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TWO INEQUALITIES IN NONNEGATIVE
SYMMETRIC MATRICES

DAviD LONDON

Marcus and Newman have made the following conjecture:
Let A = (a;;) be a n X n nonnegative symmetric matrix. Then

S(A) S(A?) = n S(4%) ,

where

S(A) = E Qij .
1,7=1
After reducing the conjecture to a standard maximum problem
of linear programming we prove that it holds for n < 3. A
counter example shows that for n = 4 the conjecture is wrong.
We also consider the following conjecture: Let A = (a;;) be
a m X n nonnegative symmetric matrix., Then

n
S<Am>§zs‘:ny m=1y27"'y
1=1
where
7 3
Si=Eai;, z=1,---,n.
i=1

The validity of this conjecture is established in two cases:
(1) m up to 5 and any », (2) = up to 3 and any m. The
general case remains open. We conclude this paper with two
generalizations of the second theorem.

NOTATION, Let A = (a;;) be a n X m» real matrix. A is called
nonnegative if «;; =20,47,5=1,--+-,n. The quadratic form corre-
sponding to a symmetric A is denoted by A(z, ), that is

n
A(xv x) = (AZL', .’L') = .Zl a’ijxixj .
1,]=

Here (Ax, ) denotes, as usually, the scalar product of the real vectors
x and Ax. Denote e=(1,---,1) and Ae = (s, +++,s,) = s = s(4).
8; = s;(A) is thus the sum of the elements of the ¢th row of A.
s = s(A) is the row sums vector of A. A is generalized stochastic if
A is nonnegative and if s(A) = ce, where ¢ is a scalar. Further
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516 DAVID LONDON

notations are;
S4) = 3 a; = Ale, e,
i,5=1

S(x):élx,-, x=(x, -, 2,),

A = (@),

sim = sm(A) = s(A™) =S, e, » m=1,2 .-
8™ = 8™(4) = 8(4") .

J=1

1. The conjecture of Marcus and Newman.

1.1. The conjecture and its connection with linear program-
ming. In [4, p. 634] the following conjecture is introduced: Let
A = (a;;) be @ n X m nonnegative symmetric matrix. Then

(1.1) S(A4) S(A*) = nS(4%) .

Using the notation introduced before, we have
S(A4) = > s,
i=1

(1.2) S(4%) = 3 s = A¥(e, e) = (Ae, Ae) = % st

i=1

S(A) = 3 89 = Al(e, €) = (de, A'e) = X, 5,87 .
=1 i=1
Hence, (1.1) can be written in the form
(1.3) n 3 s — 38 3 sP 2 0.
=1 =1 =1

If the sets s = (s, -+ -, 8,) and s® = (s, -- -, s)) are similarly ordered,
that is if (s; — s;)(si® — 8) = 0 for every 1 <1, j < n, then according
to an inequality of Tchebychef [2, p. 43] the inequality (1.3) holds.
However, the following example shows that for nonnegative symmetric
matrices A, s(4) and s®(4) need not be similarly ordered. Let

6 2 0

A=|2 1 0

0 0 4
Then s(4) = (8,3,4) and s®(A4) = (54, 19,16). s(A) and s®(A4) are
therefore not similarly ordered.

Denote

n n
2= 20 — g
Jj=1 J=1
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We have
'ﬂ’ .
(1.4) aii::si—jz_lla‘ijy 1t=10,m,
2 Z .
(1.5) 3§)=Zlau'3j, t=1,m.
=

From (1.2), (1.4) and (1.5) follows
nS(A4% — S(A) S(A*) = n i sis; — }n__‘, s; ﬁ_‘, s

[i’ a:;8; + 3i<s" B i’ a'”)] Ak

n
f 2 8; ZI 8? -7 Zl a’n(s 33)2

= ﬁ‘, (8 —s;)(8t—s8) —m Z a;i(s; — 8;)° .
Hence,
nS(A%) — S(4) S(4%
= 3 (si+8)s— 8t —m Z‘. a;i(s; — 8;)° .

