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ON A COHOMOLOGY THEORY BASED ON
HYPERFINITE SUMS OF MICROSIMPLEXES

RADE T. ZlVALJEVIO

In this note we investigate a cohomology theory H#(X, G), defined
by M. C. McCord, which is dual to a homology theory based on
hyperfinite chains of miscrosimplexes. We prove that if X is a locally
contraction, paracompact space then H#(X, G) « H?(X,Hom(*Z, G))
where Hf is the Cech theory. Nonstandard analysis, particularly the
Saturation Principle, is used in this proof in essential way to construct a
fine resolution of the constant sheaf X X Hom(*Z, Z). This gives a
partial answer to a question of McCord. Subsequently, we prove a
proposition from which it is deduced that Hom(*Z, Z) = {0} i.e.
H#(X, Z) = {0} if X is paracompact and locally contractible. At the
end we briefly discuss a related cohomology theory which is obtained by
application of the internal (rather than external) Hom( , G) functor.

Introduction. As it is well known, nonstandard or infinitesimal analy-
sis of Abraham Robinson was developed in an attempt to justify usage of
infinitesimals and infinite numbers in calculus and other areas of mathe-
matics. In the case of a general topological space (X, r), a related notion
is notion of the monad of x e X, more precisely

monad(x) = Π { * F | F G Ξ T, X e V).

Informally, the monad of x is the set of all y e *X which are infinitely
close to x. This leads to a precise definition of a microsimplex. A
(n + l)-tuple s = (a09..., an) e (*X)n+1 is a microsimplex if there exists
x G X such that {a09..., an} c monad(x).

Motivated by Vietoris homology and Alexander-Spanier cohomology,
where the notion of a small simplex is used only in an informal sense,
M. C. McCord in [7] defined a conceptually clear and technically easy
homology theory based on hyperfinite chains of microsimplexes. The
proofs are given in such a way that one automatically gets an associated
cohomology theory by composing the chain complex functor with (exter-
nal) functor Hom( , G).

At the end of his paper McCord raised three natural questions. The
first two were about the relationship of his and Cech homology theory,
whereas in the third a similar question is asked for his cohomology theory.
The first two questions were answered by S. Garavaglia in [4]. He proved
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that McCord's theory is naturally isomorphic to Cech theory in the
category of compact pairs. In the course of proof he obtained also the
following remarkable result. Cech theory is exact if and only if the
coefficient group is algebrically compact.

The main result of this paper is a partial answer to the third question
of McCord. It turns out that McCord's cohomology with coefficients in G
is naturally isomorphic to Alexander-Spanier (or Cech) theory with coeffi-
cients in Hom(*X, G) in the category of paracompact, locally contractible
spaces! In the sequal we prove that Hom(*Z, Z) = {0} which means that
McCord's cohomology with coefficients in Z is trivial. At the end we
briefly discuss a cohomology theory based on the application of internal
(rather than external) Hom( , G) functor where G is an internal group.

The reader is supposed to be acquainted with basic facts and methods
of nonstandard analysis. Short introduction which covers all essential
definitions and facts can be found in papers of Cutland [2] and Loeb [6]
whereas more detailed and comprehensive introductions are Robinson [9],
Davis [3] and Stroyan-Luxemburg [11]. Also, we assume some basic
knowledge of the theory of sheaves. The main sources of information are
Godement [5] and Bredon [1]. More precisely, all we need is a conse-
quence of the Fundemantal Theorem in Godement [5] p. 178. Nonstan-
dard analysis is used in an essential way (particularly the Saturation
Principle) to construct a fine resolution of the constant sheaf X X
Hom(*Z, G). So, we assume that the nonstandard model is poly saturated.

