and b, while $\rho\left(v_{k \alpha}, v_{k \beta}\right)=2$. Thus $\eta=\left(a c u_{i \alpha}+\right.$ $\left.b u_{i \beta}+c u_{k \alpha}\right) \otimes v_{k \alpha}+\left(u_{k \beta} \otimes v_{k \beta}\right)$, and by Lemma 1, $\rho\left(a c u_{i \alpha}+b u_{i \beta}+\right.$ $\left.c u_{k \alpha}, u_{k \beta}\right)=1$ for all scalars c. Since $\rho\left(u_{k \alpha}, u_{k \beta}\right)=1$, this implies that $\rho\left(c u_{i \alpha}+u_{i \beta}, u_{k \beta}\right)=1$ for all c. This is impossible, since $\rho\left(u_{i \alpha}, u_{i \beta}\right)=2$. Thus either (4) is true for all i, or (5) is true for all i. A similar argument applies to (6) and (7).

If (4) and (6) hold for all i and j, then there exist non-zero scalars $c_{i j}$ such that $v_{i j}=c_{i j} v_{11}, i=1, \cdots, m, j=1 . \cdots, n$. For a_{j}, b scalars, consider

$$
T\left[\left(\sum_{i=1}^{m} a_{i} e_{i}\right) \otimes\left(f_{1}-b f_{2}\right)\right]=\left(\sum_{i=1}^{m} a_{i} c_{i 1} u_{i 1}-b \sum_{i=1}^{m} a_{i} c_{i 2} u_{i 2}\right) \otimes v_{11}
$$

Let z_{1}, \cdots, z_{m} and w_{1}, \cdots, w_{m} be the m-column vectors which are respectively the representations of $u_{11}, \cdots, u_{m 1}$ and $u_{12}, \cdots, u_{m 2}$ with respect to the basis e_{1}, \cdots, e_{m}. Let C be the m-square matrix whose columns are $c_{11} z_{1}, \cdots, c_{m 1} z_{m}$ and let W be the m-square matrix whose columns are $c_{12} w_{1}, \cdots, c_{m 2} w_{m}$. Then with respect to the basis e_{1}, \cdots, e_{m} the vector $\sum_{i=1}^{m} a_{i} c_{i 1} u_{i 1}-b \sum_{i=1}^{m} a_{i} c_{i 2} u_{i 2}$ has the representation $(C-b W) a$ where a is the column m-tuple $\left(a_{1}, \cdots, a_{m}\right)$. Now C and W are non-singular since $\rho\left(u_{11}, \cdots, u_{m 1}\right)=\rho\left(u_{12}, \cdots, u_{m 2}\right)=m$, so choose b to be an eigenvalue of $W^{-1} C$ and choose a to be the corresponding eigenvector. Then $(C-b W) a=0$ and hence there exist scalars a_{1}, \cdots, a_{m} not all 0 and b such that

$$
T\left(\sum_{i=1}^{m} a_{i} e_{i} \otimes\left(f_{1}-b f_{2}\right)\right)=0
$$

a contradiction since $T\left(R_{1}\right) \subseteq R_{1}$.
Hence (4) and (6) cannot hold for all i and j. Similarly both (5) and (7) cannot hold for all i and j. This completes the proof of the lemma.

In view of the remark preceding this lemma, (5) and (6) must hold when $m \neq n$.

Theorem 1. Let U and V be m - and n-dimensional vector spaces respectively. Let T be a linear transformation on $U \otimes V$ which maps elements of rank one into elements of rank one. Let T_{1} be the l.t. of $V \otimes U$ into $U \otimes V$ which maps $y \otimes x$ onto $x \otimes y$. If $m=n$, let ρ be any non-singular l.t. of U onto V. Then if $m \neq n$, there exist nonsingular l.t.'s A and B on U and V, respectively, such that $T=$ $A \otimes B$. If $m=n$, there exist non-singular A and B such that either $T=A \otimes B$ or $T=T_{1}\left(\varphi A \otimes \varphi^{-1} B\right)$.