15@ I

(1.6)

Using (1.6) we obtain.a representation of the conjecture (1.1) by
concepts of linear programming (see e.g. Gale [1]). Consider the
following maximum problem: Let s, ---, s, be nonnegative numbers.
Find numbers a;; = 0;;,t #* J;1,7 = 1, - -+, n, which satisfy the set of
linear inequalities

aijzaiigoyiij; 'I;,j=1,"','n,
(1.7) d .
zl;aijésiy t1=1-,m,
i=

and which maximize the linear function

(1.8) 2, @8 — 85)° .
1<y
The problem (1.7), (1.8) is a maximum standard problem of linear
programming. A set of numbers a;; which satisfies the inequalities
(1.7) is a feasible solution of the problem. A feasible solution which
maximizes (1.8) is an optimal solution. The dual of the problem (1.7),
(1.8) is the following minimum standard problem: Find numbers
Y, +++, Y, which satisfy the set of inequalities
¥, =20,2=1,.--,7n

1.7) = o ) o
yi'l'ng(si-sj)“,’b-‘,ﬁj; th,g=1, -, m,
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and which minimize the function

(18) IEE
It is obvious that the problem (1.7), (1. 8) and its dual have optimal

solutions.
From (1.6) it follows that the conjecture (1.1) can be represented

in the following equivalent form: Let @;;, %+ j3;4,5=1, -+, m, be an
optimal solution of the maximum standard problem (1.7), (1.8). Then

(L.9) 5 s — 8 S 3 (s + 8)(8 — 89"
154<J n isi<j .
1.2. Proof for n £8. In this section we establish the validity
of the conjecture for n < 3.

THEOREM 1. Let A be a n X n nonnegative symmetric matrix.
Then for n <3 the inequality (1.1) holds. The equality sign holds
i (1.1) if and only if A or A® is a generalized stochastic matrizx.

Proof. For n = 1 the inequality (1.1) holds trivially., For n =
2,3 we use the representation of (1.1) by (1.9).
For » = 2 it is sufficient to prove that if

(1.10) 0=<a,=<min(s,s,),
then
(1.11) a8, — 8)° = "21—(31 + 32)(31 —8)°.

(1.10) implies

(1.12) a, < s—*-z‘—ﬁ :

and from (1.12) follows (1.11). Equality holds in (1.1) if and only if
it holds in (1.11), and there it holds if and only if s, = s,, that is if
A is a generalized stochastic matrix. As by (1.3) we clearly have
equality in (1.1) if A* is generalized stochastic, it follows that there
are not nonnegative symmetric 2 X 2 matrices such that A® but not
A is generalized stochastic. We remark that it is easily seen that for
n =2, s and s® are similarly ordered sets. (1.1) thus follows also
from the inequality of Tchebychef.*

1 As the referee suggests, the proof for n = 2 can be done directly by the methods
in [4]. Using the notations in [4], we have

25(A3) — S(A)S(A2) = wiwa(A1 — A2)2(A1+ A2) and L1+ A2=tr(A)=0.

The author wishes to thank the referee for this remark.
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We prove now the theorem for n = 3. Without loss of generality
we may assume that
(1.13) 0<s8 <8 =s,;.

The assumption 0 < s, does not restrict the generality. If s, =10 then
A is of the form

0 0 0
A=|0 B
0
Hence, using the validity of (1.1) for » = 2, we obtain
S(4) S(4) = 254 .
At first we treat the case
(1.14) 0<s <8 <8,
Denote
Aoz = Ogo = Ty Qg = Q3 = &y Ay = Gy = T3
The corresponding maximum problem is: Maximize
(1.15) M (&, %,y ) = Du(Se — 85)° + @o8), — 85)° + La(8 — 8)°,
where @, = 0, 7 = 1, 2, 3, satisfy the system of inequalities
S(I) T+ T =8
(1.16) '(2) Tt T8,
(3) x + 2, = 8.

The dual of the problem (1.15), (1.16) is the following problem: Minimize
(1.15’) Y:S$ + yzsz + y333 ’
where y; = 0, ¢ = 1, 2, 3, satisfy the system of inequalities

jye + Yy = (8, — 8’
Y+ Ys = (8, — 85)°
Y+ Y. = (31 - 32)2 .

(1.16")

Let %, %,, &; be an optimal solution of (1.15), (1.16) and %, %, ¥
I~ ~
an optimal solution of the dual problem. Let (1.16), (1.16") denote
respectively the inequalities (1.16), (1.16’) after substituting Z,, &, &,
and %,, ¥., ¥, respectively.
According to our assumption (1.14) we have
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(8 —8,)'>0,1#5;1,5=1,2,3,

A~
and it follows therefore from (1.16") that at most one of the numbers
Y1, ¥y ¥s is equal to zero. From the equilibrium theorem [1, p. 19]

follows that in (i.\l'g) equality holds at least in two of the inequalities.

In (ﬁg’) at least one strict inequality holds. For if three equalities
hold then by solving the system of equations we get %, < 0, and so
the solution is not feasible. Using again the equilibrium theorem we
obtain that at least one of the numbers is equal to zero. As (1.14)
holds, it follows that precisely one of those numbers is equal to zero.
Summing up: In (f.T/G) the sign of equality holds at least twice and
precisely one of the numbers Z,, %,, &; vanishes.

