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PERMUTATION ENUMERATION
SYMMETRIC FUNCTIONS, AND UNIMODALITY

FRANCESCO BRENTI

We study the polynomials obtained by enumerating a set of permu-
tations with respect to the number of excedances. We prove that these
polynomials have only real zeros and are unimodal for many interest-
ing classes of permutations. We then show how these polynomials
also arise naturally from the theory of symmetric functions.

1. Introduction. Log-concave and unimodal sequences arise often in
combinatorics, algebra, geometry and computer science, as well as in
probability and statistics where these concepts were first defined and
studied (see [1] for further information and references about the origin
of the concept of a unimodal sequence). Even though log-concavity
and unimodality have one-line definitions, it has now become appar-
ent that to prove the unimodality or log-concavity of a sequence can
sometimes be a very difficult task requiring the use of intricate combi-
natorial constructions ([15], [19], [32], [33]) or of refined mathematical
tools. The number and variety of these tools has been constantly in-
creasing and is quite bewildering and surprising. They include, for
example, classical analysis ([5], [29], [30], [31]), linear algebra ([17]),
the representation theory of Lie algebras and superalgebras ([16], [21],
[22]), the theory of total positivity ([2], [4]), the theory of symmet-
ric functions ([3], [6], [20]), and algebraic geometry ([24]). We refer
the interested reader to [25] for an excellent survey of many of these
techniques, problems, and results.

In this paper, motivated by a conjecture of R. Stanley, we study
the unimodality of some polynomials obtained by enumerating a set
of permutations with respect to the number of excedances. We prove
that these polynomials are unimodal for many general classes of per-
mutations including conjugacy classes, thus generalizing Stanley's con-
jecture. We then show how these polynomials also arise, in a natural
though unexpected way, from the theory of symmetric functions.

The organization of the paper is as follows. In the next section we
collect some notation, definitions and results that will be needed in
the rest of the paper. In §3 we prove that the polynomials obtained
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by enumerating a conjugacy class of a symmetric group with respect
to the number of excedances are symmetric and unimodal and have
only real zeros. We then derive some consequences of this result,
among which is Stanley's original conjecture. In §4 we show how
the polynomials studied in §3 also arise naturally from the theory of
symmetric functions. This approach also leads to the consideration of
some related (but more mysterious) polynomials whose study yields
some interesting identities for inverse Kostka numbers and characters
of the symmetric group (Corollaries 4.15, 4.16, and 4.18). Finally,
in §5, we discuss some of the main open problems arising from our
work, some conjectures and possible directions for further research.

2. Notation and preliminaries. In this section we collect some def-

initions, notation and results that will be used in the rest of this pa-

per. We let P = f {1, 2, 3, ...} and N = f P u {0}; for aeN we let

[a] = f {1, 2, . . . , a} (where [0] = f 0 ) . The cardinality of a set A will
be denoted by \A\. A sequence {αo, #i > . > &d} (of real numbers) is
called log-concave if af > αz_iα/ +i for / = 1, . . . , d - 1. It is said to
be unimodal if there exists an index 0 < j <d such that αz < α/+i for
i = 0, . . . , j - 1 and at > aiΛ.χ for / = j , . . . , d-1. It is said to have
no internal zeros if there are not three indices 0<i<j<k<d such
that at, <Zfc Φ 0 and aj = 0. It is said to be symmetric if a\ = a^-i for
/ = 0, . . . , [ | ] . We say that a polynomial Yf^aiX1 is log-concave
(respectively, unimodal, with no internal zeros, symmetric) if the se-
quence {OQ , 0i, . . . , a^} has the corresponding property. It is well
known that if Σf=o α*^ ^s a polynomial with nonnegative coefficients
and with only real zeros, then the sequence {αo > ^ i , > a<ι) is log-
concave and unimodal, with no internal zeros (see, e.g., [2] or [7],
Theorem B, p. 270). If p(x) is a symmetric unimodal polynomial
then there is a unique n € N such that xnp{^) = p(x) - We call the
number § the center of symmetry of p(x), and we write C(p) = f .
So, for example, C(x2 + 3x3 + x4) = 3 and C{\ + x) = \ . An ele-
mentary, though crucial property of symmetric unimodal polynomials,
which will be used repeatedly in this paper, is the following.

PROPOSITION 2.1. Let p(x) and q(x) be two symmetric unimodal
polynomials. Then p(x)q{x) is a symmetric unimodal polynomial and

Proposition 2.1 is well known and a proof of it can be found, e.g.:,
in [25], Proposition 1.2.
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We follow [14, Chapter 1, §1] for the basic definitions, notation and
terminology about (integer) partitions. In particular, given a partition

λ9 we let nii(λ) be the multiplicity of / as a part of λ and zλ =
ΓL>i imiWmi{λ)\. We also denote by d(λ) the length of the side of

the Durfee square of λ, (i.e. d(λ) = f max{/ e [n] : λt > /} if λ =
(λl9...,λn)).

A partition of a (finite) set S is a collection of subsets 5? =
{Si, . . . , Sp} of S (which we may assume indexed so that |5Ί| >

> \SP\) s u c h t h a t \Jp

i=ι Si = S a n d SfΠSj = 0 f o r i φ j . T h e type

of the partition & is the integer partition <T{SP) = f (|SΊ |, I-Ŝ l, . . . ,
\SP\). Given an integer partition λ of «, we denote by Pχ([n]) the
collection of all partitions of [n] such that ^(S^) = λ. For exam-
ple, if λ = (2, 1, 1), then ^2,1,1)([4]) consists of the 6 partitions
12/3/4, 13/2/4, 14/2/3, 23/1/4, 24/1/3, and 34/1/2. We also

let &>x(n) = f |i^([«])l The following result is well known (see, e.g.,
[14, p. 22], or [7, Theorem B, p. 205]) and is here recalled only for
completeness.