Proof. By (1) and Lemma 3, $T\left(e_{i} \otimes f_{j}\right)=u_{i j} \otimes v_{i j}, i=1, \cdots, m$, $j=1, \cdots, n$, where either (5) and (6) hold or (4) and (7) hold. Suppose first that the former is the case; in particular, $\rho\left(u_{i 1}, \cdots, u_{i n}\right)=1$ for $i=1, \cdots, m$ and $\rho\left(v_{1 j}, \cdots, v_{m j}\right)=1$ for $j=1, \cdots, n$. Then there exist non-zero scalars $s_{i j}, t_{i j}$ such that $u_{i j}=s_{i j} u_{i 1}$ and $v_{i j}=t_{i j} v_{1 j}$. Thus

$$
\begin{equation*}
T\left(e_{i} \otimes f_{j}\right)=c_{i j} u_{i} \otimes v_{j} \tag{8}
\end{equation*}
$$

where $u_{i}=u_{i 1}, v_{j}=v_{1 j}$, and $c_{i j}=s_{i j} t_{i j}$. For $i=2, \cdots, n$,

$$
T\left[\left(e_{1}+e_{i}\right) \otimes\left(\sum_{j=1}^{n} f_{j}\right)\right]=u_{1} \otimes \sum_{j=1}^{n} c_{1 j} v_{j}+u_{i} \otimes \sum_{j=1}^{n} c_{i j} v_{j}
$$

must be a direct product $x \otimes w$. By (6) and Lemma 1, $\sum_{j=1}^{n} c_{i j} v_{j}=$ $d_{i} \sum_{j=1}^{n} c_{1 j} v_{j}$ for some constant d_{i}. By (5), $c_{i j}=d_{i} c_{1 j}$. Hence

$$
\begin{equation*}
T\left(e_{i} \otimes f_{j}\right)=x_{i} \otimes y_{j} \tag{9}
\end{equation*}
$$

where $x_{i}=d_{i} u_{i}$ and $y_{j}=c_{1 j} v_{j}$. Since the $\left\{x_{i}\right\}$ and $\left\{y_{j}\right\}$ are each linearly independent sets, there non-singular linear transformations A and B such that $x_{i}=A e_{i}$ and $y_{j}=B f_{j}$. Then $T=A \otimes B$.

When $m=n$, (4) and (7) may hold; in particular,

$$
\rho\left(v_{i 1}, \cdots, v_{i n}\right)=1 \text { and } \rho\left(u_{1 j}, \cdots, u_{n j}\right)=1 \quad \text { for } \quad i, j=1, \cdots, n .
$$

As in the preceding case, there exist linearly independent sets x_{1}, \cdots, x_{n} and y_{1}, \cdots, y_{n} such that

$$
\begin{equation*}
T\left(e_{i} \otimes f_{j}\right)=x_{j} \otimes y_{i} \tag{10}
\end{equation*}
$$

There exist non-singular transformations A and B of U and V, respectively, such that $A e_{i}=\varphi^{-1} y_{i}$ and $B f_{j}=\varphi x_{j}, i, j=1, \cdots, n$. Thus $T_{1}^{-1} T\left(e_{i} \otimes f_{j}\right)=\phi A e_{i} \otimes \varphi^{-1} B f_{j}$. Q.E.D.

In matrix language we have the following.
Corollary. Let T be a l.t. on the space $M_{n n}$ of n-square matrices. If the set of rank one matrices is invariant under T, then there exist non-singular matrices A and B such that either $T(X)=A X B$ for all $X \in M_{n n}$ or $T(X)=A X^{\prime} B$ for all $X \in M_{n n}$.
3. Rank two preservers. In this section T will be a l.t. of $U \otimes V$ such that $T\left(R_{2}\right) \subseteq R_{2}$. We shall show that under certain conditions $T\left(R_{1}\right) \subseteq R_{1}$.