We now consider all the sets z,, «,, ; for which the just obtained
conditions hold. For every such set we decide whether it is a feasible
solution (f.s) or whether it is not a feasible solution (n.f.s). For this
decision we have to distinguish between the two following cases

1.17) s+ 8 <8,
(1.18) s +8=s.

The result is given in the following table.

o the Sauations @ & | @ | @B
1), ) 0 81— 8 8z n.f.s n.f.s
0, 2 82 — 8 0 s fs fs
@, @ 82 st 0 fs n.f.s
@), 3) 0 83 s; — 83 n.f.s n.f.s
@, 3 ss 0 81 n.f.s n.f.s
@), 3) 83— 8 8 0 n.f.s f.s
2, 3 0 8 s2 n.f.s n.f.s
(), (3 s3 0 82 — 83 n.f.s n.f.s
(2), (3) Sz $3 — 82 0 n.f.s f.s

For any row of this table containing a f.s, the limit case s, + s, = s,
is to be associated with this f.s.

When (1.17) holds, the optimal solution is one of the following
feasible solutions

(xu Loy xs) = (32 — 8y 0: 31) ’
(xly x2y xs) = (82) 811 0) .
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M(sz — 8y 0, 31) = (32 - 81)(32 - 33)2 + 31(31 - 82)2
< 8y(8:. — 8)° + 8,(8, — 8))* = M(Sg, s, 0),

it follows that
(1°19) (5517 EEv 553) = (SZy 317 O) .

This optimal solution is unique.
When (1.18) holds, the optimal solution is one of the following

feasible solutions
(@, @3y ) = (5, — 8, 0, 8) ,
(xly x?r xS) = (83 - 81, 817 0) ’
(xu T, xa) = (82, S3 — Sy, 0) .

As

(1.20) M(ss — 84, 8y, 0) - M(SEY 83 — 8o, 0) = (83 — 8 — 82)(82 - 83\’2
+ (8, + 8 — 33)(31 —8)=0 4

and

M(ss — 81, 8y, 0) = (33 - 31)(32 - 33)2 + 31(31 — 8y)°
> (sz - 31)(32 - 83)2 + 31(32 - 31)2 = M(sz — 8y O; 31) ’

it follows that
(1-21) (57'1; X, E;) = (33 — 8y, 8y, 0) .

As equality in (1.20) holds only if s, + s, = s;, it follows that the
optimal solution (1.21) is unique. We remark that the optimal solution
can also be determined by the simplex method [1, ch. 4].

According to (1.9), (1.19) and (1.21) we have to prove that

(1.22) M(sy, 8, 0) = 8u(8: — 8)° + 8:(s; — 8)° < _;)—15‘-%:‘. (8; + 83)(s; — 85)°
1<y
when (1.17) holds, and that
M(s; — sy, 8, 0)
3
(1.23) = (85— 8)(8: — 8)°" + 8u(8, — 8)" < % Z;. (s: + 8)(8; — 8y)°
15i<y

when (1.18) holds.
Denote

(1.24) ss=a, ss=a+8, ss=a+B+7.
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The assumption (1.14) implies
(1.25) a,B,v>0.

Assuming the validity of (1.17), we prove now that (1.22) holds.
(1.17) gives
(1.26) asv.

Denote
L= 3 (s+8)(s— ) — 3M(s, 5,0
= (8; — 8)%(8; + 8) + (8. — 89)*(8; — 28y) + (85 — 8)%(s; — 28)) .
By the notation of (1.24) I, takes the form
1.27) L=FRa+B +vY(r—a—-B+B+7NB+7—a).
From (1.25), (1.26) and (1.27) follows
IL > B Rax+ B) +v2y—2a) >0.

(1.22) is thus established.
Assuming the validity of (1.18), we prove that (1.23) holds. (1.18)
gives

(1.28) azr.

Denote

L= 1;% (s; + s;)(8; — 8;)° — 3M (83 — sy, 8, 0)
= (8, — 8)%(8; + 8) + (8 — 8)°(38; + 8. — 28;) + (8, — 85)°(S; — 28)) .
By the notation of (1.24) I, takes the form
(1.29) LB, =FRax+B)+7vCr—B—-27)+ B+N)EB+7—a).
We distinguish between the following two cases
(1.30) B+rza,
(1.31) B+rv<a,.

At first assume that (1.30) holds. From (1.25), (1.28), (1.29) and (1.30)
we obtain

LzpBRa+p+7v2a—F—2)+YB+v—a)
=pF@Ra+ B +7a—7>0.
(1.23) is thus established when (1.30) holds. Assume now that (1.31)
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holds. Write L(a, 8, v) in the following form

(1.32) Lia, 8, =aB =7+ B+ (B+ )= 7B +27).

