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1. Introduction* Consider a compact Hausdorff space X and the
set C(X) of all continuous complex-valued functions on X. Consider also
a subset 31 of C(X) which is an algebra, which is closed in the uniform
topology of C{X), which contains the constant functions, and which
contains sufficiently many functions to distinguish points of X. Such
an algebra SI is called self-adjoint if the complex conjugate of each
function in 31 is in 31. The classical Stone-Weierstrass Theorem states
that if 31 is self-ad joint then 31 = C(X). If 31 has the property that
the only functions in 31 which are real at every point of X are the
constant functions then 31 is called anti-symmetric. Clearly anti-
symmetry and self-ad joint ness are opposite properties, in the sense that
if 31 has both properties then X must consist of a single point.

Hoffman and Singer [2] have studied these two properties and given
several interesting examples. The present paper was inspired by their

work but it more directly relates to a previous paper of Silov [3]. The
purpose of the present paper is to prove the following decomposition theorem
for a general algebra 31 of the type defined above.

THEOREM. There exists a partition P of X into disjoint closed
sets such that

( i ) for each S in P the restriction 3I5 of 31 to S is anti-symmetric,
(ii) if a function f in C(X) has, for each S in P, a restriction

to S which belongs to 3IS, then f is in 31,
(iii) for each S in P, each closed subset T of X — S, and each

ε > 0 there exists g in 31 with \\g\\ ^ 1, with \g(x) — 1| < ε for x in
S, and with \ g(x) | < ε for x in T.

Property (ii) of this theorem is the essential new fact of this paper.
The construction given below which leads to the partition P is due to
Silov [3], who in essence proved ( i) and (iii). Silov proved a weaker
property than (ii). Our proofs are different from those of Silov,
although the construction is the same.

The fact that the Stone-Weierstrass theorem is a special case of
the theorem to be proved here is clear. If 31 is self-adjoint then each
31s is self-ad joint. Since 31̂  is also anti-symmetric, each set S in P
consists of a single point. Therefore 31̂  = C(S). By the theorem to
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be proved, it follows that each function in C(X) is in Sί. Thus 51 = C(X),
which is the conclusion of the Stone-Weierstrass Theorem.

2. Proof of the theorem* The key step in the proof will be the
following lemma.

LEMMA. Let Y be a compact Hausdorff space and 33 be a sub-
algebra of C(Y) which contains the constant functions. Let 3ΐ be all
real functions in 33. Define yx = y2, for yt and y2 in Y, to mean that
f(Vi) = /(2/2) for all f in 9ΐ. Let Q be the set of all equivalence classes
for this equivalence relation, so that Q is a partition of Y into dis-
joint closed sets. Let μ be a finite complex-valued Baire measure on
Y and f a function in C(Y) such that

(a) | | j κ | | ^ l ,

(b) \gdμ — 0 for all g in 33,

(c) \fdμΦ0.

Then there exists SQ in Q and a finite complex-valued Baire measure
v on So such that

(Ci)

r

\ gdv — 0 for all g in 33,

Proof. It is clearly no loss of generality to assume that 33 is closed
in C(Y). Let 7 = {gj be a finite set of functions in ?H such that

^ 0 for all i,

Let Γ denote the class of all such 7. Define a partial ordering on Γ
by writing

if there exists a mapping φ of the set of indices j onto the set of
indices i such that

9i = Σ 9i

for all i. To see that Γ is a directed set relative to this partial order-
ing, let {g{} and {g^} be any two elements of Γ. Then the set [gig]} is
clearly a common successor of {g^ and {g'3).

Consider 7 = {#;} in Γ. For each index i let μ{ be the measure
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defined by

for each Baire subset H of S. Clearly

and

\fdμ =

Thus for at least one value of i with

IJ/^I/II^I
Choose such a value of i and write

μy =

It follows that

Λl

\μΔ

•i\\ Φ 0 w e h a v e

fdμ .

(a)

and

-|

! / < ί Λl-lί
By the compactness in the weak* topology of the unit sphere of the
set of Baire measures on X, it follows that the net {μy} has a cluster
point v in the weak* topology. Let x0 be any point in the support of
the measure v, and let So be that member of the partition P which
contains x0. Let xλ be any point in X — So. Thus there exists h0 in 3i
with ho(xo) Φ /&o(#i). Let

If the real constants cλ and c2 are chosen properly then

Jl (X \ = \ / ^ ( ^ ) r = 0

It follows that there exists a neighborhood UQ of x0 and a neighborhood
I7i of xλ such that

hΛ(x) < i , a? e DO

and
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fφ) >j , xe Ulm

Let λ be continuous real-valued function on the range of hx with 0 S
λ ^ 1, X(t) = 0 for t ^ i, λ(ί) = 1 for ί ^ i. By the Weierstrass approxi-
mation theorem, X(t) is a uniform limit of polynomials in t. Therefore
the function

ϊh2

 : = : Xθflι

is in 3ΐ. Clearly 0 ^ &2 ^ 1, Λ2(α;) = 0 for x in ί70, and h2(x) — 1 for x
in E7ί.

