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NONSOLVABLE FINITE GROUPS ALL OF
WHOSE LOCAL SUBGROUPS

ARE SOLVABLE, V

JOHN G. THOMPSON

The earlier papers in this series have reduced the prob-
lem of characterizing the minimal simple groups to several
stubborn special cases. This paper handles some of these
special cases. Almost all the difficulties of this paper involve
groups of order 2α.3δ for which min(α,δ) is rather small.

This paper is a continuation of its predecessors.1 All of the
results of this paper are proved on the hypothesis that 2 e τr4, and
most of the results are proved on the additional hypothesis that
e = 2.

For i = 0, 1, 2, let σt be the set of all odd primes p in τr(©)
such that e(p) = i. By Theorem 13.8, π(®) = {2} (J σ0 U σι U σ2.

We first record some useful results about ττ2.

LEMMA 14.1. Suppose peπ2 and φ is a Sp-subgroup ©. If
^3' Φ 1, then Z(S$) is cyclic, and in addition, for each non central
subgroup 21 of ^ of order p, A(C»(2t)) = 21 x X, where 36 =
and A9(Wi) = A(^), where <& is the chain 2136 3 £ 3 1 .

Proof. Since 2eπ4, p is odd. Suppose Z(ψ) is non cyclic.
Since 3̂ has no elementary subgroup of order ps, Sβ has exactly 1 + p
subgroups of order p, each of which is central. By Theorem 3.2 of
[5], ξβ is metacyclic. By 0.3.8, 5β' = 1.

Suppose %$' Φ 1. By the preceding paragraph, 36 — ΩX{Z^)) is of
order p. Let 2ί be a non central subgroup of β̂ of order p. Let
(£ = Cp(2I). Since %ΦX, S is a proper subgroup of 5β. Also, Wί s
βi(K). Since S has no elementary subgroup of order p*, we get
SίX - A(£) char S. Since E c $ , it follows that A^Wί) Φ 1. Since
A9(Vf3L) stabilizes 2IX3ΪZ)1, the lemma follows.

LEMMA 14.2. If peπ2 and p > 5, then every p-solvable subgroup
of ® has p-length at most 1. If β̂ is a Sp-subgroup of ©, then
elements of 3̂ are (^-conjugate only if they are N(^-conjugate.

Proof. We may assume that 5β' Φ 1. By 0.4.4, it follows that
1} Non solvable Finite groups all of whose local subgroups are solvable, I-IV; Bull.

Amer. Math. Soc, vol. 74, no 3, May, (1968), 383-437; Pacific J. Math., vol. 33, no. 2,
(1970), 451-536; Pacific J. Math., vol. 39, no. 2, (1971), 483-534.
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ΪP(@) ^ 1 for every ^-solvable subgroup @ of @, Let 36 =
If X is not weakly closed in Sβ, then by Lemma 14.1 and the proof
of Lemma 0.8.10, SL(2, p) is involved in iV(5)) for some non identity
p-subgroup 2} of ©. As © is an iV-group, this is impossible, so 36 is
weakly closed in *β.

Let 9ΐ = JV(3E). Since Zp(9ΐ) = 1, elements of Sβ are ^-conjugate
only if they are iV(φ)-conjugate. Thus, to complete the proof, it
suffices to show that elements of Sβ which are ©-conjugate are 31-
conjugate. Suppose P, Q e ^3, and for some G in ©, P = QG. Let
(£ = C(P) 2 <36,36°). Since X is weakly closed in *β, there is C in (£
such that 3L0C = X, so GC = JVe 3ί. Hence, P α - P = Q™ = QN, so
that P and Q are Uϊ-conjugate The proof is complete.

LEMMA 14.3. Suppose 36 is a non identity 2-subgroup of @ and
& is a S2>-subgroup of JV(X). Lei π(@) = {pu •• ,ί?«}, where
Vι > P2 > > Pw ΓΛβn @r is nilpotent and @ feαs α Sylow series
of complexion (pu •••, p j .

Proof. By Theorem 13.8, @ has no elementary subgroup of order
p3 for any prime p. Since | @ | is odd, the lemma follows from
Lemmas 0.8.5 and 0.8.14.

LEMMA 14.4. // pe σ0 and @ is a 2, p-subgroup of ©, then @
is p-closed and every involution of @ inverts Op(&).

Proof. If X is a non identity 2-subgroup of @, then JV@(X) is a
2-group, since peσ0. By Theorem 14.4.7 of [21], it follows that @
is p-closed. Taking 36 of order 2 shows that Op(@) Π C(ϊ) = 1, so
36 = </>, where I inverts Ov(β).

LEMMA 14.5. Suppose p e σγ. Let S3 be a subgroup of © of
order p and let £>eH(33; 2). Then one of the following holds:

(a) p e πγ.
(b) Cφ(39) contains no four-subgroup.

Proof. Set (£ = C(S3). Suppose p e πt. In this case, Sp-subgroups
of (£ are non cyclic. Let 8 be a S2>2)-subgroup of (£. It suffices to
show that S contains no four-subgroup. Suppose false and S3 is
a four-subgroup of 8. Since peσx and ^-subgroups of 8 are non
cyclic, it follows that O2(δ) = 1. Thus, Sβ is represented faithfully
on Op(£). By Lemma 5.34, Op(2) contains a subgroup X of order p
which admits S3 and is not centralized by Sβ. Hence, <36, S> = X* is
elementary of order p\ Let SS0 = Ce(£), so that | §B0 ] = 2. Hence,
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S30eM(S3*; 2), against peσλ. The proof is complete.

LEMMA 14.6. Suppose p e σ2 and S3 is an elementary subgroup
of © of order p2 such that M(S3; 2) is non trivial. Then C(S3) con-
tains no elementary subgroup of order p*.

Proof. Suppose false. Let φ be a maximal element of M(S3; 2).
By hypothesis, QΦI. Let 31 = N(Q). By Lemma 13.1, O2,(ϊi) = 1.
By maximality of φ, we get φ = 02(9t). Hence, S3 is represented
faithfully on φ. Since e = 2, 5R has no elementary subgroup of order

Case 1. 93 contains a subgroup S30 of order p such that C6(S30)
contains an elementary subgroup @ of order 8.

Let (£ = C(S30). Since (£ Ξ2 C(S3), (£ contains an elementary sub-
group of order p*. Let 2) be a S2,p-subgroup of (£ which contains
<@, S3>. Since 3) has an elementary subgroup of order pz and peσ2,
it follows that O2(®) = 1. Hence, © is represented faithfully on
Op(S)). By Lemma 5.34, OP(S5) contains an elementary subgroup S)o

of order p3 on which © acts faithfully. Then S)o = ®i x ®2 x ®3>

where | S541 = p, and S)4 admits ®, i = 1, 2, 3, and Ce(®0) = 1. Let
©. = Cβ(S)4)» so that I e* I = 4, i = 1, 2, 3. Let @0 = @, Π e a . Then
3)* = <®!, 3)2, S30> is elementary of order pz and eoeM(S5*; 2), against
p G σ2. Thus, this case does not occur.

Case 2. C§(33) contains a four-subgroup S3.

Let (£ = C(93) and let S be a S^-subgroup of K which contains
33. Since 3) has an elementary subgroup of order pz and p e cτ2, we
have O2(®) = 1. Hence, S3 is represented faithfully on Op(3)). Let
3)0 be a subgroup of Op(^>) of order p which admits 33 and is not
centralized by S3. Then S30 = C8(350) is of order 2, ®* - <®0, S3> is
elementary of order p3 and S30eH(®*; 2), against peσ2. Thus, this
case does not occur.

Case 3. p > 5.

Suppose φ contains a non cyclic abelian subgroup Jϊ which is
normalized by S3. Let S3 = Ω^B). Since Case 1 does not occur,
I C8(SB0) I < 4 for all subgroups S30 of S3 of order p. Since p > 5, S3
centralizes C8(5B0) for all such subgroups S30. Since

S 3 - <C,(S30)llc330cS3>,



218 JOHN G. THOMPSON

it follows that S3 centralizes 93, so that Case 2 holds. This contradic-
tion shows that no such $ exists. Hence, every non cyclic subgroup
of φ which admits 93 is of symplectic type.

Let 3 = W ( $ ) ) , so that 131 = 2. Let Tt = N(S) a N(Q). By
Lemma 13.1, O2,(2K) = 1. Since O2(2JΪ) = F{W) is non cyclic, we get
that 02{W) is of symplectic type. Here, we are using the maximality
of ξ> to conclude that O2(W) ϋ Q. Thus, if 2ft2 is a S2-subgroup of
SK, then 3 = ΩJJZφlύ) char 3ft2. By definition of 2JΪ, it follows that
3K2 is a S2-subgroup of ©. Let 3ft* be an element of ^es*((&) which
contains 2ft. Since 2ft2 is a S2-subgroup of © and 2 e τr4, we get
O2,(2K*) = 1. Since £O2(Sft*) e K(93; 2), we also have O2(3ft*) s φ.
Since F(3ft*) = O2(3ft*) is non cyclic, it is of symplectic type. Now
Theorems 13.5, 13.6, and 13.7 yield a contradiction.

Case 4. p = 3 e τr3.

Since $ - O2(iV(£)) and O2,(iV(φ)) - 1, it follows that iV(£) con-
tains an element U of ^ ( 2 ) . Since C(S3) contains an elementary
subgroup of order 33, we have 93 e Sf (3). Hence, S 3 e ^ r * ( ® ) , by
Theorem 10.8. Let Wl = M(β) a JV(φ). Since U £ SK, Lemma 6.1
implies that O2(Tt) Φ 1. Hence, e(3) > 3, against e(3) = 2.

Case 5. p = 3 g τr3.

Since C(93) contains an elementary subgroup of order 33, we get
3 e π4. By Theorems 8.1 and 9.1, 2 ^ 3 . Since 93 is represented
faithfully on φ, it follows that φ contains a non cyclic abelian sub-
group of order 8. By definition of ~ , it follows that 93 contains
an element B such that C(B) contains no element of ^ ( 3 ) . In par-
ticular, the center of a S3-subgroup of © is cyclic, by definition of

Case 5a. The four-subgroup 93 of φ admits 93.

Let 93O = Cs(93). Since Case 2 does not occur, 193O | = 3 . Let
S3 = 930 x 93X. Then 9393! s A4. Let 80 be a S2,3-subgroup of C(930)
which contains 9393 and let 8 be a maximal 2, 3-subgroup of © which
contains So. Since 8 contains an elementary subgroup of order 33

and since 3 e σ2, it follows that O2(8) = 1.
Since 2 ^ 3 , 8 contains no non cyclic abelian subgroup of order

8. Let 82 be a S2-subgroup of 8 which contains 93, so that 93 = Cβ2(93).
As is well known, the equality forces S2 to be of maximal class.
Since 93 = [93, 93], it follows that J3(S) > 2. Hence, 82 is dihedral of
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order 4 or 8. Furthermore, 93O3(S)/03(8) is a chief factor of S. Let
83 be a S3-subgroup of 8 which contains 93. Since 82 is dihedral of
order 4 or 8, and since 8 is not 3-closed, iV£(83) is a maximal sub-
group of 8, and SL(2, 3) is not involved in 8. By Theorem 1 of
[43], we have 8 = iV£(Z(S3))JVs(J(83)), and so either Z(S3) <\ 8 or
J(83) <] 8. Since 8 is a maximal 2, 3-subgroup of ©, it follows that
83 is a S3-subgroup of ©.

Case 5a(i). O3(8) contains a non cyclic characteristic abelian
subgroup SI.

We may assume that Si is elementary. Since SC contains an
element of ^ ( 8 3 ) , it follows that every element of St centralizes an
element of ^ ( S 3 ) . Since C(V) contains a non cyclic abelian subgroup
of order 8 for all V in 93 and since 2 ^ 3 , it follows that | C a(F) | ^ 3
for all V in 93*. This implies that S39S acts irreducibly on St. Since
930 £ Z(9393), it follows that 93O centralizes SI, so that <930, St> is ele-
mentary of order 3\ Choose V in 93*, and let St0 = C%{V). Since f&t

permutes S3* transitively, | St01 = 3. Hence, <St0, 93O> = &o is elementary
of order 32 and every element of (£0 centralizes an element of ^ ( 3 ) .
Now C(V) exhibits 2 ^ 3 . This contradiction shows that this case
does not arise.

Case 5a(ii). O3(8) is of symplectic type.

Since 82 is dihedral of order 4 or 8, and since 23O centralizes 93,
it follows that 330 S O3(8). Since O3(8)' is of order 3 and since
9 3 ^ ~ At, 93 centralizes O3(8)\ Hence, <O3(8)', 9S0> <\ 83, since 83 =
O3(8)95. If 93O Φ O3(8)', then <O3(8)\ 950> e ^ ( 8 3 ) , so that 2 - 3 . This
is not the case, so O3(8)' = 93O.

Let W = A(03(8))/95o, Wo = Cw(f&). If Wo Φ 1, then Wo = 9B/950,
where 9B contains an element of ^ ( 8 3 ) . This again gives 2 - 3 .
Hence, Wo = 1. This implies that W is a free .F^-module. By
Theorem 1 of [41], C ^ Π A(O3(8)) covers Cw(βd- Thus, O3(8) n CQδd
contains an element of ^ ( 8 3 ) . This is not the case, since C(B) con-
tains no element of ^ ( 3 ) for at least one element B of 93*.

Case 5b. No four-subgroup of ίg> admits 93.

Let 3ft be an element of ΛSf(<&) which contains JV(φ). Since
contains an element of ^ ( 2 ) , Lemma 6.1 implies that 02{W) φ 1.

By Lemma 13.1, we get 02,(2B) = 1. Since φO2(2ft) G H(93; 2), we get
S ©, by maximality of φ. Thus, no four-subgroup of
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admits 33. Since 23 is elementary of order 32, it follows that no non
cyclic abelian subgroup of 02{Έl) admits S3. Thus, O2(3K) is of
symplectic type, against Theorems 13.5, 13.6, and 13.7. The proof is
complete.

LEMMA 14.7. Suppose peσ2, and S3 is a non cyclic p-subgroup
of © such that M(33; 2) is non trivial. Then Hypothesis 6.1 is satisfied
with 33 in the role of % π = {p} and q any prime Φ p.

Proof, (a) is satisfied by our definitions; (b) and (c) are satisfied
since © is an ΛΓ-group. So we must verify that (d) holds.

To establish (d), we assume without loss of generality that 33
is elementary of order p2. This assumption is justified, since

M(33; p') S M(330; p')

for every subgroup 330 of 33.
Let O G M(33; q) and let 6 be a p-solvable subgroup of ® which

contains D33. Suppose by way of contradiction that G §£ Op,(@).
Since D - <CQ(33O) 11 c 33O c 33> and since Cα(330) e M(33; q) for all sub-
groups 330 of 33, we can choose a subgroup 330 of 33 of order p such
that Cα(330) g Op,(@). Set D o - Co(330), S - C(33O). By Lemma 0.7.8,
£}0 = Oj,/((£). Let 8 be a S^-subgroup of © which contains Q033, and
let {8P,SJ be a Sylow system for 8 with 3 3 ^ 8 , , O0 S 8,. By
Lemma 0.7.3, OP,(S) = 8 Π O^((£), and so O 0 g OP,(S).

Let SR be a subgroup of Qo which admits 33 and is minimal sub-
ject to 3ft g 0,(8). Let 3ΐQ - 31 Π Oq(8). Then 33 acts irreducibly on
3ΐ/3ΐ0 and 3ί0 = Z>(3t).

Let £ be a subgroup of 8 which contains 5R33 and is minimal
subject to 9t g Og(ffl). Let {̂ p, βff} be a Sylow system of β with
33 S ffip, 3t C Sff. Let § = « p Π Og,p(St). The minimality of ffi forces
β =^33S g , and of course, ®g = Og(β)3t. For each subset $ 0 of β,
let ®o - Oq(St)StJOq(St). Thus, ® - ^ 3 ϊ δ . Also, since K = C(330), we
get 33O S Z(β), and so 33O S Z(§).

If 33 S €>, then we get [9t, 33] S Off,p(S) Π 3t S 3*0, so that 33
centralizes 3ϊ/9ΐ0. Since 3ΐ0 = />(9l), it follows that 33 centralizes 9ΐ.
By Lemma 5.12, S acts faithfully on C^(»), so by 0.3.6, ^ acts
faithfully on ^ ( ( ^ ( S ) ) . Hence, S c f l ^ Q ί S ) ) . Since C5(») and C$(33)
are incident, it follows that 33cΩ^CQ(33)). This violates Lemma 14.6.
Hence, 33 g ©, so that S30 = © Π § .

Since C (̂33) and C (̂33) are incident, it follows from Lemma 14.6
that 33O-ίΛ(Q(33)).

By minimality of $, ίR centralizes every proper subgroup of |>
which contains 330 and admits 3Ϊ33. In particular, 31 centralizes
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So>. Furthermore, £ = [|>, 3ΐ] So, also by minimality of B.
Since S30 S Z(£), Lemma 0.8.7 implies that D($) £ Z(φ). From 0.3.6,
together with cl(£) <; 2, it follows that $ is of exponent p. Hence,
Q(S3) = S30. Since β P = £S3, it follows that Cft(S5) = S3 x 2), where
3) is a g-group. Since p is odd, Theorem 2 of [41] forces 3ΐg;0 g($).
The proof is complete.

LEMMA 14.8. Suppose pe σ2 and S3 is an elementary subgroup
of @ of order p2 such that M(S3; 2) is non trivial. Let $ be a maxi-
mal element of M(S3; 2). Then the following hold:

(a) p 6 τr2,
(b) N(Q) contains a Sp-subgroup of ©,

(c) If l c S 3 0 c S3 αmZ Cφ(a30) ^ 1> ^ < ^ -#(£) contains a Sp-sub-
group of C(S30).

Proof. Set % = iV(£). We first establish (c). Let K - C(S30).
By Lemma 14.7, C$(S30) S O^(S). Let So be a SίfP-subgroup of O (̂(£)S3
which contains Ca(SS0)S3. Thus, So = SXSS, where Sx = So Π Op,(&) is a
£>2-subgroup of Op,(K). Let 8 be a S^-subgroup of K which contains
So and let {S2, 2P} be a Sylow system for S with 2, £ S2, S3 £ Sp. Then
Ϊ ^ S n 0^(6:) < S, and by Lemma 0.7.3, 8X = O2(S).

Let § be a maximal element of M(8P; 2) which contains S15 and
let %l — N(φ). By Lemma 14.7, § is a maximal element of M (̂S3; 2),
so by Lemma 14.7, |> is a maximal element of M(S3; 2).

By construction, C (̂S30) Φ 1, C3(S30) Φ 1. By Lemma 6.2, there is
X in C(S3) such that φ - § x . Since 8J is a Sp-subgroup of C(33O), it
follows that 5ft contains a S^-subgroup of C(S30), namely, 8J. So (c)
holds.

Since S3 is of type (p, p)> there is a subgroup S30 of 33 of order
p such that Q(330) =£ 1. Let 3lp be a S^-subgroup of ?i which con-
tains a Sp-subgroup of C(S30). Let ®p be a S^-subgroup of © which
contains 9£p. If ©^ = 9lp, then both (a) and (b) hold, since p e σ%.
So suppose by way of contradiction that %lp c ®p.

By Lemma 14.6, S3 3 ^(Zί©,,)) = 3 , say. If C9(S) Φ 1, then we
may take S30 = 8 and conclude that 9Ϊ contains an Sy-subgroup of
C(S), that is, ϊflp = @p. We may therefore assume that Cϋ(Q) = 1.

Let S3* be any elementary subgroup of $lp of order p2. We may
apply all the preceding argument with S3* in the role of S3, since §
is a maximal element of M(3S*; 2). We conclude that S3* = <J5*>x3,
where C (̂J5*) Φ 1. However, we cannot assert that 9ϊp contains a
Sy-subgroup of C(B*), but merely know that 91 contains a Sy-subgroup
of C(B*).

Let tyβlp be a chief factor of N® (%). Since 9ΐp is non cyclic
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and p is odd, 9ΪP contains a subgroup 33* which is elementary of
order p2 and is normal in φ . Since | C(J3*) |p = | CΛ(B*) |p ^ 131 |p < |5β|,
it follows that 5 * g

Case 1. 93* g Z(%). Since S3* < 5β, we get 15β: Cp(33*) | = p, so
that |C,(B*) I - I % |. Since | C(B*) |p = | CR(B*) |p, it follows that 5 *
is contained in the center of a Sp-subgroup of 9Z. Since 3 = ί?i(Z0Kp)),
we get (B*}χ Z. Let Sft* be a Sp-subgroup of CΏ(J5*) which contains
%, where &p = CΛp(B*). Then 93* < <3ip, 9Ϊ*>, 3ΐp maps onto the
stability group of SB* ID 3 ID 1, and SK* maps onto the stability group
of 33* 3 <J5*> 3 1. Hence, Aκ(33*) permutes transitively the p + 1
subgroups of S3* of order p. This is impossible, since C9(S) = 1>

* 1.

Case 2. 33* s

Since 33* S Z(%), it follows that 1̂̂ (33*) is a p'-group. Since
35* = <!?*> x 3> <3§ is a Frobenius group and 33* is represented
faithfully on £>, we can choose subgroups 331? 332 of order p in 33*
such that CiQδi) Φ 1, i = 1, 2, S3, ̂  3 , and 33, Φ 332.

Since ^ permutes transitively the subgroups of 33* of order p
distinct from Q, it follows that 33f = 332 for some P e 3̂ — 5BP. Hence,
Ca(332) ^ 1, and CaP(332) = C^(33f) = (C^(330)p Φ 1. By Lemma 6.2,
§ = §™ for some C in C(33*). Hence, PCe 9ΪΠiV(33*), so that AO©*)
is not a p'-group. This contradiction completes the proof.

LEMMA 14.9. Suppose peσ2 and 3̂ is a Sp-subgroup of (S Let
$ be a maximal element of M(̂ β; 2) and let 31 = N(!Q). Then one of
the following holds:

(a) Elements of 5̂ are (^-conjugate only if they are %1-conjugate.
(b) Sβ is abelian and if X, Y are elements of 3̂ which are ©-

conjugate but are not %1-conjugate, then either C$(X) — 1 or C$(Y) =
1.

Proof. Case 1. ψ = 1.

Let £ = iV(Sβ). Since 5β is an abelian Sp-subgroup of @, elements
of 5β are ©-conjugate only if they are S-conjugate. Suppose X, Ye 5β,
and X - Γ, X op y. Choose L i n g with Γ = X z . By Lemma 14.8
and Lemma 14.6, § and !QL are maximal elements of M(5β; 2). By
Lemma 6.2, either C $(F) = 1 or C § L ( Γ ) = 1, that is, either Cϋ(Y) = 1
or C$(X) = 1. Thus, (b) holds in this case.

Case 2. ψ Φ 1.
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Let 3 = fli(Z(5p)). By Lemma 14.8, peπ2. By Lemma 14 1,
|3I = P Let A be an element of 5β — 3 of order p, and let 3 =

. By Lemma 14.1, A ~ A£* for all i. This implies that
1, since <A, Z> is represented faithfully on φ Thus, by

Lemma 6.2,

(14.1) JV«A, Z » - NΛ«A, Z)) C«A, Z)) .

Case 2a. Every p-solvable subgroup of © has ^-length at most
1.

We first show that 3 is weakly closed in 5β. Suppose false, and
G in © satisfies SG g ^ , 3 G ^ 3 Set St = 3 σ , 35 = 213, and let <£
be a β^-subgroup of C(S3) Π iV(3). Let ψ be a ^-subgroup of
<7(2t) which contains (£. Thus, E c $ * , and (£ is not a Sy-subgroup
of N(S). Since peπ 2 , we have S3 = fl^K) char S. It follows that
^@(S3) involves £L(2, p), so p = 3, and Z8(JV(S3)) = 2. This is not the
case, so 3 is weakly closed in iβ.

Since 3 is weakly closed in Sβ, elements of ?β are ©-conjugate
only if they are iV(3)-conjugate. Since lp(N(S)) = 1, elements of 3̂
are iV(3)-conjugate only if they are iV(^)-conjugate. Let S = N(ψ).

First, suppose that 3̂ contains a non cyclic characteristic abelian
subgroup SB. Let St = flχ(»), JQ = C$(§ί). Then |2t| = p2 and
15β: OI = p. Choose Le2. Then § and £>L are maximal elements
of M(O; 2). Choose Ae§ί - 3 Then Ce(A) Φ 1, C$L(A) ^ 1. Hence,
by Lemma 6.2, we get £> = $LC for some C in C(O). Let ΛΓ =
LCeSSl. Thus, 1/ and iV induce the same automorphism of D. Since
2p(9ίl) = 1, it follows that S Π 91 contains an element Nx such that L
and Nί induce the same automorphism of £}. Let M = JVΊL"1. Thus,
Jkf induces an automorphism of 3̂ which centralizes £i. By Lemma
0.8.12, it follows that M induces an inner automorphism of Sβ. Hence,
M=PD with P e φ , J5eC(φ). Since P e ^ s J ί , we get PD =
N,L~\ or equivalents, DL = P^N^ίfl. Thus, S = C(5β) ($β Π S),
so that (a) holds.

Next, suppose that $β is of symplectic type. Here we get Sβ =
tpo^i, where ^30 = (̂ P) is cyclic and Sβj. is extra special of order p3

and exponent p. If C$(φ') Φ 1, then Lemma 6.2 implies that (a) holds,
so we may assume that Ĉ (5β') = 1.

Let 33 be an elementary subgroup of 3̂ of order p2 and choose
Le&. Then £> and ^ L are maximal elements of M(S3; 2), so by
Lemma 6.2, § = §LC for some C in C(S3). Let N= LCeϊfl. Since
ip(9ί) = 1, we can write N = ΛΓ^, where JS^eSnSi, and jDeO,,(9i).
Hence, LC = JVΊD, or equivalently, iVf1!. = DC~ι = X, say. For
each 5 in 35, X5X"1 = DBD~\ since CeC(SB). Since DeOp,{SSl), it
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follows that B-'DBD-'eO^yi). On the other hand, B~ιDBD~ι =
B-'XBX-'eφ, since X - Nr'LeNW). Hence, X centralizes S3. By
0.3.6, X induces an inner automorphism of Sβ, s o l = PE with P e φ,
Ee COβ). We now get X = NrιL = P # or equivalents,
so that g = (S Π 9ϊ)C(φ), and (a) holds.

Case 2b. © has a p-solvable subgroup with p-length > 2.

By Lemma 14.2, we get p — 3.

Case 2b(i). Z3(9t) > 2.

Let jQ = φcO3,,8(9fl), 9ί0 = #»(£>). Thus, Q c φ and 91 =
The main difficulty here is to determine the isomorphism type of ^3.

First, suppose that G contains a non cyclic characteristic abelian
subgroup SI. Let S3 = Ωx{%) so that 93 char Q, 1331 = 32. Let
£i* = CΦ(S5). Since S3 <j %, £>* is a S3-subgroup of CJ33). Since
SB = fliOQ*), 0.3.6 implies that CRo(») is 3'-closed. Since O3,(C%(93)) S
Oy(N), it follows that O = Q*. By Theorem 3.2 of [5], O is
metacyclic. Since ϊs(SΓi) > 2, it follows that Q is a homocyclic abelian
group and that | *β: O | = 3.

If IQI = 32, then $ is a non abelian group of order 27 and
exponent 3. Furthermore, by (14.1), if X is any subgroup of 5̂ of
order 9, then Nβ) = JYR(X)-C(X). Since £1 is the only subgroup of
φ of order 9 such that A^O) involves SL(2, 3), it follows that £} is
weakly closed in ?β. Hence, (a) holds.

Suppose I O I > 9. Since Z3(3i) = 2, it follows that D, is the only
subgroup of 3̂ of its isomorphism type, so O is weakly closed in ^3.
Furthermore, if @ is any 3-solvable subgroup of © which contains
φ, then O S O3S3(@).

Suppose X, F e ^ and X — Γ, but 1 ^ 7 , We assume without
loss of generality that X £ Q . By a result of Alperin [2], there is a
subgroup 9ί of 3̂ with the following properties:

(a) N*(ΪR) is a S3-subgroup of N(3i).

(β) 5R contains elements which are iV(3ΐ)-conjugate but are not
3ΐ-conjugate. Among all such 9Ϊ, let | 3ί | be maximal. Let & = iV(3ϊ),
fl3-$Π S, 3ΐ0 = 9Ϊ3 n O3S3(^) a 3ϊ. Clearly, 3ϊ0 g £}, since elements of
O are ©-conjugate only if they are ^-conjugate. If B(%) Φ 1, then
Z)(3O <i <3ϊ0, &> = ^β. In this case, iV(/>(3ΐ0)) contains φ, so that
elements of 5̂ are iV(Z>(9i0))-conjugate only if they are iV(Π)-conjugate.
This is not the case, so 3ΐ0 is elementary of order 9. By (14.1),
elements of 9ΐ0 are ©-conjugate only if they are ^-conjugate. Since
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elements of 3ΐ are N(ίΛ) -conjugate only if they are JV(9ΐ0)-eon jugate,
we have the desired contradiction. Thus, if O contains a non cyclic
characteristic abelian subgroup, then (a) holds.

Suppose that O is of symplectic type. Then jQ = £L<JO,19 where
£}(> = (Q) is cyclic and C^ is extra special of order 27 and exponent
3.

Let % = O3,3,(2ϊ0), so that % = QSJΐ, where 2ft is a S3'-subgroup
of SR1# Since ίΰt/Cm(D) is represented faithfully on £ί19 and since
Z3($β0) = 2, it follows that SDΪ/C^G) is a quaternion group. Let
SI = N9(Wl). Thus, 51 Π D = O0, and 2t/O0 is of order 3. Let I be
the involution of fϋl/Cm(£ί). By Lemma 5.36, </> is represented
faithfully on Co(3t). Hence, Co(2t) = Ω o x ϊ , where | X | = 3 and
X x D' is the unique element of ^(Sβ). Since 3eτr2, Theorem 3.2 of
[5] implies that 21 Co(2t) = C$(ϊ) is metacyclic. This implies that
SI = (A) is cyclic and that C9(X) = % x X is of index 3 in *β.

Consider JV(O). By construction, we see that JV(Q) = JVR(£i)
(JV(JD) Π JV(5β)). Since JV(£i) Π JV(5β) S iV(3c x O') (the containment holds
since ϊ x j Q ' is the unique element of ^(5β)), Lemma 6.2 implies
that iV(O) = (9ΐ Π JV(JQ))C(O). Now Lemma 6.2 implies that elements
of β̂ are ©-conjugate only if they are 9ΐ-conjugate, so (a) holds.

Case 2b(ii). Z8(9l) = 1.

Let 6 be a 3-solvable subgroup of ® such that Z8(@) ^ 2, and
such that I @ Π β̂ I is maximal with this restriction. Let @3 = @ Π 5β.
Since all conjugates of @ have 3-length at least 2, it follows that
@3 is a S3-subgroup of @. Let $ = g>3 Π O3%3(@) so that $ c @8.

First, suppose $ contains a non cyclic characteristic abelian
subgroup SI. Let 33 = ^(21), & = C5(33). Thus, | $ : φ x | > 3, and
k(N(φd)>2. By Lemma 6.2, iV#0 = (N$d()W)C$J. This equality
forces Z3(9t) ^ 2, against ia(9i) = 1. Hence, $ is of symplectic type.
This implies that Z(@3) is cyclic, so that

Let St = N(ΩX{Z(^))) so that Zj(Λ) ^ 2. Since S n ? - $ , we assume
without loss of generality that ffl = @.

Choose L6JV(φ), and let U be the unique element of ^(Sβ).
Then ^ and ξ>L are maximal elements kl(U; 2), so φ = ίξ>LC for some
C in C(tt), by (14.1). Let N - LC. Since Z,(3i) = 1, N = NXD,
where JS^e 9ΐ n N(ψ), De O8,(9l). For each Ϊ7 in IX, JVJ7JV-1 -
CeC(U). Hence, NUN^eψ. Since iV = ^ D , we get
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Also, ^ [ / " W Γ ^ φ , since N^N^). Hence,

Ntf-'Nr1 N.DUD^Nr1 = [U, ΰ - f i 6 ? β n O8,(9Ϊ) = 1 .

Thus, D centralizes U. We now get LC = iVJ9, or equivalently,
L = NJίC"1. Since N19 D, C all normalize 11, so does 8. That is,
Nφ S JV(tt). This is not the case, since ZS(JV($)) > 2, so that
U <$ JV(*β). The proof is complete.

LEMMA 14.10. Retaining the notation of Lemma 14.9, one of the
following holds:

(a) SβsSl',
(b) φ' = i.

