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WEAKLY COMPACT HOLOMORPHIC MAPPINGS
ON BANACH SPACES

RAYMOND A. RYAN

A holomorphic mapping /: E -> F of complex Banach spaces is
weakly compact if every x e E has a neighbourhood Vx such that f(Vx)
is a relatively weakly compact subset of F. Several characterizations of
weakly holomorphic mappings are given which are analogous to classical
characterizations of weakly compact linear mappings and the Davis-
Figiel-Johnson-Pelczynski factorization theorem is extended to weakly
compact holomorphic mappings. It is shown that the complex Banach
space E has the property that every holomorphic mapping from E into
an arbitrary Banach space is weakly compact if and only if the space
Jίf(E) of holomorphic complex-valued functions on E, endowed with the
bornological topology τδ, is reflexive.

1. Introduction. Aron and Schottenloher [3], in a study of the
approximation property for locally convex spaces of holomorphic func-
tions on a complex Banach space, introduced the concept of a compact
holomorphic mapping. If E and F are complex Banach spaces, a holo-
moφhic mapping /: E -> F is said to be compact if every x e E has a
neighbourhood Vx such that f(Vx) is a relatively compact subset of F.
They obtained several characterizations of compact holomoφhic map-
pings which were analogous to characterizations of compact linear map-
pings. For example, it is well-known that a continuous linear mapping T:
E -> F is compact if and only if its transpose T': F' -> E' is compact.
Now consider a holomoφhic mapping f: E -> F. Denoting by J(?(E) the
vector space of holomoφhic functions on E (that is, holomoφhic map-
pings from E into C), the transpose of / may be defined as the linear
mapping / ' : F -> Jίf(E) given by /'(ψ) = ψ °/ for ψ e F'. Aron and
Schottenloher show that when Jίf(E) is given a suitable locally convex
topology, the holomoφhic mapping / is compact if and only if its
transpose / ' is a compact linear mapping of F' into J^(E).

Motivated by this work, we carry out a similar study of weakly
compact holomoφhic mappings, which are defined in the same way: a
holomoφhic mapping /: E -> F is weakly compact if every x £ E has a
neighbourhood Vx such that f(Vx) is a relatively weakly compact subset of
F. We extend some of the classical theory of weakly compact linear
mappings to the holomoφhic setting. Of course, some of our results are
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analogous to those of Aron and Schottenloher, but, just as in the linear
case, the proofs for the compact and weakly compact situations are often
quite different.

We begin in §2 with weakly compact polynomials between Banach
spaces. The properties of weakly compact polynomials which we require
for the sequel follow easily from the fact that the continuous polynomials
can be viewed as continuous linear mappings on a suitable tensor product.

In §3 we consider weakly compact holomorphic mappings. We show
that weak compactness of a holomorphic mapping is equivalent to weak
compactness of its derivatives. Next, we show that weak compactness of a
holomorphic mapping /: E -» F is equivalent to weak compactness of its
transpose /': Ff -» (Jίf(E), τω) where τω is the Nachbin topology of
Jίf(E), and that this is in turn equivalent to ftt((Jίf;(E), τω)') c F, gener-
alising the fact that a continuous linear mapping T: E -» F is weakly
compact if and only if Ttι{E") c F. This, and other results in this paper,
reinforce the view expressed in [3] that Jίf(E) can be thought of
as a "holomorphic dual" of E. Next, we show that the Davis-Figiel-
Johnson-Pelczynski theorem, which states that weakly compact linear
mappings factor through reflexive spaces, extends to holomorphic map-
pings. Finally, we examine the relationship between weakly compact
holomorphic mappings and reflexivity. We show that E has the property
that for every compact Banach space F, every holomorphic mapping from
E into F is weakly compact, if and only if the locally convex space
(Jίf(E),τδ) is reflexive, where τ8 is the bornological topology associated
with τω.

