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ALGEBRAS AND FIBER BUNDLES

J. M. G. FELL

Let A be an associative algebra and Λn the family of all
equivalence classes of irreducible representations of A of
dimension exactly n. Topologizing Λn as in a paper about
to appear in the Transactions of the American Mathematical
Society, we show that for each n, A gives rise to a fiber
bundle having An as its base space and the n x n total
matrix algebra as its fiber.

Throughout this note A will be an arbitrary fixed associative
algebra over the complex field C. By a representation of A we
understand a homomorphism T of A into the algebra of all linear
endomorphisms of some complex linear space H(T), the space of T.
We write dim(T) for the dimension of H(T). Irreducibility and
equivalence of representations are understood in the purely algebraic
sense. If T is a representation, r T will be the direct sum of r
copies of T. Let A{f) the family of all equivalence classes of finite-
dimensional irreducible representations of A; and put

A{n) = {Γei ( 'Mdim(T) ^ n}f An - {Te A{f) \ dim(Γ) = n} .

We shall usually not distinguish between representations and the
equivalence classes to which they belong.

Let T be a finite-dimensional representation of A. If for each a
in A τ(a) is the matrix of Ta with respect to some fixed ordered
basis of H(T), then r : α — > τ ( a ) is a matrix representation of A

equivalent to T.

By A* we mean the space of all complex linear functionals on A,
and by Ker (φ) the kernel of φ. If TeA{f), we put

Φ(T) = {φ e A* I Ker (T) c Ker (φ)} .

An element φ of A* is associated with T if φeΦ(T). One element
of 0(T) is of course the character χτ of Γ(χΓ(α) = Trace (Γβ) for a
in A). An element T of A(/) is uniquely determined by the knowledge
of one nonzero functional in Φ(T) ([2], Proposition 2).

As in [2] we equip A(/) with the functional topology as follows:
If TeA{f) and y c i ( / ) , T belongs to the functional closure of S?
if Φ(T)d([Jse^Φ(S))~ where ~ denotes closure in the topology of
pointwise convergence on A.

Our main object in this note is to prove the following fact about
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the functional topology relativized to An:

THEOREM 1. Fix a positive integer n; and let T be any element
of An. Then there exists a neighborhood U of T in Ani and a
function τ assigning to each S in U a matrix representation τs of
A equivalent to S, such that for each a in A the matrix-valued
function

S >τs(a) (Se U)

is continuous on U.

This asserts (see § 4) that, for each n, A gives rise to a fiber bundle
with base space An whose fiber is the n x n total matrix algebra.

2* Preliminary results* The following Proposition 1 coincides
with Proposition 7 of [2] (which was stated in [2] without proof).
Proposition 1 is not required for what follows it; but its proof is
related to later proofs.

PROPOSITION 1. Let n be a positive integer; and suppose that
{T{i)} is a net of elements of Ά{%y converging to each of the p inequi-
valent elements V\ , Vp of Ά{%). Then

(1)
8 = 1

Proof. Let m8 — dim ( F s ) , q = Σ * = i m * Each Φ(V8) has dimension
ml, and by the Extended Burnside Theorem ([1], Theorem 27.8) the
Φ(VS) ( β = 1, « ,p) are linearly independent subspaces of A*. Thus
there are q linearly independent functional <pu ,φq each of which is
associated with some Vs. By the definition of the functional topology
we can replace {Γ(i)} by a subnet, and choose for each r = 1, •••,#
and each i a functional φ* in Φ(T{i)), such that

( 2 ) 9 > ; ™ 9 v ( r = l f • - . , ? ) .

Since the <pu * ,<pq are independent, (2) implies that for some i the
9>ί, # ,9>ί are independent. Since dim(Φ(T{i))) g n2, it follows that
q g n2. This proves (1).

REMARK. If A is a Banach algebra we have shown elsewhere
Proposition 13) that a stronger inequality than (1) holds, namely

( 3 ) Σ d i m ( F 8 ) £n.
l
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Probably (3) holds for arbitrary A, but we have not been able to
prove it.

COROLLARY 1. An is Hausdorff for each n.

For each φ in A* let us define Sφ to be the natural representation
of A acting in A/J, where J is the left ideal of A consisting of those
a such that φ(ba) — 0 for all b in A.

LEMMA 1. Let {φ{} be a net of elements of A*, converging
pointwise to an element φ of A*; and suppose the Sφ, Sφi are all
finite-dimensional. Then

(4) dim (Sφ) ^ lim inf dim (Sφή .
i

Further, if σ is a matrix representation of A equivalent to Sφ, there
exists for each i a matrix representation σι of A equivalent to Sφi

such that

( 5 ) lim (<r(α))ilb - (σ(a))jk

for all a in A and all j, k = 1, , dim (Sφ).