Proo/. Since © is simple, *β - <Q-1P| Q, Pe5β, P ~ Q>. If (α?)
of Lemma 14.9 holds, then (x) of this lemma also holds, x = α or 6.

Hypothesis 14.1. σ2 =£ 0 .

Lemmas 14.11 through 14.26 are proved under Hypothesis 14.1.
Let r be the largest prime in σ2, let 9ΐ be a Sv-subgroup of ©,

and let $ be a maximal element of H(5R; 2). This notation is preserved
through Lemma 14.26.

By Lemma 14.7, § is a maximal element of M(9ΐ0; 2) for every
non cyclic subgroup 3ϊ0 of 9ΐ. By maximality of ξ>, we have φ =
O2(iV(^)). Since rGd2, φ ^ 1. By Lemma 13.1, 31 is represented
faithfully on ξ>.

LEMMA 14.11. One of the following holds:
(a) φ contains an element of %S(2).
(b) r = 3 αwd >̂ contain an elementary subgroup of order 8.

Proof. Suppose (a) does not hold.

Let X be a S2-subgroup of N(!Q) permutable with 3ΐ, and let ©2

be a S2-subgroup of © which contains X. Thus, ξ> contains no
element of ^(© 2 ). Let £ - £9t.

Since ξ> = JP(iV(̂ )), it follows from the maximality of φ that
§ = F(S). Hence, Z(X) a (̂€>) Since S is a S2-subgroup of iV(®,
it follows that Z(©2) s Z(£). By definition of ^(©2), it follows that
Z(©2) is cyclic. Since Z(©2) £ § , it follows that X contains every
element of ^(©2).

Let U be a fixed element of ^(©2) and let Uo = II Π φ. Thus,
U o c U, and so tt0 = U n 2T(®2) is of order 2. Choose C7e U - Uo and



NONSOLVABLE FINITE GROUPS ALL OF WHOSE LOCAL SUBGROUPS 227

let VL, = (U).
By Lemma 5.36, S contains an element R of order r which inverted

by U. Let 3ί0 - <#>, £ 0 - [Q, SftJ, & = C,(3ΐ0). Since [$, UJ S Uo,
it follows that t^ centralizes φ/2B, where 2δ = fl^Zίφ)). Hence, 3ί0

also centralizes φ/2δ, so $\ covers φ/2B. Hence, £ 0 = [£, 3fl0] = [2δ, ̂ o]>
so that £> — £>0 x φ1 # Since £>0 is a free ί ^ - m o d u l e , and since
[£, UJ S Uo, it follows that | φ01 = 4. Thus, r = 3 Since 3t is non
cyclic and 9ΐ is represented faithfully on φ, it follows that § o c § .
Since ξ>0 is a four-group and is a direct factor of φ, (b) holds. The
proof is complete.

LEMMA 14.12. Let q be an odd prime and let @ be a 2, q-sub-
group of © which contains ξ>. T%ew O2(@) ̂  1.

Proof. Let f5 — ̂ (S) and suppose by way of contradiction that
% is a g-group.

By Lemma 6.1, together with 2e ττ4, it follows that every element
U of ^(2) centralizes every element of M(U; 2'). Since !Q is represented
faithfully on g> it follows that φ contains no element of ^ ( 2 ) . By
Lemma 14.11, r = 3 and § contains an elementary subgroup @ of
order 8.

Since © is represented faithfully on %, it follows from Lemma 5.34
that % contains a subgroup %Q = gi x 32 x δs» where | g< | = q, %t

admits @, i = 1, 2, 3, and C9($Q) — 1. In particular, g e ττ3 (J ̂ 4, so
^ > 5. By definition of r, we get qe σo\j σγ. However, Ce(f5if52) ^ 1>
and Cg@oδi) e M(gof5i; 2), so that g ί σ 0 U ^ . This contradiction com-
pletes the proof.

LEMMA 14.13. Suppose q is an odd prime Φ r and 23 is an ele-
mentary subgroup of 9ΐ of order r2. If O e \Λ (35; g) and [O, 35] ̂  1,
then M(DS5; 2) is trivial.

Proof. Suppose false. Let £ be a maximal element of M(S5D; 2),
so that £ Φ 1. Hence, g e ^ U 0"2 Since [23, O] ̂  1, Lemma 14.3
implies that q > r. By the maximality of r, we get g e <7lf so D is
cyclic.

Let Ϊ&0 = C8(D). Since S3 is elementary of order r2, it follows
that I S501 = r. Thus, 23 = 23O x 35i, where DSSi is a Frobenius group.
Let S = N(X). By Lemma 13.1, O2,(S) = 1. Thus, 23O is represented
faithfully on X = O2(S). By Lemma 14.7, S O s Or,(S).

Let ^ be an element of H (35; {2, q}) which contains X£l and is
maximal subject to O2(%) Φ 1. Let g 0 = O2(%) and let β = N(%0)
By Lemma 13.1, O2,(Λ) = 1. By the maximality of g and Lemma 14.7,
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g is a S2,g-subgroup of Or,(ίS). Let {g2, g j be a Sylow system of g
which admits S3 and satisfies g £ 82? Π S g^ Since g e σL and
go =£ 1? it follows that S^-subgroups of K are cyclic. Since S3iG is a
Frobenius group, so is 9 3 ^ and %q is a S9-subgroup of $ί.

Since g = l(modr), we have q > 7. Since g g is cyclic, it follows
from Theorem 2 of [43] that either g = Cδ(Z(g2)) or g = iVδ(J(g2)).
Thus, g2 contains a characteristic subgroup (& Φ 1 with £ <\ g.

Let ® = JV((£). By the maximality of g and Lemma 14.7, g is

a £2,g-subgroup of Or,(2)). We will use this fact to show that g2 is

a maximal element of M(33; 2). Suppose g 2 c g 2 e H(S3; 2). By

Lemma 14.7, ® Π g2 S Or,(®). This violates the fact that g is a

S2jff-subgroup of Or,(®). Thus, g2 is a maximal element of M(S3; 2).

Let ϊ&* = {B\Be SJ*, C52(B) ^ 1}, 23** - {5 | B e 33̂ , C,(B) ^ 1}.
Since 2βL£l is a Frobenius group which is represented faithfully on
02(g), it follows that S3* a S3 - S30. Since S3 is represented faithfully
on φ, it follows that 33** U {1} contains at least 2 subgroups of S3 of
order r. Hence, S3* Π S3** Φ<Z> By Lemma 6.2, the application of
which is possible by Lemma 14.6, we get g2 = ξ>c for some C in

Since K char g2, it follows that ® a N(!Q)C. Since © ^ 1, it
follows that Sα-subgroups of ® are cyclic. Since 33XD is a Frobenius
group, S3 does not centralize the cyclic group O?,,ff(3))/Og,(2)), while
©' does. Hence, 33 g ©'. All the moreso, S3 gi iV(φ)'. By Lemma
14.10, iR; - 1.

Since g2 - φ c , it follows that S3* = S3**. Choose NeN(3ϊ).
Since | S3* | > r2 - r, it follows that S3* Π %>*N ^ 0 . By Lemma 6β2,
§ - £Λ τ σ for some C in C(9ΐ). Hence, JV(3t) - (N(3ϊ) Π iV(©)) C(S«).
The equality forces S3 £ N(!gy, so S3 s 5)'. This contradiction com-
pletes the proofc

LEMMA 14.14. Lei 33 6β αw elementary subgroup of 9χ 0/ order
7̂ 2. Let £ = C(S3). ΓAew K is rr-closed, $ Γ) & is a S2-subgroup of

(£, and O7ie 0/ iAe following holds:
(a) Or/(E) is per mutable with £>,

(b) r = 3.

Proof. As we have already remarked several times, K is τ'~

closed. Let ® = Or,(S) and let ®2 be a >S2-subgroup of ®. By

Lemma 6.2, ®2 £ $c for some C in E. Thus, $ contains ©s"1? a S2-

subgroup of ®. Hence, φ Π K is a >S2-subgrouρ of K, and we choose

notation so that £> Π E = ®2 We may assume that r > 5.

Let » = {B ! δ e 335, [Cβ(JS), S3] Φ 1}, and let § 0 = <Q(5) | B e S3>.
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We first show that £>0 = Φ Namely, let & = [£, SB]. Since S3 is
represented faithfully on φ, it follows that & Φ 1. Let V = φi/®(φi)>
and let V = VΊ x x Vβ, where each Vi is an irreducible 33-group.
Let S3, - Ct(Vt), and let X4 = C^B,), 1 £ i ^ s. Since (| φ |, | S31) = 1,
ϊ< covers Vt. Since ^ = [§1, 33], it follows that S3, — <!?«> is of order
r and since [X<, S3] =£ 1, we get B{ e %. Since Q = C§(33) &, we get
that § = φ o

We next show that if B e S3, then S3 centralizes every element
of MC(i?)(33; {2, r}') Suppose false, and Q is a {2, r}'-subgroup of C{B)
which is normalized by S3 and is minimal subject to [33,0] Φ 1.
Thus, Q is a g-group for some prime q Φ 2, r, and Q = [S3, Q]. Let
S = C(JB) and let S be a S2,g-subgroup of Or,(8) which is normalized
by S3. Let {&2, ®q} be a Sylow system for $ which admits S3.

By Lemma 14.7, Cθ(5) S Or,(8), O S Or,(8) Thus, S3 does not
centralize either 5£2 or ®q. By Lemma 14.9, we get that O2(^S3) = 1,
and so O2($) = 1, as ίϊ < ^S3.

Let ^0 = Oq(St), so that $ 2 is represented faithfully on ί£0. First,
suppose that $ 2 Π C(S3) contains a four-subgroup S3. We can then
choose V is S3* such that S3 does not centralize $ 0 Π C(V). Let £ί0 =
fioίlC(7). Then <F> e M(O0S3; 2), against Lemma 14.9. Hence,
$2 Π C(S3) contains no four-group.

Next, suppose that $ 2 contains an abelian subgroup $ 3 which
admits S3 and satisfies [ίϊ3, S3] Φ 1. Let ίϊ3 be minimal with these
properties. Then $ 3 = [ffl3, S3] and S30 = C3(^3) is of order r. Let 8(

be a subgroup of $ 0 which admits $333 and is minimal subject to
[80, ί y Φ 1. By Lemma 0.8.7, Z>(80) s Z(80), and by 0.3.6, 80 is of
exponent g. Since r > 5, it follows that for some X in $3, So Π C(X)
contains an elementary subgroup of order qz. This violates e = 2, so
this case does not occur.

Since S3 centralizes every characteristic abelian subgroup of ®2,
and since C 2̂(S3) contains no four-group, $ 2 is of symplectic type. Let
$3 = [$2, 33], so that $ 3 is extra special. Since r > 5, the width of
$ 3 is at least 2.

Let Si be a subgroup of $ 0 minimal subject to admitting $333
and not centralizing $3,. Then Si is of class at most 2 and exponent
q, and β8, = </>, where I inverts 2JD(21).

Let 36 be a four-subgroup of $ 3 which contains I, 3c = <X> x <I>.
Then X - X I so that C2l(X) and C2ί(XI) have the same order. Let
2) = C£l(X), 2), = C2ι(XI). Since I inverts SJD^), it follows that
<2), Si> = Si Let I ?): 2) Π ̂ (80 | - qf. lί f > 3, then e > 3, since
Sx is of exponent q. Hence, / ^ 2. Since r > 5 and since S3 does
not centralize fl3, it follows that / = 2, | S .̂ ^(SO | = g4. Let f) be a
subgroup of 2) which is elementary of order q\ Then <X>eM(f); 2).

'0
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Also, C2lφ) contains an elementary subgroup of order q\ This con-
tradicts Lemma 14.6. Thus, for each B in %, S3 centralizes every
element of VίC{B)^8: {2, r}').

Choose Be %, let 8 = C(B), 80 - Or,(£), £ 0 = £ Π 8. By Lemma
14.7, 3) S 80, £>0 <Ξ 80. Let ®* be a S2,-subgroup of 80 which contains
35 and admits S3. Since S3 centralizes every element of MS(S3. {2, r}'),
it follows that [S3, 35*] = 1. Thus, ®* C (£ = C(33). By Lemma 14.7,
©* S Or,((£), so by definition of 35, we get 35 = 35*.

Let & be a £2-subgroup of So which contains φ 0 . We argue that
ξ>0 = £>x. In any case, by Lemma 6.2, there is C in (7(33) such that
ίg? Q φ. Thus, φf S £>0, by definition of £>0. Hence, | φi | ^ | §01, so

We have shown that for each B in S3, C$(B) is permutable with
35. Since £> = (CΦ(B) | J3eS3>, the proof is complete.

LEMMA 14.15. Let 33 be an elementary subgroup of 9χ of order
r2. Let & = (7(S3). Then Or,(E) is permutable with £>.

Proof. Suppose false. By Lemma 14.14, we have r = 3, and so
C72 = { 3 } .

Case 1. C5(S3) contains a four-group. Choose £ e S3* and let
8 = C(B), So = Or,(S). Choose gGττ(80), g ^ 2, and let S be a S2,q-
subgroup of 80 which admits 33. Let {££2, ̂ J be a Sylow system of
$ which admits S3. By Lemma 14.7, C (̂33) S 80, so ^ 2 contains a
four-group S3 which is centralized by 33. Suppose by way of con-
tradiction that [®q, S3] Φ 1. We can then choose F in S3* such that
C,q(V) = 4 is not centralized by S3. Hence, <F> e M(435; 2), against
Lemma 14.13. Thus, S3 centralizes $ t f.

Let S* be a £2,-snbgroup of 80 which contains 35 and admits S3;
®* exists, since by Lemma 14.7, 35 S 80. Here, 35 denotes a Sv-
subgroup of OS/(K). By the preceding paragraph, 33 centralizes 35*,
so by Lemma 14.7, ®* s O3,(e). Hence, 35 = 35*.

Since Q(5) is a S2-subgroup of 80, it follows that 35 is permutable
with CΦ(JS). Since >̂ = <CΦ(JS) | ΰ e 33*>, the lemma follows.

For the remainder of the proof, we assume that 6\(S3) contains
no four-group.

Case 2. C (̂33) is not cyclic.

Let £>0 = Cφ(33). Since ξ)0 contains no four-group, it follows that
φ 0 is a generalized quaternion group. Let

Y% [C9(B), 33] ̂  1} .
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As in the proof of Lemma 14.14, we get φ = (C^B) | B e %).

Choose B in 33. We will show that C9(B) contains an elementary
subgroup of order 8. Let £1 = C9(B) and let 33O be a subgroup of 33 of
order 3 distinct from (By. Thus, 330 does not centralize D, and of
course, O z> £>0 Let Q o = iVD(£0), and let φi/Φo be a chief factor of
D0330. Thus, £,/& is a four-group and £ 0 = C^o) = CQ(33O) - CO(S3).
If £>0 is a direct factor of £ „ we are done, so suppose not. If © is
a characteristic abelian subgroup of Q1 and © gj $0, then 330 does not
centralize 6, so 330 does not centralize £?i(©)> a four-group. This
forces φi = £>0 x ^i(©) Hence, every characteristic abelian subgroup
of £>! is contained in φo> so is cyclic; φj. is of symplectic type. Thus,
φi is the central product of £>0 and [^x, 330], and [φx, 330] is a quaternion
group. As is well known, φi contains an elementary subgroup of
order 8.

Again, let Be%, let 2 = C(B), 80 = O8,(8). By Lemma 14.7,
O = QCB) a So, and also ® g So. Choose g e τr(S0), g =£ 2, and let Λ
be a S^-subgroup of 80 which admits S3 and contains D. Let {ίE2, Bq}
be a Sylow system of ίΐ which admits S3. Suppose [Rq9 33] Φ 1. By
Lemma 14.13, we get O2(Jδ) = 1. Let © be an elementary subgroup
of Q of order 8. By Lemma 5.34, Oq(B) contains a subgroup % —
& x g2 x g3 such that | g, | = q, %ζ admits © and C,(f$) = 1. Thus,
C , ® ^ ) = @ ^ 1, and l e M ® ^ ; 2). This violates σ2 - {3}. Hence,
33 centralizes SBff. Thus, 33 centralizes a S2/-subgroup of 80, so ® is a
jS2/-subgroup of So. Since Cϋ(B) is a S2-subgroup of So, the lemma
follows.

Case 3. Cδ(33) is cyclic and H(®33; 2) is non trivial.

Let X be a maximal element of M(S)33; 2). Since τr(®) S σx u σ2,
and since ® is a 3'-group, while σ2 = {3}, it follows that ττ(©) S σ^
so ® is a Z-group. Let S) = iV(ϊ). By maximality of X, we have
3£ = O2(2)). By Lemma 13.1, it follows that O2,(2)) = 1. Let
So = O3,(2)). Thus, S) S %, by Lemma 14.11, it follows that ® is a
£2,-subgroup of 2)0 By Lemma 14.7, 2)0 Π © = |> is a iS2-subgroup of
2)0. Since §/ϊ is represented faithfully on O2,2,(2)0)/3ί> and since
02,2'(So)/?) is a Z-group, it follows that 33 centralizes |>/X.

Since Cd(33) is cyclic, so is |>/X. Thus, π(®) contains a prime g
such that a Sg-subgroup ®g of © is permutable with | ) and such
that 2) = 02(^S)ff). Since q > 5, either Z(|>) < § ® , or J(§) <j §® g ,
by Theorem 1 of [43]. So in any case, § contains a non identity
characteristic subgroup ϊ 0 such that 3£0 <l §®g33. Let Hft = iV(ϊ0).
Suppose by way of contradiction that | c φ . Then |> c φ Π 2ft, since
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£0 char |>. Let 2K0 = O3,(2K) so that by Lemma 14.7, § Π 2K £ Mo,
D g £ 2ft0. Let SKi be a S2><Γsubgroup of SDΪ0 which contains |>3)g. Since
36 is a maximal element of ^(5^33; 2), it follows that 3£ is a maximal
element of M(®g33; 2). Hence, 02{mλ) g ϊ . The reverse containment
holds since ^-subgroups of %Rί are cyclic, the cyclicity holding since
q e O JL. Hence, O2(2Ki) = X. But by construction, £> Π 2Jΐ Z) |>, so § is
not a S2-subgroup of SD .̂ Hence,

I O3,(iV(3Q) | 2 > | φ n 2 « | > | φ | = | O3,(iV(*0)) |2 .

This contradiction shows that ξ> = |>, so that the lemma holds.

Case 4. Cd(33) is cyclic and H(®33; 2) is trivial.

First, suppose that for some B in 33*, C$(J3) contains an elementary
subgroup @ of order 8. Let 8 = C(B), 80 = O3,(S) By Lemma 14.7,
<®, C9(B)} £ 80 Let qr be an odd prime in ττ(80) and let S be a
£2fff-subgroup of 80 which contains C$(33) and admits 33. Let {$2, $tg}
be a Sylow system for β which admits S3. Suppose [33, ffiff] Φ 1, By
Lemma 14.11, we get O2(B) — 1. Since @ g ^ 2, Lemma 5.34 implies
that q 6 σ2, against σ2 — {3}. Hence, [33, ®q] = 1, so that 2) is a Sr-
subgroup of 80. Since @ S 80, it follows that ττ(®) £ σx U o2. Since
® is a 3'-group, and σ2 — {3}, we get π(®) £ €JX. Since @ is elemen-
tary of order 8, it follows that ® is a Z-group, Since M(23S); 2) is
trivial, F(80) is of odd order, so is cyclic. Hence, (8033)' £ F(80). In
In particular, [(7^(5), 33] £ F(S0) Π § = 1. This is not the case, since
C$(33) is cyclic. Thus, for each B in 33*, C^(B) contains no elemen-
tary subgroup of order 8.

Suppose C$(33) Φ 1. In this case, it follows that every abelian
subgroup of 4? which admits 33 is cyclic. Let Tt be an element of
+s/Z9*(®) which contains JV(φ). Since Έl contains an element of ^ ( 2 ) ,
it follows that O2(SK) Φ 1. By Lemma 13.1, O2,(3ft) = 1. Hence, O2(SK)
is of symplectic type, against Theorems 13.5, 13.6, 13.7. Hence,

cm = i.
Suppose i?G 33* and Cϋ(B) is non abelian. Let £>0 = C^(B)9 and

choose JBj e S3 — <£>. Then ^>0<^i) is a Frobenius group, so Z(φ0) is
non cyclic. Let 8 = C(B), 20 = O8,(8). By Lemma 14.7, <©, ξ)0> £ 80.
Let g = F(S0) Since kl(®33; 2) is trivial, | g | is odd. Since g is a
3f-group, and since σ2 = {3}, it follows that Cd(I) is cyclic for every
element / of φj Thus if IeZ(ξ>Q), then >̂ό centralizes Cδ(7). Since
% = < C 5 ( I ) | I G Z ( ^ 0 ) # > , it follows that φί centralizes g, so § ; g g .
Since | g I is odd, we conclude that C${B) is abelian for every B in
33*. Thus, for each B in 33*, either cJ(B) = 1 or CΦ(JB) is homocyclic
on 2 generators.

Suppose the lemma is false. Since § = (C$(B) | ί?e33*>, it fol-
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lows that for some B in S3*, C9(B) is not permutable with S . Let
£ = C{B), So = O8,(S). Thus, by Lemma 14.7, ® £ So and Q δ ) S S 0 .
Let ξ>0 = Cξ,{B). Let φ x be a S2-subgroup of So which admits S3 and
contains φ 0 . By Lemma 6.2, there is C in C(S3) such that φf £ φ
Since C(S3) £ 8, it follows that £f £ So, so £f £ So Π £ = # 0 . This
implies that £>0 is a S2-subgroup of So.

Let Sx be a S2,-subgroup of 2Q which contains 5). Since 2λ and
£>0 are permutable, it follows that 2) c 8 l β Let g e π(8i) be chosen so
that a Sp-subgroup of Si is permutable with φo> admits S3, and is
not contained in ®. Let g = £o&33. By Lemma 14.11, O2(g) = 1.
Since q > 5, and since £>0 is abelian with m(φ0) = 2, and since S3 is
elementary of order 9, it follows that G <] g.

Since σ2 = {3}, it follows that Ca(H) is cyclic for every involution H
of φ 0 . Since £>0 is represented faithfully on O, it follows that Cα(£>0) —1
Let 2B be a minimal normal subgroup of % with 2B g O. Then 2B
is elementary of order q3. In particular, q e 7Γ3 U ̂ r4. By Theorems
10.2 and 10.8, it follows that J*f{q) S ^ ^ * (©). Let @ = M(%), and
let Λ be a S2,3,ρ-subgroup of @ which contains %. Let {̂ 2, β3, ffij be
a Sylow system of β with § 0 S $2, 3 3 ^ ^ 3, O S Λff Since 3 e cr2, $ 3

normalizes Bq. By Lemma 14.7, ξ>0 S O2(^2^3). If the containment
is proper, let |>0/£0 be a chief factor of O^Ά)^ with ^ 0 s O2($2££3).
Then ^>0 = Cιo(B) and |>o/€>o is a four-group. This implies that |>0 is
the direct product of ξ>0 and a four-group, since S3 acts faithfully on
|>0. But 02(«) = 1, so ^o is represented faithfully on Off(Λ). This
implies that q e σ2. This contradiction yields that £>0 = O2(S2^3).
Hence, O8,(β) = %0®q, so that βff char O3,($) < fi.

Since C® (Jϊ) is cyclic for all involutions H of φo> it follows that
Cftg(£0) = 1. P Let ϊ = Ωy{Z{$tq)). Thus, ϊ is elementary of order (?3

and is an irreducible £>o33-grc>up. We argue that ϊ = SB. Otherwise,
<36, 2δ> is elementary of order q6, so that q e σ2. Hence, 36 = SB.

We next argue that B centralizes ίϊff. Suppose false. Let §q =
®q n C(£). Thus, ®q admits ^0S3 and I , c &q. Let 2) be a subgroup
of $ΐq which admits $0%5 and is minimal subject to [2), B] Φ 1. Then,
B centralizes />(?)), and [?), <£>] = 2). Hence, /)(2)) s Z(2)), by
Lemma 0.8.5. By 0.3.6, we get that 2) is of exponent g. If | 2)| >g 3 ,
then g e σ2. Hence, 2) is elementary of order qd. This implies that
2)ϊ is elementary of order q6, so again we get q e σ2. This contradic-
tion forces Stq £ C(B).

Set <5> = S30, and let S3i, S32, S33 be the remaining subgroups of
S3 of order 3. Since £>0S3, is a Frobenius group, it follows that
C (̂SSί) Φl, i = 1, 2, 3. By Lemma 6.2, it follows that

JV(S3) - iV@(SS) C(33) .

Since S30 = C*(Oq,,q(&)IOq,(®)), it follows that 33O < iV(S3).
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Now S3 acts faithfully on φ, so φ 0 c φ Hence, for some
i G {1, 2, 3}, C$(S3{) ^ 1. We may assume notation is chosen so that
C«(23i) ^ l Set φi = Cβ(S3i), so that φ x is a homocyclic abelian
group with m(φi) = 2. Let Si = C(S5i) and let Si be a 52,3,g-subgroup
of S : which contains C^SS^SS. Let & = O^SO By Lemma 14.7,
Qi a Si> where Oχ = Cβff(SBj) As we have seen, d 2 ^ 1. Also, φf is a
S2-subgroup of gk, by Lemma 6.2, where C is a suitable element of
C(S3). Since m(φi) = 2, and φί = 1, it follows that fa is g-closed.
Since fa Π Stq Φ 1, it follows that 0,(^0 S @*> since j&(q) S ^T*(@)
and C{X) contains an elementary subgroup of Stg of order qz for
every X in Λβ. Also, since stf{q) S ^T*(®), JVίO^gi)) S @» so
φf S @. Since ©f e M(33; 2), Lemma 14.7 implies that £f S O3,(@).
Since £>0 is a S2-subgroup of O3,(@), it follows that for some D in
^(23), ^ P S £o This is absurd, since ^ centralizes φf27, while Q^
is a Frobenius group. The proof is complete.

LEMMA 14.16. With the preceding notation, set S = φ 0r/(C(S3)),
9K = JV(S). TΛe^ SJΪ is tλe unique element of ^£19^{®) which con-
tains 95S and S = Or,(2K).

Proof. By Lemma 14.15, 8 is a subgroup of ($. We will show
that 8 is solvable. Let 3 = ^(€0 We can then choose B in S3* such
that 3o = C8(B) Φ 1. Let Sx = Cfl(B) = Or,(C(B)) . C,(5). Thus, 8 t

is solvable, and

n »ί = n s? = « s & * l .
ices a e©

Thus, 8 a JV($). Since © is an iV-group, JV(ίϊ) is solvable. So 2 is
solvable.

Since 8 is solvable, Wfl is solvable.
Suppose @ 6 ^bi(©), S33 S @. By Lemma 14.7, 8 £ Or,(@). By

maximality of φ, § is a <S2-subgroup of Or,(@). Choose

and let D be a Sy-subgroup of Or,(@) which admits S3 and is permu-
table with φ. Suppose [Q, S3] ^ 1. By Lemma 14.13, we get
O2(£DS3) = 1, and so O2(£Q) = 1, as £ D <j φQS3. However, this
violates Lemma 14.12. We conclude that [O, S3] = 1. This implies
that Or,(C(S3)) contains a S2,-subgroup of Or,(@), and so Or,(@) =
8 <| @. This completes the proof.

We now indicate explicitly the dependence of Tt on the various
subgroups in question. Let 33 be an elementary subgroup of 91 of
order r2. Then let ^ be a maximal element of kl(3ΐ; 2). Then set

φ, 31) = JV(φ Or,(C(S3))).



NONSOLVABLE FINITE GROUPS ALL OF WHOSE LOCAL SUBGROUPS 235

LEMMA 14.17. C(33) S 3ft(33, £, 31) /or α« relevant φ, ίH, 33.

Proo/. By Lemma 14.14, (7(35) is r'-elosed. Let m =
Since SJί Ξ2 Or,(C(33)), it suffices to show that SDZ contains a Sr-subgroup
of C(33).

Case 1. There is a Sr-subgroup of 9i0 of C(33) which normalizes φ

Since 3ΐ0 normalizes £ and 0r,(C(33)), we have 3l0 £ H7Ϊ, and we
are done.

Case 2. JV(φ) contains no Sr-subgroup of C(33).

Since 3ϊ is a £r-subgroup of .©, we have 31' ^ 1. By Lemma 14.1,
Z(9t) is cyclic. Since reπ2, 33 char CR(S3), as 33 = ^((^(33)). Hence,
JVR(S3) 3 d(SB), and so | 33* | > r2 - r, where

Let 31 be a Sr-subgroup of C(S3). Choose G in © such that
SKS31*. Thus, 33 normalizes $G. Since JVRβ(SB) D C ^ ( S B ) , it follows
that I 33** I > r2 - r, where 33** = {B \ B e 33*, CΦG(B) Φ 1}. Hence,
sg* n sβ** φ 0 β B y Lemma 6.2, we get £ = £G ί 7 for some C in C(33).
Thus, U normalizes §°9 and §tc normalizes $QGC = $ . Since ^ is a
Sr-subgroup of C(33), we see that this case does not occur. The
proof is complete.

LEMMA 14.18. Suppose 33i, 332 are elementary subgroups of 9ΐ of
order r\ Then SW^, φ, SI) = 2K(332, φ, Sft).

Proof. We may assume that 33i Φ 332. Hence, 3ϊ' Φ 1, since
r e τr2. Choose U e ^ ( 9 ϊ ) . We assume without loss of generality that
» 1 = U.

Let 9t0 = 33!332, a non abelian group of order r3 and exponent r.
Let Sfti, 3ϊ2 be distinct subgroups of 3i0 of order r2. Let £)< be a S2,-
subgroup of Or/fCίSli)) which admits 3ΐ0, i = 1,2; ®^ exists since
Or,(C(9ft4)) < JV(Sft4) and 5ft0 £ JV(S*4). Then ££>, = ^O r,(C(^)), i = 1, 2.
Suppose we can show that % centralizes ®x. In this case, we get
§2)2=)®!, so by symmetry, | ® 2 | = l©i|> so that $<§),. = ^ ® 2 . Thus,
it suffices to show that 9ΐ2 centralizes SDlβ

Since ξ>®! is a solvable group which admits 9l0, for each prime
q e π(®0, there is a Sp-subgroup £} of ®x which admits 3ΐ0 and is
permutable with ξ>. Suppose by way of contradiction that [9ΐ0, D] Φ 1.
By Lemma 14.12, O2(££}) Φ 1. So O2(^09ΐo) ^ 1, as
This violates Lemma 14.13. The proof is complete.
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We may now write 271(93, £>, 9ΐ) = 2R(φ, 31), without ambiguity.

LEMMA 14.19. N(Q) s 2R(φ, 9t).

Proo/. Set 3K - 2R(£, 3t), 3? = iV(£), iV0 = Or,(9i). Since % is a
maximal element of M(9ΐ; 2), § is a S2-subgroup of 3ZQ. Let 95 be an
elementary subgroup of ?H of order r2, and let SΣ)0 be a S2,-subgroup
of 9̂ 0 which admits 35. By Lemmas 14.12 and 14.13, 35 centralizes
®o, so ®0 £ φ . Or,(C(5B)) g SK.

Case 1. Sft' = 1.

Here we get 3ίo35 < 9i, so it suffices to show that JVR(93) £ 2>ϊ.
Since JV*(93) normalizes C(35), it follows that JVa(S3) normalizes £> and
Or,(C(35)), so iV*(35) £ 2R.

Case 2. 31' Φ 1.

Let 9ΐo = SI Π O,,,r(9i), so that OrSr(9ϊ) - 5Ro3lo. First, suppose
that 3ϊo is not of symplectic type. Let U be a non cyclic character-
istic elementary subgroup of 3t0. Thus, 9? = 9Z0#»W- Since Or,{W) =
§ Or,(C(U)), we get JVW(11) £ SK. We may therefore assume that
9ϊ0 is of symplectic type. Let 3ΐ* = βi(9to) By Lemma 14.17,

Or,(2R) =

so iVR(3l*) £ 2B. Since m = ^oiy(9ΐ*), the proof is complete.

LEMMA 14.20. For each elementary subgroup 35 of 3ΐ o/ order r2,
O2(SK)35 e ^ # * (®), wftere S)ΐ - 2R(φ, Sft).

