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DERIVATIONS ON THE LINE AND

FLOWS ALONG ORBITS

C. J. K. BATTY

The closure of the derivation XD: C*(R) -> C0(R) defined by
(λZ>)(/) = λ/', where λ: R -* U is continuous, generates a C0-group
on C0(R) (corresponding to a flow on R) if and only if 1/λ is not locally
integrable on either side of any zero of λ or at ± oo.

If 5 is a flow on a locally compact, Hausdorff, space X with fixed
point set X$, δs is the generator of the induced action on C0(X), λ:
X\X$ ~* IR is continuous, and bounded on sets of low frequency under
S, and t -> λ(S'/ω)"1 is not locally integrable on either side of any zero
or at ± oo, then the flows along the orbits of 5 form a flow on X whose
generator acts as λδs.

1. Introduction. Let S be a flow on a locally compact, Hausdorff,
space X, and 8S be the generator of the associated one-parameter group of
*-automorρhisms of C0(X)9 the commutative C*-algebra of continuous
complex-valued functions on X which vanish at infinity. Thus

whenever the limit exists (pointwise, and hence uniformly) and defines a
function in C0(X). Let 2f = Πn^(δ^). Then 3>f is a dense *-subal-
gebra of C0(X). If 8: Qf -> C0(X) is a *-derivation, then there is a
function λ: X -> U such that

δ / = λ δ s / ( / e ^ « )

[1]. The function λ may be chosen arbitrarily on the fixed point set X$:

X* = {ω G X: 5.C0 = ω for all ί}

= { ω e X : 8s/(ω) = 0 for all / in 3f}9

and we shall always assume that λ = 0 on Xg. However, λ is uniquely
determined and continuous o n l \ X§9 and satisfies a bound of the form

for some constant c > 0, and integer n > 0, where v(ω) is the frequency
of ω, so

v(ω)'1 = inf{ί > 0: Stω = ω}

(^(ω) = 0i fωis aperiodic) (see [4]).
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We shall therefore study the *-derivations λδs defined by

J \θ on XI

whenever the right-hand side defines a function in C0(X). Here λ:
X\X$ -* Oi is a continuous function. The domain @(λδs) contains i^|°
if and only if λ satisfies a bound of the form (*), but this will not
necessarily be assumed. Nevertheless, £&(λδs) is always reasonably large.
Indeed for any ω in X\X^9 ε > 0 such that 2εv(ω) < 1 and F in
C°°[-E,e], there exists / in Qg such that f(Stω) = F(t) (\t\ < ε), and
supp/ c X\ X* [4]. In particular, / e ^(λδ 5 ) .

The properties of interest are whether there is a flow 71 whose
generator δτ extends λδs, and if so whether T is unique and whether
@(λδs) (or some smaller subalgebra) is a core for δτ. Considering both
functions which vary transversally and along the orbits of S, it is apparent
that T should be a flow along the orbits of S whose speed is given at each
point by the function λ. Thus

TtSsω = STω(Sjt)ω

where τω is a flow on U such that

where λω(s) = λ(Ssω).
The first stage (§2) therefore is to study flows T on U satisfying the

differential equation

dT/dt = λ o T

where λ: U -> U is a continuous function. If 1/λ is not locally integrable
on either side of any zero of λ or at ± oo, then there is a unique flow T of
this type, each zero of λ is a fixed point of T, and Q°(IR) is a core for δτ.
Otherwise, there may be no flows or there may be many flows.

In §3, it is shown that if each λω satisfies these conditions of
reciprocal non-integrability, then the flows with speeds λω along the
orbits together define a flow on X whose generator extends λδs.

There is some overlap between §2 of this paper, a paper of de
Laubenfels [6], which left several questions incompletely answered, and an
unpublished manuscript of the author's [2] which has circulated and been
cited quite widely. The results of §3 are more general than those obtained
in [3, 7], where it was assumed that λ satisfies a Lipschitz condition
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whenever v(ω) < v. Such a condition implies the reciprocal non-integra-

bility conditions.

