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DEDEKIND DOMAINS AND RINGS OF QUOTIENTS

LUTHER CLABORN

We study the relation of the ideal class group of a
Dedekind domain A to that of As, where S is a multiplicatively
closed subset of A. We construct examples of (a) a Dedekind
domain with no principal prime ideal and (b) a Dedekind
domain which is not the integral closure of a principal ideal
domain. We also obtain some qualitative information on the
number of non-principal prime ideals in an arbitrary Dedekind
domain,

If A is a Dedekind domain, S the set of all monic poly-
nomials and T the set of all primitive polynomials of A[X],
then A[X s and A[X ], are both Dedekind domains. We obtain
the class groups of these new Dedekind domains in terms of
that of A.

1. Lemma 1-1. If A 4s a Dedekind domain and S is a multi-
plicatively closed szt of A such that Ag ts not a field, then Ag is
also a Dedekind domain.

Proof. That Ay is integrally closed and Noetherian if A is, follows
from the general theory of quotient ring formations. The primes of
Ay are of the typz PAg, where P is a prims ideal of A such that
PNS =¢. Since height PAy = height P if PNS =¢, P= (0) and
PNS = ¢ imply that height PA; = 1.

PropositioN 1-2. If A is a Dedekind domain and S is a multi-
plicatively closed set of A, the assignment C — CAy is a mapping of
the set of fractionary ideals of A onto the set of fractionary ideals
of Ag which is a homomorphism for multiplication.

Proof. C is a fractionary ideal of A if and only if there is a
de A such that dC £ A. If this is so, certainly dCAy & Ay, so CAg
is a fractionary ideal of A, Clearly (B-C)As = BAs-CAs, so the
assignment is a homomorphism. Let D be any fractionary ideal of
Ag. Since Ay is a Dedekind domain, D is in the free group generated
by all prime ideals of Ay, ie. D =Q%---Qi*. For each t=1,.---,k
there is a prime P, of A such that Q, = P,A;. Set E = Pa... Pk,
Then using the fact that we have a multiplicative homomorphism of
fractionary ideals, we get
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FEAs = (P Ay « -+ (P Ag)x = Q1 -+ Qtk,

COROLLARY 1-3. Let A be a Dedekind domain and S be a multi-
plicatively closed set of A. Let C (for C a fractionary ideal of A
or Ag) denote the class of the ideal class group to which C belongs.
Then the assignment C — CAg is a homomorphism ¢ of the ideal
class group of A onto that of As.

Proof. It is only necessary to note that if C = dA, then CAz =
dAsg.

THEOREM 1-4. The kernel of ¢ s gemerated by all P,, where
P, ranges over all primes such that P,NS # ¢.

If P,NS # ¢, then P,A; = As. Suppose C is a fractionary ideal
such that C = P,, i.e. C = dP, for some d in the quotient field of
A. Then CAy = dP,As = dAg, and thus CAg is the principal class.

On the other hand, suppose that C is a fractionary ideal of A
such that CAs = v4s. We may choose 2 in C. Then C-'-zA4 is an
integral ideal of A, and (C—'-xA4)As = As. In other words, C'-24 =
Pfi... P{t, where P,NS # ¢,4=1,+++,1. ThenC = P{"1, ..., —P;/1,
completing the proof.

ExAMPLE 1-5. There are Dedekind domains with no prime ideals
in the principal class.

Let A be any Dedekind domain which is not a principal ideal
domain. Let S be the multiplicative set generated by all II,, where
11, ranges over all the prime elements of A. Then by Theorem 1-4,
Ag will have the same class group as A but will have no principal
prime ideals.

COROLLARY 1-6. If A 1s a Dedekind domain which ts not a
principal ideal domain, then A has an infinite number of non-
principal prime ideals.

Proof. Choose S as in Example 1-5. Then Ay is not a principal
ideal domain, hence has an infinite number of prime ideals, none of
which are principal. These are of the form PAg, where P is a (non-
principal) prime of A.

COROLLARY 1-7. Let A be a Dedekind domain with torsion class
group and let {P,} be a collection of primes such that the subgroup
of the ideal class group of A gemerated by {P,} is not the entire
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class group. Then there are always an infinite number of non-
principal primes mot in the set {P,}.