Proof. Set £ 0 = O2(SK). We first show that 35 centralizes
Let 8 = Or,(2R), so that 8 = §Or,(C(§8)). Hence, 35 centralizes
F(2/Qo), since | F(8/§0) I is odd. Hence, [35, Q] centralizes F(S/φ0).
Since [35, ©] S φ, it follows that [35, φ] S C8(F(S/φ0)) Π φ = ©0

Since [̂ >, 35] S § 0 , and since 35 is represented faithfully on φ, 35
is represented faithfully on £>0. In particular, φ 0 ^ l

Let £f= {© I @ G S^ol(®), >̂O35 £ @ g 3K}. Suppose by way of con-
tradiction that S^Φ 0. Choose © in ^ such that | @ Π 8 |2 is maximal.
Set @0 = Or,(@). Since @ n 8 € M(35; r'), we get @ Π 8 = @0 Π 8 2 £ 0

Let ^ b e a S2-subgroup of @0 Π 8 which contains £>0 and admits 35,
and let Q% be a S2-subgroup of @0 which contains Qx and admits 35.
Suppose ^>! c ^ 2 . Since >̂ is a maximal element of M(35; 2), it follows
that £ 0 c φ. Since 35 centralizes φ/«g>0> we conclude that C$(^δ) ^ 1.



NONSOLVABLE FINITE GROUPS ALL OF WHOSE LOCAL SUBGROUPS 237

By Lemma 6.2, £>2 £ $c for some C in C(S3). Hence, £ 2 s 8, so
fegSn® = 8Πδo, against | £21 > | & | - | 8 Π @012 We conclude
that £>! = £ 2.

We next argue that iV(φi) S 2R. This is clear if §i i s a S2-sub-
group of S, by Lemma 14.18. Otherwise, | N($x) n S |2 > | @ Π S |2, so
by maximality of |@ n 8 |2, we get JV(&) £ 2R. Since @ = @0JVβ(Φi)f
it follows that @0 g 2K.

Since ^ g 2ft and @0 g 3ft, it follows that for some odd prime
g, @0 contains a ^-subgroup @ff which is normalized by S3, is per-
mutable with φi a n d satisfies @g g 3ft. By Lemma 14.13, Oz(!g&q) = 1,
since 0*(§&q) e M(@,SS; 2).

1. r = 3.

Since q Φ 3, it follows that g e σQ U σlβ Since § ! is represented
faithfully on O = Oq{Q&q), it follows that Q(I) is cyclic for all
involutions / of φ l β Hence, $t contains no elementary subgroup of
order 8, by Lemma 5.34. On the other hand, 33 is represented faith-
fully on φi, so ξ>! contains a four-group S3. Since CD(V) is cyclic
for all V in 23*, it follows that m(O) ^ 3. Thus, ^L33 is isomorphic
to a subgroup of GL(S, g). This is not the case, since S3 is represent-
ed faithfully on φ1#

Case 2. r ^ 3.

Choose B in 93* such that B does not centralize CH{B). Since
r > 5, it follows that Cϋι{B) contains a four-group (£. Let Do be a
subgroup of O which admits <@, B} and is minimal subject to
[}Q0, ΰ] ^ 1. The minimality of £H0 guarantees that O0 is of exponent
q. We argue that q > r. Otherwise, we get m(O0) > 3. Since O0 =
CaQ(E) for some £7 in Gc*, this forces g g σ0 U σx U σ2. Hence, q > r.

By maximality of r, it follows that qeσo{J σ^ Hence, C&(E) is
cyclic for all E in @*. Hence, m(Ω,) ^ 3, and §£& is isomorphic to a
subgroup of GL(3, g). This is not the case, since S3 is represented
faithfully on £>x. The proof is complete.

LEMMA 14.21. For each elementary subgroup S3 of 3ΐ of order r\
one of the following holds:

(a) 2 3 G ^ * ( © ) .

(b) C$(33) contains no four-group.

Proof. Suppose S3 is a four-group contained in C(33). Choose
B e S3* and set (E = C(B) a S3S3 = S3 x S3. Let <E0 - Or,((E). By
Lemma 14.7, (£0 contains every element of Me(S3; r'). In particular,
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33 £ £ 0 . Let g be an odd prime in π(<$>0), and let Ê  be a S^-sub-
group of Ko which contains 33 and admits 33. Let {(£2, (£J be a
Sylow system of &1 which admits 33 and satisfies 33 £ (£2. Suppose
by way of contradiction that [33, (£J =£ 1. By Lemma 14.13, kl(33Q2; 2)
is trivial. Hence, 33 is represented faithfully on Og(33(£i), and 33 is
represented non trivially on D^SSO^). Choose F in 33* such that 33
does not centralize 0,(33^0 fl C(7) = Q, say. Thus, <F>eH(3SΠ; 2),
against Lemma 4.13. This contradiction implies that 33 centralizes
every element of Mg(33; {2, r}'). Since B is an arbitrary element of
33*, it follows that S3 centralizes every element of H(33; {2, r}')

Choose @ e &>ol (33), 33 £ @. Let Θo = 0r,(<3). By the preceding
argument, C@o(33) contains a S2,-subgroup of @0. Since Ce(S3) ^ 1,
Lemma 6.2 implies that for some C in C(33), @0 Π £>c contains a £2-
subgroup of Θo. Since £ c £ Sft(£, W = 3ft(£, 31), it follows that

If 5ft' - 1, then @033 <\ @. Since Cδ(33) Φ 1, it follows that
, 3Ϊ) covers iV(^)/C(33). Since C(a5) £ 3K($, 3Ϊ), it follows that

iV(33) £ 2R(#, 31). Since @ = @0 ^(33), we get @ £ SK(€>, 3Ϊ), and we
are done.

Suppose $R' ^ 1. Let 36 be a Sr-subgroup of @ n SK(£, 31) which
contains S3 and let 2) be a Sr-subgroup of Θ which contains 36.
Suppose ϊ c ϊ ) . Let 36O be an elementary subgroup of 36 of order r2

with XciV?)(X0). By Lemma 14.14 applied to Xo? we get

Since at least r subgroups of Xo of order r have non trivial fixed
points on φ, Lemma 6.2 implies that JV(φ) covers JV(ϊo)/C(ϊo). Since
iV(φ) £ SK(φ, 5ft), it follows that JV(3£0) £ 5W(£, 5ft). Hence, 36-2).

Let ϊ i = ϊ f l OrSr(K). If 3£i is not of symplectic type, then 3^
contains a non cyclic characteristic elementary subgroup ϊ 2 . As above,
we get iV(362) £ 3K(ξ>, 5ft). We may therefore assume that 36X is of
symplectic type. Since Jί[ c 33, it follows that C$(%,[) Φ 1. By Lemma
6.2, it follows that N(Q) covers N(XJ/C(3ld. Since iV(φ) £ fDt(Q, 5ft),
it follows that @ £ SK(φ, 5ft). The proof is complete.

LEMMA 14.22. Suppose 33 is cm elementary subgroup of 5ft o/
r2, B e 33* απd C$(β) contains an elementary subgroup which is

normalized by 33 but is not centralized by 33. Then N((B}) £ 3K(,g>, 5ft).

Proo/. Set 33O = <5>, 9i - JV(SB0), 9ί0 - Or,(9l). Let © be an
elementary subgroup of CΦ(B) which admits 33 and is not centralized
by 33. Set % = [©, 33], 33 - 33O x 33X. Then 33,3 is a Frobenius
group.
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Choose q e 7r(9Go), q Φ 2, and let % be a S^-subgroup of 9ΪO which
contains % and admits 33. Let {9i2,$ftj be a Sylow system of ^
which admits S3 with g £ 3ΐ2. Suppose by way of contradiction that
[9ΐg, S3] ^ 1. By Lemma 14.13, 0,(9^33) = 1, so g is represented faith-
fully on 0,(3^33). Let C - C(33) n 0,(9^83). Since 33O centralizes 9ΐ0,
and since 33^ is a Frobenius group, it follows that <g, ©> contains
an elementary subgroup of order q3. On the other hand, <g, Gc> § φ®,
where 3) = Or,(C(S3)), by Lemma 14.15. Since 02(£®) ^ 1, we get
e > 3. This contradiction shows that S3 centralizes a S2,-subgroup of
%. %l0. By Lemma 6.2, there is C in C(S5) such that 9i0 Π ̂ σ contains
a S2-subgroup of 9ΐ0. Thus, % S 2W(Φ, 9ΐ)

Let 2) be a Sr-subgroup of 9ΐ which contains 33. By Lemma 6.2
applied to 2) Π 3K(§, Sft), we get that 2) S 2R(φ, 3ϊ). Let

By Lemma 6.2 applied to 9ί0, we get N»($)o) S 2B(φ, SR). The proof is
complete.

Hypothesis 14.2 cτ2 g {3}.

Lemmas 14.23 through 14.26 are proved under Hypothesis 14.2.
We retain our earlier notation. Hence, r > 5. In the following
lemmas, 3ΐ is a Sr-subgroup of ©, § is a maximal element of M(3ΐ; 2),
Sft = 2K(φ, 3fl), 2; is a @2-subgroup of 2K which is permutable with 3ΐ,
£o = Oa(SK), and 3S = fl^/J^SK)), (E - CΛ(SB). Since 33 < S W e ^ ^ ( ® ) ,
it follows that (£ = C(3S).

As in § 13, let <J^= ^ (SK) be the set of all involutions I of SK

such that CS R(J)e.^r*(®), and let ^P(SK) be the set of all involutions
/ of m such that

(a) r\\Cm(I)\,
(b) the normal closure of I in Wl is abelian.

All of this notation will be used without further comment.

LEMMA 14.23. $^(31) ^W and if 31 ̂  W, then ξ)05ft <\ 2ft.

Proo/. Let S = Or,(Wl) By Lemma 14.2, S3ϊ < SK. Also, 8 =
$2), where ® is a AS2,-subgroup of S which admits 3ΐ. By Lemma
14.16 and 14.18, ^(Sΐ) centralizes © Let g = F(S mod ^ 0 ) , so that
% = φo(g n ®). Thus, β^Si) centralizes g/§ 0 . Since

it follows that fl^St) stabilizes the chain S/^o 2 %/®0 2 1. Since S is
a r'-group, fl^Sl) centralizes 2/$0. Hence,
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so AίStyΦo char 8^(3*) char 83ΐ < 3ft. This establishes the first as-
sertion. If [9ΐ, 5)] = 1, the second assertion follows by the same
argument. Suppose [®, 3ΐ] Φ 1. Let D be a Sg-subgroup of © which
admits 91 and satisfies [£}, 3ΐ] ^ 1. By Lemma 14.3, we have q > r.
By definition of r, G is cyclic and is a S^-subgroup of SW. Thus, £}
is incident with Og,,g($R)/Og,($Jl) and is not cetralized by 9ΐ. Hence,
31 g W, since Hft' centralizes 09,,,(Hft)/Or(3ft), and Sft does not. The
proof is complete.

LEMMA 14.24. If ϊk is any subgroup of 91 wMcfc is permutable

with %, then 91 = (3ί Π K)(Sl Π iV(J(2:))). Furthermore, every charac-

teristic subgroup of 9ί is permutable with X.

Proof. By Lemma 14.2, lr(W) = 1, and so the final statement
of the lemma holds.

Since r > 5, Theorem 1 of [43] applied to SΠft implies that §t =

(^ Π C(Z(ϊ)))(5l ΓΊ iV(J(£))). Thus, it suffices to show that

si n c(Z(s» s e .

Let 2 = XSflo, where 3ΐ0 = 9t n C(Z(S:)). Since £5R is a group by
hypothesis, we get S = C^(Z(2:)).

Case 1 . 9 1 S SK'.

By Lemma 14.24, we heve £>031 <] SK. Hence, ^)03ϊ0 <] S. Since
it follows that &>&&• Thus, we may view S3 as a

Hence, [SB, %] <\ 2. If [93, 9t0] Φ 1, then

[93, %] Π Z(S) ^ 1 ,

against Z(%) s C(3ί0) and [93, 3t0] Π C(9ΪO) - 1.

Case 2. 3ΐ g SK'.

By Lemmas 14.10 and 14.19, we get 91' = 1. Let 93 - Ωffi).
Since 9ΐ is an abelian Sylow subgroup of ®, A&($8) ~ A&(ίR). Hence,
93 contains elements B19 Bt which are ©-conjugate but are not $Dΐ-
conjugate. By Lemma 14.19, we conclude that CΦ(S3) = 1. By
Lemma 14.23, £>093 <\ SK, and so 95 centralizes §/φo Since Cs(95) = 1,
we get § = φ 0 .

Since ίr(SW) = 1, we get £03ΐ 0 ΪSR. We conclude that £03ΐ < 8,
so the argument of Case 1 applies. The proof is complete.
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The next lemma is the heart of the matter, and is difficult.

LEMMA 14.25.

Proof. Let £f be the set of all solvable subgroups @ of © such
that

(a) <5g3tt.

(b) There is / in ^ such that @ contains a S2,r-subgroup of

CU(I). Suppose ^ = 0 . Then Cm(I) e^t*(®) for all I in £
and so the lemma follows by definition of ^ We may assume by
way of contradiction that S? Φ 0 .

Among all elements of £f, choose @ such that
(a) I & n Wl I, > I @o n 2R |2 for all @0 in ^
(b) if @0 e ^f and I @ n SW |2 = I @0 n 9K |» then | @ |2 > | @012,
(c) if @0 e ^ and I @ n SK |2 = I @o Π 5W |, and | @ |2 = | @012, then

I JΓ(@) I ̂  I π(@0) |.

Choose I in J^" and a iS2,r-subgroup ^ of Cw(/) such that & § @.

Case 1. Sy-subgroups of & are non cyclic.

Let 35 be an elementary subgroup of $ of order r2. Since S3 S @
and @gSK, it follows that S5^9K*(©). By Lemma 14.21, C$(S3)
contains no four-group. Thus, / is the only involution of C$(39).
(Note that by definition of S, we have (I}M S ^o = O2(9K) S φ.)

Let 2K0 be a S2,r-subgroup of SPΪ Π @ which contains β and let @0

be a S2>r-subgroup of @ which contains SK0. Let % = O2(3K0). By
Lemma 14.7, 9l0 is the subgroup of Έl0 generated by all the elements
of M ί̂SB; 2). Suppose %cO2(@0). Since a5^0G^^*(@), it follows
that £ 0 g @. Hence, % c ^o^o Hence, | Nm{%) |2 > | mo |2. On the
other hand, since % c O2(@0), it follows that iV(9ϊo) g SK Hence,
JVίSRo) G ̂  and I iV(%) Π 3K |2 > | @ Π SR |2, against our choice of @.
We conclude that 9ΪO = O2(@0). Here we are again using Lemma 14.7
to conclude that 3ΐ0 S O2(@0)

Since S3φo£*^*(©), w e get ^ 0 £ @ Hence,

and so iV(9ϊo) S 9ft. In particular, @0 = Sft0, and so @ is not a 2, r-
group. The minimality of I π{&) \ implies that @ = @0£X where O is
a g-group for some prime g Φ 2, r.

Let {@2, @r} be a Sylow system of @0 which is permutable with
O. Let S = @2O. We argue that O2(S) Φ 1. Suppose false. Now
CAT) £ @2 and 7 is the only involution of C$(B). On the other
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hand, by definition of ^ the normal closure of I in 3K is abelian, so
Cϋo(I) contains an elementary subgroup © of order 16. Thus, @ is
represented faithfully on Oq(2), so by Lemma 5.34, ©* contains an
element E such that Oq(2) Π C(®) contains an elementary subgroup
of order <f. Since <#> e kl (0ff(S) n C(#); 2), it follows that

This contradiction implies that O2(8) Φ 1.

Since (^(33) =£ 1, Lemma 14.7 implies that

iV(33) = C(33) (iV(33) Π N(Q)) .

By Lemmas 14.17, 14.18, and 14.19, we get iV(3B) g 3ft In particular,
33 does not centralize £}. Since O2(S) ^ 1, we get q e OΊ U tf2 Suppose
# < r. In this case, since <Ŝ <ms(Ω) = 0 and ^<m3(@r) = 0 , it follows
that @r <] @rD, by Lemma 0.8.5. Thus, @r is non abelian, since
95 <f\ @rD. If Θ r is of symplectic type, then &r g S3 and since
C§(@;) ^ 1, Lemma 14.7 implies that iV(@r) g 3K. This is not the
case, so @r contains a non cyclic characteristic elementary abelian
subgroup 330. Since I is the only involution of C$(33) and since 93O

normalizes SB, it follows that S30 centralizes /. Thus, we may assume
that S30 = 33. This contradiction forces q > r.

By maximality of r, we get q e σίf and so D is cyclic. Since
g > r, we get £} < O@r. Let @° = 9ΐ0O = Or/(@). Since 9ί0 contains
a four-group, we get O2(@°) ^ 1. Hence, O2(@) ^ 1. Since £1 g 2Ji,
we also have [Q, 33] =£ 1. This violates Lemma 14.13.

Case 2. Sr-subgroups of ίϊ are cyclic.

By definition of ^ , a Sr-subgroup ^ r of & is a non trivial cyclic
group. Let 2t = /^(S,.), and let S3 be an elementary subgroup of Έl
of order r2 which contains 2ί. Since S does not centralize / and
since </>¥ is abelian, Lemma 14.22 implies that N{%) g 2K.

Case 2a. Sr-subgroups of 2JΪ Π @ are non cyclic.

Again, let SK0 be a S2,r-subgroup of SK n @ which contains ^
and let @0 be a S2,r-subgroup of @ which contains 2R0. Let 9ί0 —
O2(9K0). By Lemma 14.20, £ 0 g %, so | JV̂ ίSRo) |2 > | 3K012. This implies
that N{%) g 9K and that 2K0 - @0. By minimality of | ττ(@) |, we get
@ = @0£X where Q is a g-group for some odd prime q Φ 2, r. As
above, we get a contradiction to Lemma 14.13.

Case 2b. Sr-subgroups of 2K Π @ are cyclic.
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Again, let TlQ be a S2,r-subgroup of 33Z Π @ which contains ίΐ and
let @0 be a S2,r-subgroup of @ which contains Wl0. Let {SK2, Tlr},
{@2, @r} be Sylow systems of Wl0, @0 respectively with $ r S SKr s @r.
Since iV(2t) S 3ft and Wr is cyclic, we get Wlr = @r.

Since SKr = @r, it follows that O2(SK0) s O2(@0)

Case 2b(i). O2(2K0) c O2(@0).

In this case, we get iV(O2(2K0)) §£ SK, so by maximality of
1 @ Π Hft |2, we get that 3K2 is a S2-subgroup of iV^O^o)) . In particular,

We assume without loss of generality that M2 S 2, Ttr S 9ΐ.
Since 2K2 is a @2-subgroup of ^(02(^0)), it follows that O2(SK0) is a
maximal element of M^Sί; 2), and so O2(SK0) 3 φ. Hence, O2(2K0) is
permutable with 9ΐ and with β^SlJ By Theorem 1 of [43] applied
to OzCM^Ωffi), it follows that O2(3K0) contains a characteristic subgroup
3£ =£ 1 such that JVR(-X") is non cyclic. Since 02(^0) c O2(@0)> it follows
that iV(ϊ) g SK. This is not the case by Lemma 14.20.

Case 2b(ii). O2(2K0) = O2(@0).

Since @r = 3Kr is cyclic, @0 - O2(@0)iV@0(§I), and so @0 s SK. By
minimality of | π(@) |, we get @ = @0£X where Q is a g-group for
some prime q Φ 2, r, and where O is permutable with @2 and with

We argue that 02(@2O) ^ 1. Suppose false. Since & £ @, it
follows that @2 contains an elementary subgroup Gr of order 8. Since
@ is represented faithfully on Og(@2Q), it follows that there is E in @*
such that 09(@2O) Π ̂ (£7) is non cyclic. Hence, q e σ2. By definition
of r, we get r > q, and by Lemma 14.8, we get q e π2. By Lemma
0.8.5, we get 2Kr < SKrO, and so D S SW. This is not the case, so
02(@2O) Φ 1.

Since O2(@2Cl) ^ 1, we have q e OΊ U σ2. If g e σ2, then by Lemma
14.8, q G τr2, and by definition of r, we get q < r. By Lemma 0.8.5,
we get Wlr <] SKrO. This implies that O S 2TC. We conclude that
<? G OΊ, so that O is cyclic.

Since £1 g Έi and JV(St) S 3K, it follows that SKrQ is a Frobenius
group with kernel O. This implies that D Π SK = 1, since §1 central-
izes a S2,-subgroup of Or,{W).

Since 31 does not centralize D, 21 does not centralize Oq,tq(β)IOq,(β) =
JO, and so SI g ©'. Since SI = ^(SK,), it follows that 3K2Q <] @.
Since q = 1 (mod r), it follows that q > 7.

We next show that 0,(2)^0) = 1. Suppose false. Let ® = 02(@),
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so that ® Φ 1. Let @* = JV(®). Then fl^iD) s ©*, and so @* e J?f
This implies that Wl2 is a £2-subgroup of ©*, by the extremal nature
of @. By Lemma 13.1, O2,(@*) = 1, so by Lemma 0.7.3, M@*(3K2) is
trivial, against Oq(WlJO) e M@*(3K2). This contradiction shows that
oq(m2£ι) = l.

Since q > 7, it follows from Theorem 1 of [43] that SK2 contains
a characteristic subgroup 2) =£ 1 such that 3) <1 2ft2CL Hence, 2) <] @,
since 9ft29Kr is 2-closed.

If S?ϊ2 is not a S2-subgroup of @, then 2K2 is not a £2-subgroup
of iV(2)). Since @ S iV(2)), we have | @ n 3ft |2 ^ | iV(2)) n SK |2, and
since | @ |2 = I 3K |2 < I N($)) |2, the extremal nature of @ is violated.
We conclude that ϋ0ΐ2 = £ is a S2-subgroup of ©.

Let Ϊ ! - Z(S), ϊ 2 = J(2:), 3c3 - ZίJite)). Let

JSf = {i I 1 <: i ^ 3, iVgi (ϊi) is non cyclic} ,

N' = {i 11 ^ i ^ 3,

Suppose JVΠ N' Φ 0 . Choose ieNΠ N'. By Lemma 14.20, we get
-A^(^ ) e y / * ( 6 ) , and so @ S HR. This is not the case, so ΛΓn N' =
0 . Since g > 7, Lemma 5.53 implies that \N' \ > 2. Hence, | N \ ̂  1.
Since §1 g iV^^) for i = 1, 2, 3, Lemma 5.53 implies that r — 5. Also,
iVΛ(Sε) is cyclic.

Suppose leN and that St centralizes Z(X). Then lgJV', so ©
contains a minimal normal subgroup which is not centralized by £}.
This implies that SI does not centralize Z(%), by a well known
property of Frobenius groups. We conclude that either 1 £ N or

[Z(£), sq * l .

Case a. Sΐ S fliίSft)'.

Let SS - β^SR), S = 233, so that §35 < 8. Since St normalizes S,
it follows that each element of X induces an automorphism of §33/φSC
of determinant 1 (where we have identified £>23/.£>SI with a 2-dimensional
vector space over Fr). Thus, 5E/φ is isomorphic to a subgroup of
SL(2, 5), whose S2-subgroups are quaternion. If 2t does not centralize
93, it follows by an easy omitted argument that Jr

1(S) S § , which
gives \N\ > 2. This is not the case, so §t centralizes S3, so that §1
centralizes Z(SE). Hence, 1 ί iV. Since the unique involution of %/fg
inverts §S3/§2t, it follows that J ^ g ξ , so that | Λ Γ | > 2 . This
contradiction shows that this case does not arise.

Case β. SI g S3' and 91' ^ 1 (where 33 - ^ (

By Lemmas 14.10 and 14.19, we have 3ΐ S 2)Z'. By Lemma 14.2,
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9t S Nm(ifty. By 0.3.4, one of the following holds:
( i ) 3ΐ is the central product of a cyclic group and 33.
(ii) 3t = gp (A, B I [B, A] = C, [C, A] = BΛ%~\ C5 = [B, C] =

A5 = B5n = 1, n > 1, (β, 5) - 1>.
Here we also have used 0.3.8 to conclude that 9ΐ is not metacyclic.
If β(i) holds, then 3t' = 33', and if /9(ϋ) holds, 3*' - <C, B6"1'1}. In
both cases, SI91 is non cyclic.

If [21, S3] = 1, then since 33 <j 3K, we get [2F, S3] = 1, and so
leN, since Z(!E) £ i?2(SK). This is false, since we have already
shown that either 1 g 2V or [SI, Z(£)] ^ 1. We conclude that [21, S3] ̂  1.

Suppose le N. Then 2, 3 g ΛΓ. But the proof of Lemma 5.53 shows
that 81= ($ϊΓ\Nβ2))(?ίίnNβz)), and so either 2 e iV or 3 eN. It
follows that 1 g JV. By Lemma 5.53, we get 2 € N, and so 3 g JV.

Now SI normalizes ϊ , and so 31 g (SSS)'. But SI S 2R', and so
91 S SKI, where 3KX = iV^St). This implies that 4̂̂ (93) is not a {2, 5}-
group, and so 3 | | ^ κ ( a 3 ) | . Thus, φ0S3/^0S3' is a chief factor of SK.
Let 2δ be a S2,3-subgroup of ^(S3/33'), where 2B a Λ(3S/S3') = 3®2.
Thus, 2δ2 is a S2-subgroup of SSδ, and SB may be identified with a
subgroup of GL(33/S3')> and StSS'/SS' is a 1-dimensional subspace of
S3/S3' which is centralized by SΏ2 This implies that 2δ2 is cyclic of
order 2 or 4. Since 3 | | SB |, it follows that SB = Σ3.

Since §OS3/^OS3' is a chief factor of Sft, it follows that [31, S3] = S3',
and so /9(i) holds.

Since SίN, it follows that J^Z) §= φ, and as we have seen,
I £ : £ I = 2. Hence, 2 - φg, where g f = 1 and m(g) > d(S) - 1.

Let O be a <S3-subgroup of Hft which is permutable with X and
with 81. Let 3ft* = £3ΐn. Then φ is a S2-subgroup of Oβ,(SW*). Let
St = JVW.($) = £3ΐQo, where Qo £ D . Then £S3/£33' is a chief factor
of $. Since 1 g JV, it follows that Λ has a minimal normal subgroup
<£ such that C8((g) S S3'. Since £33 < Λ, we have © = [@, S3]. Choose
fε% — $> and let xeίR — S3' be chosen so that / inverts α?φ. Since
w(g) > d-l, it follows that | @: Cβ(/) | ^ 4. This implies that
[@, <ίc>] = @x is of order 24. Let /̂ be a 3-element of iVs(S3) chosen
so that 33 = <>, xy). Thus, (£,>=<©*,©**> is of order < 28 and S3
centralizes (g/(g0. Since © - [®, S3] we get © = <g0. Thus, | (g | = 28,
S3' £ C(@), and precisely 2 subgroups of 33/33' of order 5 have non
trivial fixed points on @. This is impossible since 3 | | A%(33/33') |.

Case 7. 31' = 1.

Case 7(i). Z\\Λn(pt)\.

Since 4̂̂ (31) ^ -4 (̂33), where 33 = Ωffi), and since Λ(33) centralizes
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Sί, it follows that Am(9ϊ) = Σs, and so £>33/.ξ> is a chief factor of
Nm($). The preceding argument may now be used to show that
Jίiφ) £ ξ>, so that IJVI > 2. Thus, this case does not arise.

Case τ(ii). 3Jf\Am(ΪR)\.

In this case, it follows that Am(?H) = -4t(Sft), and so 9ΐ §S 2ft'.
Hence, ^(SR) c4 β (9 t ) . We argue that -4̂ (91) is a £2-subgroup of
4̂®(9Ϊ). Namely, as we have already remarked, ^ c ϊ , so Am($t) Φ\+

Hence, St is the only subgroup of 9ΐ of order 5 which is centralized
by Λκ(3t). Since NA%m{AJ$i)) normalizes SI, and since JV(3t) £ SK, we
get that Am(?fc) is self normalizing in A&(ϋi). This implies that | Am(3l) \ =

Let *% be the set of all subgroups of 9ΐ of order 5 which have
non trivial fixed points on φ. Let X be an element of A&(3t) of
order 3. Hence, & Π &x = 0 , ^ Π &Σ~X = 0 , by Lemma 14.9.
Since 33 has exactly 6 subgroups of order 5, we get | ^ ? | ^ 3. If
| ^ | = 3, then we get | & \x — \& \x~γ, so that & = &x, as X
has order 3. This is absurd, so | & \ ̂  2. Since S3 acts faithfully
on fey we get | & \ = 2, ^ = {3ΐx, 9ΐ2}.

By Lemma 5.58, it follows that § = φi x § 2 , where ^ 4 = ^(9^^).
Since S I G ^ 5 , we choose notation so that §1=91!. Since <% admits
^(91), it follows that Am(3ϊ) normalizes 9t2. Thus, Am(ΪR) = (U)r

where U inverts 9ΐ2. Also, §t <j %% i = 1, 2, since 9̂ ^ <1 Nm($l), i =
1, 2, and since φ* <] 4?

Since CR(Z(a;)) = 1, it follows that J(£) < a SR. Hence,
This implies that D. centralizes Z ( ϊ ) . Hence, O centralizes ^.
Hence, <9ΐ2, S, O> £ C ( § 2 ί l ^(^)), so that <9ΐ2, a;, O> is solvable.
Thus, <3t2, a:, £ι) = © 6 SK Also, | © n SK |2 = I a: | = | @ Π 3K |2, and
I © |2 = I ϊ I = |@|2. For each prime t in 7r(©), we may repeat all the
above arguments with a suitable S2,5,t-subgroup of © in the role of
@. We conclude that % <\ X%. This is not the case, so the proof
is complete.

LEMMA 14.26. | S3 [ ̂  4.

Proof. Suppose false. We will use Lemma 14.25 to imitate the
plan of § 13.

Let & - {VeS3*, r divides | Cm(V) |}. By Lemma 14.25, it follows
that

(14.2) Sg^.

Since r > 5, it follows that
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(14.3) if SΏ is a subgroup of 93 of index at most 4, then 2δn& Φ 0 ,
so in particular,

(14.4) C(23) a SK for all subgroups SB of S3 of index at most 4.

Let % be a S2-subgroup of Wl which is permutable with 3ΐ, and

let ©2 be a S2-subgroup of © which contains X. Then A (^(©2)) S 93.

If ^(Z©,)) n » =£ 0 , we get £ = ©2, by (14.2). Suppose

β,(Z(©2)) n ® = 0 .

In this case, 3t acts faithfully on 53. Let % - 31 n C{Z{%)). Then
3ΐo2: is a group, since £03ΐ <l 231. Let 9^ = [9ΐ0, 93]. Thus, since
93 a Z(£o), it follows that 93X < X. If 93X ^ 1, then 93, n Z(ϊ) ^ 1, so
2*! Π C(9ΐ0) ^ 1. This is false, and so 9^ = 1, whence 3ΪO = 1, as 3ΐ
acts faithfully on 93. By Theorem 1 of [43], it follows that J(X) <| 29ΐ.
Hence, by Lemma 14.20, N(J(X)) S SK> and so we have shown that

(14.5) X is a S2-subgroup of ©.

We next prove the analogue of Lemma 13.6 which we need:

(14.6) if 93O is of index 2 in 93 and / is an involution of HJi such
that C8(/) = 930, then [93, /] = <J>, where J e ^ .

Namely, £ 0 centralizes 93, and £>09ΐ <| 3K, so I normalizes $JR. If /

does not centralize 4?o5tyί?o> ^ X be an element of §09t of order r which

is inverted by /. Since r > 5, and since C8(/) is a hyperplane of 93,

we get that X centralizes 93. Thus, 93* = 2$ S -Λ and (14.6) holds.

If / centralizes φo^/Φo* then 3ΐ normalizes <J> = [93, / ] , and so 9ΐ

centralizes J, whence J e S g , / . This is (14.6).

Let 93* = F(ccl@(93); X). We will show that

(14.7) 93 a Z(93*) .

Suppose false. Choose G in © such that X = 93* a X, [X, 93] =£ 1.
The various portions of Lemma 13.6 which are required in the proof
of Lemma 13.7 have been established, and so (14.7) follows.

Next, we see that the analogue of Lemma 13.8 is available:

(14.8) ίΰl = C(93) i\ς(93*) ,

(14.9) One of the following holds:

( i ) 93*
( i i ) JVκ(

Namely, (14.8) is an immediate consequence of (14.7). As for (14.9),
if 9Ϊ is not faithful on 93, then (14.9) (i) holds by Lemma 14.25. If
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9t is faithful on 55, then 31 S iV(55*), so (14.9) (ii) holds by Lemma
14.20. Next, we get as in the proof of Lemma 13.9 that

(14.10)

Continuing, we will show that

(14.11) Lemma 13.10 holds.

