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THE THEORY OF ALMOST PERIODIC FUNCTIONS
IN CONSTRUCTIVE MATHEMATICS

JAMES BROM

In this paper we develop a constructive theory of continuous
almost periodic functions. We expose those aspects of the
standard theory that are not constructive and give constructive
substitutes. For example, it is not true in constructive
mathematics that each trigonometric polynomial is almost
periodic. A trigonometric polynomial is almost periodic if and
only if its exponents are rationally discrete. We obtain a
constructive proof of Bohr's fundamental theorem that leads to a
computational method for uniform approximations to continu-
ous almost periodic functions by trigonometric polynomials.

In the following it is desirable that the reader is familiar with the
principles of constructive mathematics which are presented in [2].

Introduction. The notion of an almost periodic function was
introduced by the mathematician Harald Bohr [4] in 1924. The notion is
a generalization of purely periodic functions.

Much of the standard theory of almost periodic functions is not valid
constructively. That is, in many cases the numbers that are asserted to
exist are not computable. Nevertheless, Bohr's basic definitions form
the basis for the development of a constructive theory.

DEFINITIONS. A continuous function /: R—>C is almost periodic if
there is L: R ->R+ such that in every interval of length L(e) there is an
e-translation number t\ that is, a number t such that

\f{x + t)-f(x)\<e. ( ϊ £ R )

We call L a modulus of almost periodicity for /.
Almost periodic functions occur frequently. For example, note

that f(x) = sin V2JC +sinx, a sum of two purely periodic functions, is
almost periodic.

In the classical theory of almost periodic functions, they are bounded
and uniformly continuous; the uniform limit of a sequence of almost
periodic functions is itself almost periodic; and the class of almost
periodic functions is linear and closed under the operations of multiplica-
tion, conjugation, translation and the operation of taking the
modulus. Some of these properties fail constructively. Others are
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valid from the constructive point of view but by reasons different from
those given in the classical theory.

In the constructive theory, we assert that a continuous almost
periodic function / is bounded. But boundedness is not enough in
constructive mathematics to claim that the supremum of /, denoted by
11/11*, exists. Nevertheless, it follows from almost periodicity that we can
compute | |/ | | x; in fact,

sup \f(x)\ f.

A proof of this appears in [6]. The classical argument that an almost
periodic function / is uniformly continuous in the sense that there is
ω: R -^R + such that | / ( * ) - / ( y ) | < e whenever x, y GR and \x - y\<
ω(e) is valid constructively. Also, the classical arguments which show
that a uniform limit of a sequence of almost periodic functions is almost
periodic and that the class of almost periodic functions is closed under
conjugation, translation, and the operation of taking the modulus are
valid constructively. However, unlike the classical theory, the moduli of
almost periodicity of two almost periodic functions is not always enough
to construct either the modulus of almost periodicity for their sum of the
modulus of almost periodicity for their product. In fact, a constructive
proof of either the closure under addition or closure under multiplication
properties would entail a constructive proof of the statement that a is
either equal to zero or different from zero whenever a is a non-negative
real number. (To see this note that eiax is almost periodic if and only if
a = 0 or a^ 0. For a proof see either [5] or [6]. For a i? 0, consider
eiax which is the product of the almost periodic functions ei{{+a)x and
e~ix. If the closure under multiplication property were valid, then we
would be able to conclude that either a = 0 or a > 0 . If the closure
under addition property is valid and if a ^ 0 then ei{λ+a)x - eix is almost
periodic; that is, eix(eiax - 1) is almost periodic. But then \eiax - 1| is
almost periodic and \\eιax - l | | x > 0 implies α > 0 and \\eiax - l | | x < 1
implies a = 0.)

Since it is not true in constructive mathematics that, in general, a
sum of almost periodic functions is almost periodic; it is an interesting
question to ask when a trigonometric polynomial is almost periodic.

THEOREM. Suppose c b c2, , cn E C such that | ck \ > 0
(k — 1,2, , n). Then the trigonometric polynomial P(x) defined by

•ke'^ ( 1 6 R )

is almost periodic if and only if A,, λ2, , λn are rationally discrete.
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DEFINITION. Λ,, λ2, , λπ E R are rationally discrete if Σ"=1/fcλfc = 0
or Σk = [jkλk/O whenever y,,/2, ,yn are integers.

An elegant proof of this theorem that employs a constructive variant
of a theorem originally due to Kronecker appears in [6, pp.
359-361]. For a different constructive proof that is based on Fejer
kernels, see [5, pp. 5-14].