1. The relationship between McCord's and Cech cohomology.

DEFINITION 1.1. Let (X9τ) be a Hausdorff topological space. For
x e X, the monad of x is the set m(x) = Π{*O\x e O and O e T}. Let
us denote by st( ) the standard part map, i.e. the function st:ns(*X) -> X
where ns(*X) = {z e*X\(3x e X)z e m(x)} and st(z) is the unique
x e X, called the standard part of z, such that z e m(x). A point
z e ns(*AΓ) is called near-standard while the set ns(*X) is called the set of
near-standard points in *X. Two near-standard points are infinitely close
if they belong to the same monad.

DEFINITION 2.1. A simplex, or more precisely a />-simples, p e N, in
a set S is just an ordered (p + l)-tuple of elements in S. If X is a
topological space then a microsimplex in *X is a simplex in ns(*X) with
all vertices infinitely close to each other. Equivalently, a simplex s =
(aO9...9ap) e (*X)P+1 is a microsimplex if there exists x e X such that
ai e m(x) for all /, 0 < i < p.
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Let us recall the definition of McCord's homology groups with
coefficients in Z. Let *Free( Xp+ι) be the *-free Abelian group generated
by the set (*X)p+ι of all /?-simplexes in *X The sequence of groups
{*Free(Λr/7+1), p e N) together with the boundary homomoφhism 3 :̂
*Free( Xp+1) -> *Free( Xp) which is defined in the usual way by

H

is an acylic chain complex. As usual, by (<z0,..., άj,..., ap) we denote the
(p — l)-simplex obtained by deleting vertex αy of the /̂ -simplex
(aO9...9ap). Also, let us emphasize that all sums are formal and that H
and ni9 I < i < H, are hyperintegers. Microchain complex of X, or
shortly μ-complex of X, is

MP(X)

I £
= < Σ nisi G *Free( Xp+ ) \st is a microsimplex in *X91 < i < H

l i - l

By applying the (external) functor Hom( , G) we obtain the corresponding
cochain complex MP(X,G) = Hom(M/7(X),G). More generally, the last
definition can be extended to pairs of spaces (X9A) where A is a closed
subspace, as follows. If /: X -> Y is a continuous map then, by the
nonstandard characterization of continuity, */ sends monads of *X into
monads of *Y9 hence it induces a chain map Af#(/): M#(X) -> M#(Y)
where M#(X) is an abbreviation for the jn-complex of X. In particular, if
A <z X is a. closed subspace of X and ι: 4̂ -> X the inclusion map, the
exact sequence 0 -> M#(^4) -» M#(X) -> M#(X9 A) -» 0 where

def

M#(X9 A) = M#(X)/M#(A) splits which enables us to prove the exact-

ness of the dual sequence

where

M # ( ^ , ^ ; G ) = f H o m ( M # ( X , ^ ) ; G ) .

Our aim is to characterize the homology groups of the complex

THEOREM 1.1. Let X be a locally contractible, paracompact space and G
a group. If Hf{X9G) denotes the Cech cohomology functor whereas
H#( X, G) is the functor defined above then

H*(X9G) = H?(X,Hom(*Z9G)).
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Proof. We need the following important result from the Theory of
Sheaves (see Godement [5], p. 178, or Bredon [1]). Let

be a fine or more generally a soft resolution of a sheaf F. Then Hn( X;
= Hn(Γ(X9J?#)) where the left term is the cohomology of X with
coefficients in & while the right term is the wth cohomology group of the
cochain complex

(1) 0

where T(X,&) is the group of all (global) sections of a sheaf S?. Our goal

is to compute H#(X,G) = i/#(Hom(M#(X),G)) so, in order to apply

the theorem above we should realize the cochain complex Hom( M#( X), G)

as a cochain complex of the form (1). Let 3tf be the presheaf of groups
def

on X defined by Jt?n(U) = Hom(Mn(U), G) and let &n be the associated
sheaf. Let us observe that T(X,&n) = JPn(X) = ΐlom(Mn(X),G). In-
deed, if g G Γ(X, <£?„) is given then g is represented by a cover ^ of X
and a compatible family of maps {/^e Hom(Afn(£/),<?) |t/ G ̂ } . In
order to define / G Hom(M#(Ar),G) which extends all functions fU9