Namely, we may assume that 55* §£ J^, and so we get that 3i is
faithful on 55. We may also assume that SI g X, so that 21 normalizes
ξ>09ΐ. Suppose SI acts faithfully on ^o^/^o By Lemma 5.34, there
is then A e 21* such that A inverts S^o/^o* where 33 S 3ΐ, and 23 is
elementary of order r2. Since r > 5, and since 33φo/Φo acts faithfully
on 55, it follows that | 55: C8(A) | > 24. This violates the hypothesis
that I 55: & | — 22. So SI* contains an element A which centralizes
Φo3ty©o Hence, 31 normalizes [55, A], which is of order 2 or 4, so 9ΐ
centralizes [55, A]. Let So = Cβ(St) 2 &. If Fe550, then since
[55, AY S ^> (14.11) follows. We may assume that 55O in a hyperplane
of 55 which contains V. Since SB is a hyperplane of 550, and since 3ΐ
normalizes 55O, it follows that SI centralizes φo5t/Φo This implies that

(14.11) holds, since we may take A to be any element of SI* which
does not centralize F.

We have already shown that Lemma 13.11 holds, and the proof
of Lemma 13.12 can be carried over verbatim, as it alluded to nothing
other than Lemma 5.34.

In order to show that Lemma 13.13 holds, we need a substitute
for Lemma 5.20:

(14.12) If 21 is an odd order subgroup of AJβ), and [SI, 55, 2B] = 2δ
is a 4-group, then SB* £ <J^

Namely, since SI £ ^(55), we have | SI | = 3. We may assume that
55* g ^ and so 9ΐ is faithful on 55. Let $ be a cyclic 3-subgroup of
SOΐ which maps onto SI, and let S = φo^Φ We assume without loss
of generality that Sβ normalizes 3i. Since [Sβ, 55] is a 4-group and
C (̂55) - 1, it follows that [5β, 31] = 1. Hence, 31 centralizes [5β, 55] =
SB, so (14.12) holds.

In proceeding through the proof of Lemma 13.11, we get that
SI is elementary of order Zv. Since y > 2, we get that 3 € σ29 whence
it follows that Seπ2. If 5̂ is any 3-group with S^cnffi) = 0 , it is
easy to check that every 2-subgroup of Autββ) is generated by 2
elements, this being true for every 2-subgroup of GL(2, 3). Hence,
we conclude that y — 2.

Since 31 is elementary of order 32, it follows that 2) centralizes
the S3,-subgroup of F(SK/C(S5)). In particular, 2) centralizes 91C(55)/C(55),
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and so does Si. Since | [S3, 3tJ | = 24, and since [S3, 2tJ admits 3t, it
follows that [93, %]* S 33 £ ^ " Hence, as Xo is of index 23 in S3G, it
follows that ϊ 0 Π J?G Φ 0 , and so C(ϊ0) £ 3ftG. Thus, S3 £ 3ft<% and
so [93, S36] = 1, against X = SB n S3* c SS*. We have thus shown that

(14.13) if G e © and | S3G: S3G n 3ft | ^ 2, then 33* £ 3ft.
Next, we proceed to show that

(14.14) either JV(S3*) Q 3ft or 3ft = ^(SS*) . iV^SBα), where
3S0 = ZίSaδO and 2S, = <U | U £ S and for some
G in ©, U is of index 2 in 53*).

Namely, if JV(S3*) g 3ft, then r | | C(S3) |, and so S3* £ -A We can now
follow the proof of Lemma 13.16 to obtain (14.14). Lemma 13.17 now
follows, and we must establish Lemma 13.18. We need to show that
N(m0) S 3ft provided iV(S3*) g 2R. Let 3^ - Nm{^0)9 % = iV»(SJ*), so
that ^Sΐa = 9t Thus, 9ΐ2 is cyclic, by Lemma 14.20, together with
the assumption that iV(S3*) jg 3ft. We may assume that 5RX is also
cyclic, since otherwise Lemma 14.20 implies that iV(2δ0) £ 3ft. Now
2Bi is generated by subgroups U which contained in £ and are hy-
perplanes of S3*. By (14.13), we get that 53* £ 3ft, and so [S3*, S3] =
[U, S3] = 1, so S3* s C(SB0). If r | | ^(SBo) |, then Wo £ ^ s ^ , and
by Lemma 14.25, we get C(3S0) e 3ft*(@), whence iV(2δ0) £ 3ft. We
may therefore assume that r \ \ C^SBo) |. Hence, ^ = 3VJt2£iV(S3*),
against JV(S3*) ^ 3ft. This gives us Lemma 13.18, and the proof of
Lemma 13.19 suffices to complete a proof that |S3| ^ 4 .

THEOREM 14.1. σ2 = {3}.

Proof. Suppose false, so that r > 5 and Hypothesis 14.2 is
satisfied. We retain the earlier notation.

If every normal abelian subgroup of 3ft is cyclic, then Theorems
13.5, 13.6, and 13.7 yield a contradiction. Suppose every normal abelian
subgroup of 3ft is generated by 2 elements and that 31 is a non cyclic
normal abelian subgroup of 3ft. Since r > 5, 9t centralizes SI, and so
every involution of 2t is in ^ by Lemma 14.25. This violates
Theorem 13.4. Hence, 3ft contains a normal elementary abelian 2-
subgroup of order > 8. Let % be such a subgroup of minimal order.
By Lemma 14.26, % §£ S3, and so % is not a minimal normal sub-
group of 3ft. Let %/@ be a chief factor of 3ft. By minimality of %,
we get 2 ^ |@| ^ 22. Thus, SR centralizes @. Let <£ = C(g), 3ft0 =
Cβ(e), 3> = O2(3ft0 mode) .

Let $1 be the set of elements of 3ft of order r. Let X be a S2-
subgroup of 3ft permutable with 9Ϊ.
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We will use the preceding results of this section to follow the
plan of § 13. However, this is not completely straightforward, so we
proceed carefully. We need the analogues of Lemmas 13.26 through
13.28.

By Lemma 14.25, we have

(14.15) if /eg* and Cm(I) n #ϊ Φ 0 , then Ie^ .

(14.16) @* £ JF .

Note that (14.15) is weaker than (a) of Lemma 13.26, but it will
suffice for our purposes.

If 3ΐ is not faithful on g, then g* s ^ If SH is faithful on g,
then since r > 5, and since Gf Φ 1, it follows that (c) (ii) of Lemma
13.26 holds. Hence,

(14.17) One of the following holds:

( i ) g * S w ^
(ii) g is generated by subgroups SI of order 16 such that

The proof of Lemma 13.27 carries over verbatim, and the analogue
of Lemma 13.28 is

(14.18) One of the following holds:

(a) g* £ ^
(b) C^g) is an r'-group.

We turn to the proof of the crucial Lemma 13.29. We must be con-
tent with a more elaborate statement.

(14.19) Suppose J is an involution of m - CJg). Let g0 - Cd(J),

2 ' = IS: Sol-

(a) If © g go, then [g, J ] Π J? Φ 0 .
(b) Suppose e S go-

( i ) If / g 2, then [g, Jf g ^ ^
(ii) If / = 3, then one of the following holds:

(a) [ g , J ] * ϋ ^
(β) r = 7, I 311 = 72, and the image of 9ΐ in

is a self centralizing normal subgroup of
Furthermore, | g/© | = 23&, where k = 2 or 3.

Namely, (14.19) (a) is a consequence of (14.16). From now on, we
assume that @ <5 g0 and that / g 3.

Since φo3ΐ < 2K, it follows that J acts on 4?o3t/Φ(» and since
£ 0 = O2(2K), we have [φ0, g] £ @. Let 9ix be the subgroup of 3Ϊ such

) Then Sft, normalizes [g, /] @. If ^ ( [ g , J])Φ 1,
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then [g, / ] * S ^ and (14.19) (b) (ii) (a) holds if / = 3 and (14.19)
(b) (i) holds if / g 2. We may assume that <7Rl([g, J] g) = 1. We
may also assume that 9ΐ acts faithfully on g. Since r > 5 and / < 3,
it follows that J does not invert 9ΐ£>o/€>o> and so 3^ Φ 1. Since 3^
centralizes g, it follows that 3tχ acts faithfully on [g, J] g/g. Hence,
r = 7. This implies that / = 3, so that (14.19) (b) (i) holds.

Let 3ΐ2 be a subgroup of $09ΐ of order 7 which is inverted by J.
We assume without loss of generality that 3t2 S C«(9li) Since / = 3,
it follows that [g, StJ = g° is of order 26, and g° 3 [g, J ] . Thus,
C ^ ) acts on g°, and if Cs(3ί2) z> %%, then Cw(g°) =£ 1, which gives
g°* £ ^ so that (14.19) (b) (ii) (a) holds. Hence, we may assume
that Cm(m2) = 3 ^ 2 . If SftxSR, c SI, let 5ft* be a subgroup of 81 of order T
which contains %%. Since 3ί* is faithful on %, and since 9ΐ* is non
abelian, it follows that | [9ΐ2, g] | > 718. This is false, and so 31 =
Six x 3ΐ2 is of order T.

Since g° admits 31, it follows that *R is faithful on %°. Let $t
be a iS2/-subgroup of Or,(3ft) which admits 9ί. Then i2 centralizes β,
and so St normalizes %°. Since S7-subgroups of GL(6,2) are self
centralizing, it follows that Jϊ centralizes %°. Since &§ΐ <| 2K, and
since g/@ is a chief factor of 2ft, it follows that $ centralizes g/®

Let 8 = 4κ(g/e), let S7 be the image of 31 in 8, so that 31 ~
27 <\ 2. Furthermore, Oa(S) = 1, since g/g is a chief factor of 2ft.
Hence, the Fitting subgroup of S has odd order, and so O7/(g(8)) = 1,
as fl maps onto O7,(F(S)). Thus, (14.19) (b) (ii) (/S) holds, provided
we can show that | g/g | = 26 or 29.

If 3t2 < 7^(31), then JVΛ(3t) normalizes g° = [g, 9ϊ2], and since g/g
is a chief factor of 3ft and Sft - Cκ(g/g) iV«(3l), we get |g/g| = 26.
Suppose 3ΐ2 <| JV,(31). Choose ikf £ JV«(g), Me iV(9ϊ2), and set 3ΐ2 = 3tf.
Thus, 31 = 9ΐ2 x 9Ϊ2. Since g/g is a chief factor of 3ft and 31 s 27 < S,
it follows that 3ί has no fixed points on g/g. Hence, g = g g° g0M,
and so | g/g | = 23fc, where 2 ^ fe ^ 4.

Suppose 4 = 4 so that g = g x g° x %m. Since [3ϊ2, g] = %m,
and since g° admits 31, it follows that [f5°, 3ί2] = 1. Thus, by Lemma
14.25, we have g°» £ ^ , and so (14.19) (b) (ii) (a) holds. This is
(14.19).

Next, we need the analogue of Lemma 13.30:

(14.20) Suppose G e ® and g* £ 3ft. Then ?f £ (£.

Suppose false. We argue that there is an involution J of 3ft. such
that [g, J] is of order 8, and [%, Jf §£ , / If this is not the case,
then the possibility (14.19) (b) (ii) (β) does not trouble us, and we
may copy the proof of Lemma 13.30. Thus, we may assume that
(14.19) (b) (ii) (β) occurs for some J.



252 JOHN G. THOMPSON

Let g* = %σ, 2ft* = 2ft*, @* = ®ff, ®* = &G, ^ * n c ^ σ . We as-
sume that [g, g*] ^ l Hence, 9ft Φ 3ft*, and so ^ n ^ * = 0 .

As in the proof of Lemma 13.20, we get g* g 3). We also get
that %* centralizes Qc. Since 3ΐ®/® is a self centralizing normal sub-
group of 3fto/S of order 72, it follows that g* = (g* n ®) x ψ> where 2)*
acts faithfully on 3ΐ®/2). If some element of 2)* inverts 9ΐ®/®, it
follows that g/@ has order at least 212, aginst | g/@ | <Ξ 29 So no element
of 2)* inverts 3t©/2), and so 2)* - <Γ*> is of order 2.

Since |@| ^ 22, it follows that if Fe%, then C^(F) is of index
at most 23 in g*, and so by (14.17), we get g § 3ft*.

Let g* = S* n ®, and let gL = g n ®*. By symmetry, |*g: & | =
2. Since [gf, g j g © Π ®*, and since ^ Π ̂ * = 0 , we have
[&*, Si] = l Choose Γ e g - g l β Then

[g, r*] - <[r, r*]> x [g1? y*] - <[r, r*]> x e*.

This is so, since | [g, Y*] \ > 23, and since [g1? Γ*] <ϋ @*. In particu-
lar, we have |@| = 22. Let U = [g, g*] - © x @* x <[F, Γ*]>, so
that l l g g n δ * , and \U\ = 25. Let ^ be subgroup of 3ΐ such that
5R,®/® - C M / ί (7*) , so that | 3ΪX | - 7, ^normalizes U, [Sft̂  @] - 1,
and SRi is transitive on (1X/©)*. By symmetry, N(VL) has an element
of order 7 which centralizes Gf* and is transitive on (11/®*)*. Let
2 = iV(U)/C(ll). Since the only subgroups of 11 which admit Stj. are
either contained in © or contain [U, SίJ, symmetry implies that S
acts irreducibly on 11. Since | S |7 = 7, it follows that S is not solvable.
This is (14.20).

Here is the analogue of Lemma 13.31:

(14.21) One of the following holds:

(a) W^^:
(b) C(g0) S 9K for every subgroup g0 of index 16 in g.
(c) r = 7 and if S3 is any elementary subgroup of SK of order

72, then Cδ08) = @ is of order 2.

Namely, (a) holds if 5ft is not faithful on g Suppose 91 is faithful
on g. If I Cd(M) I > 25 for some MeΈl, then Cffo(Λf) ^ 1, and so (b)
holds. We may assume that | Cΰ(M)\ ^ 24 for all M G I . Since
(g S Cβ(3l), it follows that | C8/β(ilf) | ^ 16/| (δ| for all MeWl. Hence,
I <g I = 2, r = 7 and (c) holds.

We get the precise analogue of Lemma 13.32:

(14.22) One of the following holds:
(a) g * S ^
(b) If G e © and | %G: %G n 2K | ^ 2, then gG s SK.
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If (14.21) (a) or (14,21) (b) holds, we may follow the proof of Lemma
13.32 to obtain (14.22), the reference to Lemma 13.29 (b) (i) being
replaced by (14.19) (b) (i). So we may assume that (14.21) (c) holds.

Choose G in © such that | %G: %G Π 3KI = 2. Let 3K* = mG,
S* = gσ, and let g* = g* n SR. By (14.20), we have g g 3K*. Hence,

Let δo = 8n3ft*, so that g o c:g. Choose Fe%-%0. Let
g£* - C(F) Π g? and let V = | g*: g* |. If / ^ 2, then (S*: g* ( ̂  23,
so that C(g2*) £ 2K*, whence i^eSK*. This is false and so / > 3.
Since | ® | = 2, if follows that g* g ©.

Let 31/3) be a subgroup of SJΪ/35 of odd prime order which admits
g? and is not centralized by g*. Let g2* = gfΠ C(^/®), so that
(gf: g** I = 2. Let %J(S be a subgroup of g/(g which admits ftg* and
is minimal subject to [gx, Sft] g @. Then [g2*, g j s @, an g* does
not centralize g^©. Choose F in gi s ^ c h that (Sg is not centralized
by gf Since [g2*, F] s g , and since |@| = 2, it follows that g3* =
g2* Π C(F) is of index at most 2 in g2*, so is of index at most 23 in
g*. Hence, Fe C(g*) s SK*. Hence, [g*, F ] S g* ΠJP = 1, and so
g* = g3* is of index 2 in g*.

By (14.19) (b) (i) applied with F in the role of J, Sft* in the role
of SK, g* in the role of g0, g* in the role of g, we get [g*, F]*S^G.
In particular, [g*, F]* S ^ * σ But 1 c [g*, F] £ g, so J?G Π g Φ 0 .
This contradiction gives us (14.22).

The proof of the crucial Lemma 13.33 gives no difficulty, and
there is then no difficulty in deriving the final contradiction to com-
plete a proof of Theorem 14.1.

15* The case σ2 — {3}* All results of this section are proved
on the hypothesis that 2 e π4 and σ2 = {3}. So many of the preceding
arguments break down when r = 3 that it has seemed essential to
start afresh. We retain the following notation: 9ΐ is a ^-subgroup
of ©, § is a maximal element of M(3l; 2), 2ft = 2R(φ, 31), £ 0 = Oa(2tt),
2 is a S2-subgroup of 3K permutable with 9t, 9S = ^(^(SK)). Note
that SK(§, 3t) is well-defined by Lemmas 14.15 through 14.18.

L E M M A 15.1. If \ 33 j > 8 and SS0 is o/ wcZβα? 2 m 93,

Proo/. Suppose false. Let (£0 = C(9S0) 2 © = C(SS). Since SK

NQ8), we have (E0=>(E.

Case 1. 3 l i e I.
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Let 91 be a subgroup of (£ of order 3 and let 35 be a subgroup
of Cm($ί) of order 3 with 33 Φ St. Thus, W& is elementary of order
9. Let 33 = <5>, and let 8 = <&0, (£?, £ f >. Then 8 centralizes
S30 n 33O* Π as?2 =£ I, so 8 is solvable. Hence, <8, 33> = 833 is solvable.
Since £0§I33 £ 833, we get 833 £ 2)ΐ, by Lemma 14.20.

Case 2. 3 \ | <£ | and | K |2 - | £ 0 |2.

Let ϊ 0 = ϊ n E Thus, £ 0 is a £2-subgroup of (£ and of (£0 and
31 normalizes £ 0, since £ 0 = 3ί£ Π & and (£ < 2ft. Thus, if ®0 is any
non identity characteristic subgroup of £0, then ^09ΐ S ^(©o)* so that
by Lemma 14.20, iV(S0) £ 2K. By Theorem 1 of [43], it follows
that I (£0: (£ | is a power of 3. Since (£ c (£0, S3~subgroups of (£0 are
not 1.

Let (£, be a S2,3-subgroup of So which contains £ 0, and let 3^ =
Oa^O Thus, ίEj. is not characteristic in So, so in particular, 2^ Π So-
Let 33 be an elementary subgroup of Tt of order 9, and let

% - {B e 33* I [33, C*(B)] Φ 1} .

Since 33 is faithful on 33, we get (%) = 33. If % normalizes X19 so
does S3, so that N(%Ί) contains >̂O33. By Lemma 14.20, we get
NiZ,) S SK? and so ^ S 3K, whence Ko c 2K. We may assume that
B in S has been chosen so that BgNiXJ. Let 8 = <(£0, B>. Then
8 normalizes 3S0 Π C(B) Φ 1, so 8 is solvable. Since Be%, Lemma
14.22 implies that N((B)) S Wl. Since 8 g SK, Lemma 14.20 implies
that S3-subgroups of 8 are cyclic. Since 3^ is normalized by a sub-
group of 8 of order 3, it follows that X, g O3,(8). Hence, S£f £ O3,(8).
Since £ 0 - <21, Sf>, we get £ 0 £ O3,(8). Hence, £ 0 - ^ ΓΊ O3,(8) < K,.
This contradiction shows that this case does not occur.

Case 3. 3 1 | (£ | and

Since (£ c Ko, we get | © |2 < | Ko |2. Again, let So = (£ n 2 . Since
9ΐ normalizes ί£0, we get $β(£0) S SK- Since 2 0 not a S2-subgroup of
©0, we can choose a 2-element X of iVTO(£0) — %>• Since X ^ E , we
get 3S0 - g,(X).

Since 55 is 2-reducible in Wt, it follows that 0,(^(33)) = 1. Since
33O = C8(-X"), it follows that X inverts a subgroup SI of Aκ(33) of order
3 and that 33, = C8(2I) is of index 4 in 33. Since 311 K , SK has a
subgroup 2t0 of order 3 which maps onto St. Let 33 be an elementary
subgroup of 9K of order 9 which contains SI0. Then 33 normalizes
33, = Cβ(2t). Hence, £ 0 £ ^(33,) ^ ^(33,). By Lemma 14.20, we get

m. The proof is complete.
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Hypothesis 15.1.
(a) X is not a S2-subgroup of ©.
(b) | » | > 8 .
Lemmas 15.2 through 15.15 are proved under Hypothesis 15.1.

LEMMA 15.2. // l c ® < 1 2 and \ JV(Φ) |2 > | Z\, then N*(S>) is
cyclic.

Proof. The lemma is a consequence of Lemma 14.20.

LEMMA 15.3.

(a) £/ξ> has no quaternion subgroup.
(b)

Proof, (a) Let 3i0 be a subgroup of 3ΐ which is minimal subject
to (i) $% <\ £3ΐ0, (ii) C%(%ϊR0/$) - φ. Since 9ΐ n O2,d(Zdϊ) satisfies (i)
and (ii), 9ϊ0 exists. By Lemma 5.18 and 0.3.6, it follows that % is
of exponent 3. Since 3 e ττ2, we get m(3ΐo) ^ 2. Suppose by way of
contradiction that Z0/ξ> is a quaternion subgroup of %l§. In this
case, we get m(3ΐ0) = 2, so that Z/ξ> is isomorphic to a subgroup of
GL(2, 3), and £3ΐo/£/)(3ΐo) is a chief factor of £3t0. Hence,

Let §1 be an abelian subgroup of % such that m(SI) > m ^ ) for every
abelian subgroup 5^ of X and such that 21 §£ φ . Notice that SI
exists by Lemma 15.2. Let §ί0 = 21 Π ©. Thus, SX/2t0 = 2t£/€> is either
cyclic or is a four-group. Let SS0 be minimal normal subgroup of
£3ΐ0 which is not centralized by %.

Case 1. Z>(9t0) centralizes SS0

Since 2:0/§ permutes transitively the subgroups 9ΐoξ>//)(3ΐo)$ of
order 3, it follows that for every subgroup 9^ of 3ΐ0 of order
3 I D(ίR0) I, I [3S0, SftJ I > 26, and | [SS0,5R0] | > 28. Since m(St/Sg ^ 2, it
follows that Sί centralizes a subgroup SSj. of index 4 in 93O, so
φ [Si, 9to]/Φ centralizes a subgroup of 55O of index 24. This is not the
case.

Case 2. [D(%), 5?0] Φ 1, and 2t S So.

In this case, m(SI/2t0) = 1 so that Si centralizes a hyperplane of
9S0. This implies that $ [%, SI]/£> centralizes a subgroup of 3S0 of
index 4. This is not the case, since !Q [9ΐ0, 2t] =
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Case 3. [Z>(3t0), SSJ Φ 1 and §1 g £ 0 .

In this case, £/φ is isomorphic to a S2-subgroup of GL(2, 3) and
[ 23OI ^ 26

β Since m((2L/SΪ0) ^ 2, §1 centralizes a subgrouy of 33O of
index 4. Hence, φ[3ΐ0, 2I]/€> centralizes a subgroup of 23O of index 2*.
This is not the case, since Ceo(3^) = 1 and Si; S €>[3ΐo, 21] Thus, (a)
holds.

Since 3 e π2, (b) is a consequence of (a), since X3i/O2,3(%ΪR) is iso-
morphic to a subgroup of GL(2, 3).

LEMMA 15.4. Suppose X is an involution of Am(%$), \ %S: C*(X) \ — 2
and Cβ([95, X]) §£ 2K. ϊT&ew 91 is abelian of type (3, 3α) for some a ^ 1
αwd Ss-subgroups of Cm([%$, X]) are cyclic of order 3α.

Proof. Let Γ be a 2-element of Wl which maps to X. We assume
without loss of generality that TeX. This assumption is justified
since it suffices to prove the lemma for some Hft-con jugate of C%{X).

Since X centralizes a hyperplane of 23, X centralizes O^(Am(^S)).
Hence, T$ O8,(27ί), so T& £ . Let 8 - ©3fl<Γ>, S = Λ(S3) % Lemma
15.3(b), l,(B) = 1 (since 3| |®|). Let β 0 be the normal closure of X in
S£. Since X centralizes O3,(ΛB(S3)), SO does β0. Since O2(Am($$)) = 1
and 3 e τr2, it follows that β 0 = I's. Hence, β = $ 0 x $t19 where SSX = Cft(β0)
This implies that ^ centralizes the four-group [93, ®0]. Let Sx be the
preimage of ^ in S. Thus, 8X <] S and S/Ĵ  ^ ^ 0 = Jg. Hence, 82 n 9ΐ
is of index 3 in 31. Since [53, X] c [93, 5B0] S ^(8, Π 9t), and since by
hypothesis, Cβ([93, X]) g SK, Lemma 14.20 implies that 8X n 3ΐ is cyclic
of order 3α for some α > 1, Since |9l: 8X Π 311 = 3 , Sft is metacyclic.
By 0.3.8, 9ί' = l The proof is complete.

Let 2B = F(cclβ(SS);ϊ).

LEMMA 15.5. SB^E, wAerβ E = C(SS).

Proof. Suppose SB c K. Let So = S£ Π <S so that 2B g So. Since
2B is weakly closed in 20, we get ^(SCQ) S ^(333). By Lemma 15.2,
iVa(2δ) = 3Ptx is cyclic.

Since A(^(£)) S S3, Lemma 15.2 implies that 31 n © = 9ΐ0 is cyclic.
Since 9ΐ = Sΐoίίi and 3ΐ0 <| 9ΐ7 it follows that 31 is metacyclic, so by
0.3.8, 3ΐ' = 1. Since 3 e ττ2, 3Ϊ, Φ 1, i = 1, 2. Since ^(31) = (^(Sft) Π K).
(^(SR) Π iV(S0)), it follows that 3^0 3^ = 1. Hence, 9ΐ = 3ΐ0 x %.

Let X, = O2(ZQ%). Thus, £ x < | £ 3 ΐ . Since E < 2TC, we also have
S03ΐ0 < S3ΐ5 as So9ΐo = Efl £31. Hence, £3ΐ0 = 8 is a group. Let 8X =
O2(8) 3 3;1# Since 2JX1 is represented faithfully on φ3ΐ/ξ)9ΐ0, we get
18L: £L I g 2. We argue that F(ccl@(33); 8J = F(ccl@(33); £ J . Since 8,32:,,
we have F(ccl@(S3); 8X) a F(ccl@(S3): Sx) Suppose Ge® and SS^gSj..



NONSOLVABLE FINITE GROUPS ALL OF WHOSE LOCAL SUBGROUPS 257

Since Sx a £, we have 93* S 3S £ <£. Since ^ = S1 Π ®, we get 93* S &i.
So F(ccl<,(93); SO = F(ccl@(SS); S,). Hence, iV@(F(ccl@(93); SO) contains 5t,
so by Lemma 14.20, JV@(F(ccl@(93); SO) c 3ft.

Let ©2 be a $2-subgroup of © which contains £ . Since Z(©2)£iV(φ),
Lemma 14.19 implies that Z(@2)g2;. Hence, Z(@ 2)SZ(£). Since

it follows that we can choose Z in Z(©2)* n 93. Let

By Lemma 14.22, iV^^o)) S 3ft. By Lemma 14.20, it follows
that $3-subgroups of @ are cyclic, since @g£3ft. Hence, SiSO3/(@),
since 9ΐ 0ϋ@. Let @0 be a £2,3-subgroup of @ which contains £3ΐ0,
and let {@2, @3} be a Sylow system of @0 with Ϊ g 6 2 , 9t0S@8. Thus,
@3 is cyclic and @3S2ft, by Lemma 14.22. Let @x = O2(@0), so that
©JLSSI Since @3 is cyclic, we get @0 = ©^^(SRo). Since ©3^SK,
and JV(3l0) s Wl, we get @x g SW. Hence, @x z> Sx.

Since ( ^ n 2K)S is a 2-subgroup of 2W, we get 6X n SK £ 2 . Hence,
8X Π SK - 8 lβ Since iV(F(ccl@(93); SjaSK, we conclude that JVβ/SjaSW.
This contradiction completes the proof.

LEMMA 15.6. ίR^W.

Proof. By Lemma 14.10, we may assume that 9t' = 1. Since
3eτr2, Λ(9ΐ) is a 2-group. Since 3ftaiV(3t)', it follows that JV(Sft)
contains an element X which inverts 9i. Since X normalizes every
subgroup of 3t, Lemma 14.22 implies that X G S K . The proof is
complete.

LEMMA 15.7. Suppose X is an involution of % and \ 93: C%(X) \ — 2.
Then S3gO2(C([S3, X])).

Proof. Let X = C(2)), where 2} = [33, X] . Since |S3: Cβ(X)| = 2,
we get [ 3) I =2. Let 21 be a subgroup of O3(3K/(£) which is of order
3 and is inverted by X. Then [93, 2t] = 4, and [93, SI] z> 2). Since 3 e π2

and since [93, SC] admits JV /̂βίSt), it follows that 2ft contains a subgroup
93 of order 3 which centralizes [93, %]. By Lemma 14.22, we have

We assume without loss of generality that 36 §£ 2ft. By Lemma
14.20, S3-subgroups of X Π 9ft are cyclic. Since 95 a ϊ , and iV(93)S3ft,
£3-subgroups of X are cyclic. By Lemma 15.4, 3t' = 1 and 9ΐ is of
type (3, 3α). By Lemma 15.6, 3ΐS3ft\

Since 3ΐg3ft', iV ί̂Sl) contains an element I which inverts 9ΐ.
Hence, /normalizes [93, 2£] Since <X, J> is a 2-group, we get Z e ϊ .
Hence, 93 g ϊ ' .

Since α2 - {3}, 93 S ϊ ' and iV(93)S3ft, it follows that Sft n ϊ con-
tains a S2,-subgroup ® of X. Since 93 6 ^ ( 2 ) ; 2), we get 93gO2(£),
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as required.

LEMMA 15.8. If 93O is a hyperplane of 93, then |Cβ(9?0): E| <̂  2.

Proof. By Lemma 15.3, C(930)gSJΪ. Since C(930)/(£ stabilizes
S3 Z) 93O Z) 1, it follows that C(930)/(£ is an elementary 2-group. Since
C(93O)/S is represented faithfully on O2'(9K/&), the lemma follows.

LEMMA 15.9. Suppose 93O is of index 4 in 93. T%ra Cw(%$0) does
not contain a four-group © such that

(a) <g n e = l .
(b)

Proof. Suppose false. By Lemma 5.34, 90ΐ/(£ contains a subgroup
3) = ®1 x ®2 such that | ®* | = p* is of odd prime order, ® f admits
®4, i = 1, 2, and Cg(®) = 1.

Let 93O = ]93, ®], 93: = Cβo(@). Thus, | 93O: SB, | ^ 4 and | [93O, @] | = 2.
Since ® is represented faithfully on 93O, the inequality is an equality.
On the other hand, © contains a subgroup @0 — {E} of order 2 such
that E inverts ®. Hence, 23O is a free F2(£0-module, so if |aso| = 22w,
that |[aSo,eo]| = 2 W . This implies that w^l, since [9S0, @0] S[SS, @],
and I [95, G?]| = 2 . This is absurd, since ® is represented faithfully
on 3S0. The proof is complete.

LEMMA 15.10. If Ge® and ΐβG<^%, then \®G: 9Sσ n E| ^ 2.

Proo/. Let 93* = 93*, 93* -93* n K, and let 2a = 193*; 930* |. Suppose
by way of contradiction that a > 2. By Lemma 5.34, 2K/(£ contains
a subgroup S) = ®x x x ®o such that 1®^ = pt is an odd prime,
©i admits 5?*, 1 ^ ΐ ^ α, and such that Os*(®)930*.

Let X = [93,®], 3ε< = C^®*). We argue that ϊ< = 1, 1 ̂ i ^ a . Suppose
false. Since 9£, admits ® and 93*, and since Cx(®) = 1, we can choose j
such that [£,-, ®, ] ^ 1. Let ®y = (S,/®, where (£,- 3 E, and let %ά be a
subgroup of [ϋh ®j] which is minimal subject to admitting K, 93*. Let
93; = C^Qj), so that |93*:93;| - 2 . By minimality of %jy we get
] * * , ?)«] = I- By Lemma 15.1, we have S^ gSK0, and by Lemma
15.8, 1 2 ) ^ : 2 ) ^ 0 ^ 1 ^ 2 . Hence, |®, [ - 3, and 1 2 ^ 1 = 4 . Choose
2)e2).i - %i Π £*, and let g = [Γ, 85*] = (Z). By Lemma 15.7,
SS^SOίίCίZ)). On the other hand, ®, = ^/g: and S, centralizes Z.
Hence, [&iy 93*] is a 2-group, against 0^(55*) — 1. Hence, £; = 1,
l ^ i ^ a .

By Lemma 5.47, X is a free F293*/93*-module. Let £ = Xx x x Xβ,
where each 3̂  is isomorphic to ί7

293*/930

4: as 93*-module. Since α > 2, 3^
contains a subgroup 2) of order 8 which admits 93*. Since|CSi(93*)| = 2,
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it follows that | £„(»*) | = 2. Hence, [2), S3*] = CB(SS*). Since 2) =
<C9(§)>, where S range over all the hyperplanes of 33*, Lemma 15.1
implies that 2} g HJΐ̂ . This contradicts Lemma 15.9. The proof is
complete.