PROPOSITION 2.2. Let λ = (λ\,..., λp) be a partition of n. Then

_
n

λχ, . . . , λp

Let π be a permutation on [n] (considered as a bijection π: [n] —>
[n]) and / € [n]. We say that / is an excedance (respectively, a de-
scent) of π if π(i) > i (respectively, i φ n and π(i) > π(i + 1)).
We denote by e{π) (respectively, d(π), c(π)) the number of ex-
cedances (respectively, descents, cycles) of π. So, for example, if
π = 291586347 then e(π) = 4, d(π) = 3, and c(π) = 3. For n e P
the polynomial

πesn

(where Sn denotes the symmetric group on n elements) is called the
nth Eulerian polynomial and has been widely studied (see, e.g., [10]),

for convenience we will let A0(t) = 1. Given a partition λ of n we
denote by Sn(λ) the set of all σ e Sn of cycle type λ, we also let

% ά£ Sn((n)). The next result is known (see [10]) but is here recalled
and proved for completeness.
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PROPOSITION 2.3. Let neN. Then

Σ te{σ) = Mt)

Proof. Each σ e &n+ι can be written uniquely as an n + 1 cycle
of the form σ = (n + l α i . . .αn) (so that σ(n + l) = a\9 σ(αz) = aM

for i = 1, . . . , n - 1, and σ(an) = n + 1), we then let σ = an #i

(i.e. σ(/) = fln+i_/, for / = 1, . . . , ή). The correspondence σ »-+ "σ
is clearly a bijection between %+χ and SΉ. Furthermore, we have
that

e(σ) = ${i e[n+ I]: σ(i) > i}

= J{i E [/i - 1]: aM > at} + 1 = d(σ) + 1,

which establishes the result. D

Let μ = (μ\9 ... 9 μι)&^ (where & denotes the set of all integer
partitions). We denote the diagram of μ by D{μ). A special border
strip of D(μ) is a border strip that is contained in D(μ) and which
has at least 1 cell in the first column of D(μ), (see, e.g., [14, p. 31],
for the definition of a border strip). The sign of a border strip is
( - l ) r " 1 where r is the number of rows it occupies. A special border
strip tabloid T of shape μ is a partition of D{μ) into special border
strips. The type of T is its type as a (set) partition. The sign of T,
denoted sgn(Γ), is the product of the signs of the special border strips
of T. The following beautiful result appears in [9, Theorem 1], (we
refer the reader to [14, Chapter 1, §6] for the definition of the Kostka
matrix).

THEOREM 2.4. Let λ, μ e &, and K be the Kostka matrix. Then

T

where the sum is over all special border strip tabloids of shape μ and
type λ.

Given λ, μ e & with D(μ) c D(λ) we denote by fλ\μ the number
of standard tableaux of shape λ\μ.

3. Permutation enumeration and unimodality. In this section we
prove that the polynomials obtained by enumerating a conjugacy class
of a symmetric group with respect to the number of excedances are
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symmetric and unimodal and have only real zeros. In order to prove
this result in a clear and concise way it is convenient to establish a
canonical way of writing partitions and permutations. We say that a
partition {S\, . . . , Sp} of [n] is indexed in canonical form if |5Ί| >
••• > \SP\ and for |5/| = \Sj\ we have that / > j if and only
if max(S/) > max(*S/). So, for example, the canonical indexing
of the partition 157/23/9/4/86 is Sx = {1, 5, 7}, S2 = {2, 3},
S3 = {8, 6} , 5 4 = {4} , S5 = {9}. Analogously, we say that the cycles
C\, . . . , Cp appearing in the disjoint cycle decomposition of a permu-
tation π G Sn are indexed in canonical form if |Ci| > > \CP\ and
for \d\ = \Cj\ we have that / > j if and only if max(Q) > max(C7).
We can now prove one of the main results of this section.

THEOREM 3.1. Let n e P and λ = (λ\, . . . , λp) be a partition of
n. Then

Proof. Let (5/)ι=i,...,p be a partition of [n] of type λ, written in
canonical form. We define a map

ι = l

by

def

where, for a subset S = {a\, . . . ,ar}<c[n] (where S = {a\, . . . ,ar}<
means that S = {a\, . . . , ar} and a\ < < ar), and σ e Sr, Ts(σ)
is the permutation of S defined by

for j = 1, . . . , r. Clearly, the map σ H+ Ts(σ) is a bijection. Fur-
thermore, we have that

(2) f l )
\ J ι=l

For π e Sn(λ) let Ci ...Cp be the disjoint cycle decomposition of
π , written in canonical form. We then let *S/(π) be the subset of [n]
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consisting of the elements appearing in Q and Q(π) = (TSι(π))~ι(Ci)
for / = 1, . . . , p . Then the map

θ:Sn{λ)-+Pλ([n])xf[{&ιλt])
i = l

defined by

is such that (Φ o Θ)(π) = π for all π € 5"n(Λ). This proves that Φ is
a bijection and hence, by (2), that

te(π) _

fa " Πel(m,W-)

and (1) follows from Proposition 2.3. D

In what follows we will let, for simplicity,

ED(t) d^ f

πeD

def

for any D C Sn, and Eλ(t) = E$ (χ)(t) if λ is a partition of n . From
the preceding theorem we immediately deduce the following result.