We now outline our notation and terminology. E and F denote
complex Banach spaces. E\ F' denote their strong duals, and Fτ' denotes
the dual space of F endowed with the Mackey topology τ(F\F). TU
denotes the closed convex balanced hull of the set U. If X is a locally
convex space, Xβ denotes the strong dual of X, that is the dual space of X
with the topology of uniform convergence on bounded subsets of X. For
n e N, Ls(

nE; F) denotes the Banach space of continuous symmetric
^-linear mappings from E into F, where the norm is given by \\A\\ =
s u p { \ \ A ( x l 9 . . . 9 x n ) \ \ : \ \ x l \ \ 9 . . . , \ \ x n \ \ £ l } . A m a p p i n g P : £ - ^ F i s a
continuous /i-homogeneous polynomial if there exists a necessarily unique
element A of Ls(

nE; F) such that P(x) = A(x,..., x) for every X G £ .
P(nE; F) denotes the Banach space of continuous ^-homogeneous poly-
nomials from E into F with the norm given by | |P | | = sup{||P(jc)||:||jc||
< 1). The mapping P -> A is an isomorphism from P(nE; F) onto
Ls{

nE\F).
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A m a p p i n g /: E -» F is h o l o m o r p h i c if for e a c h X G £ there exists a
s e q u e n c e of p o l y n o m i a l s

and a neighbourhood V of x such that the series

converges uniformly to f(y) for y & V. Jί?(E; F) denotes the vector
space of holomorphic mappings from E into F. When F = C the spaces
of functions which we have introduced above are denoted Ls(

nE), P(nE)
and Jf(E). A seminorm p on Jίf(E; F) is said to be ported by a
compact subset JRΓ of E if for every neighbourhood V oί K there exists
CV > 0 such that p(f) < Cv\\f\\v for every / <E Jίf(E; F). The Nachbin
topology, τω is the locally convex topology on Jf(E; F) generated by the
seminorms which are ported by compact subsets of E. τω induces the
norm topology on the subspaces P{nE\ F) of Jf?(E; F). We refer to [6]
and [11] for further details about polynomials and holomorphic mappings.

Most of the results given here are from the author's Ph. D. disserta-
tion, which was written under the supervision of Dr. R. M. Aron. The rest
of the research for this paper was carried out while the author was visiting
Kent State University, to which thanks are acknowledged.

2. Weakly compact polynomials. Let P be a continuous w-homoge-

neous polynomial from E into F and let Ap be the unique continuous
symmetric ^-linear mapping from En into F which generates P, so that
P(x) = AP(x9...,x) for every x e E. Let LP<Ξ L(® nE\ F) be the con-
tinuous linear mapping associated with Ap where <g) nE = E έ ΘJE1 is
the w-fold projective tensor product [8]. The polynomial P is said to be
weakly compact if P maps the unit ball of E into a relatively weakly
compact subset of F. It is shown in [12] that P is weakly compact if and
only if the associated linear mapping LP is weakly compact.

The transpose of P G P(nE; F) is the continuous linear mapping P*;
Fr -> P{nE) defined by P'(ψ) = ψ <> p for ψ e F. We wish to relate weak
compactness of P to the behaviour of the linear mapping P*. P* can be
identified with the transpose of the linear mapping Lp in the following
way: Vp maps F into Ls{

nE\ and J^P'^V^ where /: P{nE) ->
LS("E) is the isomorphism given by /(β) = ^4β. We now apply the
following well-known equivalent formulations of weak compactness of
linear mappings (see, for example [7]). The following properties of a
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continuous linear mapping T: X -> Y are equivalent:

(a) T is weakly compact;

(b) T': y ; -> JT is continuous;

(c) Tu. Y' -> X' is weakly compact.

Applying this to the linear mapping LP, we obtain:

PROPOSITION 2.1. Lei P e P("£'; JF). The following are equivalent:

(i) P w weakly compact,

(ii) P ' : F τ ' -* P(nE) is continuous]

(iii) P*: F -+ P("E) is weakly compact.

PwK("E; F) denotes the subspace of P(nE\ F) of weakly compact

^-homogeneous polynomials from E into F.

COROLLARY 2.2. PwK(nE; F) is a closed subspace ofP(nE; F).

Proof. Let {Pn} be a sequence in PwK{nE\F) which converges to

P(ΞP(nE;F). Then Pl

n converges to Pι in L(F;P(nE)) and since
L ^ ( F ' ; P ( " ( £ ) ) is closed in L(F; P(nE% it follows that P\ and hence

P, is weakly compact. D

For further results concerning weakly compact polynomials on Banach

spaces with the Dunford-Pettis property, we refer to [12,13].