I am grateful to R. de Laubenfels for his helpful response to my
queries concerning [6], and to D. W. Robinson for his encouragement in
reviving this subject while I was visiting the Australian National Univer-
sity at his invitation.

2. The real line. Sakai [9] has raised the question of characterizing
all flows T on [0,1] whose generator extends λD, where λ e C[0,1] and
D denotes differentiation defined on Cx[0,1]. The motivation for this was
the fact that, for any flow T on [0,1], there is a homeomorphism θ of [0,1]
such that δθτθ-i extends λD for some λ. Similar remarks apply to flows
on R, where D itself is the generator for the flow of translations, and we
shall work on the whole line, at least initially.

In fact, one can, by choosing θ appropriately, arrange that ΘTΘ~ι is
one of the flows T^ described in the following example [10, p. 26]. But this
fact does not directly help to decide when λD extends to a generator, nor
is it helpful in considering flows on general spaces.

EXAMPLE 2.1. For each open interval / in R, define flows Tτ on / as

follows:

^D)X ' ' b-x+{x-a)e^-^

T{-«>,b)(x>t) = 1>+{x-b)e-\

Tu(xj) = x + t.

Now let U be an open subset of R, <SU be the set of all connected
components of U, and ε be a function of <€u into {-1,1}. Define

u K i J \x ( χ e R \ t / ) .

Then ΓJ is a flow on R, and its generator is the closure of λ^D | CC°°(R),

where

'β((fl, b))(x - a)(b -x) (x e (a, b) e <eυ\

ε((a9 oo))(* -a) (x e (a, oo) e <gv)9

K(x) = { (-», b))(b -x) {x e (-00, b) e <βυ\

ε(R) (ifJ7=

0 (χeU
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Let λ: IR -> IR be any continuous function, and put

Z ( λ ) = {xG IR: λ(x) = 0},

l/(λ) = R \ Z ( λ ) = {x: λ(x)Φθ).

Forx in£/(λ), let

with the convention that the supremum of the empty set is -oo, and the
infimumis +00.

Let ^4/+(λ) (respectively, Aj(λ)) be the set of all points x in Z(λ) U
{00} such that for some y < x, λ > 0 (respectively, λ < 0) in (y, x) and
1/λ is integrable over (y, x). Let ^4r

+(λ) (respectively, A~(λ)) be the set
of all x in Z(λ) U {-00} such that for some z > x, λ > 0 (respectively,
λ < 0) in (x, z) and 1/λ is integrable over (x, z). Let

U Af(\), Ar(\) = A;(\) U

The first lemma specifies the properties which amount to a flow on IR
having speed λ. The proof is elementary and will be omitted.

LEMMA 2.2. Let T be a flow on IR, and λ: IR -> IR be continuous. The
following are equivalent:

(i) T is differentiable with respect to ί, and dT/dt = λ o T9

(ii) CC°°(IR) c 2{8T) and 8T extends λD | Q°(R),
(iii) C}(U) c 2)(8T) and 8T extends λD \ C](
(iv) Ifx e U{λ) and Ttx G (ax,βx), then

κ dy _ . .

ifx e intZ(λ), then Ttx = x.

COROLLARY 2.3. Let T be a flow with speed λ (so that T satisfies the
conditions of Lemma 2.2) andx e Uλ. The following are equivalent:

(i){Γ fx:/€Ξ|R}c [/(λ),

{ t }
(iii) α, « ^ r ( λ ) and βx <£ A,(λ).

The following result (for [0,1] rather than IR) was included in [6], but
no proof was given of the core property. The construction of T appeared
earlier in [11].
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THEOREM 2.4. Let λ: U -> U be a continuous function. The following

are equivalent:

(i) There is a flow T such that 8T is the closure of λD \ CC°°(R),

= 0 .

Proof, (i) =* (ii). For y in Z(λ), (8Tf)(y) = 0 for all / in CC°°(IR), and
hence for all / in 2(8 τ). It follows that Tty = y. Thus for x in ί/(λ),
{Γ,x} c t/(λ), so, by Corollary 2.3, ax <£ A,(\) and & £ Λ7(λ). Now if
there exists z in ^ 7 (λ), then there exists x in ί/(λ) such that x < z and
1/λ is integrable over (x,z) and therefore over (x,βx). But then βx e
^47(λ), which is a contradiction. Similarly, v4,.(λ) is empty.