Proof. For each «, chose n, such that Pje is principal, say =
A-a,. Let S be the multiplicatively closed set generated by all a,.
By Theorem 1-4, Ay is not a principal ideal domain, hence Ay must
have an infinite number of non-principal prime ideals by Corollary 1-6.
These come from non-principal prime ideals of A which do not meet
S. Each P, does meet S, so there are an infinite number of non-
principal primes outside the set {P,}.

COROLLARY 1-8. Let A be a Dedekind domain with at least one
prime ideal in every ideal class. Then for any multiplicatively
closed set S, As will have a prime ideal in every class except pos-
sibly the principal class.

Proof. By Corollary 1-3, every class of Ay is the image of a
class of A. Let D be a non-principal class of As. D = CA,, where
C is a fractionary ideal of A. By assumption, there is a prime P of
A such that P=C. If PAy= A, then CAy is principal and so D is
the principal class of A;. This is not the case, so PAg is prime, and
certainly PAy = CAy = D.

ExAMPLE 1-9. There is a Dedekind domain which is not the
integral closure of a principal ideal domain.

Let A= Z[V —5]. A is a Dedekind domain which is not a
principal ideal domain. In 4, 29=B +2 1 —5)-8 -2 1 —5). It
follows from elementary algebraic number theory that 17, = 3 + 21 — 5
and /7T, = 83 — 2 1V — b generate distinet prime ideals of 4. Let S =
{IT%};s,. Then Ay is by Theorem 1-4 a Dedekind domain which is not
a principal ideal domain. Let F' denote the quotient field of A and @
the rational numbers. Ay cannot be the integral closure of a principal
ideal domain whose quotient field is F since principal ideal domains
are integrally closed. If Ay were the integral closure of a principal
ideal domain C with quotient field @, then C would contain Z, and
II, and II, would be both units or nonunits in Ag (since I7, and II,
are conjugate over Q). But only I/, is a unit in As.

REMARK 1-10. Example 1-9 settles negatively a conjecture in
Vol. I of Commutative Algebra [2, p. 284]. The following conjecture
may yet be true: Every Dedekind domain can be realized as an Ag,
where A is the integral closure of a principal ideal domain in a finite
extension field and S is a multiplicatively closed set of A.
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2. LEMMA 2-1. Let A be a Dedekind domain. Let S be the
multiplicatively closed set of A[X] consisting of all monic poly-
nomials of A[X]. Let T be the multiplicatively closed set of all
primitive polynomials of A[X] (t.e. all polynomials whose coefficients
generate the unit ideal of A). Then A[X]s and A[X]|r are both
Dedekind domains.

Proof. A[X] is integrally closed and noetherian, and so both
A[X]s and A[X], are integrally closed and noetherian. Let P be a
prime ideal of A[X]. If PNA +# (0), then PNA=Q is a maximal
ideal of A. If P+ QA[X], then passing to A[X]/QA[X], it is easy
to see that P = QA[X] + f(X)-A[X] where f(X) is a suitably chosen
monic polynomial of A[X ]. In thiscase PNS # ¢, so PA[X]|s = A[X]s.
Thus if PNA == (0) and PA[X]s is a proper prime of A[X]s, then
P =QA[X] where @ = PNA. Then height P = height @ =1. If
PN A = (0), then PK[X] is a prime ideal of K[X] (where K denotes
the quotient field of A). Certainly height P = height PK[X] =1, so
in any case if a prime P of A[X] is such that PN S = ¢, then height
P < 1. This proves that A[X]s is a Dedekind domain. Since S& T,
A[X ]y is also a Dedekind domain by Lemma 1-1.

REMARK 2-2. A[X], is customarily denoted by A(X) [1, p. 18].
For the remainder of this article, A[X]|s will be denoted by A'.

ProprosiTION 2-3. A' has the same ideal class group as A. In
fact, the map C — CA" is a one-to-one map of the ideal class group of
A onto that of A

We can prove that C — CA' is a one-to-one map of the ideal class
of A into that of A by showing that if two integral ideals D and FE
of A are not in the same class, neither are DA' and EA'. Suppose
then that DA' = EF'A". This implies that there are elements f; (X),
9:(X), + =12 in A[X] with g,(X) monic for 7 = 1,2 such that

pa. LX) _ g A

g: (X) g (X) -~

Let a; be the leading coefficient of f;(X) for 7= 1,2, and let de D.
Then we get a relation

g. LX) _ X)) | AHX) o x) monie,

g: (X) g(X) g,(X)

where e¢(X) can be chosen as a polynomial in A[X] all of whose coef-
ficients are in E. This leads to d g,(X)- fi(X)-9(X) = e(X)- f1(X)-g(X).
The leading coefficient on the right is in a,- . This shows that a,-D
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D < a,-E. Likewise a,-E < a,-D, thus a,-D = a,-E and D = E.
To prove the map is onto, the following lemma is needed.