3. Weakly compact holomorphic mappings. We shall say that a

holomorphic mapping /: E -> F is weakly compact if every x e E has a

neighbourhood Vx such that f(Vx) is a relatively weakly compact subset of

F. Our first objective is to establish a connection between weak compact-

ness of a holomorphic mapping and weak compactness of its derivatives.

We call a subset U of E circled if for every x e U and every λ e C

with |λ| = 1, we have λx e CΛ The following lemma is an easy applica-

tion of the Hahn-Banach Theorem and the Cauchy inequality (see the

proof of [3, Proposition 3.4] for a similar result).

LEMMA 3.1. Letf e 3V(E\ F). IfUaE is circled and x e £, then

for every n.

We now show that weak compactness of a holomorphic mapping / is

equivalent to weak compactness of its derivatives at every point, and also

that weak compactness of / is determined by the behaviour of / at the
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origin. We refer to [3, Proposition 3.4] for an analogous result for compact
holomorphic mappings.

THEOREM 3.2. Letfe J(?(E; F). The following are equivalent:
(i) / is weakly compact,

(ii)/ maps some neighbourhood of the origin in E into a relatively
weakly compact subset ofF;

(iii) dnf{x) is a weakly compact polynomial for every n e N and every
x e E;

(iv) dnf(0) is a weakly compact polynomial for every n e N.

Proof. The implications (iii) =» (iv) and (i) => (ii) are trivial, while
(i) => (iii) and (ii) =* (iv) follow immediately from Lemma 3.1. It only
remains to show that (iv) implies (i).

Suppose, therefore, that dnf(0) is a weakly compact polynomial for
every n e N. Let X = {x e E: f(Vx) is relatively weakly compact for
some neighbourhood Vx of x}. We shall prove that X is a non-empty
subset of E and is both open and closed, from which it follows that / is
weakly compact.

First we show that X contains the origin. Choose r > 0 so that / is
bounded on the ball 5(0, r). We claim that /(5(0, r/2)) is a relatively
weakly compact subset of F. To see this, let Kn = Γ((l/π!)dY(0)(5(0, r))).
Since (l/n\)dnf{G) is a weakly compact polynomial, Kn is weakly com-
pact for every n. By Lemma 3.1 Kn is contained in the bounded set
Γ/(5(0, r)) for every n, and therefore if zn e Kn then the series E£L02~%
converges absolutely. Therefore K= {Σ™=02~nzn:zn ^ Kn) is a well-de-
fined bounded subset of F. Now, for x e 5(0, r/2), we have

/(*)- Σ ^
and hence /(5(0, r/2)) c J^. We show that K is weakly compact by
proving that for every ψ e f there exists z & K such that Ψ(z) = \\ψ\\κ

[10].
Let ψ e F' . Since ίΓn is weakly compact and balanced, there exist

wn e JSΓB such that ψ ( w j = HΨH .̂ Then w = Σ?_02-"wB e K, and

«=0 «=0

Therefore ψ(w) = ||ψ||^ and our claim is proved.
It is clear that X is an open subset of F. Let {xk} be a sequence in X,

converging to x e E. By Lemma 3.1 dnf(xk) is weakly compact for every
n and every k. Since PwK(nE; F) is a closed subspace of P(nE; i7), and
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^ ^ dnf(xk) = dnf(x) in P("E; F), it follows that dnf(x) is weakly
compact for every n. Consider the holomorphic mapping g: E -> F
defined by g(z) = /(x 4- z). We have d"g(0) = dnf(x) for every «, and it
follows from the first part of this proof that g maps some neighbourhood
V of the origin into a relatively weakly compact subset of F. Therefore /
maps the neighbourhood x + V of x into a relatively weakly compact set,
which shows that x e X. Therefore X is closed. D

We shall denote by JfwK(E; F) the vector space of weakly compact
holomorphic mappings from E into F.