U G ̂  let us express an element 5 G M n ( I ) a s a finite sum 5 = sλ + s2

+ +sm such that for some JJι,SΞ <% st G Afπ(φ. To see that the
expression above is possible let us assume that Φ is a locally finite
covering. Then, by the shrinking lemma for normal spaces, there exists a
closed covering Jf of X which is a refinement of Φ such that {int(F) \ F
e JΓ} is also a covering of X The family of internal sets {*F | F e JΓ}
covers all vertices of all microsimplexes in ^ so (Saturation Principle)
there exists a finite family {Fl9..., Fm) with the same property. Now, by
repeating essentially the argument of the proof of Excision axiom in [7], it
is easy to split s in the sum s = sλ + +sm such that st e
Indeed, if 5 = Σf= 1«, < where dj = (α^,. . . , a{) e MW(X), then

£ Mn(Fk) for fc <

Let us define the desired function / G Hom( Mrt(X),G) by the formula

/(*) = /ί/^i) + ' +/c/m(*m) w h e r e ^ G ^ a n d Fi c ^ f o r a 1 1 U 1 < '
< m. To prove that / is a well-defined homomorphism, it is enough to
note that if s = sλ 4- + sm = s[ + + ̂  then both expressions for s
can be refined by a third expression.

Let us prove now that «£?„ is a fine sheaf. Let Φ be a locally finite
open covering of X and Jf a closed shrinking of t/ such that {int(F) | F

is still a covering of X. Let φ be a function which to any ^-simplex
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s = (a0,...,#„) e Xn+ι assigns, if it exists, a set F^X such that
s e F n + 1 . If F e Jf is contained in U e Φ, let e^: J2?n -> JS* be defined
by

eυ(f)(s)=f(s') where/GHom(Mn(F),G)

represents a germ in <£?„, 5 = Σ^LιΠisi e M Π ( K ) and s' is defined by
s' = Σ{ Πj ^ 1 *φ(Sj) = i7}. Since 5' is a chain in i 7 c t/ it is clear that
the support of the endomorphism eυ is in ί/. To see that ( e ^ l C / e ^ J i s a
partition of unity, i.e. that {U \ eu(f) Φ 0} is finite and

let V be small enough so that {U\UΠ VΦ 0} is finite. Hence, if s =
Σf=ιnr Si^ Mn(V) the set {*φ(sj)\j} o {U^W\UnVΦ 0} is finite
and obviously f(s) = Σie^fXs) \U e Φ}.

Let us prove now that

0 - > J ^ ^ > oS?0 4 ^ 4 ... -̂  ̂  - > ...

is an exact sequence of sheaves where J^= X X Hom(*Z, G) is a constant
sheaf. Let n Φ 0 and let F be a contractible neighborhood of x e X It is
known (see [7]) that there exists a chain homotopy Dn: Mn(V) -> Afn+1(K)
such that (Λ > 0) s = ΘZ)n(j) + i>π_i3(5) for any 5 e MΠ(K). If / e
Hom(Mn(F), G) is a cocycle then / = d(g) where g = f° Dn_l9 hence /
must be a coboundary. Now, let n = 0. The map 7: J^-* «2Q is defined as
follows. The map X into a one point space induces a homomorphism
M0(X) -> MO({1}) =*Z and 7: Hom(*Z,G) -> Hom(M0(X),G) is de-
fined by applying the functor Hom( ,G). Clearly, d ° j = 0. Now, let V
be a path connected open set in X (recall that X is locally contractible,
hence locally path connected) and / e Hom(M0(F), (?) such that d(f) =
0. Now, if x, j> e M0(F) are 0-simρlexes (i.e. they are points in ns(*F))
then there exists a 1-chain s e MX(F) such that y - x = d(s), hence
H y-H x = d(H 5) for any # e *Z. Hence, /(// 7) - /(/ί - JC) =
f(d(H - s)) = 0 which means that f = j(g) where g ( # ) = V ( # x) for
some x e ns(*F).