The notion of the mean value of a function plays a key role in the
development of the classical theory of almost periodic
functions. Constructively, we can compute the mean value of an almost
periodic function /. (See [1, pp. 12-14].) If we denote the mean value
by M,{/(ί)}, then we have

M{f{t)} = lim ^= Γ f(t)dt = lim ^ Γ f(t)dt.

The fundamental result in Bohr's work is that each almost periodic
function, like each purely periodic function, can be represented by its
Fourier series

f ( γ \ ~ ^ r pιKkX

J V Λ / ^ LkC i
k = \

where Mx{\f(x)\2} = Σk

c

=]\ck\
2. Using the notion of mean value, a

classical mathematician could define the inner product space of almost
periodic functions such that | |/| |2 = Mx {|/(x)|2}. Then Bohr's result
could be interpreted to say that the series converges to / in the mean;
that is, in the || ||-sense.

Once Bohr established his fundamental theorem, he was able to
show that any continuous almost periodic function is the limit of a
uniformly convergent sequence of trigonometric polynomials. This is
the main result of his second paper. In view of the fact that the converse
of this result was also true, the classical theory contained a characteriza-
tion of almost periodic functions.

Constructively, we do not assert that all trigonometric polynomials
are almost periodic. So we cannot assert that the class of functions that
can be uniformly approximated by trigonometric polynomials is the same
as the class of almost periodic functions. However, it is the purpose of
this paper to show that Bohr's fundamental result has a constructive
version and-that, not only is his second result valid, the second result
follows from the first. Once this is established, we can conclude that the
class of almost periodic functions is a proper subset of the uniform
closure of the trigonometric polynomials.

REMARK. A constructively weaker notion than almost periodicity,
call it weak almost periodicity, is desired in order to describe all those
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functions that are uniform limits of sequences of trigonometric
polynomials. It is an unsolved problem to determine what the notion of
weak almost periodicity should be.

1. Fundamental theorem of almost periodic
functions. Bohr's nonconstructive methods for establishing the fun-
damental result of the theory are based on reducing the problem to a
problem of purely periodic functions. (See [4].) Weyl [8] in 1927 and
Rellich [7] in 1935 based their proofs on properties of compact Hermitian
operators. These methods, although shorter and less complicated than
Bohr's, lost the elementary flavor of Bohr's methods. Nevertheless, a
constructive version of the functional analysis approach is possible.

REMARK. I have been unsuccessful in any attempt to compute the
trigonometric series directly from the properties of purely periodic
functions.

We wish to construct coefficients cuc2,c3y' and frequencies
λj, Λ2, λs, * * for which we can write

(1.1) f~Σcke^x (xER)
k = l

where the series converges to / in the mean sense.
The method by which we shall establish 1.1 is based on the idea that

the exponentials in the expansion of / should correspond to eigenvectors
of the convolution operator g^>f*g [1, pp. 67-74], where

f*g(x) = M{f(x-t)g(t)}.
t

So we begin by constructing an inner product space H, say, such that the
following properties are valid:

(i) H contains / and its translates.
(ii) H is closed under the convolution operation *.
(iii) (g, h) - M, {g (t)h (*)} for all g,heH.
(iv) Uniform limits of sequences of almost periodic functions in H

are in H.

REMARK. If two continuous functions g and h are jointly almost
periodic; that is, if there is L: R ->R+ such that in every interval of
length L(e) there is an e-translation number t that works for both g and
h then their sum, product, and convolution product are almost
periodic. Classically, any finite collection of almost periodic functions is
jointly almost periodic; in which case, H can be taken to be the entire
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class of almost periodic functions. Unfortunately, in constructive
mathematics, it is not true that a finite collection of almost periodic
functions is jointly almost periodic. (If a ^ 0 then joint almost periodic-
ity of eι(1+α)x and e~ιx would imply that eiax is almost periodic; that is,
either a - 0 or a^ 0.) So the situation in constructive mathematics is
that we must be very careful in our construction of H if we are to have
an inner product space with the above properties.

It is shown in [5, pp. 71-76] that the construction of H is achieved
without much trouble once it is recognized that translates of an almost
periodic / are jointly almost periodic, so that linear combinations of
translates of / are almost periodic; and that a convolution product
between two such linear combinations is the uniform limit of a sequence
of linear combinations of translates of /.

