EVERY ABELIAN GROUP IS A CLASS GROUP

LUTHER CLABORN

Let T be the set of minimal primes of a Krull domain A. If S is a subset of T, we form $B=\cap A_P$ for $P\!\in\!S$ and study the relation of the class group of B to that of A. We find that the class group of B is always a homomorphic image of that of A. We use this type of construction to obtain a Krull domain with specified class group and then alter such a Krull domain to obtain a Dedekind domain with the same class group.

Let A be a Krull domain with quotient field K. Thus A is an intersection of rank 1 discrete valuation rings; and if $x \in K$, x is a unit in all but a finite number of these valuation rings. If P is a minimal prime ideal of A, then A_P is a rank 1 discrete valuation ring and must occur in any intersection displaying A as a Krull domain. In fact, if T denotes the set of minimal prime ideals of A, then $A = \bigcap_{P \in T} A_P$ displays A as a Krull domain.

Choose a subset S of T $(S \neq \emptyset)$ and form the domain $B = \bigcap_{P \in S} A_P$. It is immediate that B is also a Krull domain which contains A and has quotient field K. If one of the A_P were eliminable from the intersection representing B, it would also be eliminable from that representing A. Thus the A_P for $P \in S$ are exactly the rings of the type B_Q , where Q is a minimal prime ideal of B. If Q is minimal prime ideal of B, then $Q \cap A = P$ for the $P \in S$ such that $B_Q = A_P$.

Let A and B be generic labels throughout this paper for a Krull domain A and a Krull domain B formed from A as above. We recall that the valuation rings A_P are called the essential valuation rings, and we will denote by V_P the valuation of A going with A_P . We summarize and add a complement to the above.

PROPOSITION 1. With A and B as above, B is a Krull domain containing A, and the A_P for $P \in S$ are the essential valuation rings of B. Every ring B is of the form A_M for some multiplicative set M if and only if the class group of A is torsion.

Proof. Everything in the first assertion has been given above.

Suppose the class group of A is torsion; then for each Q_i in T-S choose an integer n_i such that $Q_i^{(n_i)}$ is principal, say $Q_i^{(n_i)} = As_i$. Let M be the multiplicative set generated by all s_i . Then [3, 33.5,

p. 116] shows that $B = A_M$. On the other hand, if Q is a prime ideal of A whose class is not torsion, then the same reference shows that $B = \bigcap_{P \neq Q} A_P$ cannot be of the form A_M .

Let C(A) denote the class group of A for any Krull domain A. Samuel [4] has shown how to define a homomorphism of C(A) into C(B) when B is a Krull domain such that $A \subseteq B$ and B is A-flat. Of course, our rings B are not necessarily A-flat, but we have nonetheless:

PROPOSITION 2. C(B) is a homomorphic image of C(A).

Proof. Let I be an ideal of A defined by essential valuation conditions. Although IB may not be defined by essential valuation conditions, B: (B: IB) is and is quasi-equal to IB [5, p. 92]. If P(A) and P(B) denote the ideals of A and B defined by essential valuation conditions, let $g: P(A) \to P(B)$ be defined by g(I) = B: (B: IB). It is easy to see that if I is the ideal $\{x: V_P(x) \ge n_P, P \in T\}$, then g(I) is the ideal $\{x: V_P(x) \ge n_P, P \in S\}$. Since the product $I \circ I'$ (see [4]) is A: (A: II'), the above description yields immediately that $g(I \circ I') = g(I)^0 g(I')$. If $x \in A$, then g(xA) = B: (B: xB) = xB, so g induces a homomorphism $g: C(A) \to C(B)$ which is obviously onto.

COROLLARY 3. With \overline{g} as defined in Proposition 2, the kernel of \overline{g} is the subgroup of C(A) generated by all minimal primes Q of A for which $Q \notin S$.

Proof. If $Q \notin S$, then g(Q) = B. If on the other hand g(I) is principal, we have g(I) = xB or $g(x^{-1}I) = B$. Thus $x^{-1}I$ is in the subgroup of P(A) generated by certain $Q \notin S$.

In the next two propositions, we generalize to Krull domains certain results of [1] and [2].

PROPOSITION 4. If A is a Krull domain, then A[X] is a Krull domain. C(A) is isomorphic to C(A[X]), and every class of C(A[X]) contains a prime ideal of A[X].

Proof. Everything but the last assertion is [4, Prop. 3., p. 158]. Let c be an element of C(A[X]); then c^{-1} can be represented by IA[X], where I is an integral ideal of A defined by essential valuation conditions. Choose a_0 and a_1 in A so that I is quasi-equal to (a_0, a_1) [5, Exer. 4., p. 95]. Consider the prime ideal $P = (a_0 + a_1X) K[X] \cap A[X]$. It is clear that $P = I^{-1}A[X] \cdot (a_0 + a_1X)A[X]$ [6, p. 85]. So P is in c.

PROPOSITION 5. If G is the class group of a Krull domain and G' is a homomorphic image of G, then there is a Krull domain with class group G'.

Proof. Let A have class group G and let H be a subgroup of G such that $G' \cong G/H$. G is also the class group of A[X]; choose (Proposition 4) a minimal prime P_{α} of A[X] representing each class c_{α} in H. Let T be the set of all minimal primes of A[X] and let U be the set of primes $\{P_{\alpha}\}$. Then $B = \bigcap_{P \in T-U} A[X]_P$ has class group G' by Corollary 3.

PROPOSITION 6. If G is any abelian group, then there is a Krull domain A such that $C(A) \cong G$.