L(x, B, ) is linear in a. Let 3, be any constant positive numbers.
As

La,v,v=6Y¥>0,

we may assume that

(1.33) B—-—7>0.
Using the validity of (1.23) when (1.30) holds, we obtain
(1'34) 12(08 + 7: 187 '7) > 0 ]

From (1.32) and (1.33) it follows that
(1-35) lim Iz(a, B, ’)’) = 4o ,

=+
As I(a, 8,7) is linear in «, it follows from (1.34) and (1.35) that
L(a, B,7v) > 0 when (1.31) holds. (1.23) is thus established also when
(1.31) holds.

The proof of the theorem is completed in the case when (1.14)
holds. We proved that in this case (1.1) holds strictly. From continuity
considerations it follows that the theorem without the equality statement
holds also if only (1.13) is assumed. (We have already mentioned that
(1.13) can be considered as the general case). Hence, to complete our
proof in the general case (1.13), we have to assume that (1.14) is
invalidated and to check for possible cases of equality in (1.1). If
(1.14) does not hold, there are three possibilities:

(1) 8 = 8 = 8,
(2) s1 < sz = 83 )
3) si=8<s.
If (1) holds then the sign of equality in (1.1) holds for every A.
In this case A is a generalized stochastic matrix.

In cases (2) and (3) we consider the corresponding maximum problems.
The maximum problem corresponding to (2) is: Maximize

M2, 2oy x5) = (3, — 8)*(@, + @)
where 2, = 0, 7 =1, 2, 3, satisfy the three inequalities

T+ 2= 8
T+ X3 = 8
x1+xz§233-
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It is obvious that every feasible solution for which %, + x, = s, is an
optimal solution. So there are infinitely many optimal solutions. If
in this case the sign of equality holds in (1.1), then

Si(sx - 33)2 = —:2;—(31 - 33)2(31 + 83) ’

and therefore
8 = 283 .

As the last equality contradicts (1.13), we conclude that in the case
(2) strict inequality holds in (1.1).
The maximum problem corresponding to (3) is: Maximize

M (2, 2, ;) = (2, + 2,)(s, — 85)°
where z;, = 0,¢ = 1, 2, 3, satisfy the three inequalities

T+ X3= 8
LA ol PR
Tyt X =8

In order to determine optimal solutions of the problem, we have
to distinguish between the following two cases

3): 28 =s;,
B)r 28, > 8.

If (3); holds then the only optimal solution is

(5511 552: 553) = (81’ sly 0) .
If (3);; holds then every feasible solution for which z, + x, = s, is an
optimal solution. In this case there are infinitely many optimal solutions.
If the sign of equality in (1.1) holds in the case (3); then

231(81 - 33)2 = %‘(31 + 33)(31 - 83)2 ’

and therefore
(1.36) 28, = s;.
If the sign of equality in (1.1) holds in the case (8),; then

58 — 8, = %(sl + 8)(s — 8

and (1.36) is obtained again, As (1.36) contradicts (3),,, it follows
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that in this case equality in (1.1) is excluded. Hence, in case (3)
equality in (1.1) holds if and only if

8, = 8, 8, = 28, (%,, &, T3) = (81,8, 0),
that is only for the matrix

0 0 s
(1.37) A=|0 0 s
s, 8, 0

A* is a generalized stochastic matrix (while A is not stochastic). It
follows from (1.3) that if A or A* is a generalized stochastic matrix
then equality in (1.1) holds. Hence, it follows that equality in (1.1)
holds if and only if 4 or A® is a generalized stochastic matrix. This
completes the proof of the theorem,

REMARK 1. The following example proves that the assumption
of symmetry in Theorem 1 is essential, Let

A=

S o
- N

1
2
1
A is a positive nonsymmetric matrix. As

S(4) = 10, S(4% = 32, S(4% = 100,

(1.1) does not hold.

It is obvious that (1.1) does not hold in general for real symmetrie
matrices with (some) negative elements. However, going over to the
absolute values and denoting | A| = (| @;;|), one may think that for all
n X n, n =3, symmetric matrices

L.1) S(ADS(A ) =nS(A)

holds. The following counter example shows that this is wrong. Let

1 -2 1
A=1-2 0 2
1 2 -1

As
S(A) =12, S(A&)=36, S(4) =128,
(1.1") does not hold.
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REMARK 2. Let A be a 3 X 3 nonnegative symmetric matrix.
Let 7, 7, 7; be an orthonormal system of characteristic vectors of A
corresponding respectively to the characteristic values a,, a,, a;. Let
R be the orthogonal matrix with the columns »,, r,, 7. As A = RDR”,
where D is the diagonal matrix {a,, a,, @3} and R” is the transposed
of R, we have

S(A™) = (A", ¢) = (D"R"e, R%¢) = i ar[S(r)T .
Hence, (1.1) for n = 3 is transformed to
(L.39) S alSe)T 5 aSeIF = 3 5 alSe T .