COROLLARY 3.3. (JfwK(E; F), τω) is a closed subspace of

Proof. Let {/λ} be a net in JfwK(E; F) which converges in the
topology τω to f <^Jί?(E; F). Since τω induces the norm topology on
P(nE;F) it follows that dnfx(G) converges to d"f(0) in the norm of
P(nE\F) for every n. But dnfλ(G)^P^κ(

nE\F) for every λ, and
PwK("E; F) is closed in P(nE; F). Therefore, by Theorem 3.2, / is weakly
compact. •

If / is a holomorphic mapping from E to F then, following Aron and
Schottenloher, we define the transpose of / to the linear mapping fu.
Ff -> Jf(E) given by / r(ψ) = ψ °/. This mapping is continuous for the
norm topology on F' and the Nachbin topology τω on Jίf(E). To see this,
let p be a τω-continuous seminorm on ^ ( £ ) , so that p is ported by some
compact subset K of £. Thus, for every open neighbourhood V of K
there exists Cv > 0 such that /?(g) < CV||g||κ for every g e / ( £ ) .
Choose an open neighbourhood V oί K for which /(F) is bounded. Then
^(/ r(ψ)) < Cv\\fXψ)\\v= CyU\\f{vy and hence ^ o / r is a continuous
seminorm on F\

Since /': i7' ~> (Jίf(E), τω) is a continuous linear mapping, we may
take its transpose in the usual linear sense to obtain a linear mapping fa:
(Jίf(E), rωY -> F". Our next result shows that the transpose and bitrans-
pose of a holomorphic mapping can be used to characterize weak com-
pactness. We recall that for a continuous linear mapping T: E -> F, weak
compactness of T is equivalent to each of the following conditions:

(a) Γr: Fr -> E' is weakly compact;
(b) Tu maps £ " into the canonical image of F in F".
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For holomorphic mappings we have: (cf. [3, Proposition 3.6])

THEOREM 3.4. Let fe Jίf (E; F). The following are equivalent:
(i) / is weakly compact,

(ii)/': JF/ —» (^(JS1), τω) ώ continuous, where τ = τ(F\F) is the
Mackey topology of F';

(iii)/': F -• ( J T ( £ ) , T J is weakly compact;
(iv)/" map? (3ί?(E)9 τω)' into the canonical image of F in F".

Proof, (i) implies (ii): Let p be a continuous seminorm on (Jίf(E), τω).
Then p is ported by some compact subset K of £, and so for every open
set U containing K there exists Cυ > 0 such that p(g) < Cv\\g\\v ίoτ
every g e j f ( i ί ) . Since / is weakly compact there exists an open
neighbourhood V of K such that f(V) is a relatively weakly compact
subset of F. Therefore ψ -> | |ψ| | / ( K ) is a continuous seminorm on i7/, and
since

it follows that /' : FT' -> (Jf(E)9 τω) is continuous.
(ii) implies (iii): It follows from (ii) that / ' is continuous for the weak

topologies o(F', F) and σ(Jίf(E),(Jίf{E\ TJ). Since the closed unit ball
of Ff is σ(F\ Fycompact, it is mapped by / ' into a weakly compact
subset of ( j r ( £ ) , τ j .

(iii) implies (i): The mapping g -> Jng(0) is a continuous projection
of (Jίf(E), τω) onto the subspace P(nE). If we compose / ' with this
mapping we obtain the continuous mapping (dnf(0)Y:Fτ' -> P(nE). It
follows from Proposition 2.1 that dnf(0) is a weakly compact polynomial
for every n and hence, by Theorem 3.2, / is weakly compact.

(ii) implies (iv) is trivial, since (Fτ')' is the canonical image of F in
F". To see that (iv) implies (ii), suppose that / " maps (Jί?(E),τω)' into
the canonical image of F in F". Then / ' is continuous for the weak
topologies σ(F\F) and σ(J(?(E),(J(?(E),τJ% and it follows that / ' is
continuous for the Mackey topologies associated with these weak topolo-
gies. But τω is weaker than the Mackey topology associated with it, and
hence f is a continuous mapping of Fr' into (Jίf(E), τω). D

Now by Theorem 3.4 if / e Jί?wK(E; F) then the transpose ft belongs
to the space L(F^\ (Jf(E), τω)). We shall endow this space of continuous
linear mappings with the topology of uniform convergence on the
equicontinuous subset of F\ and we denote the resulting locally convex
space by Lε(Fτ';{J^(E), r j ) . We wish to show that the mapping / ->/ '
establishes an isomorphism of (Jί?wK(E; F), τω) with Le(Fτ'; (Jί?(E)9 TJ).



