SOME APPLICATIONS OF EXPANSION CONSTANTS

B. GRUNBAUM

1. For any metric space X (with distance function d) the expansion
constant E(X) of X is the greatest lower bound of real numbers g which
possess the following property (S(x; p) = Sx(x; p) = {y € X; d(x, y) < p}
denotes the closed cell with center # and radius p):

For any family {S(z,; 0.); @ € A} of pairwise intersecting cells in X,

QAS(%; U1Pa) # ¢ .

If for every such family Nae.S(.; E(X)p.) # ¢, E(X) is called
exact.

The expansion constants of Minkowski spaces have been studied in
[5]. In the present paper we deal (in §2) with an application of the
expansion constants to a problem on projections in Banach spaces; as
corollaries we obtain Nachbin’s [10] geometric characterization of Banach
spaces with the Hahn-Banach extension property (8§ 2) and Bohnenblust’s
[3] result on projections in Minkowski spaces, as well as some results
which we believe to be new (§4). In §3 we discuss the relation of
expansion constants to a property of retractions in metric spaces, es-
pecially those convex in Menger’s sense; as a corollary we obtain Aron-
szajn-Panitchpakdi’s [2] characterization of spaces with the unlimited
uniform extension property. Section 4 contains additional remarks and
examples.

2. In order to apply expansion constants to projections in Banach
spaces, it is convenient to introduce the notion of projection constants.

DEFINITION 1. For any normed space X the projection constant
p(X) is the greatest lower bound of real numbers g which possess the
following property: For any normed space Y which contains X as a sub-
space of deficiency 1, there exists a projection P of Y onto X such that
[|P|]| < . If for any such Y there exists a projection of norm less than
or equal to p(X), the projection constant p(X) is called exact.

(The projection constant p(X) should not be confused with the pro-
jection constant <#(X) studied in [6].)

We show now that if X is a normed space then E(X) actually coin-
cides with p(X).
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THEOREM 1. For any normed space X we have p(X) = E(X); more-
over, if one of the constants is exact, so is the other.

Proof. If X is not complete, then p(X) = oo = E(X). The first
part follows immediately from the remark that, if Y is any subspace of
the completion of X containing X as a subspace of deficiency 1, there
exists no projection of Y onto X. On the other hand, E(X) = « for any
metric space X which is not complete. Indeed, if {x,;7n=1,2,---} is a
Cauchy sequence in X which is not convergent, let p, = 2lim,_.. d(x,, ®.),
for n =1,2,..-. Then the cells {S(x,;0,);” =1,2, .-} are mutually
intersecting, but ﬂ;;;lS(xn; 20,) = ¢ for any p, which implies E(X) =
. (We shall see in §4 that if X is a complete metric space then
E(X)<2)

Thus we may assume that X is complete. We shall first prove that
E(X) < p(X). To that effect, let Y be the linear sum of X (considered
as a vector space) and a point y, ¢ X. For any given family {S(®.; 0.);
a € A} of mutually intersecting cells (of X) we shall define a norm in
Y, such that Y becomes a Banach space containing X as a subspace,
and that for any projection P of Y onto X we have:

@1) 0S@a; 1Pl 02) # ¢ -

If inf p, = 0 any norm on Y establishes (2.1) since MNacsS(%s; 0a) #
¢. We prove this relation in the following way: If for some 8 € A
we have p; = 0, then x; € S(x,; p,) for all « € A. On the other hand,
if for a sequence of indices a, € A we have lim 0a, =0, then (since
(%4 %) < P + Pg) {#.} is a Cauchy sequence. Since X is complete
there exists x, = lim, %,,. We claim that x, € N ,e +S(x,, 0,). Indeed, for
any o € A and any ¢ > 0, let » be such that 0o, < 1/2¢ and d(@a , %) <
1/2¢; then d(%a, %)) < d(%a, 4 ) + (@, , %) < P, + €. Since ¢ is arbitrary,
it follows that x, € S(x,; 0,) for any «a € A, as required.