(ii) => (i). For x in C/(λ), there is a (unique) function # such that
q(x) = 0 and q' = 1/λ in (ax,βx); q is injective, and, by assumption, q
maps (ax,βx) onto B5. Define Γ,;c = q~\t). For ^ in Z(λ), define
Tty = 7. It is easy to verify that T is a flow with speed λ.

The open set U(λ) may be decomposed into a countable union of
disjoint open intervals (ai9 bt). Let S(λ) be the algebra of all functions /
in C^(U) which are constant in some neighborhood of each at and in some
neighborhood of each bέ. Since T fixes each at and each bt, @(\) is
invariant under the dual action of T—the derivative of f °Tt is
(λ o Tt)(f o Tt)/\ on C/(λ). Since 9(λ) is dense in C0(R), and contained
in ^ ( δ Γ ) , it follows that S(λ), and therefore C](U\ is a core for 8T.
Finally, given / in C}(U) with support in [-N, TV], there is a sequence fn

in CC°°(R) with support in [-#, JV] such that \\f - fn\\ -> 0, | |/ r - /;| | -> 0.
Then \\8Tfn - 8Tf\\ -• 0. Thus CC°°(IR) is a core for δ Γ .

If ^4(λ) Φ 0, there may or may not be a flow with speed λ, and any
such flow may or may not be unique. Suppose for example that there
exists x in Af (λ) Π ̂ 4~(λ). Then any flow with speed λ would reach x
from neighboring points on either side in a finite length of time, but
would have no way of leaving x. So there is no flow with speed λ. On the
other hand, if there are sufficiently many zeros of λ, a flow T may be
delayed at the zeros. These delays are measured by μ where

(1) μ(lτ(x,t))=\t\-f
Jiτ

for x in t/(λ), where Iτ(x,t) is the open interval between x and Ttx.
Since the intervals Iτ{x,t) are disjoint from the fixed point space R%,
there is no restriction on μ onR^, and, for standardisation, one may as
well assume that μ(R°) = 0. Thus a (positive) measure μ, defined on the
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Borel subsets of R, will be said to be a delay measure for T if (1) is
satisfied and μ(U°τ) = 0.

Conversely, it is possible to reconstruct T from μ by observing that
Ttx = y if x < y and

dz
f λ(z)

This sets up a bijective correspondence between flows with speed λ and a
certain class of measures, which have to be identified. A formal statement
will be made in Theorem 2.5, for which the following notation and
terminology is needed. As suggested above, finiteness of the delays and
integrability of 1/λ on one side of a zero of λ has to be balanced on the
other side with no change of sign of λ.

For a measure μ on R, let F^μ) (respectively, Fr(μ)) be the set of all
x in (-oo, oo] (respectively, [-oo, oo)) for which μ(y, x) < oo for some
y < x (respectively, μ(x, z) < oo for some z > x). Then μ will be said to
be a fluid measure for λ if μ is non-atomic,

(2) ^ ( λ ) Π J P / ( μ ) = ^ ( λ ) Π i v ( μ ) ,

and μ is carried by ^ 7 (λ) Π F^μ) (= Ar(λ) Π Fr(μ)). Note that all these
sets are Borel measurable, and that Aι(λ)\Ar(λ) etc. are countable and
therefore null for measures μ which are non-atomic.

THEOREM 2.5. Let λ: R -» R be a continuous function. For any fluid
measure μ for λ, there is a unique flow T on U with speed λ for which μ is
a delay measure. Conversely, for any flow T with speed λ, there is a unique
delay measure μ for Γ, and μ is a fluid measure for λ.

Proof. For simplicity, we shall write Af, Fh etc. in place of ^^(λ),
F7(λ) etc., and put

F + = {x: λ(jc) > 0}, V~= {x: λ(x) < 0},

t/+= {x: λ{x) > 0}, U~= {x: λ(x) < 0}.