(1.38) is a necessary condition for a system of 3 orthonormal vectors
7, 7, s and three real numbers a,, a., @; to be respectively a system
of characteristic vectors and values of a 3 X 3 nonnegative symmetric
matrix. It would be interesting to find similar necessary (or sufficient)
conditions concerning » X 7 nonnegative symmetric matrices.

REMARK 3. From the considerations concerning the equality sign
in the proof of Theorem 1 we conclude: Let A be a 3 X 3 nonnegative
symmetric matrix satisfying (1.13). A is not generalized stochastic
while A* is generalized stochastic if and only if A is of the form
(1.37). In a recent paper [3] we characterize the matrices of this
type for every n.

1.3. Counter example for 7 = 4. In this section we bring a
counter example which shows that for n = 4 the conjecture of Marcus
and Newman does not hold. Let

0 - =07 [ 0——cemm 07
0 01

(1.39) A, = A, () =

| - = = -

P I
I 1o
11 11
1 1o
1 0 01
L0 1 -1 0 [ B
A, (o) is a n X n symmetric matrix depending on the real parameter a.
For « = 0 A,(@) is nonnegative. B,_,isa (n — 1) X (r — 1) nonnegative

symmetric matrix. B._, is generalized stochastic (while B,_, is not
generalized stochastic). As



TWO INEQUALITIES IN NONNEGATIVE SYMMETRIC MATRICES 527
S(BZZ—].) = (n - 2)6 ’ S(sz—l = (n - 1)(n - 2) ]
S(B,-) =2n—2), SB.)=2n—2)°,
we obtain

n S(A3) — S(4,) S(4) = n[2(n — 2)° + o]
—[2(n — 2) + a]l(n — D)in — 2) + ]
= [@ = (= 2)][(n — Da — 2(n — 2)] = fu(@) .

The zeros of the polynomial f,(«) are

_2(n —2)
 on—1

a=—-vVn—-2, a

and therefore f,(a) < 0 for

2(n — 2)

<a<vn-—2.
n—1

(1.40)

Hence, for every a satisfying (1.40) the inequality (1.1) does not hold.

REMARK. Consider the following generalization of conjecture (1.1):
Let A be a n X n nonnegative symmetric matric. Then

(1.41) S(A) S(A™) < n S(A™+) | m=1,2 .

For odd m (1.41) holds for every symmetric A [4, Th. 4]. For even
m and » = 4 a straightforward computation proves that (1.41) does
not hold for the matrices (1.39), for a satisfying (1.40). For m = 2
and n =< 3 the validity of (1.41) is established in Theorem 1. For even
m > 2 and n = 3 the problem remains open.

2. Upper bound for the sum of the elements of a power of
a matrix.

2.1. A conjecture. In this section we state a conjecture which
yields an upper bound for the sum of the elements of a power of a
nonnegative symmetric matrix.

We first define a class of matrices: Let s = (s, **+, s,) be a vector
for which the condition

(2-1) 0<31<32<“'<3n

holds. Denote by S7,(s) the class of all n X m nonnegative symmetric
matrices for which s(4) = s.

By a straightforward computation, using (1.2), (1.4) and (1.5), we
obtain
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(2.2) S@A) =S8t — 3 agls — ).
1=1 135i<7
From (2.2) it follows that for every A€ .,(s) the inequality
2.3) S(A) = 38

holds. Equality in (2.3) holds if and only if A is the diagonal matrix
in 7(s).

The following conjecture generalizes (2.3): For every A€ .7, (s)
the inequality

(2.4) S(A™) = X7, mo=38,4, -

holds. Equality in (2.4) holds if and only if A is the diagonal matrix
m ().

REMARK 1. For m = 1,2 (2.4) holds with equality sign for every
Ae 7,(s). This is the reason why we did not include m = 1,2 in
our formulation of the conjecture.

. REMARK 2. In the definition of the class .7, (s) we assumed that
s(A) satisfies (2.1). If we ommit this assumption only the equality
statement of the conjecture is to be changed.

2.2. Proof for particular cases., In this section we prove some
particular cases of the conjecture. The general case remains open.