The next lemma is delicate and elaborate.

LEMMA 15.11. |SB: 3B n ®| > 4, wΛβrβ 2δ - F(ccl@(33); £) .

Proof. Suppose false. By Lemma 15.5, we get 1SB: 2B Π © | = 2.
Let 3B0 = a© n <£. Let ^ = 3: Π e, £ 0 = ^aas. Thus, ϊ 4 0 £, i = 0, 1,
and | £ 0 : £ i l = 2 .

Since |3B:2B0| - 2, there is G in © such that S3* = 33* g £ , and
33* §£<£. Hence, 2B = 3ίδo33*, So = Zfβ*. Let 33O* = 33* Π <£, so that
33O* is a hyperplane of 33*. By Lemma 15.8 applied to •£flG, we have
133: Cs(33*)| = 2, and by Lemma 15.1, 33g3Kσ.

Let 3 - <Z> = [«, 33*], so that 131 = 2,3gS3n33*. Since S B ^ S ,
we get 3B&/C < 2;/©. Thus, SB(£/(£ ̂  3B/SB0 is a central subgroup of
5E/E of order 2. Let © = [O2,(2»/e), SB]. Thus, 5) admits £ . Since
133: Cs(33*)| - 2, it follows that | ® | - 3 and that 33 - 33° x S31, where
33° - Cβ(®), S31 = [S3, ®], and 331 is a four-group containing 3 . More
explicitly, both 33° and^ 1 admit Z and [SB, S31] - 3 = [33*, 331] = [33*, 33].
Since |S3| > 8, it follows that S30 Φ 1. Hence, Z{%) is non cyclic since
A(Z(£)) = (Ω,(Zφ)) Π 33°) x 3

Let ® = e/K and let @3 be a S3-subgroup of @ with ©3 S 9ΐ. Since
© < < 2R, ^3 exists. By construction, @3 covers 2). Since 331 = [33, @8],
it follows that 331 admits iV»(@8), a non cyclic group. Since I331! = 4,
we can choose a subgroup SI of N^{%) of order 3 such that [331, 2C] — 1.

We next show that JV(3I)S3K. Namely, let 33 be a subgroup of
JYR(@3) which is elementary of order 9 and contains St. If 35 central-
izes 331, then 33e^#*(@), by Lemma 14.21. If 35 does not centralize
S31, then JV(2t) S SK, by Lemma 14.22. Thus, in both cases, JV(2i) S SK.

We have succeeded in showing that Cm([%$, 33*]) contains a subgroup
2t of order 3 such that JV(S5C) S 3K. By symmetry, ^^([33, 33*]) con-
tains a subgroup 2t* of order 3 such that JV(St*) £ SK6'. This symmetry
exists, since if S* is a S2-subgroup of W* which contains 33 and
SB = F(ccl@(33); %*), then |2B: $$ n C(33*)| = 2.

Suppose by way of contradiction that C(3) S 2ft. Then St* g 2K,
so S3-subgroups of Έl n Sft* are non cyclic. Since O2(aKff) S C(3), it
follows from Lemma 14.20 applied to WlG that 3K = SK .̂ However,
33* g<ε, while 33 g E . We conclude that C(3)gSK. In particular,
S3-subgroups of C(3) are cyclic, by Lemma 14.20.

We next show that ® < 2K/e. Since ® admits £ and since
® S F(SK/K), it follows that S) < SK/S if and only if ® < SSft/e. Here
we are using 3 e π2 to conclude that A®(%) is a 2, 3-group for every
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section 36 of @ which is a 3-group. Since [S, 23] is of 4, it follows
that © is normal in SH(£/(£.

Since 3) < SK/©, it follows that S31 < 3K. Since S3-subgroups of
Cm(Q) are cyclic, it follows that CΉβB1) is cyclic and of index 3 in 3ΐ
Thus, 9t is metacyclic, so by 0,3.8, 5ft' = 1.

We next show that X/ίg is elementary of order 2 or 4. Namely,
91' = 1, £3ΐ<]£3ΐ, and SE/φ is represented faithfully on $R£/£. Since
23*gO3,(3DΪ), we get £ c S .

Since S3gZ(£>0)> we may view S3 as a S3ΐ/^0-group. Let 3ΐ0 =
flx(9i), so that £/£> is represented faithfully on φ5fto/φ. Since 9ΐ0

centralizes a S2,-subgroup of OB,(fDl), it follows that [ξ>, 9ϊ0] £ Φo
Hence, $03ΐ0 <\ 32ft. To obtain our assertion that £/$ is elementary
of order 2 or 4, it suffices to show that φô o/Φo contains a subgroup
of order 3 which admits X. If 3ΐ0 n © Φ 1, then [ fR0 ΓΊ K| - 3 and
£0(3ΐ0 n ©)/£<> admits £ . If 3ΐ0 Π © = 1, then © is a 3'-group; and
since © <] Sft/CS, we get that 19ϊ0 Π ©| = 3 . We conclude that £/φ is
elementary of order 2α, where a — 1 or 2

Choose X in Z(Sε)# n S30. We will show that C(X) S SK Suppose
false. Let $ 0 = ^ ( X ) , & = C(X), © = (£/(£ and let g3 be a S3-subgroup
of ^o which contains a S3-subgroup ©3 of ©. Since C(X) g SK, $ 3 is
cyclic. We assume without loss of generality that V in S3* inverts
g3. This assumption justified since each element of S3* — S30* inverts
© and | © | = 3.

Let E be an element of @3 of order 3 and let 35 be an elementary
subgroup of Έl of order 9 which contains E. Then 23 §= %„ so 35 does
not centralize X, so N((E}) £ 2R, by Lemma 14.22. Since S3* inverts
i? and centralizes X, we get Ee$tr. Since σ2 = {3}, it follows that
B n C(E) contains a S2,-subgroup S of St. Thus, S £ 3J£, since
N((E)) £ 3W. Let $ 2 be a £2-subgroup of $ which contains 2 and is
permutable with ©3. Thus, ϊ c f i 2 , since 5£2 g Wl. Let ^ 2 = O2(^2g3),
so that $2g3 = ®2Nz2H«E)). Since ®2 g 3K, so also U2 g 2R. Let
£ 0 = $ 8 n a : . Thus, S = S;0S3*, as F * inverts E and 1 2 : ^ 1 ^ 2 .
Since U2 g SR, we get So n 4 Let $® = F(ccl@(S3); t0). Notice that
JV(2S) g aw, since S5 is weakly closed in So and Xo c «2. Since S3 £ 33,
we have SB ^ 1. Now gs is a S3-subgroup of ^ ( X ) , so g3 contains
a £3-subgroup of K. Suppose 3 | | K |. In this case, Ee&. With this
assumption, we will show that SB £ (£. If this containment does not
hold, then since | SS: 3B Π £ | = 2, we get 2B = (353 Π K)SB, which implies
that SB does not centralize φ . But [@3, S5] is a 2-group contained in
£ 0 and @3 covers ©, so 2B centralizes ©. Thus, if 3 | | E |, then S5 £ K.
Since SB is normalized by @3 and by JVR(© Π 2), it follows that 3ϊ
normalizes SB. This is impossible, since iV(SB) g 3K. We conclude
that 3 | | ( £ | .
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If 2B g <E, then 2δ = (23 n K)2S, since | SB: 2B n © | - 2, and so 2B
does not centralize 3). This is not the case, since [2B, Cf3] is a 2-group
and @3 covers 3). Hence, SffigK.

Since S o is the subgroup of X generated by all elements of
M2«2?», it follows that XQ contains Σ f l E . Since ffigK, we get
2B = F(ccl@(33); £0) = F(ccl@(33); ϊ n K ) < SSft. Hence, JV(2B) £ 3K. This
contradiction shows that C(X) £ S3Z.

We next show that K is a 3'-group. Suppose false and (£3 is a
subgroup of (£ n 3ΐ of order 3. Then £&3 < £$ft, and O2(£(£3) = 3:° is
of index 1 or 2 in £ . Also, iV((£3) £ 27i, by Lemma 14.22. Let 8 be
a S2,3-subgroup of C(3) which contains £(£3 and let {S2, 83} be a Sylow
system of S with X £ S2, S3 £ 83. If S3 is non cyclic, then so is
83 Π 2K, so C(3) £ 2ft, by Lemma 14.20. This is not the case, so S3

is cyclic. Hence, Xo £ O2(S), and S3 £ JV(<£8) £ SK

By Lemma 15.6, we get £° c X. Since 2° c X, we get <£8 £ C(3)'.
By Lemma 14.22, together with σ2 = {3}, we conclude that C(3) Π 5Dΐ
contains a S2,-subgroup of C(3) Hence, X c S2 Since S2 — O2(8)iVS2(K3),
it follows that O2(S) g 2R, so X° c O2(S). Let SVS0 be a chief factor of
O2(8)(S3 with 2 1 £ 0,(8). Since iV((£3) £ SK, it follows that X'&JX0 ^ A4.
On the other hand, (£3 centralizes Z(X), and so centralizes Z(X°).
Hence, X1 centralizes Z(X). This is not the case, since C(X) £ 3K,
for all X in Z(2)» n SS°. We conclude that (£ is a 3'-group.

We next show that X/& is elementary of order 4. Suppose false.
Then \X: Q\ = 2 and 2 = §35*. Since [Sft, 33*]£/£ is of order 3, it
follows that 91 g=j 3K', against Lemma 15.6. Hence, %J!Q is elementary
of order 4.

Let 3ΐ = 3ΐ0 x 9^, where 9to$/φ = [91, SS*]§/§ and 91^/$ = CΛ^(SS*).
Let ©* = C s(3i^/§), so that | §*: § I = 2, i = 0, 1, & = &%*, and
XI$ = §°/§ x £ γ £ . Since 3 | | © | , it follows that |9lo | = 3, and that
3 !̂ centralizes S31, as does φ°.

Let jQ = X%. Then O2(D) = φ 1, and & does not centralize S31.
Suppose U is a four-group contained in zi&)i VL <]X, and ZeU. We
argue that U^Z(X). Namely, choose UeU - <Z>. Then J7= ϋ"0?/1

with ϋ* G SB*. Since S3* £ φ1, we get [ U, S3*] = 1. Since SB* admit X,
it follows that [ U\ 93*] = 1. Hence, U1 e 3 £ Z(3). Hence, [ Z7, S] £
3 Π S5° = 1, so the assertion holds.

Since 3^ centralizes S31 and 3ΐ0 does not, it follows from Lemma
14.22 that NφffiJ) £ 2K, and since 9ΐ £ 2R', we get 3ΐx £ N^M)'.

Let β = C(3) a S^i. Since β g 2W, S3-subgroups of fl are cyclic,
so 9ΐx is a S3-subgroup of &. Let S be a S2,3-subgroup of B which
contains £3^ and let S2 be a S2-subgroup of 8 which contains X.
Lemma 14.22 implies that $t Π 3K contains a £2,-subgroup of β, so
S2 £ m. Let Si = O2(S) a &. Let Q2/®1 be a chief factor of 8^(9^) •£
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with £ 2 £ 8L. Since iVίAW) £ 2R, it follows that S2i21(9ϊ1)/§1 =

Let X = Ωt{Z{&)), and let ϊ o = ϊ f l C(£2) a 3 If *o^3, let U
be a four-subgroup of ϊ 0 with IID 3> U 0 £• By a previous argument,
we get U £ Z(£). Hence, ΐt Π 93° ^ 1. Choose i/e 11 n S30, U Φ 1. By
a previous argument C(Z7) £ SW, against £>2 §£ 2ft. Hence, ϊ 0 = 3 .

Since ϊ a A(^(£)), it follows that X z> Xo. Let %^ be a chief
factor of ^A(%)X with Xx £ X. Then [£2, XJ £ Xo, since £ 2 <] S23tle

Let 3£2 be a four-subgroup of 3^ which contains 3 and admits Z. By
a previous argument X2 £ Z(S) Choose XeX2n33°, X ^ l . Then
C(X) £ SK, by a previous argument. Hence, (^(X) = φ1, since £>2 Π
9K = ^ρ1. On the other hand, ξ>2 stabilizes the chain 3£2 ̂ > 3 ^ 1> so
C^2(X) is of index at most 2 in £>2. This contradiction completes the
proof.

LEMMA 15.12.
( a ) | R | = 9.
( b ) %/§ is dihedral of order 4 or 8.

( c ) |SS :2Bn&| - 4.
( d ) 3 | | I E | .

Proof. By Lemma 15.11, [ 2B: 3S n © | ^ 4. Choose Ge® with
S* = SSG £ S, 33* g ©, and let SS0* = 93* n ®. By Lemma 15.10, 33O* is
a hyperplane of S3*, so by Lemma 15.1, S3 £ fθlσ. Let 3 = [93, 93*]
so that 3 = (Z) is of order 2. Choose F*e93* - 930*, let 2 = %3i
and for each subset @ of 8, let © = @£/£. Thus, O2(S) = 1. Since
3 e π 2 , it follows that % is isomorphic to a subgroup of GL(2, 3). By
Lemma 15.3, 3t < S. Thus, S3* normalizes £3t.

Since a S2,-subgroup of O3,(SK) is a Z-group, it follows that
[©, 91] £ Φo Thus, φ3ϊ/φo is 3-closed, so 93* normalizes 3ΐ£0. Let
X - <93*, Sft, ô>/«go. We may view 93 as a ϊ-module since 93 £ Z(&).
Let 3Ϊ, - [3ϊ, 93*]^0/φ0, 3ΐ2 - C,,o/,O(93*), and let 93° = CM, 931 =
[93,^]. Thus, IS11 = 4, and 3 c S 3 1 . Since 3 = [93, 93*], it follows
that 9ΐ2 centralizes 3> a n ( i ^ l s o C^CS) is of index 3 in 9tlβ Hence,
Cκ(3) is of index 3 in 31.

Suppose CR(3) is non cyclic. In this case, C(3) E 3K> by Lemma
14.20. In particular, CmG(S) £ 3K. But CmG(g) contains O2(mσ) and
also contains a subgroup 5t* of order 3 with JV(2t*) £ 2ftG, by sym-
metry. Hence, Wl Π SK̂  has non cyclic S3-subgroups, against Lemma
14.20. We conclude that CR(3) is cyclic. Hence, 31 is metacyclic, so
is abelian, by 0.3.8. More precisely, 31 has a cyclic subgroup of
index 3.

We next argue that | 3^ | = 3. Suppose | 3^ | ^ 9. In this case,
contains elements of order 3 which are inverted by 93*
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and also contains elements of order 3 which are centralized by V*,
so that CΛ(S) is non cyclic. Hence, | SR̂  | = 3, and so S3* centralizes

Since 9ΐ' = 1, we get ^ 0 ^ <1 231 > and we may view §o^/^o as a
£/φ-group. Since SBξ>/$ is generated by involutions, and since X/φ
acts faithfully on Qoϊfl/Qo, it follows that SS£>/£ is dihedral. We
argue that 3B' £ (£. Namely, SS is generated by involutions which
centralize hyperplanes of S3. Suppose Iu I 2 e SB, C ^ ) = SS<, ΐ = 1, 2,
and 93; is a hyperplane of S3. If [Il9 I2] g K, then <£, J2>(£/(£ is dihedral
of order 8. This implies that <2i, J2>E/K is represented faithfully on
O8(SK/e), so 3 | | ( £ | , and β ^ e / e < SW/e. Now Lemma 5.47 gives
a contradiction, since (IJz)2 also centralizes a hyperplane of S3. We
conclude that (c) holds, and that (b) holds, by Lemma 15.3 and
Lemma 15.11.

Since 2SK/(£ is a four-group and is represented faithfully on
O8(2R/e), and since SΰK/S: centralizes a t e / i ^ ) ® , it follows that 13t | = 9
and that 3 Jf | S |. The proof is complete.

LEMMA 15.13. Wl = 331.

Proof. Suppose false. Thus, HJΪ is not a 2, 3-group. Let 3) be
a ${2,3}'-subgroup of Sft which is permutable with % and with 9ΐ.
Since ® is a ^-group, and since ® <1 ®9ΐ, and since 3ΐ S 3Qΐ', it follows
that [®, ΪR] = 1.

Choose G in © such that S3* = S3* S 2, S3* g (E, and let S30* =
S3* n £, a hyperplane of S3*. Let % = [3t, S3*]̂ > n SR, so that | SR01 = 3.
Let S3 = S30 x S31, where S30 = Cs(3ΐ0), S31 = [S3, 3t0], so that S31 is a
four-group. Let %$/§ = C^Xδ(S3*), with % Q 3ΐ. Thus, | % \ = 3,
9t = 3ΐ0 x 9̂ i and ^ S ) centralizes S31.

By Lemma 14.5, S) is a S-subgroup of ©, τr(S)) £ πί9 and by
Lemma 6.2, 2) § 27Z' Hence, ® is cyclic. Since | S311 = 4, it follows
that iV(®0) S 30Ϊ for every non identity subgroup ©0 of 5). We omit
the details of this argument, which is an easy consequence of Lemma
14.13.

Let 3 - [33, S3*] - [S31, »*] = <^> Thus, 3 ε S3*, and CMS)
contains a subgroup 21* of order 3 with iV(3I*) £ 30^. Hence, C(3) =

Since 9^2) S ^ and JV(3tO £ 2K, and 3ίx £ SW', it follows that 3ΐx®
is a S2,-subgroup of $. Let β 2 be a S2-subgroup of β which contains
CC8) and is permutable with ^ and with ®. Let φ = O2(^), Sx =
^ I Π C Ϊ C S ) . Thus, 3; = β 1 nSK, and S ^ c ^ . Let S /2; be a chief
factor of B with Z2 £ β x . Then ^ S ) ^ ! / ^ is a Frobenius group, so
I £ 2 : % I ̂  16.

Let & - [S3, SI]. Since | 333: 3S n ® I = 4, we get | S | = 16, and
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33 = $ x £, where « = C8(3ΐ). Choose G, in © such that 3B£ =
<£, 93*, SS^>. Then £ - (53° Π &) x S31, and Cs(3) - £2B, so that 3; -
£33*. This implies that ίΛ(Z(2;)) = (Ω1(Z(Z1)) Π &) x 3 x (55° n »).
Since 31 centralizes &, we get C(X) S 2ft for all X in # . Hence,
Z{%2) n » = 1. Since Ω^Z^)) = ( . ^ ( Z ^ ) ) ^ ^ ) ) x [», JRJ, and since
[S, 3ΐJ is a four-group, it follows that either A(Z(2;2)) n [&, SftJ = 1,
or A(Z(£2)) 2 [», 31J. If £i(Z(£2)) a [», 3tJ, we get JV([», 3ϊJ) g 2K,
against 5tφ0 g JV([», 3tJ). Hence, i2x(Z(2:2)) Π [», 3ΪJ = 1, so that
^ ( Z ^ ) ) S 3 x (ACZ^)) Π %. This implies that Ω^ZiZ,)) - 3 .

Let ϊ / 3 be a chief factor of S ζ ^ ® with 36 s Z ^ ) - Thus,
36 a [5&, SΐJ or X n Ώ ̂  1. Both possibilities give contradictions, since
£ 2 stabilizes 36 Z) 3 => 1 and [ S:2: ̂  | ^ 16. The proof is complete.

We now introduce the following notation. Choose G19 G2 in ©
such that ^Sϊ = <§, 33% 5Bσ*>. Let ϊ* - SSCS i = 1, 2. Write 3t =
9Ϊ, x SR2, where Sft^/© - C $ 3 1 Jϊ { ) , i = 1, 2. Choose "F, e X4 - <£, i = 1, 2.
Thus, Fi inverts £ 9 W £ . Write S3 = S30 x 9S1, where 35° - C8(3l),
S31 = [33, 9ΐ], so that | 3311 = 16. Let SSJ = [33, 3Ϊ,], i = 1, 2, so that S31 =
33} x 3>2> and 3ti centralizes 33^^ i = 1, 2. Since F< inverts ^%_J^,
it follows that [ϊ,, 33] - [X<, 33^] = <Z3_,>, i = 1, 2. Since Z3_, eϊ*, it
follows that C(Za-i) §aM, ί — 1, 2. Since 9^ centralizes Z3_;, as does
2S, we get 3ΐ, s C^Z^)'. Let ̂  - C(Z3_,), i = 1, 2. Since iV(^)eSK,
it follows that ^ — 3 ΐ ^ ? where ^ is a S2-subgroup of ^ w^hich con-
tains C.(Z3_ί). Furthermore, CZ{Z^) = §2B, and | S: £3B | ^ 2. Final-
ly, O2(Cm(Z3^)) - φ ϊ o and Cm(Z^)/^i = ^s Let 2, - O2(^) 3 ^ .

LEMMA 15.14. If i e {1, 2}, ίfeβw | iVs.(φ^): ^ 1 = 4, αwd <Z3_,> =

Proof. A repetition of the argument of Lemma 15.13 yields the
assertions of this lemma.

LEMMA 15.15. ΪE/φ is dihedral of order 8.

Proof. Let ©* be a S2-subgroup of © which contains iV^ίφXi).
Then Ω^Zi®*)) S Z{N^{^i))y so we get <Z3_,> = ^(Z^W))- Hence,
C(Z3_,) = © % , i = 1, 2. Since Z, - Z2, it follows that % - 9t2, and
so % and 9ΐ2 are iV(9ΐ)-conjugate. It suffices to show that 5RL and 9ΐ2

are 2K-conjugate. Suppose false. Let £ * = N%(St). Thus, S:7C2*(3ΐ)
is a four-group, and 9tL and 9t2 ^^e the only subgroups of 9ϊ of order
3 which admits £* . Hence, NA<im(Az*(ΪR)) permutes {9ΐ1? 9ΐ2}. Since
C^ίfti) Φl, i = 1, 2, it follows that 3l^3ΐ2, by Lemma 14.9. The
proof is complete.

THEOREM 15.1. // | 33 [ > 8, then £ is a S.2-subgroup of ®.
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Proof. Suppose false. We retain the preceding notation. Set
gfjj = iVs.(£>£;), so that %/ξ>%i is a four-group on which SΏ acts non
trivially'. Let % = ^ ( Z ^ ) ) , so that 2), = 33° x 33J x <Z3_,>. Let
% = % n Z{%). Since N(β\) S SK, it follows that S3J g g4. Hence,
9Si Π Φ< = 1, since | 33̂  | = 4 and SSJ = [9SJ, %]. Since f)< admits 3t<, we
get f)i = <Z3_i> (as we have already shown earlier). It follows that
I S8° I ̂ 2 , and if | 33° | = 2, then 2), is a free F2%/$X,rmodule. In any
case, % normalizes 93* x <Z3_ί>.

Set 11 = <Z1? Z2). Thus, 3^ stabilizes the chain ^ : 1 1 D <Z3_ί> 3 1,
so (7 (̂11) is of index 2 in 9^ and % maps onto ^4(^;), i = 1, 2.

We next show that ΛU.(£2δ) = φSB CR4(tt). Let 5β4 = JV.<R.(£SB).
Since 2δ does not centralize S^/Si, it follows that ^ is a 2-group,
and so ΨH = φ2B(^ Π S<). Thus, $< normalizes ^2B n S< = φ3£,, so
3ί< £ 9ϊί Since %/^^i is a four-group on which 2B acts non trivially,
we get % £ CR<(U), as CRί(U) is the only subgroup of % of index 2
which contains $3^ and admits φ3B. Thus, the assertion holds.

Since Z/$ is dihedral of order 8, we can choose TeZ — £>2δ.
Thus, T normalizes U and normalizes £>2B, and Z^ = Z2. Hence,

But iVΛ2(£2B) centralizes U, and so

We conclude that ΛΓβiWi(φ8δ) is independent oί i, i = 1, 2. Hence, Γ
normalizes iV@ (̂€>2S) Since iV©mi(φ3β) normalizes Ω^Z^Tί^)), it follows
that JV.iRl(©aB) normalizes ^ ( Z ί φ ϊ O ) , βx(Z(φ3ε2))> - ^(Z(φ)), since
ΩAZ(§3Ld)τ = fl^Z^ay), and Λ^O&aS)21 - iVΛl(φ2B). This is impos-
sible since Nψ^Z^))) = 3ft. The proof is complete.

Hypothesis 15.2. 5E is not a S2-subgroup of (S.

Lemmas 15.16 through 15.26 are proved under Hypothesis 15.2.

Let ®2 be a S2-subgroup of © which contains X, and let 3 =
^(Zί©,)). Thus, 3 £ Ω^ZiZ)) £ 93. By Theorem 15.1, we have
I S I ̂  8. Let % = CB(SS). Since 3 £ S3, and ©2 g 2JΪ, it follows from
Lemma 14.20 that 9^ is cyclic. Since | S3 | ^ 8, we get | SR: ̂  | = 3,
and so 3ϊ' = 1, 9t = 9^ x %, where | 3ϊ21 = 3, 3ΐ2 < ^(31) . Thus,

Sΐ) is elementary of order 2 or 4 and St £ SK'.

LEMMA 15.16. i V ^ V C ^ ) is α four-group.

Proof. Suppose false, so that | NΛ(ίft)/Cn(ίft) \ = 2. Since 3t £ STO',
and C(33) <j 2JI, it follows that C(SS) has a normal 3-complement. In
this case, >̂ is a maximal element of 1^(3^; 2), and since JV(φ) £ SPΪ,
φ is a maximal element of 14(3 ;̂ 2). But Sΐi £ (Sΐ^)', and by Lemma
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14.22, NiΩffij) £ SK. Since a S{2,3},-subgroup of C(3) is a Z-group,
it follows that ίRι centralizes some S{2,3},-subgroup of C($)9 and so
©gŜ i is a group. Since § is a maximal element of i V ^ ; 2), and
since Q £ ©2, it follows that φ = O ^ © ^ ) . This gives @2 £ JV(φ) £ 2W,
which is false. The proof is complete.

LEMMA 15.17. | S3 | = 4.

Proof. Suppose false. Since 3ΐ does not centralize S3, we have
1 S3 I > 2. By Theorem 15.1, we conclude that | S3 | = 8 . Hence, S3 =
S30 x S31, where S30 = <£8(3*) is of order 2, and S31 - [S3, 31] is a four-
group, normal in Sft. Thus, A(^(^)) = S ° x 3 0 , where 3 0 = Z(£) Π S31

is of order 2. Also, 3 * s a subgroup of S3°30 of order 2 distinct from S30.

Let Z, - Cx(ϋti$/Q), so that £/φ = 3^/φ x £ 2 /£, and |3:<: φ | = 2.
Thus, Sεx = 0,(3:8*!). Set 3K0 - Z^. Since 3ΐL £ STί; and Nφffi,)) £ 2K,
it follows that C(3) = @2(C(,3) Π Tt). Furthermore, 02(mo)CmQ(%>) = mo,
since Z2 centralizes S3. Let SB = Ω^ZiZ,)). Then 2S n S3 = S3°,30. Let
S be a Sί2)3},-subgroup of 2ft permutable with 3ΐ. Then 3ΐ® = 9ϊ x ®,
since S) is a Z-group, and Sft S 3K'. Let SKX = 2 : ^ ^ , so that SDΪ, is
of index 2 in 3ft. Let SŜ  = SS9"1. Since S normalizes SB, it follows
that SBi < SK. Let E1 = {7^(230. Then 2W1/K1 has no non identity
normal 2-subgroups, by Lemma 5.10. We argue that 9^ centralizes
SB,. If CJ$&d => ̂ ( S B J , then SK/C^^) = VJtJC^φ&d, and so SB, is
2-reducible in SR, by Lemma 5.10. If SB, is 2-reducible in SJΪ, then
by definition of S3, we get 3BL S S3 £ C ί ^ ) . Thus, we may assume
that 3BX is not 2-reducible in 271. Set (^ = C^̂ SBO = C^SBO, and let
^ / e , = O^SK/ej. Since ^ n 2Ri = ©i, and | SK: aΠJ = 2, if follows
that I 2V e, I = 2. Let ®2 = 3; Π ®i, so that 2 = 2 ) ^ . Since ®2 g £„
it follows that ®2 does not centralize 3ft1O3,(S0ΐ)/O3,(SK), and so SR, is
contained in the normal closure of ©2 in SPΐ. Since ®2 £ 3^ <] SK, we
get S)χ 2 3*i Since | 2V ^ 1 = 2, we then get Sx 2 3*i- Thus, in every
case, 3ΐi centralizes SBX.

Set Sx — ©2^, so that Si is a group. Since Z c ©2, it follows
that 3; c O2(S0- Let Z1 = iVo^^)^). Since i V ^ ^ ) ) £ 3K, it follows
that 3*! acts frobeniusly on ίE1/^. Since SB £ SB^ and since Z1

normalizes SB = Ω^Z^)), it follows that Z1 centralizes SB. Hence,
Z1 £ C(3B) £ C(S3°) £ 2R, against Z, = O2(SL) n 2R c 3:1. The proof is
complete.

We introduce the following additional notation: % — ΩffiJ,
2 = C(S). Let 2) be a £{2,3},-subgroup of 2K which is permutable with 3*,
and let ® = ®3ΐ = 2) x 3*. Then φ = Cft(3) = 3*x x 2). Since iV^) £ 2TC,
it follows that S = © A . Now 3ft, = ZB, is of index 3 in 2K, and is thus
a maximal subgroup of 27Z. We argue that if X £ SK, and 3c is a
subgroup of Tt which is permutable with ©2, then X £ 3 ^ . If false,
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we get that ©2 is permutable with <£, 2 ^ ) = 2K, and so £* =
is a group. Since 33 a ©2, it follows that @2 contains a non identity
normal subgroup of £*, and since © is an JV-group, S* is solvable.
Since 2K 6 ̂ T ^ ( © ) , we get S* = Έi 3 ©2. This is false, and so
contains every subgroup of 2DΪ which is permutable with ©2.

LEMMA 15.18. (Bj^e^f*, and

Proof. Suppose S* is a solvable subgroup of © which contains
®2%. Since % S (Wd'> it follows that £* = ©2(S* n Sft). By the
preceding argument, S* Π SPΪ g ££ L , and so £* S S. The proof is
complete.

Next, we show that

LEMMA 15.19.

Proo/. By Lemma 14.22, we have Cφffi)) S N(%) £ SK. Let
& be the set of all subgroups of 9ΐ of order 3 which have non trivial
fixed points on Q. Thus, ^ e ^ . Suppose XeNφffi)), X $ Tt.
Then & Π &x = 0 , and so | ^ | ^ 2. Since 3Ϊ acts faithfully on
φ, we conclude that | ^ | = 2. Since ^ is normalized by Nm(3ϊ), it
follows that ^ = {Sfti, 9ΐ2}. Since ^ and 3ΐ2 are the only subgroups
of 9Ϊ of order 3 which are normalized by Nm(?H), and since we may
assume without loss of generality that X normalizes ^(^(91)) , it
follows that & = &x'. This contradiction completes the proof.

LEMMA 15.20. // @ is a 3-subgroup of © which contains St2,

iv(@) a

We may choose C in C(3Ϊ2) such that &° s 3Ϊ. Thus, we
may assume at the outset that @ £ 3ΐ. We may also assume that
@ =) 3Ϊ2. Hence, @ = 3ΐ2 x (@ Π %), and so @ 2 fl^Sft), whence ^(Θ) =
fl^Sft). Since 3ΐ2 <( iV^(3ΐ) by construction, this lemma follows from
Lemma 15.19.

LEMMA 15.21. X is a S2~subgroup of every solvable subgroup of
© which contains

Proof. Suppose false, and @ is a solvable subgroup of © which
is minimal subject to

( a ) X is not a S2-subgroup of @.
( b ) £9ΐ2c:@.

Then @ is a 2, 3-group. Let {@2, @3} be a Sylow system of @ with
S c @ 2 , 5R2 S @8. Let « - O2(@), so that @ = ^.JV@(@3). By Lemma
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15.20, 3ΐ2 <1 iV(@3), and by minimality of @, we have @3 = 3ΐ2. Since
3̂2 S (%>%)', we have @2 = $ £ , and so | @2:11 =•' 2, and $ Z) ® n 3ft = $0,
say. Now $ 0 = £ 2 satisfies 12: S, | = 2 = 12^: φ |. Also 93 s Ω^Zφύ).
Since Z(£) is cyclic, it follows that 93 = QX{Z(^). Since SK = JV(93),
2 is forced to be a S2-subgroup of @, since JV($0) = N{%2) S 3K. The
proof is complete.

LEMMA 15.22. | ©2: Z \ is a square, and | ©2: £ | 2> 4.