In order to take advantage of the constructive spectral properties of
a compact, Hermitian operator we reduce the problem, as in the classical
theory, to the case the convolution operator g —>f*g is Hermitian by
noting that / = /, + i/2, where fx(x) = (f(x)-f(-x))/2 and f2(x)^
(f(x)-f(- x))/2i, and that the convolution operators g—>/i*g,
g^/2*g, g-*f2*g are Hermitian (since /*(*) = / * ( - * ) , k = 1,2).

REMARK. In order that /,, f2 are in H we construct H such that it is
closed under the operation of taking the involution, denoted by #.
(See [5, pp. 71-76].)

DEFINITION. The involution of a function g is g# where g*(x) =
g ( - x) for each x 6 R .

Now that we can assume the convolution operator is Hermitian,
what about compactness?

The convolution operator A: H—> H, defined by the equation

Ah =/*Λ, (h GH)

is compact in classical mathematics: In WeyΓs proof [8] the existence of
the trigonometric expansion of / follows from the spectral theory of
compact, Hermitian operators. A crucial step is showing that the finite
dimensional A-invariant spaces in the spectral decomposition are in-
variant under all translation operators. Consequently, by means of a
classical theorem concerning families of unitary operators on finite
dimensional spaces, it is established that each of the A -invariant, finite
dimensional spaces has a basis consisting of exponential
functions. Then it is easy to show that these exponentials are precisely
the exponentials in the expansion of /.

The constructive arguments proceed along the same lines in spite of
the fact that the classical theory of the spectral properties of compact



72 JAMES BROM

operators does not have a computational flavor and the fact that the
theorem on unitary transformations of a finite dimensional space is
non-constructive.

We shall analyze the spectral properties of the convolution operator
from the point of view that this operator is approximately finite dimen-
sional; that is, it is the limit in the operator norm sense of a sequence of
finite dimenisonal operators.

DEFINITION. An operator T on a Banach space X is finite dimen-
sional if it has the form

Tx = 2Lr<x, Uk)xk,
k = \

where n is a positive integer; Uu t/2, , [/„ are bounded linear function-
als on X with values (x,Uk) for each x E X (k = 1,2, , n); and
x b x 2 , ,xM are linearly*independent vectors in X.

DEFINITION. We say vectors x b x2,' ,xn are linearly independent
in the Banach space (X,|| ||) if there is a positive number M such that

= i

for all α b α 2 , , an in C.

To see that the convolution operator A is approximately finite
dimenisonal, suppose e > 0 is given. We use the fact that | | g | | ^ l
implies / * g E C(f)

{ P P Λ

Σ otkTζkf: p E Z+, Σ I θίk I g 1},
k = l fc=l J

where ΓΓ is a translation operator; that is, Tζf(x) = /(x + f) (x E R). It
is not hard to show that C(f) is totally bounded with respect to the
uniform norm || J^ [5, p. 77]. Hence, consider an e-approximation
g b g2, * , gm to C{f). It is shown in [5, p. 98] that either there is a linear
independent subset of {gb g2, * , gm}, call it {hu h2, , A«}, such that the
distance from each gy to span (huh2, * ^hn) is small; that is, d(gh

sρan(Λ,,ft2, ,ftn))<€, / = l ,2, , m ; or | |gy | |<€ for each ; , / =
1,2, , m. In the latter case, the null operator is within 2e of A. In
the former case, the finite dimensional operator P ° Λ , where P is the
projection onto span(fι1? h2, - - ,ftn), is within 2β of A because if
!| g II g 1 we have || Ag - g} \\ ^ β for some / and since || g; - h'\\ < e for
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some h E span(ftb /ι2, , hn) we have that \\P°Ag - Ag | |S
\\h-Ag\\<2e.

The constructive spectral properties of approximately finite dimen-
sional operators are described in [5, pp. 16-49]. Applying these results
to A we can construct a sequence of subsets of the complex plane,
{σn}™=u and a strictly decreasing sequence of positive numbers, {pn}*=i,
such that pn->0 and such that the following conditions are satisfied:

(i) For each positive integer n either σn is empty or σn is the
closure of some subset {μb μ2, * * , μq} of approximate eigenvalues of A.

(ii) σ n C{zGC: pn+x<\z\< pn) for eίch positive integer n.
(iii) If ζj^O and the distance from ζ to each nonempty σn is

positive, then (A - ζl)~ι exists.

REMARK. We do not claim that in case σn is the closure of
{μi,μ2, , μ j that the μ^'s are necessarily distinct or isolated from one
another, since in constructive mathematics it is not true that two complex
numbers are either distinct or equal.