THEOREM 2. In the following two cases
1) m=38,4,5 and =12, ---
2 m=238,4,---and n=1,2,8

the inequality

2.4) S(A™ = 35 s7

i=1

holds for every Ae 7,(s). The equality sign in these two cases holds
only for the diagonal matrix in SZ,(s).

Proof. Let A= (a;;)€ ,(s). Assume that there exists an <,
1 =< ¢ <n, for which a,; > 0. Define
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Qy —————m - Ay
I N 1 | !
| \\hke | |
1 N ! !
1 S 1
(2.5) Ae)=| ay———-a; +e-—a;,, — ¢
| I\ i
1 1N 1
| ! N !
1 1 SN
Ly ——— Oy — € ——Qy, + S_J

Here ¢ is a nonnegative parameter. For small cA(¢) € 7,(s). We have

dS[A™(e)] _ o[ d4A™(e) S QAR A7) Am—bmt
el - S[___d{5 LO_ S S[4*4/(0) 4"

= 3 (A0, A%0) = 3 (A/(0)s+(4), 5(4))
= 3 [sr0(d) — s (AIsA) — sEA)]
Hence,

@6) LELOL| S i) — st A)[s(4) — s(A)] -
£=0 k=1
Let us first bring the proof for the case (1). Let A = A(m) = (@.;),

m = 3,4,5, be an optimal matrix of the maximum problem

Max S(4A™) .

A€57 y(8)
For a fixed m, m = 3,4,5, we use induction on n. For n =1 the
theorem holds trivially. Suppose that the theorem holds for n — 1
(and the~same fixed m). We prove shortly that the optimal n X »
matrix A has the following structure

— -

0
1
!
!
2.7 A=Am) = !
1

0
L0 === 03, ]

Bisa (m —1) X (n — 1) nonnegative symmetric matrix and s(B) =
(84 *+, 8,_,). Suppose that we have already proved that A has the
structure (2.7). By the induction assumption

SB) =S s
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and equality holds only if B is diagonal. Hence,
2.8) S(A™) = S(B™) + sr < 387
i=1

Equality in (2.8) holds if and only if A is a diagonal matrix.

It remains to prove that A has the structure (2.7). Assume that
A has not the above structure. There exists at least one 4, 1 <1 <n—1,
for which &@,; > 0. For this ¢ the matrix A(¢) is defined according to
(2.5). As A is an optimal matrix of the above defined maximum
problem, and as for a small enough & > 0 A(e) € %7(s), the inequality

(2.9) Sd[g:(e)]

A

0

g=0

must hold. From (2.6) and (2.9) we obtain
@10) 3 [s(d) — st(A)[sin+0(E) — sr-u(A)] £ 0.
k=1

We now consider separately the cases m = 3,4,5. By a suitable
choice of 7 we obtain a contradiction to (2.10).

m = 3. For this case the theorem has already been-proved by
the representation (2.2), We give here an independent proof. Choose
any 4,1 <41 <% — 1, for which @,; > 0. According to our assumption
there exists such an 7. By (2.10) we obtain for this 4

(2.11) [s:(A) — s (AF = (s; — s = 0.
(2.11) contradicts (2.1).
m=4. Let 9,1 <%=mn—1, be the smallest index for which

@,; > 0. According to our assumption there exists such an <. By
(2.10) we obtain for this 1%

(2.12) (8, — 8)[sP(A) — sP(A)] = 0.
We have

As = s®(4) .
By (2.1) and by our choice of © we obtain

(2.13) SP(A) = 3, @8, < 8;8

(2.14) s2(A) = 3 @,y8; = 88

Hence,
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(2.15) sP(A) = sP(4) .

Equality in (2.15) implies equality in (2.13) and (2.14). Equality in
(2.13) holds if and only if

~

Ay = *+° zdim—-lzor a’lin:si'

Equality in (2.14) holds if and only if

~ ~

Qppipy = 0 = a"nn = Os Ap; = 8y
Hence,

~

(2.16) Ain = 0pi = 8, = 8, .

(2.16) contradicts (2.1) and therefore (2.15) holds strictly. (2.1) and
the strict inequality in (2.15) contradict (2.12).

m = 5. From the set of all the indices 4,1 <7 < n, for which
@, > 0 choose that ¢ for which s(A) attains its minimum value.
According to our assumption there exists an 4,1 <14 < n, for which
@, > 0. As we saw in the proof for m = 4, there exists an 4,1 <
4 < n, which satisfies @,; > 0 and for which strict inequality holds in
(2.15). It follows that the ¢ chosen now satisfies ¢ < n. By (2.10)
we obtain for this ¢

@17 20, — s)[sP(A) — sP(A)] + [s2(A) — sPAF 0.
We have

s®(A) = A% = As®(4) = A%(A) .
By (2.1) and by our choice of 7 we obtain

(2.18) s9(A) = 3,80 = sP(A)s,
j=1

(2.19) sP(A) = Zl ays; < sP(A)s, .
£

As @,; # 0, it follows that @{? =+ 0. As @ = 0 and as 7 < n, it follows
that the strict inequality sign in (2.19) is justified. (2.18) and (2.19)
imply

(2.20) s(A) < s&(A) .