Lemma 4. If W is a subspace of $U \otimes V$ such that, for some integer $r, 1 \leq r \leq \min (m, n)$,

$$
\begin{equation*}
\operatorname{dim} W \geq m n-r \max (m, n)+1 \tag{11}
\end{equation*}
$$

then $W \cap \bigcup_{j=1}^{r} R_{j} \neq \phi$.
Proof. Suppose that $m=\max (m, n)$. The products $e_{i} \otimes f_{j}, i=1$, $\cdots, m, j=1, \cdots, r$, are linearly independent and span a space W_{1} of dimension $m r$. Furthermore, $W_{1} \subseteq \bigcup_{j=1}^{r} R_{j}$. Then $\operatorname{dim}\left(W_{1} \cap W\right)=$ $\operatorname{dim} W_{1}+\operatorname{dim} W-\operatorname{dim}\left(W_{1} \cup W\right) \geq m r+(m n-r m+1)-m n=1$. The result follows, since $W_{1} \cap W \subseteq \bigcup_{j=1}^{r} R_{j} \cap W$.

LEMMA 5. If $T\left(R_{2}\right) \subseteq T\left(R_{2}\right) \subseteq R_{2}$, then $T\left(R_{1}\right) \subseteq R_{1} \cup R_{2}$.

Proof. Suppose $x_{1} \otimes y_{1} \in R_{1}$, and choose $x_{2} \otimes y_{2} \in R_{1}$ such that $\rho\left(x_{1}, x_{2}\right)=\rho\left(y_{1}, y_{2}\right)=2$. Then $\alpha=s T\left(x_{1} \otimes y_{1}\right)+t T\left(x_{2} \otimes y_{2}\right) \in R_{2}$ for all non-zero scalars s, t. Now suppose that $T\left(x_{1} \otimes y_{1}\right)=\sum_{j=1}^{p} u_{j} \otimes v_{j}$, where $\rho\left(u_{1}, \cdots, u_{p}\right)=\rho\left(v_{1}, \cdots, v_{p}\right)=p$, and that $T\left(x_{2} \otimes y_{2}\right)=\sum_{j=1}^{d} z_{j} \otimes w_{j}$, where $\rho\left(z_{1}, \cdots, z_{q}\right)=\rho\left(w_{1}, \cdots, w_{q}\right)=q$. Let u_{p+1}, \cdots, u_{m} be a completion of u_{1}, \cdots, u_{p} to a basis for U. It follows that

$$
\sum_{j=1}^{q} z_{j} \otimes w_{j}=\sum_{j=1}^{m} u_{j} \otimes h_{j}
$$

for some vectors $h_{j} \in V, j=1, \cdots, m$. Then

$$
\begin{aligned}
\alpha & =\sum_{j=1}^{p} u_{j} \otimes s v_{j}+\sum_{j=1}^{p} u_{j} \otimes t h_{j}+\sum_{j=p+1}^{m} u_{j} \otimes t h_{j} \\
& =\sum_{j=1}^{p} u_{j} \otimes\left(s v_{j}+t h_{j}\right)+\sum_{j=p+1}^{m} u_{j} \otimes t h_{j} .
\end{aligned}
$$

Since $\alpha \in R_{2}$, it follows by Lemma 1 that

$$
\rho\left(s v_{1}+t h_{1}, \cdots, s v_{p}+t h_{p}\right) \leq 2 \text { for } \text { st } \neq 0 .
$$

The vectors $s v_{1}+t h_{1}, \cdots, s v_{p}+t h_{p}$ are linearly independent when $s=1$ and $t=0$. By continuity, they remain independent for small values of t. Hence $p \leq 2$ and $T\left(x_{1} \otimes y_{1}\right) \in R_{1} \cup R_{2}$.