Let μ be a fluid measure. Define an equivalence relation on R by
saying that points x and y with x < y are equivalent if μ(x, y) < oo and
1/λ is integrable over (x, >>). Let Cx be the equivalence class of x; it is
clear that Cx is some interval in R. If Q consists of the single point x,
define Ttx = x. Otherwise, let a and b be the endpoints of Cx, so that
-oo < a < x < b <> oo. To define Ttx, the first stage is to show that Cx is
contained in V+ or in V~. Suppose that there exist y~ in Cx Π U~ and y+
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in Cx Π t/+, and suppose for the sake of argument that y~<y. Let
y = sup((>>~, y+) Π ί/+), so that y~< y <y+. Then (y, y+) is con-
tained in V+, and y is equivalent to j>+, so y e 4̂ + Π Fr. By (2), j> ^ Af
which contradicts the fact that y is the limit of an increasing sequence in
IT.

Now suppose for the sake of argument that Cx is contained in V+ (the
other case is similar). If a = x, then x ί i , + D Ft = Af Π i^, so b = x.
Thus we need only consider the case a < x < b. Define

J rx dy / / \ / / \

^' Λ ( V )

fχf ay i ..(„ ~'\ („ ^ „' ^ u\

By definition of the equivalence relation, and (2),

aGAtHF^Afn Fr.

Since (a, x) c F + , it follows that either μ(a, x) = oo or /^ λ(y)" 1 dy =
oc, so φ(«) = -oo. Similarly, φ(έ) = oo. In particular, neither a nor b is
equivalent to x, so Cx = (α, 6).

Since μ is non-atomic, φ is continuous, and φ is clearly strictly
increasing. Thus for each t in R, there is a unique point 7Jx in (α, 6) such
that φ(7Jx) = t, and ί •-> Ttx is a homeomoφhism of R onto (a,b) = Q.
It is clear that Γox = x and (1) holds.

If T is defined on R X IR in this way, then for s, t > 0 and with the
above notation and assumptions, using (1) with x replaced by Ttx9

φ(Ts+tx) = s + t = f™X ^ y + μ(Ttx, TsTtx) + t

= φ(TsTtx) - φ(Ttx) + φ(Ttx) = φ(TsTtx)9

so Ts+tx = TsTtx. Dealing similarly with other cases, it follows that T
satisfies the group property. Since Tt is an order-preserving homeomor-
phism of each Cχ9 it is a homeomorphism of R. It is clear from the
construction that / •-> Ttx is continuous, so T is a continuous flow on IR.
(For flows on IR, it is elementary to establish joint continuity from
separate continuity, but flows on general spaces have the same property
(see [5, Lemma 2.4]) for example).

For x in AtΠ Fl9 Cx is non-trivial, so x is not fixed by T. Thus
Aι Π Fι is disjoint from R^ (actually R^=(R\(^4 7 Π F7)). Since μ is
carried by At Π Fl9 μ is a delay measure. Since μ(U) = 0, it follows from
(1) and the construction that Lemma 2.2(iv) is satisfied, so that T has
speed λ.
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Let S be any flow with speed λ for which μ is a delay measure. For x
in C/+, Stx increases with t for small t by Lemma 2.2(iv), and hence for
all t (since t *-» Stx is either strictly monotone or constant by the group
property). Now Stx is determined by (1). Similarly Stx is uniquely
determined for x in U~. Any interior point of Z is fixed under S. Thus
Stx is uniquely determined for all x in a dense subset of R, so by
continuity S is unique.

Now let T be a flow with speed λ, let x be a point in R \ H?̂  a n d C
be the trajectory of x. Now t •-» 7]* is injective, hence strictly monotone,
and suppose for the sake of argument that it is increasing, so C is
contained in F + by Lemma 2.2(i). If for some e > 0 and sτ < s2,
λ(Ttx) < ε whenever sλ < t < s2, then by Lemma 2.2(iv),

For ίx < *2, {y e (Γ^x, Γί2x): λ(y) < ε} is a countable union of disjoint
intervals of the type (TSix, TSix), so it follows that its Lebesgue measure is
less than ε(t2 - tλ). Hence Z Π (Γίχx, 2]2JC) is (Lebesgue) null.