Proof. Let π be the natural map of A onto A/J, where J —
{a G A I φ(ba) = 0 for all b in A}; and put m = dim (Sφ). Every
element of (A/J)* is of the form

π(a) > φ{bά) (a e A)

for some b in A. Hence there are elements a19 , am bu , bm of A
satisfying

( 6 ) φ(b3ak) = δjk(j, k = 1, , m) .

Since φ{ —+ φ, (6) implies that

(7) det {(^(δΛ)k f c=i,..,J * 0 ,

and hence dim (Sφi) ^ m, for all large i. This proves (4).
Now the ak, b3- could have been chosen to satisfy not only (6) but

also

( 8 ) (σ(x))ik = <p(b3xak)

(xeA;j,k=l, •• ,m); assume this done. By (7), for each large i
there are unique complex numbers c)k{j,k — 1, * ,m) such that the
elements b) — Σ?=i C J A satisfy
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( 9 ) <Pi(b}ak) = δjk (j, k = 1, , m) .

By (6) and (9)

(10) limcU = δjk.
i

I n v i e w of (4) a n d (9), t h e r e a r e e l e m e n t s α ί , + ι , •••, α* f , bi+u •• ,

of A ( w h e r e p { = d i m (S^*))* s u c ^ t h a t

(11) φMai) = «y*

for all large i and all j , k = 1, , p<; (here we agree that α} =
for j = 1, , m). Now, if j , fc = 1, , p< and # e A, define

From (8), (10), and (11), we verify that σi is a matrix representation
equivalent to Sφ* and that (5) holds. This completes the proof.

The following corollary was stated without proof as Proposition 8
of [2].

COROLLARY 2. For each positive integer n, the map T—>γf(TeAn)
is a homeomorphίsm of An into A* (the latter having the topology of
pointwise convergence on A).

Proof. Obviously χΓ—> Γ is continuous. To prove that Γ->χΓ is
continuous, we shall suppose that Tf {T*} are elements of An and that
φ.—Γ^χτ pointwise on A, where for each i φ{ is associated with Tι;
and we shall prove that χτι —r* Xτ pointwise on A. Clearly this is

t

sufficient.
By [2], Proposition 1, Sχ Γ ~ n-T and S^ = rrT\ where r{ ^ n.

By (4) ri = n for all large i. Hence by (5) χτ(a) = 1/n Trace (Sφ

a) =
liπii 1/n Trace (S^) = lim, χτi(a) for all a in A. So χ r ί — χΓ, and the
corollary is proved.

If M is any finite-dimensional complex linear space, the family
&~ of all linear subspaces of M of fixed dimension r (r ^ dim (M))
has a natural compact topology. Indeed, if G is the unitary group on
M (with respect to some fixed inner product), and Go is the subgroup
of G which leaves stable some fixed L in jF~, then J*"" is in one-to-
one correspondence with G/Go, and the (compact) topology of J?~ which
makes this correspondence a homeomorphism is independent of the
inner product and of L.

If p is any positive integer, Mp will be the p x p total matrix
algebra over the complexes. Fix a positive integer n; and let Jί? be
the family of all those subalgebras A of Mn« which contain 1 and are
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isomorphic with Mn. For each A in jSf let A' be the commuting
algebra of A in M%2:

A' = {a e M%2 \ab = ba for all b in A} .

It is well known that Af e j£f and that A!' = A whenever A e

LEMMA 2. Γfee map A-*A' is continuous on Sf to Sf (with
the topology discussed above).

Proof. If not, then, by the compactness of the space ^J? of all
w2-dimensional subspaces of Mn2, one can find a net {Ai} of elements
of £f such that A{ -> A, A< -* 5, where i 6 ^ , ΰ 6 ^ f , i ' ^ ΰ . Choose
an element & of 5 which is not in A', and let a be any element of
A. Then for each i we can choose an a{ in A* and bi in AJ so that
a{ —>a, bi—*b. Since α ^ = 6 ^ , passing to the limit we obtain ab = ba,
whence b e A', a contradiction.

LEMMA 3. Le£ A be in _2f, cmd let e be a minimal nonzero
idempotent in A. Then there is a neighborhood U of A in J2f, and
a continuous function w on U to Mni such that

( i ) w(A) — e, and

(ii) for each B in U w(B) is a minimal nonzero idempotent
in B.

Proof. Choose an element a of A whose spectrum in A is
{1,2, , n}, and such that the spectral idempotent (in A) corre-
sponding to the eigenvalue 1 of a is precisely e; that is,

(12) e = {{n - 1 ) ! ) " 1 ( 2 - α)(3 -a) .-(n-a).