(2.1) and (2.20) contradict (2.17). The proof of the case (1) is thus
completed.

We bring now the proof for the case (2). We give first the proof
for n =3. Let A= A(m), m = 3,4, ---, be an optimal matrix of the
problem
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Max S(4™).

A€ w3(s)

Assume that A(m), for a fixed m from m = 8,4, ---, has not the
structure (2.7). There are then two possibilities:

(2.21) Gy # 0,
(2.22) Gy = 0,8, = 0.

If (2.21) holds then, according to (2.10), it is sufficient to prove that
for every natural k the inequality

(2.23) s(4) < si(A)
holds, while if (2.22) holds it is sufficient to prove that
(2.24) si(A) < sP(4) .

Assume that (2.21) holds. As
(2'25) Sé’”(ﬁ) = il a"ijs;k—l)(‘z) = i aﬁl;-—l)sh 1= ly 21 3 ’ k= 21 31 ctty
i= =1
it follows that

(2.26) s(4) < min {s3s{k—f>(24.), s, max sg.k—”(Z)} ,
J

(2.27) s(4) = max {slsé""”(Z), 8, min sg.k-v(z)} :
J

We prove (2.23) by induction on k. For £ =1 (2.23) holds by (2.1).
Assume that

st(4) < s1(4) .

From this induction assumption follows that at least one of the two
following equations holds:

(2.28) si*-9(4) = min s-(4) ,
2

(2.29) si*(4) = max s}-"(4) .
J

The minimum and the maximum are strict. As (2.28) or (2.29) holds,
it follows from (2.26) and (2.27) that

(2.23)) si(A) < s(4) .

To obtain (2.23) we have to show that equality cannot hold in (2.23).
Assume that (2.28) holds. Equality in (2.23’) implies

siP(A) = ssiV(A) .
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From the last equation, using (2.25) and the fact that the minimum
in (2.28) is strict, we obtain
(2'30) Uy = 835 = 0, @ = s; = s =8, .

(2.30) contradicts (2.1). Assume that (2.29) holds. Similar to our last
conclusion it follows now that equality in (2.23’) implies

(2.31) Gy, =0,=0,8;=38, A "=a¢"=0,
As from @, = 0 follows @~ % 0, we obtain

(2.32) Gy =10

If @, = 0, using (2.31) and (2.32), we obtain

(2.33) {&;g-w #0, k — 1 even,

as—r.#0, k — 1 odd.

(2.33) follows easily, e.g. from the directed graph corresponding to A.
(2.33) contradicts (2.31) and therefore @, = 0. We obtained

(2.34) Oy =3y =0, Q3= 8y, = 8, = 85,

(2.34) contradicts (2.1). So (2.23) holds and the proof for this case is
completed.

Assume that (2.22) holds. We prove (2.24) by induection on k.
Assume that

(2.35) si1(4) < si(4) .
From (2.22), (2.25) and (2.35) follows

s(A) < ss1(A)

(2.36) s{(A) = sysiV(4) .
Hence,
(2.24) si(4) = si(4) .

To obtain (2.24) we have to show that equality cannot hold in (2.24).
Equality in (2.24") implies equality in (2.36) and this implies d@; = 0.
So we have

(2'37) a::-31 = a33 = 0, &32 =8 = &23 =s,.

(2.37) contradicts (2.1). So (2.24) holds and the proof for » =3 is
completed. .
For » = 2 it is sufficient to prove that for every natural &

si(4) < sv(4) .
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This inequality can be easily proved by induction. Theorem 2 is thus
established.

REMARK. It is easy to prove that if A is a nonnegative matrix
with row sums s;, *++,8,;8 =8 = +-- < s,, then

sP'S(4) = 8(4™) = s77'S(4), m=12 ...,

where the two bounds are sharp. As for A€ . ¥(s)

st < sp'S(4) ,

=1
and as the bound s™'S(A) is sharp, it follows that the assumption of
symmetry in Theorem 2 is essential.

2.3. Generalizations. Theorem 2 can be generalized to a larger
class of matrices and also to a statement on minors of matrices.