REMARK. In general, we do not claim that the spectral points of an
approximately finite dimensional operator are bona fide eigenvalues; that
is, spectral points for which we can construct an eigenvector. However,
an isolated spectral point of an approximately finite dimensional operator
is a bona fide eigenvalue.

REMARK. This construction of the spectrum does not lead to a
decision on whether or not zero is a spectral point. This is not surprising
since if such a decision were always possible, then we could prove: a E R
implies a =0 or α / 0 . (To see this, consider the finite dimensional
operator given by the matrix

a 0
0 1

Its determinant is a. If the matrix is invertible then α^O; otherwise,
a = 0.) Note that because the sets σn near zero may or may not be
empty, the spectrum is generally fuzzy near zero but quite clear away
from zero. For a discussion of the spectral properties of approximately
finite dimensional operators, see [5, pp. 16-49].

At this point, we construct finite dimensional, A -invariant subspaces
by applying the functional calculus techniques developed for approxi-
mately finite dimensional operators in [5, pp. 50-66]. For each positive
integer n, we get a projection operator Pσn such that Eσn = {Pσnh: h E //}
is a finite dimensional, A-invariant subspace and such that the spectrum
of the restriction of A to Eσn is σn in case σn is not empty. (Pσn = 0 if σn
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is empty.) Furthermore,

(1.2) A=ΣAoPσn.
n = \

The proof of (1.2) follows from the constructive properties of the
distribution of the spectral points of A and the fact that A is
Hermitian. For example,

A I - λ Pa_ )h

since the spectrum of A restricted to (I -Σ™=xPσn)H is a subset of
{z E C : | z | < p m + i } because of condition (ii) of the spectral properties
of A.

We have now arrived at the most crucial stage of the construction of
the trigonometric series for /. We will show that each Eσn (σn not
empty) has a basis of exponential functions and the collection of these
exponentials are the exponentials in the expansion of /. First we need a
lemma.

LEMMA. The spaces Eσn(n E Z+) are invariant under all translation
operators Tζ(ζ E R).

The classical proof of this lemma fails to be valid from the
constructive point of view because it ultimately relies on the assumption
that the spectral points of the convolution operator A are isolated from
one another.

The constructive proof begins by showing that A commutes with
each translation operator Tζ. To see this consider for each x E R

= [Ag](x + ζ)

= Tζ(Λg)(x).

We claim that E{μ} is invariant under all translations in case μ ^ 0 is
an isolated spectral point of A. To see this note that A = μl on E{μ}

because the Hermitian operator A - μl on E{μ} has spectrum {0}, so
A- μl is bounded by each positive number; that is, A - μl = θ on
E{μ}. Since A - μl is invertible on the orthogonal complement of E{μ}
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and since (A - μI)(Tζh - P{μ}Tζh) = 0 because ATζh = TζAh = μTζh, it
follows that Tζh - P{u)Tζh = 0 whenever hGE{μ}; that is, Tζh E E{μ}

whenever h E E{μ}.
Now consider any spectral set σ, say, and the space Eσ where σ is

the closure of the set of spectral points {μ b μ2, * , μ<J We will show
that such spaces Eσ are invariant under all translations by induction on
q. We just showed that Eσ is invariant under all translations in case
q = 1. Assume Eσ is invariant under all translations whenever the
spectral set σ is the closure of a set of spectral points {λb λ2, , λp} and
p < q. To show that this implies Eσ is invariant under all translations
consider e > 0. Compute a number r such that 0 < r < e and r is in the
metric complement of {0,\μ\ — μ2\,\μi~- μ3 | , * , |/xi — μq ]}. Then for
each fc, 1 ̂  k ^ q, either | μλ - μq \ < r or \μx- μk\> r. Hence, either
I μi - μ*c I < r < e for all k, 1 ̂  k ^ q, or σ splits into two smaller spectral
sets. In the latter case we can write σ = σλ U σ2 where σx is the closure
of {μh, μl2, - , μu) and σ 2 is the closure of {μil+ι, μil+2, , μiq} (μu, , μlq is

a permutation of μuμ2j — ',μq)', where σu σ2 are isolated from one
another. So in the latter case we have the orthogonal decomposition
Eσ = Eσι 0 E^ (cf. [5, pp. 56-57]) and we can conclude that Eσ is
invariant under all translations since, by assumption, each of the Eσι

(Ϊ = 1,2) are. In the former case, in which \μλ- μk\< e for each fc,
1 g k ^ q, it can be shown that if ζ £ R then we can compute a positive
number C independent of e such that || Tζh - PσTζh || ^= Ce\\h ||, whenever
h E Eσ. (See [5, p. 81].) Evidently, this inequality is valid in either
case. Since 6 was arbitrary it follows that Tζh E Eσ whenever h E
Eσ. This concludes the inductive proof of the lemma.