This completes the proof of the theorem because Hn{X,^) is the
Cech (or Alexander-Spanier) cohomology of X with coefficients in
Hom(*Z,G).

COROLLARY 1.1. Let {X, A) be a pair ofparacompact, locally contract-
ible spaces such that A is a closed subspace of X. Then
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Proof. The proof of this result follows directly from the naturality of
the isomorphism between Hn( X, G) and H?( X, Hom(*Z, G)) and the five
lemma applied to the corresponding long exact sequences of the pair
(X, A) for both//" and //?.

In light of the Theorem 1.1. it is interesting to determine the group
Hom(*Z, G). Since *N is a model of full arithmetic, in particular a model
of Peano arithmetic, a partial answer is given by the following proposition
which may be of some independent interest.

PROPOSITION 1.1. Let M be a nonstandard model of Peano arithmetic

and W the symmetrization of M i.e. W is the group obtained from the

semigroup M in the same way the group Z is obtained from N. Then

(a)Hom(JF,Z) = {0}
(b) Hom(W, Z/nZ) = Z/nZ9 nΦO

(c)Hom(W,W) => W.

Proof, (a) Let /: W -> Z be a homomorphism and /: Z -> W the
inclusion map. Let us note that W/Z is divisible by any n e Z/{0}. As a
consequence /(Z) = f(W\ otherwise / would induce a homomorphism
from a divisible group W/Z onto a nontrivial cyclic group f(W)/f(Z). If
/(Z) is nontrivial it can be assumed without loss of generality that
f(Z) = Z and f\Z = l z i.e. we can assume that /: Z -> W splits the

exact sequence 0 -> Ker(/) -» W τ± Z -> 0. In other words W = Z Θ D
where D = Ker(/) is a divisible group. Let P be an infinite prime
number in W oί the form 5 k + 3. The existance of P follows from the fact
that there exist infinitely many primes of the form 5k + 3 (Dirichlet thm.,
see [10]) and the fact that every nonstandard model of Peano arithmetic is
Σm-recursively saturated. In particular the following type

{x is a prime number} U {(3k)x = 5k + 3} U {x > n\n e TV}

where n (n e N) are numerals, is realized in any nonstandard model of
Peano arithmetic. It is interesting to note that the Dirichlet Theorem itself
is a theorem of Peano arithmetic. Indeed, G. Takeuti in [12] showed that
the results of classical number theory which are obtained with the aid of
so called elementary complex analysis are actually provable in Peano
arithmetic.

Now, let f(P) = n e Z i.e. P = n + (P - n) where P - n e D.
Since P is a prime number and P — n is divisible by any nonzero integer
we see that n = 1 or n = - 1 . This is a contradiction because in both cases
P — n cannot be divisible by 5.
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(b) It is enough to show that Hom(W, Z/nZ) = Hom(Z, Z/nZ), i.e.
that for any two homomorphisms /, g e Hom(W, Z/nZ)f\Z = g\Z
implies / = g. This is true because h = / — g induces a homomorphism
from a divisible group W/Z into a cyclic group so it must be trivial.

(c) W is imbedded in Hom(PF, W) in the obvious way. To show that
this inclusion W c Hom( W, W) is proper let

A = {x e W|JC is divisible by any /ι e Z\{0}}.

A is a nontrivial divisible group so both A and W/Z can be thought of as
vector spaces over Q. Any nontrivial β-linear map from W/Z to A
induces a homomorphism in Hom( W9 W) which is zero on Z.

2. Yet another cohomology theory. Instead of applying the standard
external Hom( , G) functor to the complex M#(X), one may find it more
natural to apply a functor which is based on the internal Hom int( ,G)

def

functor where G is internal group and Homint(A,G) = {/: A -> G\f is
an internal homomorphism}. We shall briefly outline this construction. A
different, although similar in spirit, construction was proposed by J. P.
Reveilles [8] but in the context of E. Nelson's Set Theory.