Define ^ — h2 and #2 = 1 — h2, so that {#;} e Λ If γ = {gr

3} is an
element of Γ which follows {g^, then each #'• vanishes on either Uo or
Z71# Therefore the support of μy is either a subset of X — Z70 or of
X — Uλ. Thus the support of v is either a subset of X — UQ or X — Ul9

By the choice of x09 it follows that the support of v cannot be a subset
of X — UQ and is therefore a subset of X — Ux. Therefore xλ is not
in the support of v. Since xλ was any point in X — Sθ9 it follows that
the support of v is a subset of So. Thus v is a Baire measure on So*
It is clear from the definition of v and from (a) and (/3) that (a^ and (cx)
are valid. It only remains to prove (b^. Now for each g in 95 and
each 7 in Γ we have

c r

jidμ = 0 ,

by (b) and the fact that ggiβ^b. Passing to the limit gives (b^. This
completes the proof of the lemma.

Let Ω be the class of ordinal numbers whose cardinal numbers are
less than or equal to 2β, where β is the cardinal number of X. For
each σ in Ω we define by transfinite induction a partition Pσ of Ω intσ
disjoint closed sets. This is to be done in such a way that Pσ is a
refinement of Pτ for σ > τ. The definition is started by defining Pλ — {X},
so that the first partition Px consists of the set X alone. Assume that
Pτ has been defined for all ordinals τ < σ. If a has a predecessor σ09

let S be any element of Pσo, and let $ be the set of all functions in
§1 which are real on S. Partition S by defining xx = x2 for xx and #2:

in S to mean that /(a?i) = /(a?2) for all / in g. Clearly S is partitioned
into disjoint closed sets by this equivalence relation. The totality of all
sets into which the elements S of PσQ are partitioned in this way is.
defined to be the class Pσ.

If a has no predecessor, define xx = x2f for xx and x2 in X, to mean
that xx and x2 belong to the same element of Pτ for all τ < a. The
equivalence classes of this equivalence relation clearly form a partition
Pσ of X into disjoint closed sets. Thus the classes Pσ are defined for
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all σ in β, and it is clear that P σ is a refinement of Pτ whenever σ > τ.
Assume that Pσ+1 is a proper refinement of Pσ for all σ in ί2, i.e.,

that P σ + 1 =£ P σ . Then P σ + 1 contains a set not in any PΓ for τ < σ + 1.
Therefore the cardinal number of subsets of X is at least equal to the
cardinal number of the set Ω. This contradicts the choice of Ω. There-
fore there exists an ordinal in p such that Pp + 1 = Pp. We shall show
that the partition P ~ Pp satisfies all requirements of the theorem.

The fact (i) that 21̂  is anti-symmetric for each S in P = Pp is a con-
sequence of the fact Pp = Pp + 1.

We next prove (ii). Consider to this end / in C(X) such that the
restriction of / to S belongs to 2I# for all S in P. Assume that / is not
in 21. By the Hahn-Banach theorem, there exists a bounded linear
functional on C(X) which vanishes on 21 and does not vanish at / . By
the Riesz representation theorem, this functional can be realized as a
measure μ on X. Thus

- 0 , ge 21

γ<lμ Φ 0 .

we may clearly assume that \\μ\\ ̂  1. We now construct, by transfinite
induction, a set Sσ in P σ for each a in Ω and a finite complex-valued
Baire measure μσ on Sσ with

(1) S σ c S r for τ < σ ,

( 2 ) \fdμσ έ \fdμ

( 3 ) \\μσ\\£l,

(4) \gdμσ = 0 , all 0 in 21.

Clearly the measure μλ — μ does the trick for o — 1. Assume therefore
that the sets Sτ and the measures μτ have been constructed for all
τ < σ. If σ is a limit ordinal, let

and let μσ be any cluster point in the weak* topology of the net
{/̂ r}r<σ. Clearly this set Sσ and the measure μσ do the trick.

