On the topology of arrangements of a cubic and its inflectional tangents

By Shinzo BANNAI,*' Benoît GUERVILLE-BALLÉ,**' Taketo SHIRANE***' and Hiro-o TOKUNAGA****'

(Communicated by Heisuke HIRONAKA, M.J.A., May 12, 2017)

Abstract: A k-Artal arrangement is a reducible algebraic curve composed of a smooth cubic and k inflectional tangents. By studying the topological properties of their subarrangements, we prove that for k = 3, 4, 5, 6, there exist Zariski pairs of k-Artal arrangements. These Zariski pairs can be distinguished in a geometric way by the number of collinear triples in the set of singular points of the arrangement contained in the cubic.

Key words: Subarrangement; Zariski pair; k-Artal arrangement.

1. Introduction. In this article, we continue to study Zariski pairs for reducible plane curves based on the idea used in [3]. A pair $(\mathcal{B}^1, \mathcal{B}^2)$ of reduced plane curves in \mathbf{P}^2 is said to be a Zariski pair if (i) both \mathcal{B}^1 and \mathcal{B}^2 have the same combinatorics and (ii) $(\mathbf{P}^2, \mathcal{B}^1)$ is *not* homeomorphic to $(\mathbf{P}^2, \mathcal{B}^2)$ (see [2] for details about Zariski pairs). As we have seen in [2], the study of Zariski pairs, roughly speaking, consists of two steps:

- (i) How to construct (or find) plane curves with the same combinatorics but having *some* different properties.
- (ii) How to distinguish the topology of $(\mathbf{P}^2, \mathcal{B}^1)$ and $(\mathbf{P}^2, \mathcal{B}^2)$.

As for the second step, various tools such as fundamental groups, Alexander invariants, braid monodromies, existence/non-existence of Galois covers and so on have been used. In [3], the first and last authors considered another elementary method in order to study Zariski k-plets for arrangements of reduced plane curves and showed its effectiveness by giving some new examples. In this article, we study the topology of arrangements of a smooth cubic and its inflectional tangents along the same line.

1.1. Subarrangements. We here reformulate our idea in [3] more precisely. Let \mathcal{B}_{ρ} be a (possibly

doi: 10.3792/pjaa.93.50 ©2017 The Japan Academy

empty) reduced plane curve \mathcal{B}_o . We define $\underline{\text{Curve}}_{\text{red}}^{\mathcal{B}_o}$ to be the set of the reduced plane curves of the form $\mathcal{B}_o + \mathcal{B}$, where \mathcal{B} is a reduced curve with no common component with \mathcal{B}_o .

Let $\mathcal{B} = \mathcal{B}_1 + \cdots + \mathcal{B}_r$ denote the irreducible decomposition of \mathcal{B} . For a subset \mathcal{I} of the power set $2^{\{1,\ldots,r\}}$ of $\{1,\ldots,r\}$, which does not contain the empty set \emptyset , we define the subset $\underline{\operatorname{Sub}}_{\mathcal{I}}(\mathcal{B}_o, \mathcal{B})$ of $\underline{\operatorname{Curve}}_{\operatorname{red}}^{\mathcal{B}_o}$ by:

$$\underline{\operatorname{Sub}}_{\mathcal{I}}(\mathcal{B}_o, \mathcal{B}) := \left\{ \mathcal{B}_o + \sum_{i \in I} \mathcal{B}_i \; \middle| \; I \in \mathcal{I} \right\}.$$

For $\mathcal{I} = 2^{\{1,...,r\}} \setminus \emptyset$, we denote $\underline{\operatorname{Sub}}_{\mathcal{I}}(\mathcal{B}_o, \mathcal{B}) = \underline{\operatorname{Sub}}_{\mathcal{I}}(\mathcal{B}_o, \mathcal{B}).$

Let A be a set and suppose that a map

 $\Phi_{\mathcal{B}_o}: \underline{\operatorname{Curve}}_{\operatorname{red}}^{\mathcal{B}_o} \to A$

with the following property is given: for $\mathcal{B}_o + \mathcal{B}^1, \mathcal{B}_o + \mathcal{B}^2 \in \underbrace{\operatorname{Curve}}_{\operatorname{red}}^{\mathcal{B}_o}$, if there exists a homeomorphism $h: (\mathbf{P}^2, \mathcal{B}_o + \mathcal{B}^1) \to (\mathbf{P}^2, \mathcal{B}_o + \mathcal{B}^2)$ with $h(\mathcal{B}_o) = \mathcal{B}_o$, then $\Phi_{\mathcal{B}_o}(\mathcal{B}_o + \mathcal{B}^1) = \Phi_{\mathcal{B}_o}(\mathcal{B}_o + \mathcal{B}^2)$.