DEFINITION 2.1. Let Δ^ be the set of all microsimplexes in *X. Let
M'(X,G)™{g: Δp-+G\3f: (*X)?+ι -> G, internal, such that g =
f\Δp}. Then {M*(X,G\d} where d(g)(s) = f(ds) is a cochain com-
plex. Let us note that every internal function /: (*X)p+ι -> G can be
identified with a homomorphism from *Free(A^+1) to G i.e. d(g) is well
defined. More generally, if /: A -> X is the inclusion map then

M?(X9A;G) = f Ker{M#(Z,G) -> M # (^,G)}. The cohomology groups

of the chain complex M*(X9 A G) are denoted by H*(X9 A; G). It is not
difficult to check that all axioms of Eilenberg and Steenrod for a
cohomology theory are satisfied in this case.

THEOREM 2.1. If Xis a paracompact space and G an internal group then
H£(X9 G) = Hn(X,G) whereHn{X,G) is the Alexander-Spanier {or Cech)
cohomology of the space X with coefficients in G.

Proof. Since it is based on similar ideas as the proof of Theorem 1.1
we shall give only a brief outline of the proof. It is enough to define a fine
resolution.

(2) 0 -* G -> ^ -> -> JF ->

of the constant sheaf G = XX G such that MHX9 G) = T(X9 Fn) for all
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n > 0. Let Fp be a presheaf defined by Fp{U) = {/: (*U)P+1 -+G\f

internal} and let J ^ be the associated sheaf. To prove the desired

isomorphism one has to show that not only every / e MP{X, G) induces a

section in &p but that every section arises in this way. This is proved by

an easy saturation argument by observing that for any compatible family

{fu\U^ <%} of internal functions fσ: (*U)P+1 -> G, where ^ is a

locally finite open cover of X9 there exists an internal function /:

(*X)P+1 -> G which extends all functions fv. The proof that (2) is indeed

a fine resolution of the constant sheaf G is similar to the proof of the

corresponding result for Alexander-Spanier cohomology so we omit the

details.

Acknowledgments. This paper is based on some results from the first

Chapter of my PhD. thesis "Infinitesimal Analysis and Homology The-

ory", University of Wisconsin, Madison, 1985. I wish to express my

thanks to my advisor Professor H. Jerome Keisler for his generous

support and encouragement.

REFERENCES

[I] G. E. Bredon, Sheaf Theory, McGraw-Hill, New York 1967.
[2] N. J. Cutland, Nonstandard measure theory and its applications, Bull. London Math.

Soc, 15 (1983), 529-589.
[3] M. Davis, Applied Nonstandard Analysis, J. Wiley Pub., New York, 1977.
[4] S. Garavaglia, Homology with equationally compact coefficients, Fund. Math., 100

(1978), 89-95.
[5] R. Godement, Topologie Algebrique et Theorie des Faisceaux, Hermann, Paris (1958).
[6] P. A. Loeb, An Introduction to Nonstandard Analysis and Hyper-finite Probability

Theory, Probalistic Analysis and Related Topics, Vol. 2 (Ed. A. T. Bharucha-Reid,
Academic Press, New York, 1979) pp. 105-142.

[7] M. C. McCord, Non-standard analysis and homology, Fund. Math., 74 (1972), 21-28.
[8] J. P. Reveilles, Infinitesimaux et Topologie, Publ. I.R.M.A., Strasbourg, 1983.
[9] A. Robinson, Non-Standard Analysis, North-Holland, Amsterdam, 1966.
[10] J. P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973.

[II] K. D. Stroyan, and W. A. J. Luxemburg, Introduction to the Theory of Infinitesimals,
Academic Press, 1976.

[12] G. Takeuti, Two Applications of Logic to Mathematics, Princeton Univ. Press, 1978.

Received December 1, 1985.

MATHEMATICS INSTITUTE

K N E Z MIHAILOVA 3 5 / 1

11000 BEOGRAD

YUGOSLAVIA

Temporary address: Western Illinois University
Macomb, IL 61455
U.S.A.