Thus we are left with the case inf o, > 0. Let ¥, = (2. + %)/0s
for each & € A and K = {y,; « € A}. If S is the unit cell of X, we
denote by T the closure (in the product topology of ¥ = X x Ry,) of
the convex hull of the set SUK U (—K)cC Y. Since T is a centrally
symmetric convex body in Y it defines a norm (according to which T is
the unit cell). We claim that 7 N X = S, i.e. that X (as a Banach space)
is a subspace of Y. Obviously, this will be established if we show that
the intersection of X with a segment connecting a point of K with
a point of —K belongs to S. Now, an elementary computation shows
that [y, —ys] N X is the point (%, — %4)/(0, + ©p) Whose norm is less
than or equal to 1, since ||z, — x4|| < p, + 0p is a consequence of the
assumption that the members of {S(z,; p,)} are pairwise intersecting.
Now let P be any projection of Y onto X and let x, = —P(%,). Then
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P(y,) =P ( x“; Y ) = % = %_ and therefore

@ @

|25

ls Pl - 1l9a]l < || Pl for each o € A .

In other words, x, € S(x,; || P|| p») for each @ € A which implies (2.1)
and thus establishes E(X) < p(X).

In order to derive the converse inequality p(X) < E(X) let Y be any
Banach space containing X as a maximal subspace, and let y,e Y, 4, ¢ X.
The triangle inequality implies that Sy(x, || © — ¥, ||) N Sx(x’, [| 2" — ¥, |]) #= ¢
for any x, 2’ € X. Let ¢t be such that M ,ex Sx(x; || — ¥, || # ¢, and
denote by x, any point of that intersection. Thus || — «,|| < pllz — %, ||
for any « € X. We define a projection P of Y onto X by P(x + \y,) =
x + \x,, and we shall show that || P(x + M) || < pll® + My, ||, i.e., that
| P|] < p. Obviously, we may assume ) # 0 and then, by the definition
of =, we have [[P@+ Mol =+ ol =[|N+[—2/—u]<
LNl =2 —=yll = gl + Mgl

This completes the proof of our last assertion, and thus also the
proof of Theorem 1.

The connection between projection constants and extensions of linear
transformations may be found using the following lemma:

If X and Y are any normed spaces, if Z contains Y as a sub-
space of deficiency 1, and if f is any linear transformation from Y
to X, then there exist a normed space W and a linear transformation
F from Z to W such that:

(i) W contains X as a subspace of deficiency 1;

(ii) F coincides with f on Y;

@) [[Fl=1rI.

We omit the simple proof of this lemma since a more general ex-
tension theorem of this type has been proved by Sobczyk [13, Theorem
4.1].

Using the above lemma, the following corollary results immediately
from Theorem 1:

For any Banach spaces X, Y and Z, with Y a mawximal subspace
of Z, any linear transformation f from Y to X, and any ¢ > p(X) =
E(X), there exists a linear transformation F from Z to X, coinciding
with f on Y, such that || F|| < || ¢l Fll; of »(X) s exact, there exists
such an F even for p = p(X).

A standard application of Zorn’s lemma or transfinite induction
yields therefore:

The following two properties of a normed space X are equivalent:

(i) E(X)=1 and is exact;

(ii) For any normed spaces Y and Z, with Y C Z, and any linear
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transformation f from Y to X, there exists a linear transformation F
Jrom Z to X such that F cotncides with f on Y and || F'|| = || f|.

Since the ‘‘binary intersection property’’ of Nachbin [10] is equiva-
lent to ““ E(X)=1 and is exact,”” the last statement is precisely Nachbin’s
characterization of spaces with the Hahn-Banach extension property [10,
Theorem 1].

3. In the case of metric spaces, expansion constants may be used
to obtain information on retraction properties, in close analogy to the
procedure applied in §2 to projections in normed spaces.

A retraction r of a metric space Y onto a metric space X Y is
a (continuous) mapping of Y onto X such that r(x) = « for each x € X.