THEOREM 3.2. Let n e P αrcd λ be a partition of n. Then the
polynomial Eλ(t) is symmetric and unimodal with center of symmetry
at (\λ\ - m\(λ))/2, and has only real zeros. In particular, Eλ{t) is
log-concave with no internal zeros.

Proof. It is well known (see, e.g., [7, p. 241, eq. [5c], and p. 292,
Ex. 3]) that, for n > 1, An(t) is a symmetric and unimodal poly-
nomial with C{An) = !1ψ-. Therefore, from (1) and Proposition 2.1
we conclude that Eμ(t) is a symmetric and unimodal polynomial and
that

C(Eμ) = C (f[Aμrλ = C (
\i=l / \/>2
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Furthermore, it is well known (see, e.g., [7, p. 292]) that, for n > 1,
the polynomials An(t) have only real zeros; hence, by (1), the same
is true for Eμ(t). D

Theorem 3.2 has some interesting consequences; we begin with the
following one.

THEOREM 3.3. Let n, k, r e P and let Drk{ri) be the set of all
π e Sn having exactly k cycles each of length > r. Then EDr (n)(t)
is a symmetric and unimodal polynomial with C(EDr („)) = §.

Proof. Let μ = (μi, . . . , μk) be a partition of n of length k such
that μi > r for / = 1, . . . , k. Then, by Theorem 3.2, Eμ(t) is a
symmetric and unimodal polynomial with C(Eμ) = (\μ\ - m\ (μ))/2 =
\μ\/2 = n/2. But, by our definitions

where the sum is over all partitions μ — (μ\, . . . , μk) of length k
such that μi> r for / = 1 , . . . , / : , and the thesis follows. D

One consequence of the preceding result is particularly interesting
(see [7, p. 257] for the definition of r-derangements).

THEOREM 3.4. Let n, r e P and let Dr{n) be the set of all r-

derangements of Sn. Then ED^(t) is a symmetric and unimodal
l -|.polynomial with C(ED ^) = -|

Proof. Clearly

k>\

so the thesis follows from Theorem 3.3. D

In the case r = 1 the preceding result had been conjectured by Stan-
ley (see the comments preceding and following Proposition 7.8 in [25])
and first proved in [3, Corollary 1]. We should remark, however, that
the proof given in [3] makes use of the theory of symmetric functions
while the one given here is elementary and completely combinatorial.

4. Symmetric functions and excedances. In this section we show
how the combinatorially defined polynomials studied in the preceding
section arise naturally from the theory of symmetric functions. We
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will use standard notation and terminology for this theory from [14],
In particular, we will denote by sχ (respectively, hχ, eχ, mχ, fλ,
and pχ) the Schur (respectively, complete homogeneous, elementary,
monomial, forgotten and power sum) symmetric functions, associated
to the partition λ. All the symmetric functions considered in this
section are assumed to be in the variables (x\, Xi, . . . ) . We start by
defining a ring homomorphism

by letting

for / e P , and ζ{eo) ά= 1. Since the e\ 's are algebraically independent
and generate ΛQ over Q (see, e.g., [14, p. 13]) (3) uniquely defines
a ring homomorphism ξ: ΛQ —• Q[x]; we then extend ξ to all of
Λ Q [ M ] by letting

(4) q Σ Π
\ n>0

where an e ΛQ for n e N . It is then easy to check that the map ζ
defined by (4) is still a ring homomorphism.

THEOREM 4.1. Let ξ: ΛQ —> Q[x] be the ring homomorphism de-
fined by (3). Then, for n e P , we have that

An{x)
(5) ξ(hn) =

xn\

Proof. It is a well-known result in the theory of symmetric functions
that

n>0

in ΛQ[[?]] (see, e.g., [14, p. 14]). Therefore, by (3) and (4), we obtain
that

n>0

n>\
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where we have used a well-known generating function for Eulerian
polynomials (see, e.g., [7, eq. [5j], p. 244]), and the thesis follows. D

We now come to one of the main results of this section.

THEOREM 4.2. Let ξ: ΛQ —> Q[x] be the ring homomorphίsm de-
fined by (3) and λ be a partition of n. Then

= !ϊ Σ e{π)

Proof. Define a second ring homomorphism ξ: ΛQ —• Q[x] by let-
ting

def Aj_χ{x)

for / G P , and ξ(po) = 1 (note that ξ is a well-defined ring homo-
morphism since the /?/ 's are algebraically independent and generate
ΛQ over Q [14, p. 16]). Then, for any partition λ = (λ\, . . . , A/),
we have, by Theorem 3.1, that

1 = 1 ι = l V ' ; # ' l#1 = 1 ι = l V ' ; ' l π G 5 π ( Λ )

Therefore, using a well-known identity in the theory of symmetric
functions (see, e.g., [14, (2.14'), p. 17]), we obtain that, for n eP

(where we have used Proposition 1.3.12 of [23]). By Theorem 4.1
this shows that ξ(hn) = ξ(hn) for all n G N and since the /*„ 's
are algebraically independent and generate ΛQ over Q (see, e.g.,
[14, p. 14]) this implies that ξ = ξ, which, by (6), gives the desired
result. D

Note that even though our definition (3) of ξ had nothing to do
with excedances, they have now come naturally into the picture.