We denote by $\tilde{\Phi}_{\mathcal{B}_o,\mathcal{B}}$ the restriction of $\Phi_{\mathcal{B}_o}$ to $\underline{\operatorname{Sub}}(\mathcal{B}_o,\mathcal{B})$. Note that if there exists a homeomorphism $h: (\mathbf{P}^2, \mathcal{B}_o + \mathcal{B}^1) \to (\mathbf{P}^2, \mathcal{B}_o + \mathcal{B}^2)$ for $\mathcal{B}_o + \mathcal{B}^1, \mathcal{B}_o + \mathcal{B}^2 \in \underline{\operatorname{Curve}}_{\operatorname{red}}^{\mathcal{B}_o}$ with $h(\mathcal{B}_o) = \mathcal{B}_o$, then we have the induced map $h_{\natural}: \underline{\operatorname{Sub}}(\mathcal{B}_o, \mathcal{B}^1) \to \underline{\operatorname{Sub}}(\mathcal{B}_o, \mathcal{B}^2)$ such that $\tilde{\Phi}_{\mathcal{B}_o, \mathcal{B}^1} = \tilde{\Phi}_{\mathcal{B}_o, \mathcal{B}^2} \circ h_{\natural}$:

Remark 1.1. In §2 we give four explicit examples for $\Phi_{\mathcal{B}_a}$ and $\tilde{\Phi}_{\mathcal{B}_a,\mathcal{B}}$ allowing to distinguish

²⁰¹⁰ Mathematics Subject Classification. Primary 14H50, 14H45, 14H45, 51H30.

^{*)} Department of Natural Sciences, National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka, Ibaraki 312-8508, Japan.

 ^{**)} Department of Mathematics, Tokyo Gakugei University,
 4-1-1 Nukuikita-machi, Koganei, Tokyo 184-8501, Japan.

^{***)} National Institute of Technology, Ube College, 2-14-1 Tokiwadai, Ube, Yamaguchi 755-8555, Japan.

^{****)} Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.

the k-Artal arrangements (see §1.2 for the definition), using the Alexander polynomial, the existence of D_6 -covers, the splitting numbers and the linking set.

If $\mathcal{D}_o + \mathcal{D}^1, \mathcal{D}_o + \mathcal{D}^2 \in \underline{\operatorname{Curve}}_{\operatorname{red}}^{\mathcal{D}_o}$ have the same combinatorics, then any homeomorphism $h: (\mathcal{T}^1, \mathcal{D}_o + \mathcal{D}^1) \to (\mathcal{T}^2, \mathcal{D}_o + \mathcal{D}^2)$ with $h(\mathcal{D}_o) = \mathcal{D}_o$ induces a map $h_{\natural}: \underline{\operatorname{Sub}}(\mathcal{D}_o, \mathcal{D}^1) \to \underline{\operatorname{Sub}}(\mathcal{D}_o, \mathcal{D}^2)$, where \mathcal{T}^i is a tubular neighborhood of $\mathcal{D}_o + \mathcal{D}^i$ for i = 1, 2. Let $(\mathcal{D}_o + \mathcal{D}^1, \mathcal{D}_o + \mathcal{D}^2)$ be a Zariski pair of curves in $\underline{\operatorname{Curve}}_{\operatorname{red}}^{\mathcal{D}_o}$ such that

- it is distinguished by $\Phi_{\mathcal{D}_o} : \underline{\operatorname{Curve}}_{\operatorname{red}}^{\mathcal{D}_o} \to A$, i.e., any homeomorphism $h : (\mathcal{T}^1, \mathcal{D}_o + \mathcal{D}^1) \to (\mathcal{T}^2, \mathcal{D}_o + \mathcal{D}^2)$ necessarily satisfies $h(\mathcal{D}_o) = \mathcal{D}_o$ and $\Phi_{\mathcal{D}_o}(\mathcal{D}_o + \mathcal{D}^1) \neq \Phi_{\mathcal{D}_o}(\mathcal{D}_o + \mathcal{D}^2)$, and
- the combinatorial type of $\mathcal{D}_o + \mathcal{D}^1$ and $\mathcal{D}_o + \mathcal{D}^2$ is <u>C</u>.