As shown in [5, p. 106-120], the fact that Eσn is invariant under all
translations whenever σn is not empty implies that Eσn has an orthonor-
mal basis {hu h2, , hN}, say, such that each basis element is an
eigenvector for each translation operator Tζ. We will show that this
basis can be replaced by an orthonormal basis consisting of exponential
functions.

We construct the new basis of exponentials by defining for each
integer /, 1 ^ / ^ N , the function ep\where ej(x) = (Txhnh}); that is,
Txhj = e}(x)hj(x E R). Note that each e} satisfies the following proper-
ties for all x, y E R:

(i) eJ(x+y) = e,(x)eJ(y).
(ii) βj is continuous.
(iii) e,(0)= l a n d I *,-(*)| = 1.

(Property (ii) follows from the fact that || Txh - Tyh || is exceeded by
|| Txh - Tyh ||oo, which approaches zero as | x - y \ approaches zero,
whenever h is almost periodic.) It is evident from these properties that
we can find real numbers ηu η2, , ηN such that for each y, l^j^N,
e](x) = εxp{iη]x}(x<ΞR).
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Now the fact that || Txh} - eι^% || = 0 for each JC G R suggests that h,
is exponential. In fact, it is not hard to show that e; = (e, , Λ, )ft;

(/ = 1,2, , N). Consequently, since \{eh Λy)| = 1 for each /
(/ = 1,2, , N), e,, e2, " '9^N is an orthonormal basis of exponentials for
Eσn.

To show that e] = (ey, fy)/z; for each /, first we note that e, E H since
ej(x) = (Txhhhj) = hj *h*(x) and if is closed under convolution and
involution. Now consider any vector φ orthogonal to ft,-. We have

= M{(Txhi,hi)φ(x)}
X

( L 3 )

= M{M{Tlhi(x)φ(x)}hl(t)}

= M{ej(t)(h,,φ)hi(t)},
t

since Tth} = eι {t)hΓ But {hh ψ) = 0, hence (ey , φ) = 0. We conclude that

(1.4) e,=teΛ-)Λ> 0" = l,2, , N )

and that eu e2, - -,eN is an orthogonal basis for Eσn.
We have now reached the final stages of the construction of the

expansion of /. The expansion we are about to give is somewhat less
palatable than Bohr's.

We can collect all the exponentials produced by the bases of the
spaces Eσι, E^ in a sequence <pu ψ2j φ3, * *, say. But since some of
the σn 's may be empty the following properties are satisfied for any pair
of integers /, k:

(i) | k | | = 0or | |<p y | | = l.
(ii) jl̂ y || = 1 implies ψj{x) = elk>x for some λy ER.
(iii) (φh φk) = 0 whenever yV k.
In order to show that / — Σfc=1(/, φk)ψk, recall from 1.2 that

A = Σ A°Pσn.

We can write this last equation in the form

(1.5) /*g = Σ (ft <P*)/*?*• (S^H)
fc = l
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But for each positive integer fc, / * φ k = {f,ψk)ψk since φk is either the
zero function or an exponential. Thus 1.5 becomes

Note that the right hand side of 1.6 converges uniformly since

m I m

Σ if, ψk)(g, ψk)ψk(x) = f* ( Σ (s>'

m

Σ (g,

Γ^5 2Ί

Thus we can write

(1.7)

But <̂fc (0) = 0 if φk = 0 and φ k (0)= 1 if φfc is an exponential; hence,
(/Ϊ Ψk) (/, ̂  )φfc (0) = (/, φk )

2 Since (/, φk) is real for each fc, 1.7 becomes

'2 _

This equation together with the fact that

establishes the fundamental result

/ = Σ (f,<Pk)<pk,
fc = l

where convergence is in the || ||-sense.

2. Uniform approximation theorem. The existence of
the trigonometric expansion of a continuous almost periodic function is
the basis of each of the classical proofs for the uniform approximation
theorem, which states that each continuous almost periodic function is
the uniform limit of a sequence of trigonometric polynomials — Bohr's
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second result. Bohr [4] employed the theory of purely periodic func-
tions of infinitely many variables to obtain a classical proof of this
result. Bochner [3] obtained a nonconstructive proof by extending the
Fejer summation method to the class of continuous almost periodic
functions. From the constructive point of view, we like a method due to
Weyl (cf. [1, pp. 29-31]) which, with a few easy modifications and with the
computation of the trigonometric expansion now established, can be
adopted to furnish a constructive proof.