The preceding results show that ξ(βχ), ζ(hλ) and ξ(pχ) all have
simple combinatorial interpretations and (by Theorem 3.2) only real
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zeros. It is therefore natural to ask whether ξ(sχ), ξ(fχ), and ξ(mλ)
have combinatorial interpretations and whether they also have only
real zeros or are symmetric and unimodal. Before doing this we note
two general results that follow easily from Theorems 4.1 and 4.2 and
that will be used in the sequel (we denote by Λ^ the set of all elements
of ΛQ that are homogeneous of degree ή).

PROPOSITION 4.3. Let n e P , k e [n], and aeA^ be such that

λ

where Cχ = 0 unless l(λ) = k. Then ξ(a) is a symmetric polynomial
with C(ξ(a)) = rLjL. Furthermore, if the cλ 's are nonnegative, the
ζ(a) is a unimodal polynomial.

Proof. As was observed in the proof of Theorem 3.2, the polyno-
mials An(x) are symmetric and unimodal with C(An) = ^ , for
n > 1. This, by Proposition 2.1 and Theorem 4.1, implies that ζ(hχ)
is a symmetric and unimodal polynomial with C{ξ{hχ)) = M " ^ , for
all partitions λ, and the result follows. •

The proof of the following result is similar to that of the preceding
one, and is therefore omitted.

PROPOSITION 4.4. Let n eP, k eN, k <n, and aeA^ be such
that

λ

where bχ = O unless m\(λ) = k. Then ξ(a) is a symmetric polynomial
with C(ξ(a)) = lkjL > Furthermore, if the bχ's are nonnegative, then
ξ{a) is a unimodal polynomial π

We will see later that the conditions of the preceding two proposi-
tions are not as restrictive as they may appear at first glance.

We now turn our attention to the investigation of the polynomials
ξ{sχ). We begin with the following result.

PROPOSITION 4.5. Let n e P and λ be a partition of n. Then

(7) *fo) = iι Σ
{weSn : c(w)>d(λ)}

where χλ is the irreducible character of Sn associated to λ.



SYMMETRIC FUNCTIONS AND UNIMODALITY 11

Proof. It is a well-known result (see, e.g., [14, p. 62]) that

β

Applying ξ to both sides and using Theorem 4.2 we then obtain

(8) ζ(sλ) = y^ xλ y^ xe(w) = — v^ χλ(w)xe(wκ
β wesn(μ) ' wesn

Furthermore, it follows immediately from [14, Ex. 5, p. 64], that
χλ(w) - 0 if c(w) < d(λ) - 1, and (7) follows. D

We note the following curious consequence of (8).

COROLLARY 4.6. Let n e P and λ be a partition of n. Then

ξ(sχ)(x) equals the immanant corresponding to λ of the nxn matrix

(aij)ι<i,j<n ^ere

def ί 1, ifi<j, D

t, ifi>j

Even though immanants have received some attention in recent
years (see, e.g., [12], [13], [26], [27]) the preceding result seems to
be of little use in the understanding of the polynomials ζ(sλ). An
interesting consequence of Proposition 4.5 is the following.

PROPOSITION 4.7. Let n e P and λ be a partition of n. Then

Proof. Since the only permutation of Sn having no excedances is
the identity, letting x = 0 in (7) yields that

But it is well known (see, e.g., [14, p. 62]) that /A(Id) = fλ, and the
thesis follows. D

It is also possible to obtain an expression for ζ(sχ) using the inverse
Kostka matrix.
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PROPOSITION 4.8. Let n e P and λ be a partition of n. Then

Proof. It is well known (see, e.g., [14, Chapter I, §6]) that

(10)

Applying the automorphism ω (see [14, Chapter I, §2]) to both sides
of (10) we obtain that

(11) sλ.

Applying ξ to both sides of (11) and using (3) we get

and the thesis follows. D

An important consequence of the preceding proposition is the fol-
lowing result.

PROPOSITION 4.9. Let λ = (λ{, . . . , λp) e &. Then ξ(sλ) is divisi-
ble by ( l - jc)W-V

Proof. From Proposition 4.8 we see that, for / = 1, 2, . . . , \λ\, the
coefficient of (1 - x ) ^ " ' in ζ(sχ) equals

7Hf f ;
{μ:l(μ)=ι}

But, from Theorem 2.4, we know that {K~x)μλ> = 0 unless l(μ) <
l(λ') (since if l(μ) > l(λf) then there are no special border strip
tabloids of shape λr and type μ) and the thesis follows. D

Note that the above result is not best possible since, for example, if
Λ = ( 3 , 3 ) then ξ(s{^3)) = ̂ (l -x)4 even though |A|-Ai = 3.

It seems to be difficult, in general, to give an explicit formula for
ζ(sχ). However, as we will now show, this is possible if λ is a hook.



SYMMETRIC FUNCTIONS AND UNIMODALITY 13

We begin with the following result which follows easily from Theorem
2.4.

LEMMA 4.10. Let λ e &>, n = f \λ\, r e [n] and μ = f (r, \n~r).
Then

/ iN«-/(/l)+r-l

where m>r{λ) = f Σtr mi(λ)

Proof. To choose a special border strip tabloid of shape (r, \n r)
and type λ we may first choose the special border strip H that con-
tains the upper left square of D(r, \n~r) (note that this implies that
\H\ > r) and then choose a special border strip tabloid of shape
(l«-l#l) and type λ\{H}. But all the border strips of D(ln'W) are
vertical; hence such a special border strip tabloid is equivalent to a
permutation of the multiset {lmiW, . . . , nmnW}\{H}. Therefore

and (12) follows. D

Using the preceding lemma we obtain the following result. We de-
note by S(n, k), for n, k e N, the Stirling numbers of the second
kind, i.e. S(n, k) is the number of partitions of [n] into /c blocks.