Theorem 2. If $T\left(R_{2}\right) \subseteq R_{2}$ and $0 \notin T\left(\bigcup_{j=1}^{4} R_{j}\right)$, then $T\left(R_{1}\right) \subseteq R_{1}$.
Proof. Suppose $x_{1} \otimes y_{1} \in R_{1}$ and $T\left(x_{1} \otimes y_{1}\right) \notin R_{1}$. By Lemma 5, $T\left(x_{1} \otimes y_{1}\right) \in R_{2}$, since $0 \notin T\left(R_{1}\right)$. Thus $T\left(x_{1} \otimes y_{1}\right)=\left(u_{1} \otimes v_{1}\right)+\left(u_{2} \otimes v_{2}\right)$, where $\rho\left(u_{1}, u_{2}\right)=\rho\left(v_{1}, v_{2}\right)=2$. Let x_{1}, \cdots, x_{m} and y_{1}, \cdots, y_{n} be bases for U and V respectively. Then for $s t \neq 0$

$$
\begin{align*}
& s T\left(x_{1} \otimes y_{1}\right)+t T\left(x_{i} \otimes y_{j}\right) \in R_{1} \cup R_{2} \tag{12}\\
& \quad \text { for } i=1, \cdots, m, j=1, \cdots, n .
\end{align*}
$$

At this point it seems simpler to regard the images $T\left(x_{i} \otimes y_{j}\right)$ as elements of $M_{m n}$. It is clear that there is no loss in generality in taking $T\left(x_{1} \otimes y_{1}\right)=E_{11}+E_{22}$.

Let i and j be fixed for this discussion, and let $A=T\left(x_{i} \otimes y_{j}\right)$. Let a_{1}, \cdots, a_{n} be the m-dimensional vectors which are the columns of A, and let ε_{k} be the unit vector with 1 in the k th position. It follows from (12) that

$$
\begin{equation*}
\rho\left(s \varepsilon_{1}+t a_{1}, s \varepsilon_{2}+t a_{2}, t a_{3}, \cdots, t a_{n}\right)=2 \tag{13}
\end{equation*}
$$

for $s t \neq 0$. The Grassmann products

$$
\begin{equation*}
\left(s \varepsilon_{1}+t a_{1}\right) \wedge\left(s \varepsilon_{2}+t a_{2}\right) \wedge t a_{k}, \quad 3 \leq k \leq n \tag{14}
\end{equation*}
$$

must be zero for st $\neq 0$. In the expansion of (14) the coefficient of $s^{2} t$ is 0 ; that is, $\varepsilon_{1} \wedge \varepsilon_{2} \wedge a_{k}=0$.

Thus the matrix A has non-zero entries only in the first two rows and columns. It follows immediately that the dimension of the range of $T \leq 2(m+n)-4$. Hence the dimension of the kernel of $T \geq m n-$ $2(m+n)+4>m n-4 \max (m, n)+1$.

By Lemma 4, there exists an element of $\bigcup_{j=1}^{4}$ whose image is zero. This contradicts the hypothesis; hence $T\left(R_{1}\right) \subseteq R_{1}$.

We see then that the form of T satisfying Theorem 2 is given in the conclusions of Theorem 1.

Remark. We feel that the hypothesis $0 \notin T\left(\bigcup_{j=1}^{4} R_{j}\right)$ of Theorem 2 should not be necessary, but we have not been able to prove the theorem without it. More generally, we conjecture that $T\left(R_{k}\right) \subseteq R_{k}$ for some fixed $k, 1 \leq k \leq n$, should suffice to prove that T is essentially a tensor product.

References

1. E. B. Dynkin, Maximal subgroups of the classical groups, A.M.S. Translations, Series 2, 6 (1957), 245-378. (Original: Trudy Moskov. Mat. Obsc. 1 (1952), 39-166.)
2. L. K. Hua, A theorem on matrices and its application to Grassmann space, Science Reports of the National Tsing Hua University, Ser. A, 5 (1948), 150-181.
3. H. G. Jacob, Coherence invariant mappings on Kronecker products, Amer. J. Math. 77 (1955), 177-189.
4. Marvin Marcus and B. N. Moyls, Linear transformations on algebras of matrices, Can. J. Math. 11 (1959) 61-66.
5. Marvin Marcus and R. Purves, Linear transformations on algebras of matrices: The invariance of the elementary symmetric functions, Can. J. Math. 11 (1959), 383-396.
University of British Columbia

[^0]: Received March 2, 1959. The work of the first author was sponsored by U.S. National Science Foundation Grant G. 5416.