Assuming the existence of such a Zariski pair for the combinatorial type \underline{C} , we construct Zariski pairs with glued combinatorics. We first note that the following proposition is immediate:

Proposition 1.2. Choose $\mathcal{B}_o + \mathcal{B}^1, \mathcal{B}_o + \mathcal{B}^2 \in \underline{\text{Curve}}_{\text{red}}^{\mathcal{B}_o}$ with the same combinatorial type. Let $\underline{\text{Sub}}_{\underline{C}}(\mathcal{B}_o, \mathcal{B}^j)$ (j = 1, 2) be the sets of subarrangements of $\mathcal{B}_o + \mathcal{B}^j$ having the combinatorial type \underline{C} (j = 1, 2), respectively. If

- (i) any homeomorphism $h: (T^1, \mathcal{B}_o + \mathcal{B}^1) \to (T^2, \mathcal{B}_o + \mathcal{B}^2)$ necessarily satisfies $h(\mathcal{B}_o) = \mathcal{B}_o,$ where T^i is a tubular neighborhood of $\mathcal{B}_o + \mathcal{B}^i$ for i = 1, 2, and
- (ii) for some elements $a_1 \in A$,

$$\sharp(\tilde{\Phi}_{\mathcal{B}_o,\mathcal{B}^1}^{-1}(a_1) \cap \underline{\operatorname{Sub}}_{\underline{C}}(\mathcal{B}_o,\mathcal{B}^1)) \neq \sharp(\tilde{\Phi}_{\mathcal{B}_o,\mathcal{B}^2}^{-1}(a_1) \cap \underline{\operatorname{Sub}}_{\underline{C}}(\mathcal{B}_o,\mathcal{B}^2)),$$

then $(\mathcal{B}_o + \mathcal{B}^1, \mathcal{B}_o + \mathcal{B}^2)$ is a Zariski pair.

Remark 1.3. If for all automorphism σ of the combinatorics of $\mathcal{B}_o + \mathcal{B}^j$, $\sigma(\mathcal{B}_o) = \mathcal{B}_o$ then hypothesis (i) of Proposition 1.2 is always verified. In particular, it is the case if $\deg(\mathcal{B}_o) \neq \deg(\mathcal{B}_i)$, for $i = 1, \ldots, r$.

1.2. Artal arrangements. In this article, we apply Proposition 1.2 to distinguish Zariski pairs formed by *Artal arrangements*. These curves are defined as follows:

Let *E* be a smooth cubic, let P_i $(1 \le i \le 9)$ be its 9 inflection points and let L_{P_i} be the tangent lines at P_i $(1 \le i \le 9)$, respectively.

Definition 1.4. Choose a subset $I \subset \{1, \ldots, 9\}$. We call an arrangement $\mathcal{C} = E + \mathcal{C}$

 $\sum_{i \in I} L_{P_i}$ an Artal arrangement for I. In particular, if $k = \sharp(I)$, we call C a k-Artal arrangement.

The idea is to apply Proposition 1.2 to the case when $\mathcal{B}_o = E$ and $\mathcal{B} = \sum_{i \in I} L_{P_i}$. Let \mathcal{C}^1 and \mathcal{C}^2 be two k-Artal arrangements. Note that if there exists a homeomorphism $h : (\mathbf{P}^2, \mathcal{C}^1) \to (\mathbf{P}^2, \mathcal{C}^2), h(E) = E$ always holds. In [1], E. Artal gave an example of a Zariski pair for 3-Artal arrangements. Based on this example, we make use of our method to find other examples of Zariski pairs of k-Artal arrangements and obtain the following

Theorem 1.5. There exist Zariski pairs for k-Artal arrangements for k = 4, 5, 6.