If λ(Ttx) > 0 whenever ^ < ί < s2, then by Lemma 2.2(iv),

Now ί/+Π(Γ/ix, Ttix) is a countable union of disjoint intervals of the form
(Γί;jc, Ts,2x) and, taking the sum over these intervals and using the nullity
of Z Π {Ttx, T,x) gives

t _ t
2 '

f

Define a function Fc on C by

Then JPC is continuous and (4) shows that Fc is increasing. So i^
determines a (positive) non-atomic Lebesgue-Stieltjes measure μc on C,
and μ c may be regarded as a measure on R. Furthermore μ c is indepen-
dent of the choice of x in C, since replacing x by Ttx alters i ^ only by a
constant. For * > 0 it is immediate that

(5)
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Also (3) shows that any compact subinterval of the open set C Π t/+, and
hence C Π U+ itself, is μ^null, so μc is carried by C Π Z.

Similarly for a non-trivial trajectory C contained in V~, one may
construct a non-atomic measure μc, carried by C Π Z, such that

(6)

There are only countably many non-trivial trajectories C; let μ be the sum
of all the corresponding measures μc. It is clear that μ(U°τ) = 0, and (5)
and (6) show that (1) also holds, so μ is a delay measure for T.

Suppose x is a point in Z with non-trivial trajectory C. Assuming
that C is contained in V+, (5) gives

S O J C G Af Π FjΠ A+ Π Fr.

Now consider a point mU°τ(Λ Af. For all sufficiently large x' < x9

(x\x) is contained in V+ and 1/λ is integrable over (x\ x). Let x" be
any point of U+Γ)(x\ x). The trajectory C of JC" is contained in (-oo, x),
so

μ(x', x) > μc(x'\ x) > lim μc(x", Ttx")
t-*ao

r I rτtx" dy \
= hm {/- / — ^ - = oo,

using (5) in the penultimate step. Thus x £ F{.
These and similar arguments show that

^ C [(A; ΠA;) u(Af CΛA;)] ciF,nFr.

Thus μ is a fluid measure.
Finally, let μf be any delay measure for T. Then (1) shows that μ' is

uniquely determined on any open subinterval of a non-trivial trajectory,
and is σ-finite on the trajectory. Hence μ! is uniquely determined on each
non-trivial trajectory. Since μ! is carried by the union of the countable set
of non-trivial trajectories, it follows that μf is unique. This completes the
proof of Theorem 2.5.

From Theorem 2.5, it is a routine matter of measure theory to
determine those λ for which there is a (unique) flow with speed λ.
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COROLLARY 2.6. There is at least one flow on U with speed λ if and

only if (JC, y) Π Z(λ) is uncountable whenever -oo < x < y < oo and

either x e (A;(λ)\Af(λ)) U (A;(λ)\Af(λ)) ory e ( ^ + ( λ ) \ ^

U (^47-(λ)\>lr"(λ)). Jfe /tow is unique if and only if Af(λ) = A

Aj~(λ) = A~(λ) andA(λ) is countable. If there are two distinct flows with

speed λ, then there are uncountably many.

If λD|Cc°°(lR) generates a Co-semigroup T, then the derivation law

implies that τt is an endomorphism of C0(IR). Since all C0-groups of

*-automorphisms arise from flows, Theorem 2.5 covers all cases when

λZ>|Cc°°(lR) generates a C0-group. A C0-semigroup of endomoφhisms

corresponds to a half-flow ΓonIR=IRU{±oo} which fixes ± oo, that

is, a continuous mapping Γ:RX [0, oo) -> IR such that

Tox = x, TsTt=Ts+n Ttoc = oo, 7;(-oo) = -oo.

The analogue of Theorem 2.4 follows.

PROPOSITION 2.7. Let λ: IR -> U be continuous. The following are

equivalent:

(i) λjD|Cc°°(lR) generates a C0-semigroup on C0(R),

= 0 .