186 RAYMOND A. RYAN

For each x G E let 8(x) be the continuous linear functional on
(JT(E)9τω) given by/->/(*).

LEMMA 3.5. 8 is a holomorphic mapping from E into (Jίf(E), τω)β.

Proof. We show that 8 has a Frechet derivative at every point of E.
For each x G E let πx denote the continuous projection of (J(f(E),τω)
onto the subspace Er which associates with / G Jίf(E) its derivative at x,
df(x). Let / denote the canonical embedding of E into E". We claim that
the continuous linear mapping πx ° / is the Frechet derivative of 8 at x.
Thus, we must show that

= 0

for every continuous seminorm p on (Jίf(E), τω)β. By the definition of
the strong topology, we may assume without loss of generality that there
exists a bounded subset A of (Jίf(E), τω) such that p(φ) = sup{|φ(/)|:
/ G A] for every φ G (J(?(E)9 τω)/. By [11, §12, Proposition 1] there exist
positive real numbers C, γ such that \\(l/n\)dnf(x)\\ < Cγ" for every
/ G A Therefore, if ||j>|| < γ"1 we have

p[δ(x + y) - δ(x) - π^o J(y)}

\\y\\

Xsup\f(x + y)-f(x)-df(x)(y)\

-1
S U P

00
1 ^

" MI ^ 1 -

and since this tends to zero with \\y% our claim is proved. D

Aron and Schottenloher show that the mapping /' -> / ' establishes an
isomorphism between the space (Jί^κ(E; F), τω) of compact holomorphic
mappings from E into F endowed with the Nachbin topology, and the
space Lε(Fc';(Jf?(E),τω)), where Fc' is the dual space of F with the
topology of uniform convergence on compact subset of F [3, Theorem
4.1] and ε denotes the topology of uniform convergence on equicontinu-
ous sets. In the weakly compact case we have an analogous result:

PROPOSITION 3.6. The mapping f-> f* is an isomorphism from
• F),τJ onto Le(F;;(Jίf(E),τω)).
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Proof, It is easy to see that the mapping /" -> / ' is linear and injective.
To see that this mapping is surjective, let Γ G L(Fτ';(Jf(2s),τω)). Then
r G L ( ( ^ ( £ ) , T j ; ; j F ) and therefore by Lemma 3.5 / = TO 8 is a
holomorphic mapping from E into F. If ψ e /" and x & E then

Therefore fί=T and it follows that the mapping / -> / ' is a bijec-

tion from ^ ς ^ ( £ ; F ) onto L ( F τ ' ; ( ^ ( £ ) , τ J ) with inverse given by

T ^ TΌδ.
The proof that the mapping / -» / ' and its inverse are continuous is

the same as the proof of the analogous assertion for the compact case [3,

Theorem 4.1]. D

Davis, Figiel, Johnson and Peίczynski [4] have shown that weakly

compact linear mappings factor through reflexive spaces in the following

sense: if T is a weakly compact linear mapping of E into F, there exists a

reflexive Banach space G and continuous linear mappings S: E -> G, R:

G -> F such that T = R° S. We show next that weakly compact holomor-

phic mappings also factor through reflexive spaces.

If A is a closed, convex, balanced and bounded subset of a Banach

space F, then FA will denote the Banach space obtained by taking the

linear span of A with norm given by the Minkowski functional of A, so

that A is the closed unit ball of FA.

Aron and Schottenloher show that compact holomorphic mappings

have " th in" images, in the following sense: f ^Jf(E; F) is compact if

and only if there exists a compact, convex, balanced subset K of F such

that f(x)^Fκ for every x e E, and / is holomorphic as a mapping from

E into Fκ [3, Proposition 3.5]. We prove a similar result for weakly

compact holomorphic mappings, and the Davis-Figiel-Johnson-Peίczynski

theorem then enables us to factor these mappings through reflexive

spaces.