Proof. Sx = ©23 î is a group, and £2 = 02(©23ΐ1) is of index 2 in
©2, and ©2 = 2 2£. Hence, | @2: £ \ = 22: X, |, since Z1 = Zf] 0,(2,). Let
% = SSδi c 2δ2 c c 2B5 — S2 be a chain of ^-admissible subgroups
of S2 such that ^ acts irreducibly on %ΰi+ί/%£i, ί — 1, , s — 1. Since
JV(^i) S 3K, it follows that each such quotient is a four-group. The
lemma follows.

LEMMA 15.23. If @ < S, @/3 is α cλie/ /αcίor o/ S α^d @ is
elementary abelian, then © S O2(SK).

Proo/. Since 55 e M ^ ; 2), we have S3 S O2(S), and so [@, 33] s
3 s S3. Hence, © a JV(Sβ) - 2R.

Let @x = © Π O2(3W) Thus, ©/^ acts faithfully on O2,2,(2K)/O2(2R).
Since ^ is of index 3 in j£, and since ffi Π O2f2,(3K) covers O2,2,(2K)/O2(SK),
it follows that Cf/G?! has order at most 2. Suppose by way of con-
tradiction that I @: @i I = 2. In this case, C^^) D 3 , and since Gc/3
is a chief factor of S, it follows that @ is a four-group, Ĝ  = 3

Choose EeQέ — 3 Then we can choose an element F of Wl of
order 3 which is inverted by E, and since (F) is SK-conjugate to 3ΐ2,
we assume that 9ΐ2 = (F), without loss of generality. Since [£>, @] = 3>
it follows that φ = 93 x Q9ΐ 2 ) . Since 3ΐ2 <\ NΛ(ΪR), it follows that
C^(3t2) < 2:. Since Z{Z) is cyclic, and fl^ZίS:)) S S3, it follows that
Z(3;) Π C$(3ΐ2) = 1, whence, Cφ(3ΐ2) - 1. This means that φ = 93 is a
four-group, which is false, since 3ΐ acts faithfully on φ. The proof
is complete.

Since S e ^ ^ ^ ( © ) , Theorems 13.5, 13.6, 13.7 imply that £ contains
a non cyclic normal abelian subgroup. So S contains an elementary
abelian normal 2-subgroup © such that G?/3 is a chief factor of S.
We retain this notation.

LEMMA 15.24. If ©0 is a hyperplane of ©, then C(Gr0) g S.

Proof. Suppose false. Then 3 §= ©o? ^ n d so @ = @0 x 3 Let
£, = C((g), ©,/e, = O^S/eO Since 3 - A(Z(©2)), we have (£, n S.
Suppose ®! = ©!. In this case, O^S/C^) = ©^Ki ^ 1. Let $ 2 be a
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£2,-subgroup of ©2. Thus, since Gr/3 is a chief factor of 8, it follows
that 3 = Ce(®2), and so g - 3 x [®2, ©], whence [@, SBJ < S. This
is false, since 3 = Ω^Z^)). Hence, s y ^ =£ 1. Since ©/£ is a chief
factor of £, we have 3 = C^SX), and C^®) = £„ [@, ©J = 3 . Hence,
@/3 and SDi/®! are in duality, and so ©x permutes transitively the
hyperplanes of G? which do not contain 3 Thus, we assume without
loss of generality that Bλ £ N(<Sz0).

First, suppose 5RL centralizes @. Since @ <J @2, there is a four-
group ΐ t < @2, Xtg©. LetlI o = @onU, so that | Uo | = 2. Let ©2 = C@2(tt0)
so that ©2 is of index 2 in ©2, and U = β ^ © , ) ) . Since ®2% £ JV(U),
it follows that JV(tt) £ 8, and so @2 is a S2-subgroup of CQ1O).

Suppose that C(U0) has a normal 3-complement (L In this case,
ϊti. normalizes ©2, and if 28 is any non indentity characteristic sub-
group of ©2, it follows that ®JR, £ iV(2B), and so JV(2B) £ S, by Lemma
15.18. This in turn implies that O3,(C(U0)) = i e S , since K = (Kn
C(Z(©2)).(eniV(J(©2)). Thus, if ®3 is a S3-subgroup of C(tt0) which
contains ^ , then ®3 g S. This in turn implies that ®3 £ 2ft,
I ®3: ®3 n 8 I = 3, and so Q^ = S3 = 3Cίπ°) Hence, C(1XO) £ SK, and so
I S£ I ̂  I ©21 = I ©21/2, against Lemma 15.22. We conclude that C(U0)
has no normal 3-complement.

Suppose @ is an elementary subgroup of C(U0) of order 9 with
% £ @. We assume without loss of generality that @©2 = S is a
group. Let ^>0 = O2(S). Since C^^^) ^ 1, and C $ (^) ^ 1, § 0 is con-
jugate to a subgroup of § . If iρ0 is conjugate to φ, we get | ί£ | ^
I ©21, which is false. Hence? ξ>0 is conjugate to a proper subgroup of
φ . Since | ©2: £ 0 [ ^ 4, it follows that | ©2: $ | ^ 4, against | £ : φ | = 4.
This contradiction shows that S3-subgroups of C(U0) are cyclic.

Since C(1XO) has no normal 3-complement, it follows that ^igC(U 0)'.
Since a S{2,3{,-subgroup of C(UQ) is a Z-group, it follows that C(U0) Π
C^i) contains a S2,-subgroup of C(U0). Since ® £ S Π 2R, it follows
that if @ is a S3-subgroup of C(U0) which contains %, then @ £ SK,
@ g S . Hence, 3 s = 3C(tto> = S3, so ©2 £ iV(SS) £ 2R, whence | S | ^
I ©21 = I ©21/2, which violates Lemma 15.22.

We may now assume that [%, @] φ 1. In this case, lc[@0, SftJ £ @0>
and so [^, ©0] contains a 4-group 11 which admits % and such that
U3 < ©2. Since C(©0) g S, so also SK - ^(U) g S. Let % - JVβa(tt),
so that 9ΐ2 is of index 4 in ©2.

Since 3^ does not centralize @, and since G?/3 is a chief factor of

S, which ^O2(S) < S, it follows that 3^ £ (S^^)', and so N(U) =

9ΐ*(iV(U) n CORJ) = St*(JV(tt) n a«), where *β* is a S2-subgroup of iV(U)

which contains % . Since 3ΐx does not centralize tt, it follows that if

@ is a >S3-subgroup of N(U) which contains &19 then ^ is a direct

factor of @.
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Suppose Θ = ) ^ In this case, we get |@| = 9, since $ x <| iV(3l),

and I 3ΐ21 = 3. We then get that 9i* = 9i2*@ is a group. Furthermore,

Cx(%) is a S2-subgroup of C(%) and since C%(%) normalizes 1X3,

also normalizes [1X3, ^ J = IX. Thus, 9Ϊ2 contains a S2-subgroup of

This implies that either 9i2* = 9ί2 or 9i* is a S2-subgroup of ©. Since

3 S 9ΐf, it follows that O2(9i*) is conjugate to a subgroup of φ If

O2(9ί*) is conjugate to a proper subgroup of φ, we get | $ | ̂ >

2 I O2(9i*) I ^ I SB* |/2 ^ | ®21/8, whence | £ | ^ | ©21/2, against Lemma

15.22. Hence, 02(9ί*) is conjugate to φ, whence 9^ = S«*, and |© 2 : £ | = 4.

This in turn implies that IX ~ 33, since IX = βx(Z(9i2))s, and SB =

Ω,{Z{X))Ωim. Let &1 = C9Q1)9 so that I Θ J - 3 , and @, - ^ This

implies that @ contains more than one conjugate of ϋi19 which is false,

since % < N(dt). So ^ is a S3-subgroup of iV(lX).

Since ^ s Sϊ', it follows that 91 - 91? (SK n 91), and since 3^ is a

Ss-subgroup of % SK n 9i £ S. Thus, 91? g S, so that 9i2 Π 3ΐ2*. Since

C^^i) is a *S2-subgroup of C(^) , and since C%φ.λ) normalizes IX, it

follows that 9i2* is a S2-subgroup of @.

Let S* - S Λ , S2̂  = O2(8*), 82 = O2(9iA). Thus, S2 < S? and

S?/S2 is a four-group. On the other hand, since | Oa^Sΐi): S21 = 4, and

since S2 contains a S2-subgroup of C(MJ, it follows that 22 <] Oa^Kx).

Since ^^ = 02(®2'^1)'%%y it follows that ©29ζ S JV(S2)» and so

iV(S2) £ S. Thus, S2* £ 8. Since 9i? = S?(912^1), it follows that

iV(!X) g S. The proof is complete.

LEMMA 15.25. JVββ) S SK /or e^er̂ / subgroup ^ of Tl of prime
order p, and every p ^ 5.

Proo/. We may assume that 81 s C(5P). Thus, SS3ΐ g JV(Sβ) = 91,
say. Since Sp-subgroups of Hft are cyclic, we have 91 £ 9i\ Also,
9S S O2(S), since ^ centralizes S3. Since S3* is permuted transitively
by m, it follows that S3 £ 0,(C(F)) for all involutions V of S3. This
implies that O2(9i) ^ 1. Hence, 3ΐ centralizes some S{2,3}/-subgroup of
% and so 9ΐ = 9i2(3K Π 91), where 9^ is a £2-subgroup of 9i permutable
with 3ΐ. Since C(SΪ) £ SK, and since there is C in C(3ΐ) such that
OtQftffi)0 £ φ, and since %M = O2(9i29ϊ) iV;R25R(3ΐ), it follows that % £ SK.
The proof is complete.

LEMMA 15.26. There is G in ® sucft ί/ιαέ ©^ £ 2, (F

Proof. Let X = F(ccle(@); S). By Lemma 15.23, we have © £ ϊ .
If ϊ £ £ 2, then JV(X) 3 Z%, and S is not a S2-subgroup of iV(9£),
against Lemma 15.21. The proof is complete.
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Choose G in © such that g = (F S % g g ϊ 2 . Let & = g n £2,
so that & is a hyperplane of g. Then 93 £ C(&) £ JV(g), and so
3 = [S3, g] £ g. It is important to show that 3 Φ 3G Suppose 3 = 3 σ

In this case, g = @. By Lemma 15.23, ©S02(Sft), against © g £ 2 . So
3 ^ 8G- Choose Fe33 - 3 . Thus, F normalizes g and V is not 1 on
g/8*. More precisely, [g, 33] = 3 ^ 3 * . Set 8* = 8β, and 3* = 3σ- Let
X = C£*(g/3*), and let 2) = £*/£. For each subset @ of £*, let © be
the image of @ in 2). Then F Φ 1, and F is a transvection on g/3*.
Let S3 = F(!&*), so that F acts faithfully on 35. Since a Sy-subgroup
of S* is a Z-group, it follows that every subgroup of 35 is charac-
teristic in £*. Since V is a trans vection on §/3*> it follows that
[35, V] = So is of order 3, and that [g/8*, S5o] is a four-group. Since
ΪS/8*, S5o] admits £*, it follows that | g | = 8. Hence, |(g| = 8, ond 8
permutes transitively the 6 involutions of G? — 3. Since 3 ^ 3G> it
follows that all involutions of @ are fused to ^ in ©, where 3 = <^)

Let $2 = Cftl(®), so that | ft^ Λ, | = 3. Choose IX < @2, IX £ @, U
a four-group, and let ©2 = C@2(tl), so that ®2 is of index a in ©2.
Also, since Z(©2) is cyclic, we have U = ^ ( Z ^ ) ) * and since all involu-
tions of U are fused to 3, we get N(U)/C(U) ~ Aut (tt). Let 91 = JV(U) 3
@2̂ 2. Obviously, 9Ϊ g S, since 3 ^ 9Ϊ Hence, by Lemma 15.18, we
have 3^ g; JV(U) This implies that ^ = ^ , since $2 is of index 3 in
&t. Let &1 be a S2,-subgroup of JV(U) which contains ^ 2 . Since ^ 2 is
now a 3'-group, it follows that if $2 Φ 1, then N(B2) £ 3K. Suppose
^ 2 ^ 1. In this case, we get S ι £ 501, and by a previous argument,
we then get SI1 £ 33^, whence S1 £ 8. This is false, since N(U) is
transitive on tt#. We conclude that ®2 = 1. This means that Wl = S3ΐ
and I 9ΐ | = 9.

Let ^ - 0 = {g I g 6 ccl@(©), g £ m, [g, 33] - 3). Thus, J ^ o Φ 0 ,
and StiίE normalizes ^ Ό . Let

- ^ = {g e ^ Ό I g contains an element F which inverts 3ΐ2}.
Choose g0 G ̂ Ό Then g0 g C(33), and so %0 does not centralize £>3ΐ2/.ξ>.
Choose F 0Gg 0 ~ So ΓΊ C(33) Then Fo inverts an element R of £3R2 of
order 3. Hence, <iϋ> = 5ft? for some if in § and so g?" ι = § e ^ .
Thus, ^ Φ 0.

Choose § e ^ . Let §x = § Π C(33), and let .Feg invert 3ΐ2.
Thus, § = & x <F>, and 33 £ <?(&) £ iV(§), whence [33, §] = 3 £ §.
Let § - @G. If 3 - 3^, then ® = g 5 = §, against Lemma 15.23. So
3* = <^> Φ 3, and <Z, Zi> is a four-group in §.

Since JV(§) is transitive on § - <Zx>f it follows that iV(§) n C(Z)
is of index 6 in N{%). Let ©2 be a 52-subgroup of N{%) Π C(Z), and
let @2* be a S2-subgroup of C(Z) which contains ©2. Since C(Z) = (S,^,
we have ©* - ©f for some R in ^ . Set g - g^"1. Then ©f"1 is a
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^-subgroup of CCS) n Nffi) and ®Γ' £ ©2. Also, g e J ^ . Thus, §
has the following properties:

( a ) [&S3] = & S = <E*eccl.((S).
( b ) N(%) Π ©2 is of index 2 in ©2.

(c) <2ί> = 3 β * 3 .
( d ) δ = Ca(33) x <F>, where ί 7 inverts J?2.

Set £ 0 = S n JV(g). Since £ S ©2 and ©2 Π N(%) is of index 2 in @2, it
follows that £ 0 is of index at most 2 in S. If £ 0 = £> then QG S -^(S),
as Z(£) is cyclic. This gives SG = 3> against (c). Hence, | £ : £ 0 | = 2.

Set § 0 - φ n So, & = [£, St.], £ 2 - C«(Sy. Let | &: & | = 22 '.
Then / is an integer and | C^^F) \ = 2f. Since £ 0 normalizes § and
centralizes U = <Z, ̂ x>, it follows that C%Q(F) is of index at most 4
in £ 0 . Hence, | S: ^ ( F ) | <; 8. In particular, / ^ 3.

Case 1. / = 3.

We argue that S3 §£ $[. Suppose false. Let 2) be a subset of &
of cardinal 8 such that the image of 2) in φi/Φί is a transversal to
C^i^F) in φi/φί, and let SS0 be a subgroup of SS of order 2 distinct
from 3 Then | 2)3S0 i = 16, and distinct elements of 2)SS0 lie in distinct
cosets of C9(F). This violates | φ : C^(.P) | ^ 8. So §Ί Π 95 = 1. Since
SS is the only minimal normal subgroup of Sft and since Q[ <| 3K, we
have φ[ = 1.

Let ^ 1 0 = §i ΓΊ φo> so that φ 1 0 is of index 2 (or 1) in § x . Since
I & I = 26, we have | [φ10, F ] | ^ 22. But [$1 0, F ] S ^ n g S C,(aS) -
<Z, ^ > , and so [# ι 0, F ] - <Z, Zx>. Thus, φL s C(^i) = N{%), and so
[ & , g ] g g . Since | g | = 8 , we have % = [Qlf F]9 which is false,
since % g £>.

2. / = 2 and φVφί is the direct product of 2 cyclic groups
of order 4.

Since Zλ centralizes a subgroup of index 2 in 2, it follows that
Zx e φ . Let i?! = JEZiίZ"2> with ί^ e § ί β Then since Z1 centralizes φ10 =
Φi Π ξ>0> [so does £Γ2. Since C^(H2) admits 3t2, and since Cϋ(H2) is of
index at most 2 in $ „ it follows that H2eC{$QΪ). Hence, Z1eC(^ί)y

and so & s C(ZL) = iV(g). Hence, [^x, F] S g. This is false, since
g is elementary, and [&, F ] is cyclic of order 4. So ^ ' Φ 1. Since
S3 is the only minimal normal subgroup of 271, we have S3 g ξ>J.

Let >̂3 = [φί, § J Then $7Φβ is cyclic, so is centralized by 3ΐ2.
Choose Heξ>[ such that £>3iϊ is a generator for $[/!Qd, and set ^ 4 =
[$3, § J Then ^ 3 = [§!, ί ί ] ^ 4 , and 3ΐ2 has no fixed points on 4?3/φ4.
Let 4 s | 3 c § 4 , with £3/|>3 a chief factor of £9ΐ2. If S3 S 4> we
get |^ x : C9ι(F) \ ̂  16. Hence, SS g § 3 , and since 33 is the only minimal
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normal subgroup of £3ΐ2, we get |>3 = 1. So cl (#0 = 3, and φί is
abelian of type (2α, 2, 2) for some α *> 1. If α > 1, then £ί has a
characteristic subgroup of order 2, against the fact that S3 is the only
minimal normal subgroup of SPΪ. So a — 1.

Since φi is generated by 2 elements, and since φ x <| 3ft, 9ΐ does
not act faithfully on φ1 # Since CίφJ < 3ft, it follows that C(^x) has
order divisible by 3 but not by 9, and so 9^ £ C(φi). Let SQ1 =
[Q, 3»i] < 2K. Thus, &1 ^ 1, and so S3 £ φ 1 . Since [Qu 3tJ = 1, it
follows that &1 n & a [£\ φ 1], and so 3ϊ2 centralizes ΦVIΦ1, Φ1]. T h u s

[3ΐ2, ^ x] - 1, against 33 £ φ 1 .

Case 3. / — 2, φi/Φί is elementary and £>ί ̂  1.

If Zγ centralizes §19 then [Ql9 F] = C5(S3) = <Z, Z ^ . This is
impossible, since | [φ l f F]§I/ΦII ^ 4? a n ( i ^ e Φί So Zx g C($J, whence
£ = £ 0 & . Let SB = ( Z ! ) 7 so that |2S | = 4, and SB = <3ί, Zf} for
some i ϊ in £ . Thus, Z - ZxZf. Let 2B* = 5B% so that SB* < 29ί2,
2B*=)S3, and |2B*/33|^2 3. Since [φ, ZJ S S3, it follows that φ '
centralizes 3S* We argue that SS* is abelian. Suppose false. Now
SB* = <S3, Zl9 Z?, Zf~1}, where <i?> = 3ΐ2. Since ^ centralizes a sub-
group of 2B* of index 2, and [^, Zf] Φ 1, we get [Zl9 ZfZf~ι] = 1, and
so [Z l f Zf ] - [Zu Zr1] e S3*. Thus, [Zl9 ZΓΎ = 1%?, %λ = [Z» Z?h so
that [Zlf Zf] e S3 n C(3l) = 1. so SB* is abelian.

If I SB* I = 8, then SB* = SB0 x S3, where 2B0 = <TF> = C . ^ ) is
of order 2. This implies that Z, = TΓZ, since 3ί2 g C(ZΊ), and Cn.(F) =
(Wo, Z) 3 <^i>. If T7 and ^ are fused in φ, say Zx = ΐ^77, then
Sftf centralizes Z19 so that g centralizes Sftfφ/§ = 3tj§/§> which is
false. Hence, TF and ^ L are not fused in φ . This implies that §
centralizes S3 and does not map onto the stability group of the chain
2B*Z)S3=)1. Hence, SB* £ Z(φ). Since £3t2 = φ JV^ίSy, it follows
that SB0 £ Z(2;), which is false. Hence, | SB* | ^ 24.

Since <ZX, S3> <\ $, it follows that | [SB*, 3ftJ | = 24, and so
I [SB*, 3ft,, F] I = 22. Since [SB*, 3ϊ2, F ] £ g n C(F) - <Z, Zx>, it follows
that SB* = [SB*, SRa] is of order 24. Since | Q: C^ZJ \ = 2, it follows
that | § : C,(3B*) | ^ 4 . Let φ = C,(SB*). Then [§, F] g g/Ί C(S3) -
<Z, Zi), and so F centralizes |>/3B*, whence 9ΐ2 centralizes φ/SB*, and
so § = C5(3ΐ2) x SB*. Since Z e § ; , it follows that 3 B * c φ 1 , and so
9Ϊ2 does not centralize £>/|>, whence £>/|> is a four-group. Choose
He CtiZJ - φ, and let i f - ί ί 2 2 , Z2 = Zf. Then [J5Γ, ZJ = 1 = [JBΓ, Z2] =
[J32Γ, Z ^ 2 ] , and so | [φ, SB*] | ^ 2. Since [©, SB*] £ S3, and [Q, SB*]
admits 9Ϊ2, we get >̂ = |>. This contradiction shows that this case
does not arise.

Case 4. / = 2 and ξ>x is elementary.
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Write Zγ = HλH2, where Hi e &. (Since Zγ centralizes a subgroup
of index 2 in φ, it follows that ^ € §.) Since Zγ centralizes a sub-
group of φi of index 2, so does H2. Since C^(H2) admits 3\2, it follows
that H2 e (;(&), whence Zx e €(&), whence [&, F] S C(SS) Π g = <Z, Z,)y

and so [&, F ] - <2T, Zx>. Let £ 3 - C«2(&). Then <p3 < SK, and
©a Π S3 = 1, whence, φ 8 = 1. Suppose £>2 ̂  1. We can then choose an
involution Hoi $2 which is centralized by F. Hence, He C((F, Z)) £
-2V(3) = C(Zj), and so C^{H) contains S3 properly, whence H centralizes
$ l β This violates ξ>3 = 1. We conclude that ξ>2 = 1, and so «§ = p̂i
is elementary of order 24. But then ξ) is 2-reducible in 3PΪ, against
I 33 I = 4. We have thus completed a proof of the following result.

THEOREM 15.2. % is a S2-subgroup of ©.

The preceding theorem did not come easily, but we would not be
able to save any effort by first considering the elements of ^€S^(®)
which contain a S2-subgroup of ©. The configuration we have just
analysed is unavoidable within the framework of the present
techniques.

We must once again turn to the model given in § 13 to complete
the analysis of the present situation. We have already done most of
the hard work, but there are a few alterations necessary in the argu-
ments of § 13. Also, there is some difficulty in determining enough
information about the isomorphism class of 91. This difficulty arises
because of the possibility that 3ΐ may be of maximal class. So we
must bring to bear the detailed results of Blackburn about the 3-
groups of maximal class.

We retain the notation introduced at the beginning of this section.
The argument of Lemma 15.6 still applies to give us 31 s TV. Thus,
if 3) is a S{2>3},-subgroup of Tt permutable with 31, then ®3ΐ = ® x 3t.
Set $ = S)3ΐ. Of course, ® is a ^-group.

We need some additional notation. Let % = 3ΐ Π Or,3(Wl), and
choose % char %, % of exponent 3, 5R', £ ^(3^), such that
ker (Aut (3t0) -> Aut (3^)) is a 3-group. Let X = O^^Wi/OA^Di^).
Since | % \ = 32 or 33, it follows that | 9c | = 32; and Cm(£) S OB,,z(Tl).

LEMMA 15.27. %0% <\ Tl.

Proof. We note that since £>/£0 acts faithfully on O2,2,(9K)/£>0>
and since φ/φ0 centralizes a S3-subgroup of O2,2,(Wl)/&0, while a Sz>-
subgroup of O2,2,(9Jί)/<£0 is a iΓ-group, it follows that [φ, 31] C ^>0

Hence, §03ΐ0 = O3(Z3l mod §0). Since Tt = S:$R®, and [3ΐ, ®] = 1, the
lemma follows.
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LEMMA 15.28 If CΛ(SS) is cyclic, and ίE/φ contains a quaternion
subgroup, then J(X) = J(Q), and N(J(X)) £ 2B.

Proof. Since £03ΐ0 < SK, so also Qo% <\ 2K. Let mx = XSΛ,. We
may view S3 as a l^aK^o-module. Since φoSΐi/Φo/^i) is an irreducible
module for £/£, it follows that CΛl(S3) £ />(2ti). Since φSli/φo =
£>/£>o x 3̂ î o/̂ o> the P x Q-lemma implies that if 33O = C8(§), then
CΛl(S30) = CKl(S3) £ />(3ΐi) Let Sί be an abelian subgroup of £ of
maximal order (or rank), and let 33 = St Π φ Then 2C/SB is isomorphic
to a subgroup of GL(2, 3). Let S^ = a Γ) S30 = S5 Γ) S30, so that | SS0931 =
I S5| |SS0: SSX |, and since SS0S5 is abelian, we get

If I Si: 95 I - 8, then SC/SB is cyclic. Since a/33 acts faithfully on SS0,
we have | SS0 SSi I ̂  24 If S3C/S3 is cyclic of order 4, then the only
possibility is that 33O = ?̂oo x SSou where SSOo S a, and SS01 is an indecom-
posable i^2a-module of order 8. Thus, if a = <β, Γ>, then C8o(Γ2) is
a hyperplane of S30 This is false, since Γ2 inverts X If SC/33 is a
four-group, there are two cases.

Case 1. I 9^ | = 33 and ^ acts faithfully on SS0

Since a/S3 is a four-group, and a/S3 = a©/φ, it follows that a
has an element Γ which inverts %$o/$o- Since | [SS0, 31'J | ^ 26, we
have I SS0: CΏo(T) | ^ 23, and so | 93O: S3, | ^ | 3?0: Cβo(Γ) | > 13: S31.

Case 2. ΪRJC^o) is of order 32.

Since Difftj) £ C(SS0), we may view SS0 as a i^X-module. Since
%I!Q contains a quaternion group, X permutes transitively the 1-dimen-
sional subspaces of X. Hence, | [SS0, X] | ^ 28. Since a/S5 is a four-
group, there is T in a which inverts X. So | S50: S5X | ^ | 33O: C^(T) \ ^
2*> | a : S 5 | .

If I a/331 = 2, then a = <33, T>, and CSo(T) is forced to be a

hyperplane of SS0. This is false, since | [5?0, 9ΐ] ^ 24 for every subgroup

Sft of ^ which does not centralize 33O> and since T inverts φo^/$o for

soma such §t. So J ( ϊ ) = J(φ). Since >̂3ΐ £ N{J{%)), the proof is

complete, by Lemma 14.20.

LEMMA 15.29. Suppose S3 is α %o% cyclic 3-subgroup of 9K,
4?ie Haβ(33ί 2), αnc? φi contains an elementary subgroup of order 8.
Then QJ&

Proof. We assume without loss of generality that [ 33 [ = 32. Let
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Sf = {© I $J& s @ s ©, © i s solvable, @ g Sft}. Suppose S* Φ 0.
Choose @ in ^ with | @ Π 3ft |2 maximal, and with this restriction,
minimize @. Let @L = O8/(@), and let @2 be a £2-subgroup of @L

which admits S3 and contains a S2-subgroup ©2 of O3,(@) Π 3ft. We
argue that iV(2)) £ Sft for every non identity characteristic subgroup
2) of ©2. This is clear by Lemma 14.20 if ©2 e iVί(33; 2), so suppose
©2 ί iV£(S3; 2). Since & £ O8,(@) (as 3 G ττ2), it follows that @2 Φ 1,
and so | Nm(W [2 > | @ Π 3ft |2, whence iV(2)) S 3ft by maximality of
I @ n 3ft |2. Since JV(©2) S 3ft, we get ©2 = @2. Since 2 = O3,(@) is a
3'-group, minimality of @ gives S = @2O, where G is a #-group for
some prime q ^ 5, and O admits 33. Since & contains an elementary
subgroup of order 8, we get that O is cyclic. Hence, O2(@) ^ 1.
By Lemma 14.13, [35, O] = 1. Since C(S3) = 3ft, we get D g Sft, and
so @ £ 3ft. The proof is complete.

Let 3ft = {M I M e Qo%, M has order 3, M is real and N((M}) s
Sft}.

LEMMA 15.30. Suppose MeUt, 33 = <M>, α^ώ CR(33) is CT/CKC. //
S e H^(33; 2), ίfeew ίfce following hold:

( a ) Λf is reαί in JVa»(S).
( b ) iV(S)gSft.
( c ) 233 e ^ C * .

Proof. Let S* = 03,(3ft)£33. Since S* has a normal 3-complement,
JV?*(S3; 2) = {2C I Ce C(33) Π O3,(3ft)}, and so S contains a £2-subgroup of
S*. We assume without loss of generality that S £5E, 33 £ St. Thus,
§ g 8 . Since 33 £ £o9ΐo, it follows that [£, 33] £ 8 Π €>ô o = €>o. Since
S G iVί(33; 2), it follows that S/£o is a S2-subgroup of CWo(33). Since
M is real in Sft, there is X in 2ft with Mx = Mr\ Let Cw$8) =
2fto/€>o, and let 3ftx = <2ft0, X>. Let Sx be a S2-subgroup of 2ftx which
contains 2. Thus, 12X: S | = 2, and £033 < SX3S. Thus, (2) holds.

Let 31 = N(J(S>)), and suppose (b) is false. Since J(2) char S,
we have 91 g Sft. Let 9ί0 be a S2,3-subgroup of 91ΓΊ Sft which contains
233, and let 9^ be a S2,3-subgroup of 31 which contains 3ϊo Let
S £ So £ Si, 33 £ 330 £ 33X, where 2, is a S2-subgroup of %, and 33̂  is
a S3-subgroup of 31* If Sδi is non cyclic, then 33 is contained in an
elementary subgroup 33* of 33X of order 9. Since MeW, we have
33* S 3ft. Since £ 0 £ 2 £ % Lemma 14.20 gives 3i £ Sft. Thus, 33X

is cyclic, and 33X £ C(33) £ Sft.
Let Sx = (MSy. Thus, S1 n 3ft = 2, since 2 G iV (̂3S; 2). Suppose

Si = 2. Since 21 is of index 2 in 21? we get from (a) that 3ix £ Sft.
Since 33 £ 31' and a S{2,3}>-subgroup of 3i is a Z-group, we have

Suppose 21 =) 2. Since C(33) £ 3K, we get that 121: 2 | is a square,
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and IS1: S | ^ 4. Hence, | Sx: £ | ^ 8. By Lemma 14.20, we have
S => £, and so | 8/. £ | ^ 16. Since £ is a S2-subgroup of ©, | £ : £ | ^ 16.
Thus, 3yφ contains a quaternion group. Since § S 2 g !£, we get
J(%) = J(S) = J(£), and so (b) follows from Lemma 15.28.

Now suppose £33 £ @, and 6 is a solvable subgroup of ©. If
S3-subgroups of © are non cyclic, then since C(3S) £ SK, £3-subgroups
of © Π 3K are non cyclic, and so we get © £ 2K, by Lemma 14.20.
Suppose @3 is a cyclic S3-subgroup of © which contains 33. Then
©3 £ C(S3) £ 2TC. Thus, S is a S2-subgroup of ©0 = O8,(@). Since
JVe(S) contains a S2,3-subgroup of ©, we get that | ©: © Π SK | is prime
to 6.

Suppose © §£ 2K. In this case, there is a prime p >̂ 5 such that
a Sp-subgroup β̂ of © is permutable with 33 and with £ and is not
contained in 271. Since σ2 = {3} and O2(©) ^ 1, Sβ is cyclic. Since
C(33) £ SW and Sβ g 2K, 33^ is a Frobenius group. Hence, S3 g ©',
and so S is a S2-subgroup of Θ. Let @* = S^3. Since p ^ 5, there
is 2) G {Z(8), J(8)} with 2) < @*. Let © = iV(2)). Then © g 2K, © is
solvable, and 33 £ ©\ The preceding argument applied with © in the
role of 6 completes the proof.

LEMMA 15.31. Suppose Mewl, (7̂ (33) is cyclic, and ^1 is a sub-
group of £Q0 normalized by M. If φ x contains an elementary subgroup
of order 8, then

Proof. Let S? = {© | ©iSK g @ S @ , @ is solvable, © g HR.}.
Suppose £f Φ 0 . Choose © e ^ such that | © Π SK |2 is maximal,
and © is minimal with this restriction. By Lemma 15.29, ^-sub-
groups of © are cyclic. Since M e Ul, C(M) £ 2ft, and so | ©: © n 2WI
is prime to 3. Let ©0 = O3,(©), and let ©2 be a S2-subgroup of ©0

which contains a S2-subgroup @2 of ©0 Π SK. Since JQX £ ©0 n SK, we
have ©2 ̂  1. If ©2 e N^M; 2), then by Lemma 15.30, we have © £ 3K.
So ©2 g iV*«M»; 2). Maximality of | © n 3K |2 then gives N(W £ 9K
for every non identity characteristic subgroup 2) of ©2 Hence, @2 = ©2.
Minimality of © gives ©0 = ©2O, where Q is a g-group for some prime
q ^ 5. Since φ,. contains an elementary subgroup of order 8, we get
that d is cyclic. Hence, O2(©0) Φ 1. By maximality of | © Π 3K |2,
it follows that 02(©o) a $ 0 Hence, O2,(©0) = 1. But then, ©0 =
(@0 n C(Z(©2)))(©0 n N(J(&2))) £ SK, so © S SK. The proof is complete.