The C0-semigroup in Proposition 2.7 arises from a half-flow on IR (as

opposed to IR) if and only if -oo £ A~(λ) and oo £ Af(λ), that is, 1/λ

is not integrable at ± oo.

All the results of this section have analogues for T (= IR/Z) and

[0,1], provided that Λ7

+(λ) etc. are interpreted correctly. For T, regard λ:

T -» IR as a periodic function on IR and let ^4/+(λ) consist of those x in

Z(λ) such that for some y < x, λ > 0 in (y, x) and 1/λ is integrable

over (y9 x), etc. The statements of Theorems 2.4 and 2.5 and Proposition

2.7 are almost unchanged. For [0,1], let ^4/+(λ) consist of those x Φ 0 in

Z(λ) such that, for some 0 < y < x, λ > 0 in (y,x) and 1/λ is integra-

ble over (y,x); let A*(λ) consist of those x Φ 1 in Z(λ) such that for

some x < z < 1, λ < 0 in (x, z) and 1/λ is integrable over (x, z), etc.

The statements of Theorem 2.4 become:

(i) There is a flow T on [0,1] such that δτ = λD,

(ϋ) ^l(λ) = 0; λ(0) = λ(l) = 0.

Theorem 2.5 is valid, but only for functions satisfying λ(0) = λ(l) = 0.

The conditions of Proposition 2.7 are:

(i) λD generates a C0-semigroup on C[0,1],

(ϋ) A;(X) = Af(λ) = 0; λ(0) > 0, λ(l) < 0.
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This answers a question raised in [6]. In particular, Theorem 4 of [6]
remains valid if the assumption that the derivation is well-behaved is
dropped, provided that the assertion that p(0) = ̂ (1) = 0 is replaced by
the conditions p(0) > 0, p(l) < 0. Some of the claims made in [6] about
the example on p. 77 are incorrect, and the true position is set out below.
(In comparing this paper with [6], the reader should bear in mind that
there is a difference in sign conventions in defining generators.)

EXAMPLE 2.8 [6, p. 77]. Consider λ: [0,1] -» R defined by λ(x) =
. Then

Thus condition (ii) is satisfied, and λD is the generator of the half-flow
Γ", where

On the other hand, -λ does not satisfy (ii) because -λ(l) < 0 and
0 e A+(-λ). The half-flow T+ defined by

Tt

+x = (nήn(x^2 + M ) ) 2

satisfies

V/W = -Hχ)f'(χ)
for 0 < x < 1, but behaves differently at both endpoints.

3. General spaces. Let S be a flow on a locally compact Hausdorff
space X, with fixed point set X£, and let λ: X\ X® -> IR be a continuous
function. The problem now is to determine conditions under which there
is a flow with "speed λ relative to S"', and how such flows behave at the
points of X$. The first result interprets the relative speed in two different,
but equivalent, ways.

PROPOSITION 3.1. Let T be a flow on X, and λ: X\Xg -* R be a
continuous function. The following are equivalent:

(i) For ω e int Xg9 Ttω = ω; for ω e X\Xg9 there is a function τω:
R -» R such that Ttω = iSTω(Oίo (t e R) and τ^(0) = λ(ω),

(ii) Iff<=$(δs) andg<Ξ C0(X) are such that

= sf onX\X°
8

thenf^ 3>(δτ) and 8Tf = g.
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Proof, (i) => (ii). This is a standard argument, but the details are
included for completeness. For ί o i n l \ Xg,

) - / ( ω ) d

S t
= <(0)δsf(ω) = g(ω).

Replacing ω by Tsω, it follows that

t

< T7T Γ \s{Tsω) - g{ω)\ds < sup \\g°Ts- g\\.

By continuity, this estimate remains valid for ω in X\X®, while it is
trivially valid for ω in int X$. Thus

\\t-1(f°Tt-f)-g\\< s u p | | g ° Γ s - g | | ^ 0 a s / ^ 0 .

Thus / e ®(δ τ), and δ Γ / = g.