LEMMA 2-4. Let A be a Dedekind domain with quotient field
K. To each polynomial f(X)=a, X"+ -+ — + a, of K[X] assign
the fractionary ideal ¢(f) = (@,, <+, a,). Then ¢(fg) = c(f) c(g).

Proof. Let V, (for each prime P of A) denote the P-adic valua-
tion of A. It is immediate that V,(c(f)) = min V,(a;). Because of
the unique factorization of fractionary ideals in Dedekind domains, it
suffices to show that V,(c(fg)) = V,(c( f)) + V,(c(g9)) for each prime
P of A. This will be true if the equation is true in each A,[X].
But A, is a principal ideal domain, and the well-known proof for
principal ideal domains shows the truth of the lemma.

To complete Prop. 2-3, let P be a prime ideal of A'. The proof
of Lemma 2-1 shows that if PN A # (0), then P = QA" where @ is a
prime of A. Thus P = QA" and ideal classes generated by these primes
are images of classes of 4. Suppose now that P is a prime of A'
such that PNA = (0). Let P'= PNA[X]. Then P*'NA = (D), and
P*-K[X] is a prime ideal of K[X]. Let P"K[X]= f(X)K[X]; we
may choose f(X) in A[X]. Let C = ¢(f). Suppose that g(X)-f(X)e
A|X]. Then because c¢(fg) = (¢(f)) + (c(g)) = 0 for all P, g(X)e C*-
A[X]. Conversely if g(X)e C'-A[X], then ¢g(X) f(X)e A[X]. Thus
P'= f(XH)K[X]NA[X] = C " A[X]- f(X)A[X], and P= P*A' = C*-
A f(X)A'. This gives finally that P = C*4’, and the class is an
image of a class of A under our map. Since the ideal class group of
A is generated by all P where P is a prime of A, this finishes the
proof.

COROLLARY 2-5. A' has a prime tdeal in each tdeal class.

Proof. Let w be any nonunit of A. Then (wX + 1) K[X]N A4
(= (wX + 1)A") is a prime ideal in the principal class. Otherwise let
C be any integral ideal in a nonprincipal class D% C can be
generated by 2 elements, so suppose C = (¢, ¢,); then @ = (¢, + ¢, X)-
K[X]NA"is a prime ideal in CA' = D.

ProposiTioN 2-6. If A is a Dedekind domain, then A(X) is a
principal ideal domain.

Proof. Since A(X) = A}, Corollary 1-3 and the proof of Corollary
2-5 show that each nonprincipal class of A(X) contains a prime QA(X),
where @ is a prime ideal of A of the type (¢, + ¢; X)K[X]N A
Clearly Q NA[X] = (¢, + e, X)K[X]NA[X]=C"A[X]- (¢, + . X)A[X| &
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PA[X] for any prime P of A. Thus there is in @ N A[X] a primitive
polynomial of A[X|. Thus QA(X) = A(X). Theorem 1-4 now implies
that every class of A becomes principal in A(X), i.e. A(X) is a
principal ideal domain.

REMARK 2-7. Proposition 2-6 is interesting in light of the fact
that the primes of A(X) are exactly those of the form PA(X), where
P is a prime of A [1, p. 18].

REMARK 2-8. If the conjecture given in Remark 1-10 is true for
a Dedekind domain A, it is also true for A'. For suppose A = By,
where M is a multiplicatively closed set of B and B is the integral
closure of a principal ideal domain B, in a suitable finite extension
field. Let S, S*, and T be the set of monic polynomials in A[X],
B[X], and B,[X] respectively. Then A'= A[X]s= BulX])s=
B[ X]w)s = Bl XDax,s» = (B[ X]s1)cxr,s»- The last equality holds because
S*'S S&S<M,Sy. It is easy to see that B[X ]u is the integral closure
of the principal ideal domain B[X], in K(X), where K is the quotient
field of B.
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