DEFINITION 2. The norm ||| of a retraction » of ¥ onto X Y
is the greatest lower bound of numbers # such that d(r(y.), (%)) <
rd(y,, y,) for all y,y, € Y. The retraction constant r(X) of a metric
space X is the greatest lower bound of numbers g with the property:
For any metrix space Y which contains X any only one point not in
X, there exists a retraction of Y onto X with norm less than or equal
to p. If »(X) = min p, the retraction constant »(X) is called exact.

Obviously 7(X) = o if X is not complete, and it is easily shown
that for complete spaces r(X) < 2.

Since metrically convex spaces have special properties with respect
to retractions, we recall their definition (essentially that of Menger [9]):

A metric space X is called metrically convexr if for any pair of
points &', 2" € X and any )\, 0 < )\ < 1, there exists a point ¥y € X such
that d(z', y) = Md(2', 2”) and d(z"”, y) = (1 — Nd(z', z"").

In analogy to Theorem 1 we have:

THEOREM 2. (i) For any metric space X, E(X) < r(X).
(i) For any metrically convex metric space X, E(X) = r(X); more-
over, if one of the constants is exact, so is the other.

Proof. (i) Since for uncomplete spaces both constants are infinite,
we will assume that X is complete. Let {S(x,; 0.); @ € A} be any family
of mutually intersecting cells in X. We shall define a space Y =
X U {y} (with distance function D) such that for any retraction r of
Y onto X we have

(3'1) wgs(ww; ||’i"” ° low) +¢.

This will prove part (i) of the Theorem. Now, if infp, =0 the rea-
soning used in the proof of Theorem 1 shows that any metrization of
Y is appropriate. Thus there remains the case inf p, > 0. Then, let
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D(x', ") = d(x', x’) for all o/, 2” ¢ X, and let D(x,y,) be the greatest
lower bound of those numbers y for which S(xz; ¢) contains S(x,; 0.) for
some « € A. (This metric on Y was used also in [2]). Since D(x, y,) >
0 follows obviously from inf o, > 0, in order to establish that D is indeed
a distance function on Y we have only to prove the triangle inequality
for triples of points containing ¥,, i.e. the relations

3.2) D', ") < D', 9o) + D(yo, ")
and
(3-3) D({)O', yo) < D(x'; ') + D(w"; %)

for all 2',2" € X. To that effect let ¢ >0 be given; then S(z';
D(x', yo) + €) D S(x,; P.r) and S(z"; D(z", y,) + €) D S(x,; Po) for suita-
ble ', a'" € A. Since any two of the cells S(x,; 0,) have common points,
there exists a z e X such that d(z’, z) < D(x', ) + ¢ and d(z",z2) <
D(x", y,) +¢. Then D(x', x') = d(2', 2") < d(2', 2) + d(x", 2) < D(&', y,) +
D(x", y,) + 2¢. Since ¢ was arbitrary, (3.2) results. On the other hand,
since S(z'; d(', ") + D(x", ¥,) + €) D S(x”; D(x", ¥,) + &) D S(Zur; Ourr)s
we have D(x',y,) < d(«', 2") + D(x", y,) + ¢ for any e > 0, which es-
tablishes (3.3).

Now, let » be a retraction of Y onto X, and let x, = r(y,). Then,
for any @« € A we have d(x,, ) < ||7]|| D@, %) < || 7| * 0ny Which is
equivalent to 2, € NaecsaS@.; || 7| 0x). Thus (3.1) holds, and the proof
of (i) is complete.

The proof of (ii) is now easy. Let Y = X U {y,} and let D be the
distance function of Y. We consider the family of cells in X defined
by {S(x; D(x, y,)); « € X}. The triangle inequality which is satisfied by
D, and the metric convexity of X imply that these cells are mutually
intersecting. Let p¢ be a number such that (N.exS(x; pD(x, ) # ¢,
and let z, be any point of this intersection. Then the retraction » of
Y onto X defined by 7(y,) = x, obviously satisfies ||| < ¢#. This com-
pletes the proof of Theorem 2.