T H E O R E M 4 . 1 1 . L e t n e P a n d re[n]. Then

(13) €(V.rH.i'-)) ^
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Proof. Let μ = f (r, l "~ r ) . Then using Lemma 4.10, (9) becomes

(14) «iM i,r'))

m>r(λ)

But if l(λ) > n - r + 1 then m, (λ) = 0 for i = r,..., n (because
if nii(λ) > 1 for some r < i < n, then / is a part of λ and hence
l(λ) <n — i+l<n — r+l). Hence using Proposition 2.2 we deduce
from (14) that

/_i\r-l Λ-r+1 «

= -^r~ Σ (* ~ !)!(χ - ̂ ^ Σ Σ
)=k} i=r

To prove (13) it is therefore sufficient to show that

(16) Σ mi(λ)&λ(n) = ("λs(n- i, k- 1).
{λ:l(λ)=k} V J

But the LHS of (16) counts pairs (π, S) where π is a partition of [n]
into /c blocks, having at least one block of size /, and S is a block
of π of size /, while the RHS of (16) counts pairs (π', 5) where
5 is a subset of [n] of size / and πf is a partition of [n]\S into
A: - 1 blocks. Since the map (π, S) ^ (π\S, *S) is clearly a bijec-
tion between these sets of pairs, (16) follows and this concludes the
proof. D

We should mention that the preceding theorem can also be derived
from Ex. 9 on p. 30 of [14]. However, we thought a combinatorial
proof to be more illuminating.

As an immediate consequence of (15), Theorems 4.1 and 4.11 we
obtain the following expansion for Eulerian polynomials, when ex-
pressed in terms of powers of (x - 1), originally due to Frobenius
(see [7, Theorem E, p. 244]).
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COROLLARY 4.12. Let neP. Then

(17) An(x)=x
k=o

Proof. Letting r = 1 in (15) we obtain that

(18) ^(n)) = i

But it is well known [14, p. 26] that S(n) = hn in Λ Q . Hence (17)
follows from (18) and Theorem 4.1. D

Besides giving a nice combinatorial interpretation to ζ{sχ) when λ
is a hook, Theorem 4.11 can also be used to obtain a simple recurrence
relation satisfied by these polynomials. In order to state the recurrence
relation in a concise form it is convenient to normalize the ξ(sλ) 's as
follows. For n eP and r e [n] we let

(19) Tn(x)

We then have the following result.

THEOREM 4.13. Let n e P and r e [n]. Then the polynomials
Tn^r{x) defined by (19) satisfy the recurrence relation

(20) Tn,r(x) = Tn_Ur U

for r>2, with the initial conditions

τnΛχ) = Sr\An {^ir) ' TnAx) = 1

for n e P.

Proof. Theorem 4.11 (and its proof) show that the coefficient of
xk~ι in Tnyr(x) counts pairs (π, S) where S is a subset of [n] of
size > r and π is an ordered partition of [n]\S into k - 1 blocks
(let Tnk\ denote this number). If n e S, then the map (π, S) »-•
(π, S\{n}) is a bijection with the pairs enumerated by T^\ r_x.
If n φ S, then there are two cases. If {n} is a block of π, then
(π\{n} ,5) is a pair enumerated by T^S^l and each such pair is ob-
tained k - 1 times (since π is ordered). If n is in a block of π
of size > 2, then removing it from this block yields a pair (π', S)
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enumerated by T^\ r, and each such pair is obtained k - 1 times
(since π has k - 1 blocks). Therefore

for π > 2 and k , r e [ / i ] . Multiplying both sides of (21) by xk~ι

and summing for k = 1, . . . , n now yields (20); the initial conditions
follow immediately from (3), (5), and (19), and the well-known facts
[14, p. 26] that S(n) = hn , s^ = en , for n eF. •

We now come to our main result about the polynomials ζ(sχ).

Given a partition λ = (λΪ9 ... 9λn) let d = f d(λ). We will find it

convenient to associate to λ two partitions a(λ) = (αi, . . . , ad) and

β{λ)ά^{βu...,βd) defined by

for / = 1, . . . , d(λ). Note that this implies that

(22) λ = (aι+d-1, a2+d-2, . . . , α ^ l A + r f - l , β2+d-2, ...,βd)

if A is written in Frobenius notation. For example, ifA = ( 7 , 6 , 3 , 3 ,
1, 1) then d(λ) = 3 , a(λ) = (4, 2) , and β(λ) = ( 3 , 1 , 1). We also

let a = (αi - α ^ , αi - α ^ - i , . . . , a\ —ai). Recall that the sum of two

partitions λ = (λ\, Λ2, . . . ) and μ = (μ\, ^ 2 , - .') is the partition

A + // = (λx + μ l 9 λ 2 + μ i , . . . ) •

THEOREM 4.14. L ί̂ n e P am/ λ be a partition of n. Then the
polynomial ξ(sχ) has degree \λ\ - d(λ) and leading coefficient

where y{λ) = f ( a i + d{λ))d^ + β(λ), and δ{λ) = ά(λ).