Approximation Theorem. Suppose / is a continuous almost
periodic function with expansion

/ = Σ (f,<Pk)<Pk-

Then for each e > 0 there is a trigonometric polynomial P(x) of the form

•eiλ'x, ( x E R )

where the frequencies λ}, λ2, * , λp are among those frequencies of /, and
such that

\f(x)-P(x)\<e. (xGR).

Given β > 0, we begin the construction of P by considering, for each
positive integer m,

m

By the Parseval equation we have

Given any η >0, we can find an m such that

( 2 ' 2 ) M{|/m(x)|2}<η,
X

since ΣjLiKf, φ; )|2 *s a convergent series.
The crucial step in WeyΓs proof is the application of the following

lemma, which is proven in [1, p. 15].
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LEMMA. There exists To > 0 such that

(2.3)
* Jo

s)\2dx - M{\fm{x

for all T>T0 and s G R.

It follows from 2.3 and 2.2 that

(2.4) -
1

for all s G R and T > To.

Now let L be a modulus of almost periodicity for /. Find a positive
integer N such that T = N(L(e/3) + 1)> Γo. In each of the intervals
[k(L(€/3)+l),fc(L(6/3)+l) + L(e/3)], fc =0,1,2, , JV-1 ; select an
e/3-translation number tk, say.

Let ω be a modulus of uniform continuity for / such that 0<

We define a function χ on a dense subset of [0, T] such that ^(JC) = 1
on the intervals [tk9 tk + ω(e/3)] and χ(x) = 0 on the metric complement
(in [0, Γ]) of their union. (Note that the [tk, tk + ω(e/3)] do not overlap.)

Because of the Schwarz inequality, we have

(2.5) Γfm(x+s)χ(x)dx
JO

χ(x)2dx

for all s G R. Also, note that

N-l Γίk+ω(e/3)ΓT N-l rt,

fm(x + s)χ{x)dx = 2J fm(x+s)dx
Jo k=o Jtk

N-l Γω(e/3)

= Σ fm(x + tk+s)dx
k=0 JO

(2.6)

for all sGR, and that

(2.7) Γ X

2(x)dx=Nω(e/3).
Jo

(2.8)

Now it follows from 2.4, 2.5, 2.6 and 2.7 that

N-l /-ω(e/3)

k=0 Jo
<V2ηTNω(e/3)
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for all s G R. Because T = N(L(e/3)+ 1), the inequality in 2.8 can be
restated in the form

(2.9) N-l Γω(e/3)

Nω((
2η(L(e/3)+l)

ω(e/3)

for all s e R.
Now suppose we had chosen η such that

then 2.9 becomes

(2.10)
JVω(

1 « P(ί/

(e/3) ά Jo
,(x + tk + s)dx <e/3

for all s e R.
At this point we want to express fm in terms of exponential

functions. Ignoring the cases φ, = 0 (J = 1,2, , m), we can write 2.1 in
the form

(2.11)

where eιλίX are exponentials in the expansion of/ and α; = (f{x),eιλjX).
Now it follows from 2.11 that for each k (k = 0,1, , N - 1) we

have

ω(e/3)

(2.12)

where

Jo
ω(e/3)

for 5 E R. Note that Pk (k = 0,1, , N - 1) is a trigonometric polyno-
mial with exponentials belonging to the expansion of /

As a consequence of 2.12, we can write the inequality in 2.10 in the
form
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(2.13)
Nω(

for all sGR, where

i N-ί r»(i/

\€/j) fc=o Jo
s)dχ-P(s) <e/3

k=0

Note that P(s) is a trigonometric polynomial with exponentials among
those in the expansion of /.

Now we can use the fact that \f(x + tk + s) — f(tk + s)\ < e/3 for each
k and for each x such that 0 ^ x ^ ω(e/3) to write

(2.14)
1

ω(e/3)
tk + s)dx -f(tk + s) <β/3

for each k (k = 0,1, , N - 1) and all s e R.
Next, note that |/(4 + 5) - /(s)| < e/3 for all s G R since each tk is an

e/3-translation number. This fact together with 2.14 establishes the
inequality

(2.15)

for each fe (k = 0,1, , N - 1) and all sGR.
Finally, we combine inequality 2.15 with 2.13 to get \f(s)- P(s)\ < e

for all s G R.
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