If σ is not a limit ordinal, then there exists τ with a = τ + 1. Let
Γ be SΓ and let S3 be the restriction to Y of the algebra 21. By the
above lemma, applied to the measure μτ, there exists a finite complex-
valued Baire measure μσ on some Sσ e Pσ, with Sτ c Y = Sσ, such that

(3) l l ^ l l ^ l ,

( 4 ) ί ffd^ - 0 , all g in S3
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( 2 ) fdμ

Thus the set Sσ and the measure μσ do the trick.
This completes the construction of the sets Sσ and thejneasures

For a = p we have

and \gdμp = 0 for all g in SI. Therefore the restriction of / to Sp is

not in SIsp. This contradicts the assumption of (ii), thereby proving that
/ i s in 31. This proves (ii).

It remains to prove (iii). To do this we prove by induction on σ
that for each σ in Ω, each S in Pσ, each closed subset T of X — S, and
each ε > 0 there exists g in 31 with || g || ^ 1, | g(x) — 11 < ε for all x
in S, and | g(x) | < ε f or all x in T. Once this is done (iii) is obviously
obtained by letting σ equal p. Since the existence of g is clear if σ — lf

consider σ > 1 and assume that all smaller values of σ have been disposed
of. If σ is a limit ordinal, there exists τ < a and R in Pτ with S c R
and T c X — R. By the induction hypothesis, there exists g in SI with
II g II ^ 1, I g(x) — 11 < ε for all x in R, and | #(#) | < ε for all x in T.
Since S cz R this function # has the required properties.

It remains to consider the case of an ordinal σ which has a predecessor
r, so that σ = τ + 1. Let R be that element of Pτ for which S c: R. Let
® be the closure in C(R) of SÎ . Let #! be any point in S and x0 any point
in T Γi R. By the definition of the partition Pσ there exists hx in SI such
that the restriction of hx to 3ί is real and such that hx(x^ Φ hλ{x^). Let
λ be a function on h±(R) with 0 ^ λ ^ 1, XQi^Xo)) = 0, XQi^x^) = 1. Define
the function h2 in C(JB) by

ϊh2

 == ΛjOfli ,

Since λ is a uniform limit of polynomials, h2 e ®. Clearly | | f c 2 | | g l r

^2(^o) = 0, and AaίaJi) = 1. Thus h2(x) = 1 for all x in S. By the com-
pactness of T f) R, the product of a certain finite number of such func-
tions h2 will be a function Λ3 in 3) with || λ31| ^ 1, fes(ίc) = 1 for x in S,
I Λ8(α?) I < δ for x in T Π i?, where δ is an arbitrarily small positive number.
By the definition of 3), there exists Λ4 in SI with

- Λ4(B) I < δ

for all x in R. Define

so that h5 e SI. Also
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for all x in R, Thus there exists an open set Uo c X with R c Uo such

that I hb(x) I < 1 for all x in Uo. If δ is sufficiently small it is clear that

\hδ(x)-l\<±

for all x in S and

I hΰ(x) I < ε

for all x in T Π R. Thus there exists an open set Z7Ί in X with
T f] Rd E7i such that |&5(x) | < e for all a; in Z7lβ By the induction
hypothesis at stage τ there exists h6 in 3Ϊ with ||Λβ|| ^ 1, \hd(x) — 11 <
e/2 for a; in R,

(*) I Λβ(») I < min {| hδ(x) I"1: x e X - UQ}

for all x in X — Ϊ7O, and

(*) I Λβ(a0 I < min {ε | hδ(x) I" 1: x e T - Ux) ,

for all x in T - Ux.
Define g = /̂ 5fc6, so that r̂ e Si. For x in ί70 we have \hδ(x) | ^ l f

so that I #(#) I ̂  1 since || h6 \\ ̂  1. For # in X — Uo we have | g(x) \ ̂  1
because of (*). Thus \\g\\ ^ 1. For x in S we have \h6(x) — 1 < ε/2
and I hδ(x) — 11 < ε/2, so that

I g(x) - 1 1 ^ 1 λβ(») I I hδ(x) - 11 + | λβ(a?) - 1 1 < ε .

For x in Ux we have |feβ(aj)| < e, so that \g(x)\ < ε since | |λ β | | ^ 1.
For x in Γ — Uλ we have (J), so that | flf(a?) | < ε. Thus | g(x) | < ε for
all x in T. Thus g has all of the required properties. This completes
the proof of (iii) and thereby the proof of the theorem.

We note in conclusion that property (iii) and some results to be
found in [1] imply that 2ί̂  is closed in C{S) for each S in P.
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