Proof. Note first that if λ = (n - r +1, Γ" 1 ) for some r e [n] then
ά(λ) = 0 and (Ai)rfW + β(λ) = (n) so that

( i r

n\ K } n\ n\
and the result follows directly from Theorem 4.11. So assume that
the same result holds for hooks and let λ = (a\,..., ar\b\,..., br),
where a,χ > a2 > • • > ar > 0, b\ > b2 > • • > br > 0, and r = f d(λ).
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It is a well-known fact that in the theory of symmetric functions (see,
e.g., [14, Ex. 9, p. 30]) that

(23) sλ = det[sialbj)]ι<ij<r.

Applying now the homomorphism ξ to both sides of (23) we obtain
that

(24) ζ(sλ) =

1 <*(i)J

σeSr

Since the thesis holds for hooks, we know that ξ(S(a.\b.)) is a poly-

nomial of degree αz + bj with leading coefficient (- l)^/( α ; + bj + l)\.

Therefore, from (24), we conclude that deg(ξ(sλ)) < Σi=ι(a' + bi) =

\λ\ - d{λ) and the coefficient of χ\χ\~dW in ξ(sλ) equals

(25) (-l)Σ .,*, det f7 1

1

and since it is well known that this last determinant equals P^δ/\λ\\
(see, e.g., [11, §5.4.8]), the thesis follows. D

Theorem 4.14 has several interesting consequences.

C O R O L L A R Y 4 .15 . Let ΠGP and λ be a partition of n. Then

(26) y

Proof. This follows immediately from Proposition 4.8 and Theorem
4.14. a

COROLLARY 4.16. Let n e P and λ be a partition of n. Then

(27) Σ χλ(w) = (-l)\fiW\fvW\*W.

: e(w)=n-d(λ)}

Proof. This follows immediately from Proposition 4.5 and Theorem
4.14. D
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C O R O L L A R Y 4.17. Let λe^ be such that a(λ) = 0 . Then

μ|!

Proof. If a(λ) — 0 then λ\ = d(λ) and the thesis follows from
Propositions 4.7 and 4.9 and Theorem 4.14. D

From Proposition 4.5 and the preceding corollary we also obtain
the following result.

COROLLARY 4.18. Let λ e 3° be such that a(λ) = 0 and n = f \λ\.
Then

' • * * * ^ ' ^ '

{weSn : e(w)=i}

for ι = 0, 1 , 2 , . . . . D

It would be interesting to obtain combinatorial proofs of (26) and
(27) as they might shed some light on the combinatorial interpretation
of the coefficient of xι in ξ(sλ) also for / < |A| - d(λ). In particular,
we feel that a Schensted-type correspondence should exist that proves
(26).

So far we have concentrated on the combinatorial properties of
ξ{sχ). It seems to be difficult to say anything general about the uni-
modality properties of ξ(sχ). In this direction we are only able to give
the following result, which follows easily from Proposition 4.3.

PROPOSITION 4.19. Let λ e ^ be such that β(λ) = 0 . Then ξ(sλ)

is a symmetric polynomial with center of symmetry at ^~2 .

Proof. Let λ = (λ\, . . . , A^). Since β(λ) = 0 this means that
λfr>k and hence that k = d(λ). Since λ^ > k - 1, the Jacobi-Trudi
identity implies that sχ satisfies the conditions of Proposition 4.3, and
the thesis follows. D

We now look at some properties of the polynomials ζ(mλ). To do
this we will first need the following result, which is also of independent
interest.

LEMMA 4.20. Let neP. Then

eμ.
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Proof. Let, for convenience, P(t) = f Σr>oΛ+iίΓ and E(t) ά=
Σr>Qert

r. Then it is well known (see, e.g., [t£, p. 16]) that

P(-t) = E'{t)/E{t)

(as formal power series in Λq[[ί]]) . Therefore

r>0

r>0

= T,(r+l)er+ιfTι(-l)llχ>( m

Equating the coefficients of tn on both sides of the equality we obtain

= ±(r+ l)enι

mx{μ),m2{μ),...

for n E N, and the thesis follows. α

We can now prove our first main result on the polynomials ξ(mχ).

THEOREM 4.21. Let n e P and λ = (λ\, λ2, . . .) be a partition of
n. Then ξ(mλ) is a polynomial of degree \λ\ — l and leading coefficient

/ iw \
\mι(λ),m2(λ),..J 'n\

Furthermore, ξ{mχ) is divisible by (I - x)W~λ\.

Proof. Since the βχ 's are a basis for Λ we have that

(28)

for some integers Aλμ, where the sum runs over all partitions of
Applying ζ to both sides of (28) yields

(29, ^ ^
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But it is known (see, [14, Chapter I, §6]) that if Aλ,μ φ 0 then μ > λ'
(in the reverse lexicographic ordering) and hence, in particular, l(μ) <
l(K) = Ai. Hence we conclude from (29) that (1 - x)W~λ\ divides
ξ(mλ). Furthermore, there follows from (29) that deg(^(m^)) < \λ\-1
and that the coefficient of x^~ι in ξ(mλ) equals

— n \ — λΛn)'
But, using some well-known properties of the operator ω: Λ —• Λ and
of the inner product ( , } on Λ (see [14, Chapter I, §4] for details)
we obtain from (28) and Lemma 4.20 that

, f(n)) = (ω(m,0, ω(f{n)))

mx(λ), m2(λ), ...J

and the thesis follows. •

Note that the second part of the above result is not best possible
since, for example, if λ = (3, 3) then ξ(m^9^) = J$QX(X ~ I ) 4 even
though \λ\-λχ = 3.