REMARKS. (i) If X is not metrically convex, E(X) < »(X) is possi-
ble. The simplest example to this effect is that of a space X consisting
of precisely two points. Then E(X) =1 and r(X) = 2.

(i) Let X,Y and Z= Y U {2} be any metric spaces, and f a uni-
formly continuous transformation from Y to X, with subadditive modulus
of continuity 8(¢) (see, e.g., [2]). It is easily established that there
exists a metric space X* = X U {«*}, whose distance function coincides
on X with the distance function of X, such that there exists an ex-
tension F' of f, with domain Z and range in X*, which is uniformly
continuous with the modulus 8(¢). Therefore, using transfinite induction
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or Zorn’s lemma, we obtain the following corollary of Theorem 2, which
is equivalent to Theorem 2, §3 of [2]:

For any metrically convex metric space X the following properties
are equivalent: ‘

@) r(X)=1 and is exact;

(b) For any metric spaces Y and Z, with Z D Y, and any uni-
Jormly continuous tramsformation f from Y to X with subadditive
modulus of continuity 3(¢), there exists a uniformly continuous trans-
formation F' from Z to X, coinciding with f on Y and having 8(c) as
modulus of continuity.

4. Some properties of expansion constants E(X) for finite dimen-
sional Banach spaces X have been established in [5]. As a consequence of
Theorem 1 of the present paper, these results yield the following in-
formation on the projection constants p(X):

(i) If X is an m-dimensional Minkowski space then 1 < p(X) <
2nf(n + 1). (This was first established by Bohnenblust [3].)

(ii) If E" denotes the n-dimensional Euclidean space then p(£") =
V2n|(n + 1).

The characterization of those n-dimensional Minkowski spaces X for
which E(X) = 2n/(n + 1), given in Theorem 2 of [5], yields immediately
a characterization of spaces X for which the upper bound is attained
in (i).

As observed by Bohnenblust [3], p(X) < 2 for any Banach space X.
By Theorem 1 this is a corollary of the following more general propo-
gition:

E(X) <2 for any complete metric space X.

Proof. Let {S(x,; p.); « € A} be any family of mutually intersect-
ing cells in X. The reasoning used in the proof of Theorem 1 shows
that if inf 0, =0 then M ,e.S(®,; 0.) # ¢. Thus we may assume inf p, =
0 > 0. Given any ¢ > 0 let 3 € A be such that o < (1 + ¢)p,. Since
then d(2,, ¥5) < 0o+ 05 < 00 + (1 +€)0, < (2 + €)0., We have 2 € NaeaS(2,;
(2 + €)p,), which proves our assertion.

The notion of expansion constants gives us a convenient method of
obtaining information on the exactness of projection and retraction
constants.

DEFINITION 3. A metric space X is said to have the finite inter-
section property if each family of cells {S(x,; 0.); @ € A} of X satisfies
the condition: Whenever every finite subfamily has a non-void inter-
section, then (M ,e.S(xs; 0.) # ¢.

Obviously, compact spaces and spaces with compact cells have the
finite intersection property. As a consequence of the w*-compactness
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of the unit cell of any adjoint Banach space ([1], [4]), adjoint Banach
spaces (and thus especially reflexive, unitary, or finite dimensional Banach
spaces) also have the finite intersection property.

For spaces with the finite intersection property we have:

THEOREM 3. If X has the finite intersection property then E(X),
and therefore r(X) (and p(X) if X is a Banach space), are exact.

Proof. Let {S(x,; 0.); « € A} be any family of mutually intersect-
ing cells in X. By the definition of the expansion constant, any finite
subfamily of the family {S,.= S(z.;(E(X) + ¢)0.);a € A,e >0} has
a non-void intersection. Since X has the finite intersection property
this implies that MNaesesoSue # ¢. But S(@s; E(X) * 0s) = NesoSue fOr
each @ € A and therefore ueS(%s; E(X)0,) # ¢ as claimed.