Proof. In view of Proposition 5, it is sufficient to show that there is a Krull domain whose class group is a free group on a base of given cardinality. We do so as follows:

Let J be any index set and form the polynomial ring $B=F[X_1,\,Y_1,\,Z_1,\,\cdots,\,X_i,\,Y_i,\,Z_i,\,\cdots]$ for $i\in J$. For each i, consider the subring $R_i=F[\cdots,\,X_i,\,Y_i,\,W_i,\,\cdots]$ where $W_i=X_iZ_i$. Let Q_i be the ideal $(X_i,\,Y_i)$ in R_i and assign an order to any element r of R_i by $v_i(r)=t$ if $r\in Q^t$ and $r\notin Q^{t+1}$. It is immediate that v_i satisfies the requirements of a valuation, and so v_i may be extended uniquely to a discrete valuation on the quotient field of R_i = the quotient field of R_i .

Let V_i denote the valuation ring of v_i for all $i \in J$. Form $A = (\bigcap_{i \in J} V_i) \cap B$. We assert that A is a Krull domain, and that C(A) is the free group on J.

We note first that since $A \supseteq R_i$ for any $i \in J$, the quotient field of A is the same as the quotient field of B. Since B is a U. F. D., we can write $B = \bigcap B_P$ for P a minimal prime of B; this shows that A is the intersection of discrete valuation rings. If $f \in A$, f involves only a finite number of the variables, and so f can be a nonunit in only a finite number of the $\{B_P\} \cup \{V_i\}$. The set $\Sigma = \{B_P\} \cup \{V_i\}$ is in fact, the set of essential valuation rings of A. To see this, we need only produce an element of the quotient field which is not in a particular ring of Σ but is in all the other rings of Σ . For V_i , Z_i will serve. If P is a minimal prime of B and $P = X_i B$ for some $i \in J$, Y_i/X_i demonstrates that B_P is essential.

Finally, let P be a minimal prime of B not of the above type and choose an $f \in B$ such that P = fB. f will be a unit in any other valuation ring of Σ of the type B_q , so let V_{i_1}, \dots, V_{i_k} be the valuation rings of Σ in which f is not a unit. Let $n_{i_j} = v_{i_j}(f)$ for $j = 1, \dots, k$. The element $g = X_{i_1}^{\max(0, n_{i_1})} \dots X_{i_k}^{\max(0, n_{i_k})}/f$ yields that B_P is essential in this case.

Let P be a minimal prime of B, and choose $f \in B$ such that P = fB. As above, f is a unit except in B_P and some rings V_i for $i \in J$. This shows that the minimal primes going with the V_i generate C(A). A relation among these minimal primes alone would come from an element f of the quotient field of A which is a unit in all B_P , i.e., a unit of B. But the units of B are the elements of the field F, and this relation can only be the trivial one.

REMARK. It is fairly easy to see that the restriction of the ring A constructed above to $F[X_i, Y_i, Z_i]$ is $F[X_i, Y_i, X_i Z_i, Y_i Z_i]$; this leads to an alternative description of A as $F[\cdots, X_i, Y_i, T_i, U_i \cdots]$ subject to the relations $X_i U_i = Y_i T_i$. Indeed, the results on A may be obtained by viewing A again as a subring of $F[\cdots, X_i, Y_i, Z_i, \cdots]$ where $Z_i = T_i/X_i = U_i/Y_i$. I am indebted to the referee for suggesting this point of view on the example.

Theorem 7. Given any abelian group S, there is a Dedekind domain D with $C(D) \cong S$.

Proof. We show that if A is a Krull domain with class group S, we can alter A to obtain a Dedekind domain with the same class group.

Let N denote the natural numbers and set $A_1 = A[X_1, \cdots, X_n, \cdots]$ for $n \in N$. Let Q be a prime ideal of A, which is not minimal. Choose any element a of Q and let P_1, \cdots, P_k be the minimal primes of A_1 which contain a. Since $Q \nsubseteq P_1 \cup \cdots \cup P_k$ we can find b in Q such that $b \notin P_i$ for $i = 1, \cdots, k$. Let X_Q be a variable not occurring in either a or b and form $f_Q = a + bX_Q$. Then f_Q is prime in A_1 [6, Th. 29, p. 85]. Let M be the multiplicative set generated by all f_Q , where Q ranges over the nonminimal primes of A_1 . Let $D = (A_1)_M$. D is a Krull domain in which minimal primes are also maximal, so D is a Dedekind domain [6, Th. 28, p. 84]. Further $C(A) \cong C(A_1) \cong C(D)$, the latter isomorphism following from [4, Prop. 2, p. 157].

REFERENCES

- L. Claborn, Dedekind domains and rings of quotients, Pacific J. Math. 15 (1965), 59-64.
 ———, Dedekind domains: overrings and semi-prime elements, Pacific J. Math. 15 (1945), 799-804.
- 3. M. Nagata, Local Rings, Interscience, New York, (1962).
- 4. P. Samuel, Sur les anneaux factoriels, Bull. Soc. Math. France, 89 (1961), 155-173.
- 5. B. Van der Waerden, Modern Algebra, Vol. II, Julius Springer Berlin, (1940).
- 6. O. Zariski and P. Samuel, *Commutative Algebra*, Vol. II, D. Van Nostrand Company, Princeton, (1960).

Received January 27, 1965, and in revised form April 10, 1965.

CORNELL COLLEGE
MOUNT VERNON, IOWA