It is also possible to obtain an analogue of Proposition 4.5 for the
polynomials ζ(mλ). Given n e P and a partition λ of n we let
Pλ be the digraph consisting of the disjoint union of mz(λ) directed
paths of size /, for z > 1. We then define a function Iλ: Sn —> N by
letting, for w e Sn, h(w) be the number of (directed) subgraphs of
the functional digraph of w (see, e.g., [7, p. 29]) isomorphic to Pχ.

PROPOSITION 4.22. Let n e P and λ be a partition of n. Then
(-l)n-l(λ)

(30) ξ{mλ) = {—ήϊ-ι

{weSn :.

Proof. It follows from [27, Proposition 1.1] (see also [26, §3]) that

(31) mλ = ^ — } - Σ sgn(w)Iλ(w)pp{w),
wesn

where p(w) is the cycle type of w . But it is clear that Iλ is a class
function and that Iχ(w) = 0 unless c(w) < l(λ). Hence we may
rewrite (31) as

(32) rnλ = (-l)n~ιW
{μ:
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where 1% denotes the value of lχ on permutations of cycle type μ.
Now applying ζ to both sides of (32) and using Theorem 4.2 yields

ξ{mλ)=
{μ

and (30) follows. D

Note that it is possible to derive the first part of Theorem 4.21 from
Proposition 4.22. However, we thought a self-contained proof to be
preferable. As an immediate consequence of the preceding proposition
we obtain the following result.

COROLLARY 4.23. Let neP and λ be a partition of n, λ Φ (ln).
Then ξ{mχ) is divisible by x. D

As is the case for the ξ(sλ) % it seems to be difficult, in general, to
give an explicit formula for ξ(mχ), except when λ is a hook. In order
to do this we will first need the following result.

LEMMA 4.24. Let n e P and r e [n]. Then

(33) W < B - Γ M , I - ) = Σ ( - 1 ) Γ ~ 1 ~ / Λ . - ^

1=0

Proof. Note that, for r e [n],

= m(n-r+\, Γ"1) + m ( Λ - r + 2 , Γ"2) '

(where m,n_r+2 -̂2̂  = 0 if r = 1). Inverting this system of linear

equations yields (33). D

We can now prove the following surprising result.

T H E O R E M 4 .25 . Let neP and r e [n]. Then

£(m(Λ-r+2,1"1)) = ^ t y n - r + 1 , Γ-1))
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Proof. Note that it follows from Theorems 4.1 and 4.2 that

ξ(Pn+l) = Xξ(hn)

for n € P . Hence from Lemma 4.24 we conclude that

i=0
r-1

i=0

where in the last equality we have used a well-known symmetric func-
tions identity (see [14, Ex. 9, p. 30]). D

Since so many of the results that we have proved for the ξ(sχ) 's
have an analogue for the ξ(mχ) 's it is natural to ask whether Corol-
lary 4.17 and Proposition 4.19 also have an analogue for the latters.
Unfortunately,

which shows that the condition a(λ) = 0 is not sufficient to imply that
ξ(mχ)/x is a power of (1—x). However, a much stronger version of
Proposition 4.19 holds for the ξ(mχ) % in fact we have the following
result.

PROPOSITION 4.26. Let λe^ be such that m\(λ) = 0. Then ξ(mλ)

is a symmetric polynomial with center of symmetry at

Proof. Let λ e & be such that mx(λ) = 0. Then it follows im-
mediately from their definition that (if \μ\ = \λ\) then 1% = 0 unless
m\(μ) = 0. Therefore from (32) we conclude that mχ satisfies the
conditions of Proposition 4.4, and the thesis follows. D

We conclude this section by investigating the polynomials ξ(fχ),
where fχ denotes the "forgotten" symmetric function associated to

A. These functions are defined by fχ = ω(mχ) and we refer the
reader to [14, Chapter I, §2] and [8] for further information about
them. The theory of the ξ(fχ)9s is parallel to that of the ξ(mχ)9s but
simpler.
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T H E O R E M 4.27. Let n e P and λ = {λ\, A2, . . . ) be a partition of
n. Then ξ{fχ) is a polynomial of degree \λ\ — 1 and leading coefficient

n\ l(λ) \mι(λ), m2(λ), . . . ) '

Proof. Since the eλ 's are a basis for Λ we have that

for some integers Cχ>μ, where the sum runs over all partitions of
|λ|. Reasoning as in the proof of Theorem 4.21 we conclude that
deg(ζ{fχ)) < \λ\ - 1 and that the coefficient of x ^ " 1 in ξ(fλ) equals

But
/ ( B ) = ω(m{n)) = ω(pn) = (-\)n-λpn .

Hence

by Lemma 4.20, and the thesis follows. D

PROPOSITION 4.28. Let n e P and λ be a partition of n. Then
(_Λ\n-l{λ)

ξ(fx) = ̂ i
{weSn :

Proof. Applying the automorphism ω to both sides of (32) yields

reasoning now as in the proof of Proposition 4.22 gives the desired
result. D

COROLLARY 4.29. Let n e P and λ be a partition of ny λφ{\n).
Then ξ(fλ) is divisible by x. D

P R O P O S I T I O N 4 . 3 0 . Let neP and r e[n]. Then

(-ir
is a unimodal polynomial
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Proof. If r = n then f^ = ω(m^) = ω(en) = hn and the thesis
follows from Proposition 4.3. If r < n - 1 then applying the auto-
morphism ω to both sides of (33) we obtain that

i=0

Now applying ξ to both sides of this equality we get

(34) ξ(f{n_r+lΛr-^) = (-lr-'ΣΦn-dξihi).