THEOREM 3.7. Letf e jf(E; F). The following are equivalent:

(i) / is weakly compact,

(ii) There exists a weakly compact convex balanced subset K of F such

that f is a holomorphic mapping from E into Fκ;

(iii) There exists a reflexive Banach space G, a continuous linear

mapping T: G -> F and a holomorphic mapping g: E -> F such that

f=T°g.
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Proof, (i) implies (ii): As in the proof of [3, Proposition 3.5], there
exists a sequence {Um} of open circled subsets of E such that f(Um) is a
bounded subset of F for every m, and E = U^=1t/W. Let Wm be the
balanced hull of Um. Since Um is circled, it follows from the maximum
modulus theorem that f(Wm) is bounded for every m. Let Vm = \Wn

Then E = U~= 1Fm and hence f(E) = U ^ = 1 / ( F J . Let
m'

Then Kmn is a weakly compact convex balanced subset of F and by
Lemma 3.1 Kmn c Tf(Wm) for every m,n. Therefore, arguing in the same
way as in the proof of Theorem 3.2, we find that the set

is weakly compact, and that f(Vm) c Km for every m. Hence Tf(Vm) is a
weakly compact convex balanced subset of F for every m, and

(1) f(E)<z LIΓ/(FJ.
m = l

Since Γ/(Fm) is a weakly compact convex balanced set for every m, there
exists a sequence {βw} of positive real numbers such that K =
U^=iβ m Γ/(FJ is weakly compact [9, page 184]. It follows from (1) that /
maps E into Fκ. That / is a holomoφhic mapping from E into Fκ is
proved in exactly the same way as the analogous result for compact
holomoφhic mappings [3, Proposition 3.5].

(ii) implies (iii): Suppose there exists a weakly compact convex
balanced subset K of F such that / is a holomoφhic mapping from E
into Fκ. Let fκ: E -> Fκ be the mapping x -> f(x) and let / denote the
injection of Fκ into F, so that / '= J ° fκ. Applying the Davis-Figiel-
Johnson-Peίczynski theorem to /, there exists a reflexive Banach space G,
and continuous linear mappings T: G -> F and S: Fκ -> G such that
/ = ToS. Let g = S o / ^ . T h e n / = / o / ^ = ToSofκ= T o g

(iii) implies (i) is trivial. D

We now look at the connection between reflexivity and weakly
compact holomoφhic mappings. It is easy to see that the Banach space E
is reflexive if and only if for every Banach space F, every continuous
linear mapping from E into F is weakly compact. We wish to characterize
those Banach spaces E with the property that every holomoφhic mapping
with domain E is weakly compact.
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The bornological topology on Jf(E) associated with the Nachbin
topology τω is denoted by τδ. This topology is also the barreled topology
associated with τω [6]. Dineen has shown that (Jf(E)yrδ) is reflexive if
and only if P(nE) is a reflexive Banach space for every n [5, Proposition
2.5].

THEOREM 3.8. Let E be a complex Banach space. The following are
equivalent.

(ϊ)(Jίr(E),τδ) is reflexive;
(ii) for every complex Banach space F every holomorphic mapping from

E into F is weakly compact.

Proof, (i) implies (ii): Let / e Jίf(E; F). Consider the continuous
linear mapping /': Ff -» {J^(E), τω). Since rδ and τω have the same
bounded sets, / ' is a continuous linear mapping of F' into (Jίf(E), τ8).
Since (Jίf(E)y τδ) is reflexive, / ' maps the unit ball of Fr into a relatively
weakly compact subset of (Jίf(E), τδ). But τδ is finer than τω and so / ' is
a weakly compact linear mapping from F' into (Jf(E), τω). Hence by
Theorem 3.4 / is weakly compact.

(ii) implies (i): For each n let 8n: E -> P{nE)' be the continuous
^-homogeneous polynomial defined by (δn(x), P) = P(x) for P e P(nE).
By (ii) δn is weakly compact and therefore by Proposition 2.1 8*n is a
weakly compact linear mapping from P(nE)" into P{nE). But the restric-
tion of δ,; to P("E) is the identity mapping on P{nE). Therefore P{nE) is
reflexive for every n. Ώ

Now Er is a subspace of (J f(£), τδ) and so if (Jίf(E), τδ) is reflexive
then in particular E is reflexive. The converse, however, is false. For
example, (Jίf(lp), rδ) is not reflexive for any p [1]. Examples of spaces E
for which (Jί?(E), rδ) is reflexive are Tsirelson's space T [1], and all
quotient spaces of T [2].
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