(ii) => (i). Firstly, consider ω in X\X$. The argument used in [3] to
show that { Ttω) c {Ssω} is still valid, so there is a function τω such that
Tt = Sτ ( / )ω. Furthermore, τω is uniquely determined modulo the S-period
of ω, and one may (uniquely) arrange that τω is continuous and τω(0) = 0.
It was shown in [4, Theorem 2.1] that there exists / in 2{8S) such that
f(Ssω) = ί for all small | j | , and supp/ c X\ Xg. It follows from (ii) that

Next, for any function h in Co( X) with supp h contained in int Xg, it
follows from (ii) that h e S(δ Γ ) and δτh = 0. The local nature of δτ

ensures that each point of int X$ is fixed by T.

REMARK. The class 3) of functions / which satisfy condition (ii) of
Proposition 3.1 is a *-subalgebra of «®(δ5), but it may not separate the
points of X$. Furthermore the flow T may not fix every point of X$ (so
that T may not be a "fluctuation" of S in the sense of [2]). For example,
let X = R\ S,(x,y) = (x + ty,y), Tt(x,y) = (x + /,y). Here X« =
R X {0} and λ(x, y) = \/y (y Φ 0), while 2 fails to separate any points
of Xl
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A sufficient condition that T fixes each point of X$ is condition (i) in
Theorem 3.2 below (see [3] and the proof of Theorem 3.2). Sufficient
conditions that Sd is a core for 8T (in particular, 2 separates the points of
X, and T fixes X$) were given in [3, 7, 8].

THEOREM 3.2. Let λ: X\X$ be a continuous function, and suppose
that

(i) For any compact set K (Z X, there exists e > 0 such that λ is
bounded on {ω e K\X$: v(ω) < ε},

(ii) // λ(ω) = 0 for some ω in X\Xg9 then t »-> λ(Stω)~λ is not
integrable over (0, a) or over {-a, 0) for any a > 0,

(in) For any ω in X\X$, t *-> λ(Stω)~ι is not integrable over (0, oo)
or over (-oo,0).

Then there is a unique flow T on X with speed λ relative to S (so that
the conditions of Proposition 3.1 are valid).

Proof. For ω in X\Xς, let λω(ί) = λ(Stω). It follows from assump-
tions (ii) and (iϋ) and Theorem 2.5 that there is a unique flow θω on IR
with speed λω. This flow is characterised by the properties:

x is a fixed point of θω <=> λ(Sxω) = 0,

The uniqueness of the flows, together with the relation

λs,ω(*) = λ ω (x + / ) ,

ensures that the flows θω are coherent in the sense that

[ω

Then T satisfies the group property TsTt = Ts+r

In order to show that T is a flow, it remains to show that (ω,t) •-> Ttω
is jointly continuous. Let (ωα) and (ta) be nets such that ωa -> ω, ta -> r.
By passing to subnets and replacing λ by -λ, it suffices to assume that

ta > 0 and to consider six cases:
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3. ωa<ΞX\X°9 ωeX\X°9 λ(ωa) > 0, λ(ω) > 0, τωa(ta) -> τ,
where 0 < τ < oo;

4. ωa e X\Xl ω e JT\ A* λ(ωβ) > 0, λ(ω) = 0;
5. ωα e X \ X°, ω e *£, λ(ωβ) > 0, y(ωj > v, where F > 0;
6. ωα e * \ A* ω e Aj, λ(ωβ) > 0, K « J "^ 0.

Cases 1 #«<i 2. Since Xg is closed and λ is continuous, either ω
or λ(ω) = 0. Thus

Case 3. Firstly, suppose that τ > τω(t). Then, by construction of τω,
there exists θ such that τω(/) < θ < r, λ(S,ω) > 0 for 0 < s < θ. Since S
is jointly continuous, λ ^ ω j ' 1 -^ X(S^)" 1 as a -> oo uniformly for
0 < Λ < θ, and therefore

/* ds ή ds
*o λ(Ssωa)~

But for large α, τω(0 < θ < rωa(ta), so

dsΓ ds ή

This is a contradiction, so it follows that τ < τω{t). For all sufficiently
small Qf > r, λ(Ssω) > 0 for 0 < s < θ\ and the same argument as above
shows that

rβ' ds re' ds

Hence θ' > τω(t). Since θ' > τ is arbitrarily small, it follows that T >
τω(/). Thus τ = τω(0 and

Case 4. By assumption (ii), for any η > 0, /o

η |λ(*Syίo)| ι ds = oo, and
therefore

lim / TΓTT:—r; = 0 0 .