But, from Propositions 4.3, 4.4, and 2.1 we deduce that ξ{pn-i)ξ{hi)
is a symmetric unimodal polynomial with center of symmetry at ϊkγ- +
ί γ L = z ?γ i if 1 < i < r-ί and § if i = 0. Therefore Σ'Zo ξ(pn-i)ζ(hi)
is a unimodal (but not necessarily symmetric) polynomial, and the
thesis follows from (34). D

It is not hard to give a simple combinatorial interpretation of the
polynomials considered in the previous result using Proposition 4.28.
Given n e P and w eSn we let Ci(w) be the number of cycles of w
of length /, for / = 1, ... , n.

P R O P O S I T I O N 4 . 3 1 . Let ne¥ and r e[n]. Then

(35) (-l)"-W(n_,+1>r-))=4 Σ Σ ia
' Sn : c(w)<r} i=n-r+l

Proof. It follows immediately from its definition that if λ = (n -
r + 1, V"1) and w e Sn then Iχ{w) equals the sum of the lengths
of the cycles of w having size > n - r + 1, and (35) follows from
Proposition 4.28. D

The proof of the following result is similar to that of Proposition
4.26 and is therefore omitted.

PROPOSITION 4.32. Let λ e <2P be such that mx{λ) = 0. Then
(_1)W-/(Λ)£^) js a symmetric unimodal polynomial with center of
symmetry at ψ . D

5. Conjectures and open problems. There are several problems that
are suggested by the research presented in this paper. Most of them
concern the ring homomorphism ξ defined by (3). In view of Theo-
rem 4.21 and Proposition 4.9 it is natural to define, for λ e 3? , Sλ(x)
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and Mχ(x) to be the unique polynomials such that

ξ(mλ) =

and 5^(1), Mλ{\) Φ 0, for some (necessarily unique) p(λ), q{λ) G N .
Regarding these polynomials we feel that the following statements are
true.

Conjecture 5.1. Let λ G &. Then M^(x) has only real zeros.

Conjecture 5.2. Let Λ G ^ . Then Sλ(x) has only real zeros.

These conjectures have been verified for |Λ| < 8. Unfortunately,
the interest in the above conjectures is somewhat diminished by the
fact that the polynomials Mλ(x) and Sχ(x) do not always have non-
negative coefficients. For example, one can compute that £(4>4)(.x) =
14(JC2 - 6x + 1) and Af(4>4)(x) = 4x(x2 - 16x + 1). In particular,
this shows that Sλ(x) need not be unimodal even if β(λ) = 0. How-
ever, it would be interesting to know for which partitions λ we have
that Sχ{x), Mλ(x) G N[x]. In this respect, we feel that the following
statement holds.

Conjecture 5.3. Let λ be a hook. Then the polynomial Sχ(x) (equiv-
alently, Mλ{x)) has nonnegative coefficients and only real zeros. In
particular, it is log-concave and unimodal.

This conjecture has been verified for \λ\ < 8. It is not hard to
show that it holds if l(λ) < 2 or if l(λf) < 3, we have also verified
that it holds if 3 < l{λ) < 5 and |Λ| < 12. As further evidence that
Sχ(x) E N[x] if λ is a hook let us mention that it follows easily from
our definitions and Theorem 4.11 that

for n e P and r e[n]. Thus it is possible that a simple combinatorial
interpretation exists for the coefficients of S^(x) when λ is a hook.

From the algebraic point of view the most interesting problem about
ξ is that of characterizing its kernel. Theorems 4.1 and 4.2 imply that

ξ(Pn+ι -Pihn) = 0,

for n e P . This naturally suggests the following question.

Problem 5.4. Does {pn+\ —Pihn ". n G P} generate ker(£) ?
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From the point of view of permutation enumeration we feel that
the results presented in §3 naturally suggest the investigation of the
following general question.

Problem 5.5. For which subsets T QSn does the polynomial Eτ(x)

= ΣπeTx
e^ have only real zeros?

Theorem 3.2 shows that the answer to the above problem is affir-
mative if T is a conjugacy class of Sn . That the answer is affirmative
for T = Sn is a well-known, but nontrivial, classical result (see, e.g.,
[7, p. 292, Ex. 3]) while for T = Dn (where Dn denotes the set of all
derangements of Sn) it was conjectured in [3, p. 1140] and recently
proved by R. Canfield (private communication). That there should
be many more subsets T for which Problem 5.5 has an affirmative
solution is also suggested, in view of the close relationship existing
between excedances and descents (see, e.g., [23, Proposition 1.3.12]),
by the following conjecture, which was made by R. Stanley in 1986.

Conjecture 5.6. Let (P, ώ) be a finite labeled poset and S*{P, ω) c
S\p\ be its Jordan Holder set (see, e.g., [23, p. 131], for the definition
of this terminology). Then the polynomial Σ π e - ^ Λ ω ) * ^ has only
real zeros.

Conjecture 5.6 can be stated in many equivalent ways (see, e.g., [2,
§§1.2, 1.4, and 6.3]) and is known as the "Poset Conjecture" or as the
"Neggers-Stanley Conjecture" (since J. Neggers conjectured it in the
case that ω is a natural labeling). It is known to be true for many
infinite classes of posets but is still open in general, even for natural
labelings. We refer the reader to [2], [18], [25], and [29] for further
information about it.
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