REMARK. We know of no Banach space which has the finite inter-
section property but is not an adjoint space; indeed, it seems reasona-
ble to conjecture that only adjoint spaces have this property. On the
other hand, a wider class of Banach spaces has exact projection and
expansion constants. E.g., it is well known (Sobezyk [12]) that p(c,) =
2 and is exact (it is not difficult to show directly that E(c,) = 2 and is
exact) but it is easily seen that ¢, does not have the finite intersection
property (not even for families of cells having the same radius).

Another question, raised by Bohnenblust [3], is whether there exists
a projection of norm < 2 from any Banach space onto each of its maximal
closed subspaces. A negative answer to Bohnenblust’s problem follows
immediately from the following example.

EXAMPLE. Let X be the subspace of 1 defined by

X:{xz(wl,xm ees) el;w=1 nf—l wnzo}.
Then E(X) = 2 but E(X) 1s not exact.

For reasons of convenience we shall, instead of X, consider its trans-
late H= {x; S5, n/(n + 1)z, =1} cl. Since X and H are isometric
metric spaces, this is permissible. Now let {¢,;n =1,2,---} denote
the usual basis of I, and S its unit cell S= {x e l;||x]|= Dr.l2.] <
1}. Obviously n + 1/(n)e,e H forn =1,2, -+, but SN H = ¢ although
dist(S, H) = 0. (This last property was Klee’s reason for introducing
H in [8].) We consider in ! the family of cells

{sn=S(”;:1e,,;“Zl)={wel;nx— "zlenn

n+1
n

ST
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Then S} =S, N H is a family of cells in H which are mutually inter-
secting since

(m+ Dk +1) . s
e+ D+ kD e €S NSk

We shall show that

ma[fs( s )] -,

which will obviously prove our assertion. Let K = N3..S1 + nYe,;
2(n + 1)/n); then, since H N S = ¢, it is sufficient to prove that K c S.
Assuming that there exists an # € K such that ||z|l=1+¢>1, we
have by the definition of K:

n

0<Hx—n+1
- n

=|£—+—1‘_xn +Z|xilé2n+1 .
n iF#EN n

for each n. Now, if for some n we have x, > 0, it follows that either
2, >+ 1/n>1lor —x, + 3wl | < (n+ 1)/n. Both cases are possi-
ble only for a finite number of indices % ; in the first case this is obvious,
while in the second it follows from the fact that it implies ||z||— (» + 1)/n <
2z,, i.e. ¢ < (1/n) + 2x,. On the other hand, for those » for which z, <
0 we have

n i#n n
or
Nell< 2t je e<l,
n n

which is again possible only for a finite number of indices n. Thus
K c S, which completes the proof.

REMARKS. (i) Since adjoint Banach spaces have exact expansion
constants, the space X of the above example is not an adjoint space,
although it is a maximal closed subspace of an adjoint space. It would
be interesting to know whether every non-reflexive Banach space has
a closed maximal subspace which is not an adjoint space.

(i) Jung’s constant J(X) has been defined [5] in the same way as
E(X), with the additional condition that all the radii o, be equal. The
space X of the last example shows that it is possible to have J(X) = E(X)
with J(X) exact and E(X) not exact.

(iii) Theorem 4 of §3 of [2] implies:
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If X is a bounded, metrically convex metric space and E(X) =1, then
E(X) s exact.

Although the condition of boundedness is perhaps redundant, the
following example shows that it is impossible to drop the condition that
X be metrically convex.

ExAMPLE. Let X ={x,;n=1,2,.+.} with d(x,, 2,)=1+1/n+1/k
for m + k. Then E(X) =1 but E(X) is not exact.

Indeed, it is easily verified that E(X) = 1. On the other hand, the
cells S, =S, 1+ 2/n)= {x,;k >n} for n=1,2, ..., are not only
mutually intersecting, but we even have S, © S, for k < n. But obvi-
ously N:..S,=¢. (Complete metric spaces containing descending
sequences of cells with empty intersections have been considered by
Sierpinski [11]; see also Harrop-Weston [7].)
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