Let A = (a;;) be a n X n matrix, perhaps with complex elements.
Denote |A| = (Ja;;]). The row sums vector of |A|, s(| A|), is denoted
by [s] = [s](A). The ith component of [s] is denoted by [s;] = [s;](A4).

We bring now the first generalization of Theorem 2: In the
following two cases

1) m=38,4,5 and n=1,2, -

@2 m=3,4,--- and n=1,2,3
the imequality

(2.38) S(4m) = 3 [sd”

holds for every complex A such that |A|e 7 ([s]). The equality
sign im these two cases holds if and only if A ts diagonal.

Proof. We have

S|4 )= 3
(2.39) wn_ i
= Z___ > . | @ik, Ry * 2 ak,,,_,.jl =S(A").

n
;: Qiie Qe iy *** Ay od
s

As | Ale 7 ([s]) it follows from Theorem 2 that
(2.40) SUAM = 5 lsd".

(2.39) and (2.40) imply (2.38). The equality statement follows from
the equality statement in Theorem 2.
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REMARK 1. For Ae o7 (s) (2.38) reduces to (2.4'). For m =1
(2.38) holds with equality sign for every A. For m = 2 (2.38) holds,
but the equality statement stated above does not fit this case.

REMARK 2. The only essential assumption about 4 is that | A| is
symmetric. | A|e 7, ([s]) includes the additional assumption that the
components of [s] are positive and distinct. This assumption is needed
only to obtain the equality statement.

The second generalization deals with minors of matrices. We
introduce now several concepts and notations.

Let p and 7 be natural numbers, 1 < p < n. Denote

Qo ={(y, +++, )1 =6 << oo <1 =0}

(%, = -+, i, are natural numbers).

Let = (%, +++,%,) and j=(J,, *+*,J, Dbe elements of Q,,, and
let A be a n X n matrix. The minor of A formed from the rows
(%4, +++,1,) and the columns (j,, +--, J,) is denoted by

’bl’ oo o ’ 1,” ,l:
A(jl, "':jp) A<‘7> )

The pth compound matriz of A is denoted by C,(4). C,(A) is a
(Z’) X (z’) matrix with elements A(;’) '

Let us now define the class of matrices | 7 ([s])|. A matriz A
belongs to the class | 7, ([s])| ©f and only ©f A is symmetric and | A|
belongs to 7,([s]). Note that the definition includes the demand that
all the components of [s](4), Ae 7 ([s])|, are positive and distinet.
Note also that a matrix belonging to | .o%([s])| can be complex.

In [6, formula 12] Schneider obtained the following result: Let
A be a n X n matriz and p a natural number, 1 = p < n. Then

(2.41) 5

J€Qpn

J

AF)| S s - Il i = Gy ooy i)«

In [5] Ostrowski obtained the following equality statement: If
[si]: -+« -[s:;,] O then the equality sign in (2.41) holds if and only
tf in every column of the submatriz of A formed from the p rows
By, v, Tp, there exists at most one mnonzero element. From this
statement follows: If Ae| v ([s])| and ©f p =2 then the equality
sign in (2.41) holds for every i€ Q,, if and only if A is a diagonal
matrix.

We bring now the second generalization of Theorem 2: Let p and
n be natural numbers, L < p < n. In the following two cases

1) m=38,4,5 and n=1,2,---

@2 m=3,4,--+ and n=1,2,3
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the tmequality

Am(;.)'g i DV (EX DEERIR LN ) o

€ QPn

(2.42) >

4,J€Qpy
holds for every A belonging to | ,([s])|. The equality sign in these
two cases holds if and only if A is diagonal.

Proof. As A is symmetric, the compound matrix C,(4) is also
symmetric. Applying (2.38) to C,(4) (see Remark 2 after (2.38)), we

obtain
S{ [Co(DI™ [} = S[Co(A™) [ = X Am(?).

t; J€LQpy
4(3)))

(2.42) follows from (2.41) and (2.43). For p = 1 the equality statement
follows from the equality statement corresponding to (2.38). Equality
in (2.42) for p = 2 implies equality in (2.41) for every 7€ @,,. As
Ac| (s8], it follows from the equality statement corresponding to
(2.41) that A is diagonal. It is obvious that if A is diagonal then
equality holds in (2.42).

(2.43)
=

1€Qpy (ie Qpn

REMARK 1. For p=1 and Ae %, (s) (2.42) reduces to (2.4').
(2.42), including the equality statement, holds for » = 2 also for
m=1,2,

REMARK 2. If the conjecture (2.4) stated at the beginning of
this chapter holds true, then the two generalizations given in this
section hold also for all m and n.

The author wishes to thank Professor B. Schwarz for his guidance
and help in the preparation of this paper.
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