Since (|λ(S,ωβ)| + ε) ' 1 -* (|λ(S,ω)| + ε)"1 uniformly on (0,η), it follows
that

r Γ / η ds
hm lim 1 , —lim lim / T T V T : — ^ ~ ] — = °°

+ ε
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It follows that

/*> ds
lim / Λ . — r - = oo

and therefore τω (ta) < η for large a. Thus T (ία) -* 0, so

5. For each α,

where ma is an integer, 0 < θa < »'(ωΛ)"1 < v~ι. Passing to a subnet, one
may assume that θa -» 0. Then

Cove 6. Let K be any compact neighbourhood of ω, and let

> 0: StuaGK).

Supose that τα -> r < oo. Then ST(ωa -> Sτω = ω, so ω e JΓ\ ^Γ. This is a
contradiction. It follows (on passing to subnets) that τα -> oo.

By assumption (i), there is a constant c such that Iλ^ω^)! < c
whenever 0 < s < τα, so that, for any η > 0,

r Λ

for all sufficiently large α. In particular, τWβ(/α) < cta. Passing to a subnet,
one may assume that τω(ία) -> T < oo. Then

= ω =

It is clear that T satisfies condition (i) of Proposition 3.1, and it
remains only to establish uniqueness. If f is any flow with relative speed
λ, then for ω in X\ X®, there is a unique continuous function τω: IR -> IR
such that fω(0) = 0 and Ttω = SUi)ω. Furthermore τ^(0) = λ(ω). The
uniqueness ensures that

*ω(̂  + 0 = *ω(5) + \ ( j ) ω ( 0

and therefore there is a flow #ω on IR given by
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Now θω has speed λω, and it follows from the uniqueness of flows with
speed λω that θω = θω. In particular

sof,co = 7 > ( ω
For ω e int Xg, ftω = ω = Ttω. Thus ft and Tt coincide on a dense

subset of X, and therefore f = T.

REMARK. Under the assumptions of Theorem 3.2, the algebra 3)
considered in the remark following Proposition 3.1 equals @(8S) Π
but it is still unclear whether it is automatically a core for δτ. Let

{ ( j for all ω °

/ has compact support},

where <®(λω) is as defined in the proof of Theorem 2.4. Then S o is a
Γ-invariant *-subalgebra of 3>, but it is not clear that 3)Q separates the
points of X. If so, then 2) is a core for δΓ .

EXAMPLE 3.3. In Theorem 3.2, it is not possible to replace (ii) and (ϋi)
by the weaker assumption

(iii)' For each ω i n l \ Xς, there is a unique flow on R with speed λω

(where λω(/) = λ(Stω)),
even if (i) is replaced by the stronger assumption that λ is bounded. For
example, let

X=U X[O,1], St(x,y) = (x + t,y)

λ(χ,y) = \. .1/2

Then

\χ\ι/1

(\x\<l,yΦ0),

Since Z{\φy)) = Aΐ{\φ,y)) = A^(λ(Oy)) = {0} and Af(λφty)) =
^4~(λ(0 y)) = 0 , there is a unique measure μ satisfying the conditions of
Theorem 2.5 for λ = λ (0 )9 namely μ = 0. The corresponding flow θy on
IR satisfies

θy{s,t) = S + φ) where ̂  ^—^ - ,.
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If T is any flow on U satisfying the conditions of Proposition 3.1, then T
induces flows θy on 05 such thatθy

and θy has speed λ(0^)β Hence θy = θy9 so

T3(0,y) - ( τ ^ ( 3 ) , ^ ) - ( l , ^ ) (yΦO)

T3(0,0) = (τo(3),0) = (2,0).

This contradicts the continuity of T.
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