Introducing a Hubert space inner product into Mn2 in an arbitrary
manner and projecting, we can construct a continuous function a on
£? to Mn2 such that a(A) = a and a{B) e B for each B in £f. Let
σ(B) be the spectrum of a(B) (considered as an element either of B
or of MJ). Since a is continuous, σ(B) is continuous as a function
of B. Thus there is a neighborhood U of A in .2f, and n continuous
complex functions \ u , Xn on U such that

( i ) Xr(A) = r (r = l , - , Λ ) ,
(ii) for each I? in ?7 the λ :(β), •••, λn(£) are all distinct, and
(iii) σ(B) = {X^B), •••, K(B)} for each B in £7. Now, for B in

?7, put

w(B) = Π (
i = 2

Clearly w is continuous on Ϊ7, w(B) e B for each B in Z7, and tί (A) = e.
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Since w{B) is the spectral idempotent corresponding to the eigenvalue
λi(jB) of a(B) (which has multiplicity 1), w(B) is a minimal idempotent
of B for each B in U.

LEMMA 4. If A<z£f, there is a neighborhood U of A in jSf,
and a continuous function w on U to Mn2, such that, for each B in
U, w(B) is a minimal idempotent of the commuting algebra of B.

Proof. This follows immediately from Lemmas 2 and 3.

3* Proof of Theorem l We have seen ([2], Proposition 1) that
SχT = n T. Thus, putting m = n2, we may choose elements au , αm,
δi, , bm of A as in the proof of Lemma 1 so that

Since S—+χs is continuous on An (Corollary 2), there is a neighbor-
hood U' of T in An such that det (χs(bjak))j>k Φ 0 for S in U'. Thus,
as in the proof of Lemma 1, for* each S in Ur we find unique complex
numbers cjk(S) such that the elements bj(S) = 2?=i Cjk(S)bk satisfy

(13) X*(bs(S)ak) - δjk

(j,k = l, ",m;SeU'). We how set

(σs(x))jk - r

(j,i; = l, ,m;SG U'; x e A), and verify as in the proof of Lemma 1
that, for S in U', σs is a matrix representation of A equivalent to
n S. Since S—*χs is continuous (Corollary 2), the cjk(S) are continu-
ous in S on U', and so

(14) S > <?s(x) is continuous on Ur

for each x in A.
Since σs s n S, Burnside's Theorem asserts that the range ^(^4)

of σs belongs to Jέf. Further, it follows from (14) that S —> σs(A) is
continuous on U' (in the topology of w2-dimensional subspaces discussed
in §2). Thus, by Lemma 4, there is a neighborhood U" of T contained
in Z7', and a function w on U" to Mm such that, for each S in 17", w(S)
is a minimal idempotent of the commuting algebra of os(A).

We now consider Mm is acting on Cm (the space of complex m-
tuples). Let ^ , , vm be a basis of Cm such that vu ,vΛ is a basis
of range (w(T)). By the continuity of w there will be a neighborhood
U oί T contained in Z7" such that

(15) w ( S ) t f i , , w ( S ) v n , v n + 1 , - - - , v m
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is a basis of Cm for each S in U (the first n vectors of (15) being, of
course, a basis of range (w(S))). Now for each S in U and x in A
let ps(x) be the matrix of σs(x) with respect to the ordered basis
(15), and let τs(x) be the n x n matrix consisting of the first n rows
and columns of ps(x) Since w(S) is a minimal idempotent of the
commuting algebra of σs(A), σs restricted to range (w(S)) is an irre-
ducible subrepresentation of σs and so is equivalent to S. Thus, for
each S in U, τs is a matrix representation of A equivalent to S.
Further, since S —» w(S) is continuous on U, the basis (15) varies
continuously with S on U; and therefore by (14) we conclude that
S—+τs(x) is continuous on 17 for each x in A. This completes the proof
of Theorem 1.

4* Fiber bundles associated with A* Fix a positive integer n,
and let Gn be the group of all algebraic automorphisms of the total
matrix algebra Mn. We are going to describe to within equivalence
a fiber bundle Bn with base space An, fiber Mn, and group Gn. To do
so, it is sufficient to specify an open covering of An, and to define on
the overlap of any two sets in the covering the GTO-valued "coordinate
transformation functions" ([3], §§2, 3). As our open covering we take
the set of all the U=UT (TeAJ of Theorem 1. If Γ, T'eAn, the
coordinate transformation function Γτ%τ. on Uτ ΓΊ Uτ> will assign to
each S in Uτ Π Uτ the following automorphism of Mn:

ΓTtT,(S): τp(a) > τs

T'\a) (aeA) .

(Here τ(T) is the r of Theorem 1). The property ΓT,T" = Γτ,τ"°Γτ,τ,
(on !7Γ Π J7Γ' Π UT") obviously holds; and the continuity of the maps
S—*τ{P(a) and S—*TsT>)(a) assures us that ΓTtτ* is continuous. Thus
we have defined a fiber bundle of the required kind; its equivalence
class clearly depends only on A.

Thus, if the algebra A has a large supply of finite-dimensional
irreducible representations, the structure of the fiber bundles Bn(n =
1,2, •••) constitutes a significant feature of the structure of A. We
hope in a later paper to discuss the structure of these bundles for
certain special kinds of algebras associated with locally compact groups
having "large" compact subgroups.
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