LEMMA 15.32.

( a ) /f 3ΐ0 contains an elementary subgroup 33 o/ order 9
that iVaκ(33) contains an element which inverts 33, £/fce% $9i Φ 0.

( b) 7/ I £/φ I ̂  2, ^
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Proof. ( a ) By Theorems 13.5, 13.6, 13.7, 2W contains a non cyclic
normal elementary abelian 2-subgroup %. So 93 normalizes some four-
group © of 2K. Let 33O = Cβ(e). If S3 = 95O, then every element of
93* is in $1 by Lemma 14.21 If | S301 = 3, then 930 = <£> and B e Wl,
by Lemma 14.22. So (a) holds.

As for (b), since 31 g 2ft', we have | SC/φ | ^ 2. Suppose | £/£> | ^ 4 .
As 3ϊ/£> acts faithfully on £9ΐo/£, (b) follows from (a) if | 3ΐ01 = 32.
Suppose I 9ΐ01 = 33. Let Zo be the largest subgroup of X whose ele-
ments induce automorphisms of £>9io/€>O(̂ o) of determinant 1. Thus,
I Z: So i S 2, and so £0 =) £>. Choose T e £0 - § with T2 e φ. Thus, Γ
inverts £3to/£Z>(3to). It follows that every element of 3ϊ0 - Z>(3ΐ0) is
2ft-real. Furthermore, there is R e 3ϊ0 — -D(3t0) such that CS(JB) con-
tains a four-group, so we are done by yet another application of
Lemmas 14.21 and 14.22.

LEMMA 15.33. // | 93 [ ̂  8 and M Φ 0 , ί&ew C(93O) g Έl for
subgroup SS0 of 5? o/ index at most 4.

Proof. Suppose false, and C(33O) g 2K, | 93: 9S0 [ ̂  4. By Lemma
14.20, Ca(3S) is cyclic. Choose Me$l. Let S3X - S30 n %$T Π S3?"1. If
93, ^ i, W e get C(93O) g C(93X) <] ^(93,), and 93<M> £ N(^). Thus,
NQβJ £ SK, by Lemma 15.31. We conclude that 93X - 1.

Since | 93: 9301 = 2α ^ 4, we have | 93: 93, | - | 93 | g 23α ^ 64. Hence,
I 93 I - 2V and 3 ^ v ^ 6.

Suppose 31' = 1. In this case, every element of 31 is 2K-real, and
so every element of CίR(93) of order 3 is in 50i. We conclude that
Cs(93) = 1. So v = 4, 5 or 6. Since v ^ 6, it follows that [ 311 = 32, as
GL(6,2) has no abelian subgroup of type (32, 3).

Suppose C8(3t) = 93° Φ 1. In this case, there is RzW such that
I C9(R) I ̂  8, and so 93O Π 93? Π 930s"1 ^ 1, as C^{R) Φ 1. Since i? e 501,
this is impossible. So C8(3t) = 1. Hence, v — 4 or 6.

Case 1. v — 6.

Write 93 = 93X x 932 x 933, where 93ά is a four-group which admits
St. Let 31* - <J2*> - CR(a3<). Since 93O n C(3t*) - 1, it follows that
Si1, SR2, 5R3 are all distinct, and R* e $1. Since 93O n C(^) - 1, it follows
that 93O n 93σ(1)93σ(2) is a four-group for every permutation σ of {1, 2, 3}.
By Lemma 5.31, each of these 4-groups is normalized by a subgroup
of 31 of order 3. Since C(93O) §£ 3K, it follows that for each permuta-
tion σ of {1, 2, 3}, iV(930 n SSff(1)SSα(2)) g Wl. Since i2* e S?i, Lemma 15.31
implies that NJβ0 Π S3σ(i)̂ 3σ(2)) = 3ΐ4 is the remaining subgroup of 31 of
order 3. Since 93O = (930 n 93,93̂  x (93O n 33i333), it follows that 3ΐ4 £ iV(930).
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Since $/$0 x 9tφo/Φo acts on 93, it follows that $ normalizes §B4,
1 ^ i ^ 3, and so £ £ C(S3). Since 0 (̂33) = 1, it follows that £ is
a S2-subgroup of C (̂SS0) Since iV(£) £ 2ft, it follows that $ is a
S2-subgroup of C(S30) If C(33O) is a 3'-group, then since Nβ) £ 2ft
for every non identity characteristic subgroup 2) of φ, we get C(33O) =
(C(JB0) Π C(Z(φ))) (C(SS0) Π JV(J(£))) £ 2ft, Hence, 3 11 C(33O) |. Since
3ί4 £ JV(S30), it follows that iV(530) contains a S3-subgroup & of © with
5ft4 £ $, and with 3t permutable with φ. Also, | C(SS0): C(33O) c 9ft | = 3.

Since § is a S2-subgroup of C(33O) which is permutable with %
it follows that φ is permutable with g = <&, 9ΐ> £ C(3ί4). Let 8 = φ g .
Since g £ C(3ΐ4), g is solvable. Since S = φg, so also 8 = Sxg, where
8L = #3ΐ\ Since

n 8f = n £ί a ̂ 4

it follows that S is solvable. By Lemma 14.20, we have S £ SK.
Thus, 3||C(S3o): C(93O) Π SK|, so this case does not arise.

Case 2. v = £.

Let 23 = S3X x S32, where SS{ is a four-group which admits 3ΐ. Let
Sft* = <^> = C^SB,). Thus, Jϊ* G Sί, and so ®€ Π SS0 = 1, i = 1, 2. Let
W = (R) = JV«(S80). By Lemma 5.31, we get | SH31 = 3 If Q is a
52-subgroup of Cm(?B0), we can repeat the argument of Case 1. Thus,
we may assume that φ is properly contained in a S2-subgroup Qt of

Let Zλ = iVt(9l), 2:2 = © Π Si Since ϋt\ W are the only subgroups of
31 of order 3 which have fixed points on 33, it follows that XJX2 ~ £/φ
is isomorphic to a subgroup of a dihedral group of order 8.

We argue that R is real in NJ%$Q). Namely, %ι contains an
element T which inverts 3ΐ Also, 33̂  = <F 4 l, Fί2>, (i = 1, 2), and

»o=<V l l V I l , F 1 2 F 2 2 >,

for suitable generators V& and we may assume that T centralizes F n ,
since TeN(W). Let <T7> = C82(Γ), and choose ^ G S Ϊ 1 such that
Tf̂  = F2 1. Then T = R~ιTR inverts Sft and centralizes both F u and
F2 1. Thus, [F1 2, f] - F n , [F2 2, Γ] - F21, and so ΓeiV(S30). It follows
that ξ> is of index 4 in some £2-subgroup >̂2 of ^(SSo), where §j_ c >̂2

Since 3ί3 £ iV(S30)', it follows that iV(S30) = St = ^ - C ^ ^ 3 ) , where
5Ji2 is a S2-subgroup of 9i which contains φ 2 . If ξ>2 — ?i2, then let
g = <CR(SR8), 3ϊ>, so that ^»2g = 8 is a group, as is £2$R3 = S lβ As
before, we get 8 £ 2ft. Since 91 £ 8, we are done. So we may assume
that £>2 c 9ΐ2. Since | φ 2 : φ | = 4, and | ϊ : § | ^ 8 , while £ is a S2-
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subgraup of @, it follows that 15R2: £>21 — 2, and % is a S2-subgroup
of ©, while I £/£ | = 8.

Let % be a S3-subgroup of 9ΐ which contains 3ΐ3 and is permutable
with %. Let $l2 = O 2 (3^ 3 ). Since & centralizes ?i29i3/^2, it follows
that j & : & Π ̂ 21 £ 2. If & S %, we get that | $l2: & \ £ 2, since
9i2(Z^2, and l ^ i ^ J —4. Thus, in this case, we again get 9£ =
ξvC^Sΐ3), and the above argument works. We may assume that
I'&: & Π % I = 2. Hence, 3l2 Π 2JΪ - & Π &2, since 5i2 n 2W S & -
O2(£23ΐ3). If [% 3Ϊ3] g ©i Π &2, then 9ΐ - £ 2 C*(3ΐ3), and we are done.
Hence, | &2: & Π ̂ 2 1 ^ 4. Since 15Ji2: 3?21 ^ 2, and | £ : & | = 4, while
I £>i φi ΓΊ ̂ 21 = 2, and since £, % and £2-subgroups of ©, we have
I 9Ϊ2: § L Π % I ̂  8, whence we_/get 15R,: ^ 8 1 = 2, | %: & Π 9Ϊ21 - 4.

On^the other hand, every element of φ 2 — $1 inverts ^Q^I^Q, and
so £>2 n 0Z2 = φi Π %> whence «ξ>2/«§2 Π ̂ 2 is of order 4. Since £>2/-ξ>2 Π
9ί2 ^ ^ 2 ^ 2 /^ 2 £ ^2/^2, we get | %: 3l2 \ ̂  4. This contradiction shows
that this case does not arise.

It remains to treat the case 31' Φ 1.

Case 1. 9Ϊ acts faithfully on 33.

In this case, we get v — 6 and 9ΐ is of order 33 and exponent 3.
Thus, every non central element of 3ΐ is in 2ft.

Now 5R has precisely 12 non central subgroups of order 3, say
St1, , 3ΐ12, and | Cβ(SR*) | = 4. Let F(ί) - ^(31*)*. Then V(i) Π V(j) = 0 ,
if % φ j9 and so

v=u vii)

has cardinal 36.
Also, I [S3, 91*] I = 2\ and [S3, 91*] = [S3, 91*] ΓΊ C(B*Z)\x [S3, 91*] Π CiR'Z'1),
where 9ίτ - (i?1), and (Z) = 91'. Hence, [S3, 9i*] Π S30 is a four-group
with admits Q, by Lemma 5.31, together with the fact that [S3, 3̂ '] n S30

does not admit any of the non central elements of 91, by Lemma 15.31.
Since f l£i [S3, 31*] = h it follows that Z normalizes S30.

Set R = R\ Now | S30 Π S3* | £ 4, since S30 n S30

β Π SSo72"1 - 1. Hence,
I 23O n S3* I = 4. Hence, | S3* U S3ξ* | - 27, and so

S3* U W U » - S3* .

This implies that S3?"1 g S30 U S3*. This is false, since

I S3* U S3f U S3f ~ι I = 3.15 - 3.3 - 36, | S3* U S3f | = 27 .

Case 2. 9ΐ does not act faithfully on S3.
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Let 9t = CΛ(33). Then 3t <\ 9t and 9t is cyclic. Since $ and

O3S3(Caβ(S3))/O3,(C3«(a?)) are incident, and since 9t S 2K', we get & S Z(9t).

Since & Π 3K = 0 , it follows that £ centralizes &£o/£o. Since 9t S 2ft',

it follows that 2 has no fixed points on SftoW^Φo* a n ( i s o ^ S 91'.

Suppose @ is a subgroup of 91 of exponent 3 and order 27. Then
ίft Π @ = ©'. By Lemma 5.31, it follows that @ contains a subgroup S3
of order 32 which normalizes a non trivial subgroup SS00 of S30. Thus,
C(S30) s Woo), £33 S Woo), and so C(S30) s 2R, by Lemma 14.20. We
conclude that no such © exists. By a result of Blackburn [6], 3ΐ is
of maximal class, and so | 9Ϊ | = 3, and | 311 ^ 3\ If | 9t | ^ 35, then
since v ^6, we get 31/91 = Z3 S ̂ 3 If @/3t is the unique elementary
subgroup of 3l/Sft of order 27, then /^((g) is of exponent 3 and order
at least 27. This is false, and so | 9t | = 34. Since 9t = <^>, where
Z is non real in Sft, it follows that no element of £ inverts 9t0φ0/φ09V,
and so | 2 / £ | = 2, and £ = <£, Γ> where ϊ 7 inverts 31/31'. Thus, T
centralizes §oW/$o[W, 91], and so Γ inverts £0[3ΐ', 9l]/φo[9l', 91,91].
Since 5ft = [91', 91], this is the desired contradiction. The proof is
complete.

LEMMA 15.34. If | 93 | ^ 8, then C(55O) £ SK for every subgroup
SS0 of 55 o/ index at most 4.

Proo/. Suppose false, and C(9S0) £ 3W, | S3: SS0| ^ 4. Then by
Lemma 14.20, CK(9S) is cyclic. By Lemma 15.33, $1 = 0 . By Lemma
15.32 (b), 12/φ I = 2. Hence, ί,(2R) = 1, so that 9t - 9tle Since 91S SK'?
we have X = <§, Γ>, where Γ inverts 91/91'. By Lemma 15.32 (a),
W Φ 1.

Suppose I Ωffi) \ = 33. By Lemma 15.32 (a), T centralizes Q<β1($ί)Ί§»
and so T inverts ΩffiyΩffi)'. If ^(91)' centralizes S3, then S30 contains
a non identity subgroup SS00 which is normalized by a subgroup of
^(91) of order 9, against Lemma 14.20. If [A(9l)', S3] Φ 1, then every
element of ^(91) - Ωffi)' is in Wl, against $1 = 0 . So | i2L(9ϊ) | ^ 33.

By a result of Blackburn [6], 3ΐ is of maximal class. We can
choose R e 9tf such that i^Γ = ϋT1. Since i? ί ^ί, it follows that
I C*(R) I :S 2, and so C9(B) - Cβ(9l0).

First, suppose R(£ Z(ΐR). In this case, Cmι(T) = <Z> s ^(2), and
all elements of 9ΐ0 - (Z) are 3K-real. Hence, Cβ(Λ) = C^RZ*) = C^(%)
for all i, and so Z centralizes 53. Let 93* = [S3, 3t], S30* = 93O Π S3*.
Then <Z, R} normalizes S30* Π S30*

β, and so by Lemma 14.20, 33* Π
S3*β = 1. This implies that | S3* | ^ 24. Since Cβ(SB) - <Z> (91 being
of maximal class, so that 9ΐo/<Z) is the only minimal normal subgroup
of 9ί/<Z», it follows that | 911 ^ 33, which is false. Hence, (R) = Z(Z),
and so CK(S3) = 1.
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Since | 3ΐ ( ̂  34, 9ΐ0 is contained in an abelian subgroup 2t of 9ΐ of
order 27 such that % < <3ΐ, Γ>. Thus, ϋ\%) < 3ΐ, so σ^a) = <#>.
Since St acts faithfully on 93, it follows that if A e % - 3ΐ, and A3 = 1,
then I Cβ(A) | ^ 26. Again, let 93* = [93, 3t], 93O* - 93O n 93*. Then
SS* n 93** = 9B admits R and is of index at most 24 in 93*. Hence,
9K Π C(A) = SB0 ̂  1. Since <A, i2> == 3ΐ0 normalizes 2S0 S %>o, the proof
is completed by a final application of Lemma 14.20.

We now turn to the control of the elements of ffll of prime order
p ^ 5. This is easy.

LEMMA 15.35. Suppose Sβ = <P> s 3ft, 15β | = p, p is α prime ^ 5,
P is Έl-real, and C$0($β) contains an elementary subgroup 6f o/ order
8.

Proof. Since Sp-subgroups of 3K are cyclic, we may assume that
is a group, and that 5β S S>. Let £ 0 = O2(2:$β). Then 2 0 e iVί(5β; 2),

and P is real in Nm{%^). In particular, S£oc!E.
Since 3ϊ CΦo(φ) S JV(5β), Lemma 15.29 implies that JV(5β) g SOΐ. The

remainder of the proof follows the lines of Lemma 15.31.

LEMMA 15.36 If IX is an elementary abelian 2-subgroup of
W — 2R/O3/(SK), then 11 normalizes some S3-subgroup of 2ft.

Proof. If 5Πi is 3-closed, the lemma is trivial. We may assume
that 13(%1) ^ 2. Thus, ^ijO^φi) is isomorphic to a subgroup of GL(2, 3)
which is 3-reduced, has order divisible by 3, and has no normal sub-
group oί index 3. Hence, WjO.φl) s GL(2, 3). The image of 11 in
Tt/OB(M) thus normalizes a S3-subgroup of SK/O8(SW), and the lemma
follows.

Once again, let ^ — {/( / is an involution of SJΐ, (7^(7)

LEMMA 15.37. Suppose I is an involution of Ίίl and C%(I) = 93O is
a hyper plane of 93. Then [93, /] = </>, tί ̂ r β Je^.

Proof. By the preceding lemma, we may assume that IeZ Π
Since £09ΐ char 08'(2R)3t, we get IeN(QQ!ft). Let 2) =

31. Let % = (7,(85), ^ - [2), I ] , 2)2 = Ce(J). If % is non
cyclic, then 93# s *-^, Lemma 14.22, and we are done. We may assume
that 2)o is cyclic. Since 93 is 2-reducible in 9ft, 3^ g %, and since
193: 93OI - 2, we get | %\ % n So I = 3, and [93, 2)J - 93° is a four-group
which admits 2) and contains J . Let f) = ^(93°). Then 12): φ | = 3.
Since Je93°, we are done by Lemma 14.22 if f) is non cyclic. We
may assume that % is cyclic. Thus, 9Ϊ' = 1, and so every element of
3i is SK-real. Thus, if Γe3ϊ*, Y3 = 1, and Γ £ o e 0 , then Γ G $ K , SO

we are done by Lemma 15.31.
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Lemma 15.38. One of the following holds:
( a ) 33* £ J?.
( b ) C(S3) contains no elements of odd prime order which are

Wl-real.

Proof. If I SB I = 2, then obviously S3* £ ^ . If | SB | = 4, then
|3t: Cm(%) | ^ 3 . If CR(S3) is non cyclic, then (a) holds by Lemma 14.22.
If CΛ(S3) is cyclic, then 31' = 1, and CR(33) Ω $ΐ ^ 0 , and we are done
by Lemma 15.31. We may assume that | S3 | ^ 8, and that CJ^S) is
cyclic. If X is an element of C(S3) of odd prime order which is aft-real,
then by Lemmas 15*31 and 15.35, we get S 3 < X > G . ^ # * , SO (a) holds.
The proof is complete.

Lemma 15.39. F(ecUS3); X) £ C(S3).

Proof. We have built up enough information to copy the proof
of Lemma 13.7.

LEMMA 15.40. One of the following holds:
( a) S3* £ J?.
( b ) F(ccl@(S3); %) £ $ 0 .

Proo/. If (b) fails, then by Lemma 15.39, C(S3) is not 2-closed,
and so (a) holds by Lemma 15.38.

LEMMA 15.41. Suppose 31 is a subgroup of 2ft/C(S3) of order 3,
and [S3, §1] is a four-group. Then [S3, §!]* £ ^ .

Proof. We may assume that C(S3) is 2-closed, by Lemma 15.38.
Thus, £>0 is the S2-subgroup of C(SB). Let 33 be a *S3-subgroup of
CaR\c(β)(2t)> a n d l e t @ be a 3-subgroup of 2PΪ which maps onto S3. Let 3S =
[S3, St], and let ©0 = C6(SB), so that | @: @01 = 3. If ©0 is non cyclic, we
are done, by Lemma 14.22. Suppose @0 is cyclic. If @0 Π 5K Φ 0 , we are
done by Lemma 15.31, so suppose Θo Ω $ΐ = 0 . If @ is a &3-subgroup
of 9ft, then since β> is metacyclic, we get 3ΐ' = 1, and so @0 Ω 5K Φ 0 .
We may therefore assume that @ is a proper subgroup of 3ΐ. Let
@i = iV»(@). It follows that @/C@(S3) has at least 3 subgroups of order
3 whose fixed point subgroup on S3 is of index 4. This is impossible,
since @/C@(S3) is metacyclic. The proof is complete.

It is now straightforward to follow § 13, and get that | S3 | <̂  4.
By Theorems 13.5,13.6, and 13.7, Sft contains a non cyclic elemen-

tary abelian normal 2-subgroup U. Suppose U is a four-group. Let

3t = CΛ(tt). If & c 3 ΐ , then ΐt is 2-reducible in 3ft, and so IX = S3,
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whence W £ %Jr, by Lemma 15.38. If & = 3ΐ, then W £ ^ , by
Theorem 14.21. Now Theorem 13.4 implies than 2K contains a normal
elementary abelian 2-subgroup of order ^ 8. Let ̂  = {g | g <] 2K, | g | ̂  8,
g is elementary abelian}, and let J^" be the set of minimal elements of
j ^ . Let J ^ * - {g G JF~| C(g) is not a 2-group}. If j ^ ~ * ^ 0 , choose
g e ^ * ; otherwise, choose %e^. Let f$/@ b e a chief factor of 2ft.

LEMMA 15.43. Suppose *β is o/ order 3, Sβ £ C(@) n O3,f3(2Jl), αraZ
contains a four-group. If 2e M*(φ; 2), then JV(8) £ SK.

Proof. We assume without loss of generality that 8 £ £, Sβ g 2ϊ.
Thus, 8/£0 is a S2-subgroup of CΛN(,0(ξβ). Let 3^ = 3^0 C((£). Since
® Π S3 ̂  1, it follows t h a t 3Ϊ2 centralizes 33. Also, £09ΐ2 <] 3K, and
3̂ £ §09ΐ2. Since $0% < SK, so also [Z(φ0), ^2] = 3S < STί. If SB ^ 1,

then SK n S3 ̂  1, and so 333 a S3, as CJβ2) = 1. This is false, since
3Ϊ2 s C(S3). So SB = 1. Clearly, 8 3 φ M and since O2,(2R) = 1, we
have Z(8) s Z(φ 0). Hence, [5β, Z(S)] - 1.

Since Cg(^β) contains a four-group, Lemmas 13.20 and 14.22 imply
that JV(5β) S STC. Let 91 = JV(8), @ = O8,(3l). If S3-subgroups of 3d n SK
are non cyclic, then %l S 2K by Lemma 15.29. We may assume that
Ss-subgroups of 9Ϊ Π SDΐ are cyclic. Since C(5β) £ SPΐ, S3-subgroups of
51 are cyclic. Let 82 be a S2~subgroup of Θ which admits Sβ. Since
8 e Mί(φ; 2), and JV(5β) S SK, it follows that Cΰ2XS(φ) = 1, so that
5 2 = S[S2, φ ] . Since 5β centralizes Z(S), so does S2. Since Z{%) Q Z(8),
and since S3* S ^ while ^(ZίS)) g 93, it follows that S2 £ SK, whence
S2 = 8. If ^ £ %', we get 5β = S JVκ($β) £ 2K. So we may assume
t h a t 5β g ϊ i ' . Hence, 5JI has a normal 3-complement, and so 8 is a
S2-subgroup of SK, whence 8 = 3;. So 91 £ 3JΪ by Lemma 15.42.

LEMMA 15.44. Suppose φ is of order 3, Sβ £ C(©) Π O3S3(SK),
contains a four-group. Then g φ e Jd'*.

Proof. Let ̂  = {© | g φ £ @ £ ©, © is solvable, @ g SK}, and sup-
pose that £f Φ 0 . By Lemma 15.29, if @ O G ^ , then S3-subgroups
of @o Π SK are cyclic. By Lemmas 14.20 and 14.22, JV(Sβ) £ SJΪ, and
so if <S0 e ^ t S3-subgroups of @0 are cyclic.

Choose @ G ^ with |@ Π 2ft |2 maximal; with this restriction, maxi-
mize |@|2, and with these restrictions, minimize @. Let @0 = O8/(@),
and let @2 be a S2-subgroup of @ which contains a S2-subgroup @2 of
@ Π S3ί. Thus, g S @2* = ©2 Π @o. If @2* e H*(^β;2), then maximality
of j @ Π 2K |2 implies that 9 (̂2)) £ 3K for every non identity characteris-
tic subgroup 2) of @2*. Hence, 82* is a S2-subgroup of @0 Since
@0 = (@0 n C(Z(@a*)))(@o Π N(J(@Ϊ)))> we have @0 S 2R. Since @ =
@o 3 (̂@2*), we have © £ 2R. We conclude that @*eM*(^;2). By
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Lemma 15.43, we have iV(@*) S 3ft, and so @* is a S2-subgroup of @0.
If 5β £<3', then @ = @2*iVβ(5β) £ 3ft. Thus, we may assume that

Since @ = @ô V©(̂ )> we get @0 g 3ft. By minimality of @, we have
Θo = @2*£X where Q is a p-group which admits 5β, and p is a prime
^ 5. Of course, O is cyclic. Choose 2) e {Z(@?), J(@*)} with 2) < @0.
Then N(W e ^ so by maximality of |@ Π 3ft |2, @2* is a S2-subgroup
of 3ft. Thus, we may assume that @ = SφΠ, %&, = @0, and that *βD
is a Frobenius group. By Lemma 15.42, X <f\ 2Xi. Let @ = @/O2(@).
Then © is a Frobenius group whose kernel is ΠO2(@)/O2(@), and
22β/O2(@) = K, is a cyclic complement of order 3.2% with a ^ 1.

Let 3 be a minimal normal subgroup of @. Since 3 Π z(%) ̂  1>
and Ω^ZiX))* £ ^ ^ , it follows that £X3 is a Frobenius group. As is
well known, this implies that 3 is a free i^K-module. Hence, 3̂ does
not centralize Z{%). This contradiction completes the proof.

LEMMA 15.45. Suppose 5β is of prime order p >̂ 5, 3̂ S 9K, and
Cff(5β) contains an elementary subgroup of ordor 8.

Proo/. We may assume that 5β £ ®. Then 3ΐ £ C(5β), and Cs(5β)
admits 5β. Hence, iV(5β) S SK by Lemma 15.29. Also, of course, since
p ^ 5, we have 5β S C(SS). If S e M*(φ; 2), then since £ 0 ® < 3K, we
conclude first that [Z(φ0), ®] = 1» and then get that [Z(S), 5β] = 1,
since Z(£) £ z(Φo) This then implies that JV(8) £ SK, and we can
follow the proof of the preceding lemma.

LEMMA 15.46. // | © | = 4, then 3) is cycKc, 2K/9K' is α 2-group,
and %ψ e Λ€* for every subgroup β̂ of C(6) o/ odd prime order.

Proof. By Lemma 15.44, we may assume that | ̂ 31 = p ^ 5.
Since @* £ ^ and 9i© £ JVββ), it follows readily from Lemma 15.29
that JV(5β) £ 3K. It is straightforward to verify that g ^ G ^ ^ * .
Since S) S C(@), it follows by application of the preceding result to
each subgroup of ® of prime order that 3) £ 3ft'. Since S is a
Z-group, this implies that 3)' = 1. The proof is complete.

LEMMA 15.47. O^e o/ £&e following holds:

(a) g * S ^
( b ) C(%) is a 2-group.

Proof. This is an immediate consequence of Lemmas 15.44 and
15.45.

LEMMA 15.48. // CJfS) is non cyclic, then % is generated by
subgroups % of order 4| (δ | such that 31* £ ^ or | g I = 8.
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Proof. Let Q be an elementary subgroup of C3Ϊ(@) of order 9.
Let %Q — Cδ(£i), and let % = %Q x & x x ^ where f& is a four-
group which admits O. By Lemma 15.44, (§oS»)* S o ^ i = 1, , r,
and so we are done.

LEMMA 15.49. § is generated by subgroups 2t o/ order 4 |
that 3C* S - ^ or | § | - 8.

Proof. We may assume that | § | ^ 16. By Lemma 15.48, we
may assume that O = CR(@) is cyclic. Thus, | @ | = 4, and @ = 33.
By Lemma 15.47, we may assume that C(%) is a 2-group. Since Q is
cyclic, we get 3t = £} x @, where | @ | = 3, and m/Wl0 ~ Σz. Let
ZQ — Cx((&), so that C(@) = SoO®, and D® is a cyclic complement to
Xo in C(@). Furthermore, since Tt/Tt0 ~ Σ3, we have § 0 3 §C 5 and

< SK0. This implies that g/@ = g is a F2G®-module on which
acts frobeniusly. Since O®@ = £} x ® x @, it follows that if

> 3, then for each element X of O®@, Cm{X) is either 1 or
of order ^ 24, and so the lemma follows from Lemma 15.47, Lemma
15.31 (which is applicable since 6c ~ 93!), together with the well worn
observation that g/® = (CW{X) \ Xe (O©)?>. It remains to treat the
case I Π® | - 3 . In this case, | §/(£ | = 22 or 24. Since M = §9ΐ, and
@, g/@ are irreducible modules for 2R, it follows that φ - O2(SK mod C(@)).
If I g/e I = 22, then | g - @ | = 12, and the orbits of St on % - @ are
of sizes 3 and 9. If Tt is transitive on % — 6?, then since (§ — @) Π
^ " =̂  0 , we get g* £ ^ and we are done. If 9K is not transitive
on % — @, then g is 2-reducible in fDl, which is false, since S3 = (£.
Suppose I §/@ I — 24. Let g = £ x gL x g2, where §i is a four-group
admitting 9ΐ. Since [̂ >, gi] is a non trivial subgroup of G? which
admits 9ϊ, we get [̂ >, g j = @. Since CM(@) = O is transitive on gf,
it follows that [£, F ] = © for all i^egf. Since g{ g ^ we conclude
that (©§;)* S «^ i = 1,2, and we are home.

We have thus obtained the "correct" analogue of Lemma 13.26(c),
for in following § 13, it will be seen that the crucial integer is | E | 4,
not 16.

We come to the analogue of Lemma 13.29. This lemma becomes
almost unmanageable. In order to handle the difficulties, we introduce
some notation. For each integer /, let St/ = 2X/(2ft) = {/| / is an
involution of SK and ] [$, I] | = 2/}. The set %1 causes no trouble.

LEMMA 15.50. If Ie%, then [%, I] - <J>, and Je^:

Proof. If JeGf, we are done. Suppose J g ® . By Lemma 15.47,
we may assume that C(%) is a 2-group. In this case, ®0 =
O2(Wl0 mod C(F)) S Φo, and | £0/®01 ^ 2, as £>o/®o acts faithfully on ©.
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If SySDo is &n odd order subgroup of SKo/®o which admits I and is of
order > 3, then C^(J) g S)o, and so Je^~, by Lemma 15.44 and 15,45.
If no such ®x exists, then we get 3K - ©5ft, 15ft | = 32. SK/3K0 = Σs
Hence, | % | = 24, | @ | = 4, so g* £ ^ by Lemma 15.49. The proof is
complete.

The critical sets are 2C2 and 2C3. These are vital. To focus our
attention on the difficulties of Lemma 13.29, let

C2, Ie

S 3 = {ie 2t3, 7eC(@), there is a hyperplane S30 of S3

such that aso 2 ^ ( 7 ) , and [93O, 7]* Π ̂  = 0.},

LEMMA 15-51. 7f 93 Φ 0 , £&e% £λβ following hold:
( a ) © = 1.
( b) 15R I ̂ 3 3 cmώ 5ft is of exponent 3.

Proof. Choose J G S Π Σ . Since S3 is a union of conjugacy classes
of HJΪ, and 33 =£ 0 , 7 exists. Since S3 Φ 0 , Lemma 15.47 implies that
C(§) is a 2-group.

Suppose ® ^ 1. Let ®* = F(®). Then ®* centralizes F(2)5ft),
and so £>0®* <\ SK. Hence, φo5)* <] 2K for every subgroup ®* of ©*,
and so g = ® x [g, 35*] for all non identity subgroups ®ί of ©*.

First, suppose that 7 does not centralize £0®*/<ξ>o We can then
choose S)f of prime order in ®* such that 7 inverts ξ>o®*/£>o In
this case, it follows that | g/g | = 22fc, and that Cm(I) = 2K Hence,
k ^ 3, as 7 G 3 5 , and so one of the following holds:

(a) 3>* I = 5 and I g/@I = 24,
(β) S>*| = 7 and |g/@| - 26.

If (α) holds, then as 5R£> acts faithfully on g, we get 15ft | = 32, | ® | = 5.
If (β) holds, we get 15ft I - 32, I ® I - 7.

Suppose (a) holds; then 5ft° = CW(S/®) is of order 3, and % =
Cδ(3ϊ0) x @, e = [§, 5ft0]. Since g is not 2-reducible in 2K, we get that
®0 = O2(Tl0 mod C(%)) 1) C(%), and so [®0, S] = © If F6Q(5R0)*, then
since 5ft° is transitive on JS?*, we get that [3>0, T

7] = ©. Since C g(^0) s £
^ we get that g* £ ^ against 33 Φ 0 .

Suppose (/3) holds; again let 5ft° = CM(g/@). Choose 7ΓΓGCδ(5ft0)*.
Then [®0, JPJ admits 5R° and is a non identity subgroup of @, so that
[®0, JP] = ©. Since Cδ(5ft0)* £ ^ we get g* £ ^ against S3 Φ 0 . We
conclude that 7 centralizes ^o^^/^o

Since 7 centralizes ξ>o®*λξ>o> it follows that ®* normalizes [g, 7]@.
Since [g, 7]# g ^ we have [§, 7] g @. Since no non identity element
of ®* has a non trivial fixed point on g/@, the only possibility is
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t h a t I [%, I] I = 8, [%, I] Π © = 1, 12>* | = 7. Since ®* = F(S>), we ge t

Choose 5β = <p> of order 3 in £*(©) with P J = P" 1 ; 5β exists
since Sft® Q C(®), and since /gO 2(SK). Let g* = [g, Sβ]. Since
I e C(@), SO also «β s C(@). Thus, | g* | = 22/*, where / * ^ 3. Since
g* admits 3), we have /* = 3. Let iQ g Cnίφ), | O | = 9, O elemen-
tary. Then D acts faithfully on g*, since g* Z) [g, /]• Hence, we get
that GL(6, 2) has an abelian subgroup of type (3, 3, 7), This is false,
and so (a) holds, ® = 1.

Now for (b). By Lemma 15.36, / normalizes φoϋtτ for some TeX.

We may thus choose Ie S3 Π £ Π N(§0W)-
Let ϋϊ1 = Ci,(®), £° = C*0(e). First, suppose that 5ft1 is cyclic. In

this case, Sft = 5ft1 x O, | O | = 3, since Sft is metacyclic, whence abelian.
Since Ie Wl0, and Ig £>0> we get Ig O2(S)ϊ0), and so /inverts an element
of Wl0 of order | ΣFt11 - We assume without loss of generality that I
inverts SI1. Since Je3S, and since g ^ @ χ [g, 5ft1], it follows that
I 9Ϊ1 i ^ 32. Furthermore, if | Sft11 = 32, then I e % and [%, J] c [g, 5ft1].
Let Sft be a S3-subgroup of C^Sft1), and let O = C.flg, 3Ϊ1]). Thus,
IO I = 3, and so [%, 3Ϊ1] S ^ against J e S3. So | 9Ϊ11 = 3, 19ΐ | = 32,
and we are done.

We may now assume that 9Ϊ1 is non cyclic. In this case,
3Ϊ1 =2 fl^ZίSft)), since 3 e π2; and since ϊt1 is faithful on g/@, so is 9ΐ.
Let ^1^/^(1) = 3ΐ2^o/^o, with 3ΐ2 S Sft1. Thus, 3ΐ2 acts faithfully on
[g, J]©, and so 3ΐ2 acts faithfully on [g, J]S/@, whence 13ΐ21 ^ 3.
Suppose 3Ϊ2 = 1. In this case, / inverts Q$tl/Q0, and so ^o^ΐ1 <] SK,
whence δ = 6 x β§, Sft1]. Then | [g, 311] | = 22'*, where /* ^ 3. Since
5ft acts faithfully on g/Gr, and since 3 6 ττ2, 3ΐ is isomorphic to a subgroup
of GL(6,2) which has no elementary subgroup of order 33. Hence,
I Sft I ίg 3s, and since Sft is not a metacyclic group of order 33, we get
that 3ΐ has exponent 3. It remains to treat the case | Sft21 = 3.

Since <£0, Sft1, I>/φ0 is supersolvable, there is SI e <S*gL/T(Sft1) with
2t^o < ^oSH^-ί)- Suppose 12t I ̂  27. In this case, I inverts an element
A of Stξ>o of order 9, and we may assume that A e St. Let % = (A}.
Then i [g, t ] I = 26, and |g, S] 3 [g, I ] , 16 2C3. Since 12t | ^ 27, it
follows that SI Π C(|g, t ] ) ^ 1, so |g, t ] # S ^ which is false. So
111 ^ 9. If 111 = 3, then | Sft | = 9, and we are done. Suppose 13I| = 9.
If 21 = 5ft1, then |5ft| ^ 33. If Sft has exponent 3, we are done, so suppose
SR is abelian of exponent 9 (and order 27). Since | SR21 = 3, and since
Ie C(@), and since SR1 is non cyclic, it follows that Sft = D x @, | O | =
3, >Q is inverted by J, and / does not invert Sftίφo/φo Thus, / normalizes
3ϊ^o/^o, and Cmξ>olξ)o(I) is cyclic of order 9. But then if X is an element
of Sft of order 9 such that CΛ9o,9o(I) = <X£0>, then X 3 centralizes |g, J]®,
so that [§, J ] # G ^ This is false, so this case does not arise.
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It only remains to treat the case | % \ = 9, SI c St1. In this case,
we get I Sΐ11 = 33, so that if 9Ϊ1 = % we are done, since 3ΐ is not a
metacyclic group of order 33. Suppose then that 2t c 9Ϊ1 c St, | 3ΐ | = 34.
Let 3 = [3*1, SI1]. If I inverts £α8/£o, then since g = @ x ]g, 3] , it
follows that I ?§/(£ | = 26, whence 9ΐ is isomorphic to a £3-subgroup of
GL(6, 2). This is false, since 2eπ2. Thus, I centralizes £o,8/£>o> and
so 3 = 3̂2 However, in this case, fJ/G?, as module for St1, is the direct
sum of r(^> 1) modules, each of cardinal 26. If r > 1, it is easy to
see that | [%/&, I] | ^ 24, against / e SB. Hence, r = 1, | g/β | = 26, and
so the same argument shows that 9ΐ has an elementary subgroup of
order 27. The proof is complete.

We next record a partial analogue of Lemma 13.31.

LEMMA 15.52. One of the following holds:

( a ) W^^
( b ) C(g0) S Hίl for every subgroup g 0 of index 4 | G? | in %.
( c) 3) = 1, I 3Ϊ I <; 33, and 3ΐ /&αs exponent 3.

Proof. We may assume that g* ξ£ ̂ ^ Thus, C(%) is a 2-group,
by Lemma 15.47. If | (g | = 4 and | g | = 16, then f§* S - ^ by Lemma
15.49. So we may assume that either | @ | = 2 or | g | Φ 16. Since
C(g) is a 2-group, we have | % \ ̂  16, and if | % \ = 16, then | © | = 4
is forced. So we may assume that | % \ ̂  32.

If ® Φ 1, it follows that | C5 / i(X) | ^ 23 for some element X of 9ϊ
of order 3. Then C,(X)# S J?, so if C,(X) n So * 1, (b) holds. We
may assume that C%(X) Π § 0 = l Thus, X does not centralize Of.
Thus, 12) I = 5 or 7 and CR(@) is cyclic, whence 3t' = 1. Since CR(@)
is cyclic, we get C x Cδ(X) < SW, so | g | = 26 or 25, whence \%Q \ = 4
or 2. If FeCs(Xy, then [£, F | admits X, and so [φ, ί7] - ®. Since
Q(X)* s ^ we get %%^^.

We may now assume that ® = 1.
Now I %\ So I = 4 I @ |, and so if X is any element of Έl of order 3,

then since we may assume that %0 Π ̂  = 0 , we get Cgo(X) = 1,
whence | C$(X) | ^ 4 | @ |. Thus, 3ΐ has no non cyclic abelian subgroup
of order 27, and so (c) holds.

LEMMA 15.53. © = 1, 3ΐ is of exponent 3, 13ΐ | ^ 33, and one of
the following holds:

( a ) S8Φ0.
(b) C(%0) g 3K /or some wo?ι identity subgroup %0 of % of index

at most 4 |@|.

Proof. If neither (a) nor (b) holds, we may follow the argument
of § 13 to a contradiction. So we get that either (a) or (b) holds.
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In either case, this lemma follows from Lemma 15.51, or 15,52,
according as (a) or (b) holds.

LEMMA 15.54. IfUis a four-group of M and IX Π C(g) = 1, then

Proof. If IX g C(@), the lemma is trivial, since g* g ^ So
suppose IX s C(@). By Lemma 15.36, we may assume that U normalizes
φ3t. If tt0 = IX n § ^ 1, then 1 c [tt0? g] s @, and we are done. We
may assume that § Π H = 1. We argue that IX has an involution Ϊ7
such that for some subgroup 5fr of order 9 of 31, U inverts φSft/φ.
This is obvious, by Lemma 5.31. Thus, by 2 applications of Lemma
5.36, we get that U inverts a S3~subgroup 3ΐ* of φ3t. Let g* = [g, 3t*].
By Lemma 15.53, g* §£ ̂ ~ and so 3ΐ* acts faithfully on g, by Lemma
15.47. Let g** be a minimal normal subgroup of g*9ΐ*<ί7>. Then
g** is a four-group and § * * * £ , / Since l c [g**, Ϊ7] e g * * , the
proof is complete.

LEMMA 15.55. 2ft does not contain a four-group IX such that IX
acts faithfully on g/Gc αt&eZ C5(tt) is α hyper plane of F.

Proof. Since g/@ is a chief factor of Tt, this lemma follows from
Lemma 5.31.

LEMMA 15.56. One of the following holds:
( a ) Ϊ G ^ .

( b ) JV(SB) g 2K, wfcβre 2S = 7(cclβ(g); X).

Proof. Suppose %$^f*. Choose @ to be a solvable subgroup
of © which contains X and is minimal subject to @ §£ Sft. If 2S <1 @,
we are done. Suppose SB ̂  @. By minimality of @, we have @ = S5β,
where $ is a cyclic p-group for some odd prime p. Let β̂ = <P>,
@0 - O2(@), 6X - [@0, «β], @2 = Cβ0(5β). Choose G in © such that $ * £ © ,
g^ g @0. Since 2S <1 Θ, G exists.

Let IX be a minimal normal subgroup of @, and let g : = g σ Π @0

Then %1 is a hyperplane of gσ, and so IX C C(gO S ^ ^ Hence, if
gG - gx x <F>, then [tt, F p £ - ^ G Since [tt, F] Π Z(S£) ̂  1, it follows
that 2 s mG. Since iV(2) £ SK, it follows that mG = Tt. Hence,
g* = g . We may assume that F inverts Sβ.

Let g2 - [&19 F]. Then Θ, - <g2, gf>, and since Q2 < @L, it follows
that @[ S g . Thus, 5̂ centralizes @J, since ,P does, and since 3̂
normalizes @[. Since @[ < S, and since Ω^ZiX))*^ ^ while 5β g 3K,
it follows that @! is abelian, and so Θ : = g2 x gf Hence, @0 = @i@2>
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and @! Π @2 = 1. Hence, C^λ) <\ Z, and so 0^(80 = 1. Suppose
I G ^ . Then X = XXX2, X^eβ*. Since 8 ' = 1, we get that X2

centralizes $2, so X2 centralizes §f, whence X2 € C^Jlβ^ so that X2 = 1.
Hence, § - & x <F>, $ 2 - &. By Lemma 15.55, gf Π £ is of
index at most 2 in gf. Since g2

pΓ)£ stabilizes the chain § D E D 1 ,

and centralizes the hyperplane f£i of %, it follows that |fjf Γ) £>:S2

P Π
£ Π C(F) I ̂  4. But Sf acts faithfully on g, and so we get g2 = &
of order at most 8, so that | 8 l ^ 16. This is false, since %* §£ ^
The proof is complete.

LEMMA 15.57. If % is a subgroup of 3ΐ of order 3, and 8 e Mί(5I; 2),
fce following hold:

( a ) C β ( S t ) * l .

( b )

Proo/. Let 3 = Ωi(Z($)). We argue that 1 3 1 ^ 4 . If | 3 | ^ 8,
then 3 contains an element of ^ ~ . Since ^ " * = 0 , it follows that 3ΐ
acts faithfully on $• But then 3 is 2-reducible in Wl, against | S3 | ^ 4.
Hence, 131 ^ 4. Thus, if ^ S S g ϊ , then Z(S) £ Z(φ), and so

^ 4 . If SR does not centralize Z(φ), we get ^(Zί^))* =
If 31 does centralize Z(£), we also get i2, (Z(§))* £ ^ ^

Hence, Ω1(Z(^)Y £ ^ and so (b) follows.
Suppose Cfi(2t) = 1. Since every non central element of 3ΐ has

fixed points on g, it follows that 2C £ Z(3ΐ). Since 31' centralizes G?,
it follows that 31' = 1. Thus, | 311 - 32, and φ3ΐ < S3Ϊ. Thus, [Sf SI] £
S Π $$i £ ^ , and so S = £ . Since CR(@) = S3 is of order 3, we have

<] 27ΐ. Suppose iρ2t <] 2K. In this case, since S = φ, we get
© I = 2, and X = <§, Γ> where Γ inverts 31. Since §/@ is a chief

factor of m, we conclude that | g/@ | = 4, | g | = 16. This is false,
and so 2t£ <& 2ft. Hence, 31 contains §IX for some XeNJ!$t) - iV(Sί).
Thus, 3Ϊ has precisely 2 subgroups %, §I2 of order 3 which have non
trivial fixed points on φ, and so by Lemma 5.58, $ — C$(2ti) x Cδ(2t2).
This violates | S3 | ^ 4. The proof is complete.

LEMMA 15.58. 2V(2B) g M, where 2δ - F(cclβ(g); £) .

Proof. Suppose false. By Lemma 15.56, we have X e^?f*. Since
B* £ ^ we have Sf Φ 0 , where

^ = { @ | g g @ ^ 3 K , @is solvable, g g @ ) .

Choose 6 e y with |@ Π 9K |2 maximal, and with this restriction,
minimize @. Thus, @ = ©2φ, where Θ2 is a S2-subgroup of Θ and of
@ Π SK, and 5β îs a cyclic p-group for some odd prime, and O£(@) = 1.
Also, if @2 c ©2, where ©2 is a 2-subgroup of ©, then @2 £ SJΪ, and
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If p ^ 5, we get @ = Cβ(Z(@2)).JVβ(J(@2)), and so @ £ 2K.
This is false, and so j> = 3. Since 9t has exponent 3, | *β | = 3.

Let 2B0 = F(ccl,(g); @2). Then 3K0 Φ 1, since g £ 2B0, and 2δ0 tf @,
by maximality of | © Π 2ft |2.

Let @0 = 02(@), @t - [@, $],<§? = Cβ0(5β), and let tt = Ω,(R%(β)).
We may assume that ©2 c £, and so ΩJJZφL)) £ 11. Hence, [5β, 11] =£ 1,
since Ω^Z^f § ^ Γ Let l^ be a minimal normal subgroup of @ with
lli £ ββ, U]; 1XL exists since 11 £ Z(@o), and @0Sβ < @.

Choose Ge@ such that ψ s @2, g* g @0. Let g x = %G n @0

Then I g*: gx | = 2, as Sβ is cyclic, and IX, S C ^ ) . By Lemma 15.49,
CίδOSSK*, and by Lemma 15.50, [Vilf%

σY^^G. Since Z(@2) Π
[Hi, W] Φ 1, we get @2 £ SŴ . Since iV(©2) S SK, maximality of | @ Π 9^|2
forces m = mG, whence g - g σ .

Clearly, 6 0eM*0P;2), by maximality of |SKn@| 2 . Suppose
C@0(̂ S) ^ 1. By Lemma 15.57, we conclude that JV(@0) is contained
in some conjugate of 2ft, and this conjugate is necessarily SPΐ itself,
by maximality of | @ Π SPΐ |2. Hence, we conclude that C@0($β) = 1.

Since g < @2, we now get ©0 = & x SΓ, where φ = <P>. This
implies that J(@2) <1 ©, which is false, since ©2 is not a S2-subgroup
of ©. The proof is complete.

From now on, 2S = F(cclΘ($); S).

LEMMA 15.59. JVΛ(aB) = ϊ .

Proo/. By Lemma 15.58, JV(SB) g 2R, so by Lemma 15.29, JV«(aB)
has cyclic S3-subgroups, and so 2t = JVR(S5B) has order 1 or 3. Suppose
ISC j = 3 First, suppose that 21 £ (£21)', and SI £ Z(3t) In this case,
we get 31 = JV(SB) = S C^St), so that £ is permutable with <5t, Cκ(Sl)>,
whence, by the usual argument, 9i £ Sft, which is false. Suppose
S ϊ g (Say, agZ(SIΪ). In this case, S^S-CnίSt), and since Ce(St)
contains a four-group, we get JV(St) £ Sft by Lemmas 14.20 and 14.22.
Suppose finally that 2t ξ£ £ ' . In this case, since 3ΐ 3 2ft', we conclude
that % = 9ΐ', Z3(SK) = 1, and elements of £ induce automorphisms of
X = £3ΐ/£9ΐ' of determinant 1. Since 21 - 3t', we have |SB, SC| = 1, so SI
centralizes Z(%). By Lemma 14.29, S3-subgroups of 9Ϊ are cyclic, and
so 31 = SgtO, O is cyclic, 2IQ is a Frobenius group, N*(X) = SSI. Let
5β be a subgroup of G of prime order, and let 9ΪO = SSI^β. Let tt be
a minimal normal subgroup of 9lo Then C^0(tt) = 9̂ x = 02(^0)? and
Ŝ o/Sΐi is a Frobenius group of order p. 3. 2α, a ;> 1. It follows that
§1 does not centralize Z(%). This contradiction completes the proof.

Let

= w 1 Seed,®), g s src, g gφ},
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Thus, JΓ(Z) Φ 0 .
If 2) = %G £ fΰly then C9(<£) contains a hyperplane of 2), and so

© £ Wlβ, whence [%σ, g j g l ϊ n ^ . We conclude that

as s c(e).

Since Tt = 2R0 JVB(2B), Lemma 15.59 implies that 9K = Mo% and so

3t £ C(@) .

Choose 2) = g σ e ^T(S), and let % = 2) Π £ . Let U be a comple-
ment to 2)0 in 2). Then ϊt acts faithfully on O3S3(3K)/£, and so 2 ^
IIX I ̂  4. We argue that | t t | = 2. Suppose |IX | = 4 In this case,
3ΐ0 has a subgroup © of order 9 such that IX acts faithfully on £>©/£>.
Let S = £©1X. Since |g, £>] £ ©, we may view g/© as a F2£/£-module.
Let © = ©x x ©2, where | @< | = 3, and £©; < 8. Let U3_, - Cβ(φ@«/£),
so that IX = IXx x 1X2. Let S, = £>©A, so that S/£ = S^φ x S2/φ, and

Set g - δ/®, and let & = [§, ©J n j g , ©2] We will show that
%x — 1. Suppose false. In any case, gfi admits S, and so we can
choose an irreducible i^S-submodule ^ 2 of %x. I t follows that | §21 = 16,
and g2 is a free jP2U-module. Let % = 3/@ be the unique IX-admissible
subgroup of g2 of order 8, and let 8/G? be the unique IX-admissible
subgroup of g 2 of order 2. Then for each Z in 3> we have [2), Z] £ 8>
and so CV(Z) is of index at most 2| @ | in 2), whence Ze C(CV(Z)) £ SJΪ̂ .
Now | 3 | = 8|@|, and we can choose a four-group 3 * such that 3 =
3 * x 8 By the preceding argument, we have 3 * S SÔ  Since IX
acts faithfully on 3> we get C(%G) Π 3 * = 1> s o by Lemma 15,54, we
get that [3*, ?F] Π ̂ " G ^ 0 . Hence, δ n ^ G ^ 0 , and so g £ TlG.
This implies that [g, %G, %G] = 1, and so the module § 2 does not exist.
Hence, §1 = 1.

We next argue that © has no non trivial fixed points on § .
This is clear if © = $t19 since § is a chief factor of 9ft. Suppose
© c 3tlβ In this case, 3ΐJ £ ©, and Qϊftl <\ SK, whence 5R; has no fixed
points on £$ί Since 5RJ £ ©, we conclude in any case that © has no
fixed points on g . Now we get § - ^ ( © J x C,(©2), Cφ,) - [g, ©2],
C»(@2) = [δ, @J Thus, ©!, ©2 are the only subgroups of © of order
3 which have fixed points on %, and since © acts faithfully on %, we
have C9(&i) Φ 1. Hence, ©x, ©2 are central subgroups of % and so
© - 3ft. This implies that | g/β | = 16, and f$ = <£ x & x g2, where
δi = [S, ©2L g2 = [3, ©J, Si, & being four-groups Also, gg,, @g2

are normalized by %σ. If ^ 6 % then C(-F) Γ) f5σ is of index at most
2 I © I in %G, and so g ^ £ SR .̂ So % £ SOΐ̂  Choose g* to be the
unique hyperplane of ©gi which contains © and admits § G = 2), and
then choose F, e & - g*. Let U* = (Fu F2}. Then U* n C(%G) = 1,
and so by Lemma 15.54, [%G, tl*] Π <J*G Φ 0 . Since ©* centralizes
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©g, , we get Eg, U ©g2 S - ^ Choose I in [g°, U*] Π ̂ σ . Clearly, I g ,
since J? is a T.I. set in ©, and ^ Φ ^ G . Since [g*, IX*] £•
we have I — IJ2E, where J5e©, and ^ e g i Π g 4 . Since I ί ^ we
have / ^ l , ΐ = 1, 2, and so <!<> = g, Π g\

Next, observe that ^QU, is a hyperplane of 3) which is 1 on ©gi/@.
If SJolXi centralizes @gx, we get that [gx, g

6]* £ ^ G , which is false,
since [gx, g σ ] * E ^ . Hence, [©gi, ξWy is a non trivial subgroup of
@. Suppose I © I = 2, so that | g | = 25. In this case, we get that
I g Π %G I = 23, and so %G = IX x g Π gG, and g Π gG, contains precisely
5 elements of Jf. If g Π ίgG = g Π gG, then by symmetry, g Π g6'
contains precisely 5 elements of J?G, which is impossible since
I g n gσ* I = 7, and ^ Π ̂  G = 0 . If φ G Π g ID g^ Π g, and F e ^ ί l S -
gG Π g, then [g, gG] contains an element of (©gx U ©g2)*> which is also
impossible since ©gξ E ^ while [g, gσ]* £ ^ G . We conclude that
| 6 | = 4.

We argue that §° Π g = ©-(g Π g^)- In any case, ©.(g ngG) is
contained in φG, since g Π gG visibly is, and since © centralizes %G.
If ©.(g Π gG) c g Π φ^, a n d F e g n ^ - ©(g Π gG), we get [F, g T £
^ σ , against [F, %G] Π ̂  ^ 0 . So ξ)G Π g = @(g Π gff) is of index 4
in g. If g Π %G has order 8, then g Π g σ has at least 5 elements of
<J*i and by symmetry, g Π %G has at least 5 elements of *J^G. This
violates <J? n <~fG = 0 . I f g Π g ^ has order 16, then g Π g^ contains
at least 11 elements of ^ , so by symmetry, has at least 11 elements
of J?G. This also violates *J? Π ̂ G — 0. We conclude that | IX | = 2.
Let U = <J7>.

If F e g, then [F, %G Π §] E ©, and C(F) Π gG Π § has index at
most I ©I in g^ Π φ. Hence, C(F) Π gG has index at most 2|@| in
gG, whence F e C(gG n C(F)) £ SΓĉ φ Thus, g £ 3KG. By symmetry,
1 g: g Π §G I ̂  2β Since [ [ / , g n f ] g ©G, it follows that | [g, U] \ £
2 I © |. In other words, Ue % U SC2 U 2t3c

Case 1. I 311 = 32 and ^(31) permutes transitively the subgroups
of 3t of order 3.

In this case, we get | g/© | = 28, and g = © x gL x g2 x g 3 x ?v4,
where g\ are four-groups which admit 3ΐ, and 3Ϊ': = ^(g^) are the
subgroups of 3Ϊ of order 3. We may assume that U inverts 3Ϊ1.
Since | [g, 3Ϊ1] | = 26, we get | [g, U] \ ̂  23

β Since Ue %ίf with / ^ 3,
we conclude that | [g, U] \ = 23, and since g Π ξ>G is of index at most
2 in g, we then get that | [g Π £>*, U] \ ̂  22. Since [g n $G, U] £ e σ ,
we conclude that | © | = 4, and that [g Π §G, U] = © G c [g, £7]. Since
I [g, U] I = 23, it follows that g n § G is a hyperplane of g . Also, U
does not invert ξ)3ΐ/<£> since | g/© | = 28. Let 3ϊί be the unique subgroup
of 9ΐ of order 3 such that U centralizes ^317^. Then 3ϊί normalizes
[g, 17]©, and so normalizes ([g, [/]©) n [g, 31] = [g, U]. Thus, as
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©*<=[§, U], and [g, U]=8, we get g* Π ®GR Φ 1, where R is a
generater for 31*. Since <$G is a T.I. set in @, we get i? e N((£G) = SŴ .
Since [3ΐ, (£] = 1, so also [R, ®G] = 1. Since | [g, ί7] | = 8, this implies
that R centralizes [g, 17]. This is false, since | C9Vβ(9l*) | = 22.

Case 2. ] 3ΐ ] = 32, and N^(ίR) does not permute transitively the
subgroups of 3ΐ of order 3.

Let ©i be a subgroup of 9ϊ of order 3 such that (^(©i) Φ 1.
Since | g/© \ > 4, JVK(3t) does not normalize @x, and so 3ΐ = @L x @2,
where {©!, ©2} is an orbit under Nm(3i) of the subgroups of 9ΐ of order
9ΐ, 3. Hence, % = gx x 82 x ©, where g4 are four-groups which admit
and g< £ C(@4).

Let § = {JEJFJ?7,, EeH,Fie g?}. Thus, | § | = 9| (g |, and § admits
^3Ϊ. We argue that § is a conjugacy class of £>3ΐ. Namely, let
& = C((£) Π φ. Since | @ | ^ 4, we have | Q: & \ ̂  2, and since ^9ΐ < 9K,
we get that SK = ^.JV^Sl). Let § * - § Π [g, Sft], so that \ψ \ = 9,
and 9ΐ is transitive on g*. Choose j F e g * . Then φ x normalizes F(£,
so it suffices to show that [F, ξ>J = @. Suppose [ί7, ^>J = @0 c @.
Since © S ^(φi), we get ©0 0 §1. Since [@0, 31] = 1, we get next that
[F*, φ j - @0. Since F e g * , g* = [g, Sft], and since JV«(3t) normalizes
φ x and [g, Sft], we get ©0 £ Z(SW). Now (go[f5, 91] admits & and iV«(3t).
Since SK = ^^JV^SR), and ©0[g, 3ft] e g , |@0[g, Sft] | ^ 8, the minimality
of g is violated. So

§ is a conjugacy class of

Note that § - § £ ^ and so g Π ̂ * £ g. We argue that
<-fG C\[%,%G]Φ Q). Namely, % Π φ6 ' is of index at most 2 in g, and
[8 Π Qβ, %G] £ g Π C0. Since e^* £ ^ * , we are done if [% n ^ G , S I ^ 1.
So suppose R5 n $G, %G] = 1. In this case, g = g Π ̂ G x <F>, where
F Φ 1. Also, of course, g* = 2}0 x IX. Set / = [U, F]. Since U£ § ,
and since [g, [7] = </>, we get J g ® . By Lemma 15.50, we have
J e ^ If in addition, we have [gσ Π φ, g] = 1, then we can apply
Lemma 15.50 to F acting on %G, and get Je^G. This is false, and
so [%G Γ\$,%]Φ 1. Choose Ee[%Gf)$, g] ' . Thus, S e P g ^ Thus,
we have the following situation: E, J are elements of J ^ Π [$> %G]>
and Ee®, Je%-<£. Since J is a T.I. set in ©, and @ < SW, it
follows that ί? and J are not ©-conjugate. Hence, | {E, J} Π %G | ^ 1.
But {£?, J} £ ff, and gG - %G £ ^ G . Hence, {£?, J} Π ̂ G ^ 0 , which
is false, since J? Π *J*G = 0 . We have thus shown that [g, g^] Π
^ ^ 0 .

Let 2) = g(l) = %G, g(2), , g(w) be all the elements of J T ( 2 ) .
For each i, choose G(i) e © such that g(i) = g0^^ Then choose F(i) in
[S, g(i)] Π ̂ ^ ( ί ) . Set î 7 = F(l), and choose X(i) e φ3ΐ with .F7(ί)X(ί) - F.
These elements X(i) exist, since [g, g(i)] Π ̂ G[i) £ § . Thus, for each
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i, F is in ^*<*w> n ^ G . Hence, δ σ ί < ) Z ( ί ) = ff = 2) = δ(i) X ( ί ) , and so
g(i) g £ P i for all L Thus, if g* e ccl@(g), and g* g 2, then either
g* g £, or § * is one of our g(i). We conclude that 2S g φ ξ p , and
so 2B g #2)3ΐ Π ϊ = φ?). Since JV^SB) = £, it follows that ί/ inverts
^3ΐ/^>. Hence, we get that U inverts some £3-subgroup of φ9ΐ, which
we may assume is 9ΐ. In this case, U normalizes both of the four-
groups &, &, and if δf - [&, tf], then \%f \ = 2, and Cd(U) = ® x
S* x δί8. Since [§, ξf] g δ*> it follows that δ n 8* - δ ί x &* x
(© Π §G). Since δ? = <^*>> where Ff® g ^ and since | @ | ^ 4, it
follows that I δ Π S01 = 4, 8, or 16, and in the three cases, we have
I δ Π δ * Π ̂  I ̂  2, 5, 11, respectively. If δ £ Φ*> then [δ, W] £ @G,
which gives î f e(£G Π *J^ which is false. Hence, symmetry implies
that ^ {λ*J^G Φ 0 . This completes the analysis in case | 3ΐ | = 32.

Case 3. | Sft | = 33 and ί3(SK) = 1.
Let $ be a subgroup of 3K of order 3 inverted by U. Thus,

I [δ, φ]) ^ 26. Since §9t <\ 3K, it follows that g/@ is a direct sum of
irreducible .F29ΐ-modules, on each of which 9ϊ' acts faithfully. Since
I [δ/©, ̂ β] I ̂ 26» we get |δ/@] = 26, and if φ is a non central subgroup
of 31 of order 3, then | [δ/(g, «β] | - 24.

Since JVa»(2δ) = £> we can suppose 2) has been chosen so that 2)
does not centralize £>3ΐ7£>, a n ( i we can then suppose that U inverts
31'. Let δ = ® x δ» where δi = [δ, S*Ί is of order 26. Thus,
I [δ l f U] I - 23, and [g,, J7] - [& f/] S δi Since | ϋt | - 33, 3t has a
subgroup © of order 3 such that U centralizes φ©/φ. Thus, 8
normalizes @[δ, Ϊ7], and so normalizes δi Π (@[δ, U]) = [δ, ^] Since
δ Π φ G is of index at most 2 in %, we get | [δ Π $G, U] \ ̂  22, and so
[δ Π ®G, U] = & is a four-group. Let @ - <S>. Since | [δ, J7] I = 8,
and [g, U] admits @, it follows that ©G Π @G<S ̂  1. Hence, S normalizes
©G and so centralizes @G, whence S centralizes [δ, Ϊ7]. This is false,
since I [&, @] I = 24.

Case 4. i fR I = 3B and Z3(2K) > 1.

In this case, ffl/lg is a familiar group: a splitting extension of an
elementary group 3*^/^ of order 32, by GL(2,3). Let ZJίg be the
center of %/Q. We first argue that 2) g Z,. For if 2) g %19 then [7
inverts ^ 3 * ^ , and so | [δ, U] \ ̂  24, against C7G SI/, / ^ 3.

Let $ be a subgroup of 3tx@ of order 3 inverted by U. We
choose notation so that Sβ g 3^. Now δ — @ x %i χ " x &> where
g. = [Cδ(3ΐ0, 91]> and 311, , 914 are subgroups of 3^ of order 3. Also,
δi, - ,δ4 a r e permuted transitively by Nw(%). I t follows that if
| 4 I = 22fc, then | [g, 9t*J | = 26k. We may assume that 5β = 9Ϊ1. Since

21/, and / g 3, we get k = 1, | δ/® I = 28. Since we now get / = 3,
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we conclude that l c @Gc [g, U], |@| = 4. Let Ω be the unique
subgroup of 9^ of order 3 such that U centralizes φQ/φ. Thus, as
before, Q normalizes [g, U] = (®[g, £/]) Π [g, SR1], and so ©G n ©Gρ ^ 1,
where Q is a generator for £}. Since 6 6 is a T.I. set in ©, we get
jQ fi iVί^), and so O S C ^ ) . This then forces O to centralize [g, Z7],
against | [g, 3ΐ] n C(O) I - 22, | [g, C7] | - 23, and [g, U] c [g, 5ft].

We conclude that σ2 = 0 .
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