Remark 1.6. Note that the case of k = 5 is considered in [4], where it is shown that there exists a Zariski pair for 5-Artal arrangements.

2. Some explicit examples for $\Phi_{\mathcal{B}_o}$. We here introduce four examples for $\Phi_{\mathcal{B}_o}$. The last two were recently considered by the second author and J.-B. Meilhan [4] and the third author [6], respectively.

2.1. D_{2p} -covers. For terminologies and notation, we use those introduced in [2, §3], freely.

Let D_{2p} be the dihedral group of order 2p. Let $\operatorname{Cov}_b(\mathbf{P}^2, 2\mathcal{B}, D_{2p})$ be the set of isomorphism classes of D_{2p} -covers branched at $2\mathcal{B}$.

of D_{2p} -covers branched at $2\mathcal{B}$. We now define $\Phi_{\mathcal{B}_o}^{D_{2p}} : \underline{\operatorname{Curve}}_{\operatorname{red}}^{\mathcal{B}_o} \to \{0,1\}$ as follows:

$$\Phi_{\mathcal{B}_o}^{D_{2p}}(\mathcal{B}_o + \mathcal{B}) = \begin{cases} 1 \text{ if } \operatorname{Cov}_b(\mathbf{P}^2, 2(\mathcal{B}_o + \mathcal{B}), D_{2p}) \neq \emptyset\\ 0 \text{ if } \operatorname{Cov}_b(\mathbf{P}^2, 2(\mathcal{B}_o + \mathcal{B}), D_{2p}) = \emptyset. \end{cases}$$

Note that $\Phi_{\mathcal{B}_o}^{D_{2p}}$ satisfies the required condition described in the Introduction. Thus, we define the map $\tilde{\Phi}_{\mathcal{B}_o,\mathcal{B}}^{D_6}$ as the restriction of $\Phi_{\mathcal{B}_o}^{D_6}$ to $\underline{\mathrm{Sub}}(\mathcal{B}_o,\mathcal{B})$.

2.2. Alexander polynomials. For the Alexander polynomials of reduced plane curves, see $[2, \S2]$. Let $\Delta : \underline{\operatorname{Curve}}_{\operatorname{red}}^{\mathcal{B}_o} \to \mathbf{C}[t]$ be the map assigning to a curve of $\underline{\operatorname{Curve}}_{\operatorname{red}}^{\mathcal{B}_o}$ its Alexander polynomial. We define the map $\Phi_{\mathcal{B}_o}^{\operatorname{Alex}} : \underline{\operatorname{Curve}}_{\operatorname{red}}^{\mathcal{B}_o} \to \{0, 1\}$ by:

$$\Phi_{\mathcal{B}_o}^{\text{Alex}}(\mathcal{B}_o + \mathcal{B}') = \begin{cases} 1 & \text{if } \Delta(\mathcal{B}_o + \mathcal{B}') \neq 1 \\ 0 & \text{if } \Delta(\mathcal{B}_o + \mathcal{B}') = 1. \end{cases}$$

As previously, we define $\tilde{\Phi}_{\mathcal{B}_o,\mathcal{B}}^{\text{Alex}}$ as the restriction of $\Phi_{\mathcal{B}_o}^{\text{Alex}}$ to $\underline{\text{Sub}}(\mathcal{B}_o,\mathcal{B})$.

2.3. Splitting numbers. Let $\mathcal{B}_o + \mathcal{B}$ be a reduced curves such that \mathcal{B}_o is smooth, and let m be the degree of \mathcal{B} . Let $\pi_{\mathcal{B}}: X \to \mathbf{P}^2$ be the unique cover branched over \mathcal{B} , corresponding to the surjection of $\pi_1(\mathbf{P}^2 \setminus \mathcal{B}) \to \mathbf{Z}/m\mathbf{Z}$ sending all meri-

dians of the \mathcal{B}_i to 1. The splitting number of \mathcal{B}_o for $\pi_{\mathcal{B}}$, denoted by $s_{\pi_{\mathcal{B}}}(\mathcal{B}_o)$ is the number of irreducible components of the pull-back $\pi_{\mathcal{B}}^*\mathcal{B}_o$ of \mathcal{B}_o by $\pi_{\mathcal{B}}$ (see [6] for the general definition). By [6, Proposition 1.3], the application:

$$\Phi^{ ext{split}}_{\mathcal{B}_o} : \left\{ egin{array}{ccc} \underline{ ext{Curve}}^{\mathcal{B}_o} & \longrightarrow & \mathbf{N}^* \ \mathcal{B}_o + \mathcal{B} & \longmapsto & s_{\pi_\mathcal{B}}(\mathcal{B}_o) \end{array}
ight.,$$

verify the condition of Proposition 1.2, where \mathbf{N}^* is the set of integers more than 0. We can then define the map $\tilde{\Phi}_{\mathcal{B}_o,\mathcal{B}}^{\text{split}}: \underline{\operatorname{Sub}}(\mathcal{B}_o,\mathcal{B}) \to \mathbf{N}^*$ as the restriction of $\Phi_{\mathcal{B}_o}^{\text{split}}$ to $\underline{\operatorname{Sub}}(\mathcal{B}_o,\mathcal{B})$.

2.4. Linking set. Let \mathcal{B}_o be a non-empty curve, with smooth irreducible components. A cycle of \mathcal{B}_o is a S^1 embedded in \mathcal{B}_o . For $\mathcal{B}_o + \mathcal{B} \in \underline{\text{Curve}}_{\text{red}}^{\mathcal{B}_o}$, we define the *linking set* of \mathcal{B}_o , denoted by $\text{lks}_{\mathcal{B}}(\mathcal{B}_o)$, as the set of classes in $\mathbf{H}_1(\mathbf{P}^2 \setminus \mathcal{B})/\text{Ind}_{\mathcal{B}_o}$ of the cycles of \mathcal{B}_o which do not intersect \mathcal{B} , where $\text{Ind}_{\mathcal{B}_o}$ is the subgroup of $\mathbf{H}_1(\mathbf{P}^2 \setminus \mathcal{B})$ generated by the meridians in \mathcal{B}_o around the points of $\mathcal{B}_o \cap \mathcal{B}$. This definition is weaker than [4, Definition 3.9]. By [4, Theorem 3.13], the map defined by:

$$\Phi_{\mathcal{B}_o}^{\text{lks}}: \left\{ \begin{array}{cc} \underline{\text{Curve}}_{\text{red}}^{\mathcal{B}_o} & \longrightarrow & \mathbf{N}^* \cup \{\infty\} \\ \mathcal{B}_o + \mathcal{B} & \longmapsto & \sharp \text{lks}_{\mathcal{B}}(\mathcal{B}_o) \end{array} \right.$$

verify the condition of Proposition 1.2. We can thus define the map $\tilde{\Phi}_{\mathcal{B}_o,\mathcal{B}}^{\text{lks}}$ as the restriction of $\Phi_{\mathcal{B}_o}^{\text{lks}}$ to $\underline{\text{Sub}}(\mathcal{B}_o,\mathcal{B})$.

3. The geometry of inflection points of a smooth cubic. Let $E \subset \mathbf{P}^2$ be a smooth cubic curve and let $O \in E$ be an inflection point of E. In this section we consider the elliptic curve (E, O). The following facts are well-known:

- (a) The set of inflection points of E can be identified with $(\mathbf{Z}/3\mathbf{Z})^{\oplus 2} \subset E$, the subgroup of three torsion points of E. This identification comes from the cubic group law with neutral element, a flex.
- (b) Let P, Q, R be distinct inflection points of E. Then P, Q, R are collinear if and only if $P + Q + R = O \in (\mathbb{Z}/3\mathbb{Z})^{\oplus 2}$.

From the above facts we can study the geometry of inflection points and the following proposition follows:

Proposition 3.1. Let *E* be a cubic curve and $\{P_1, \ldots, P_k\} \in E$ be a set of distinct inflection points of *E*. Let *n* be the number of triples $\{P_{i_1}, P_{i_2}, P_{i_3}\} \subset \{P_1, \ldots, P_k\}$ such that they are collinear. Then the possible values of *n* for $k = 3, \ldots, 9$ are as in the following table:

Table							
k	3	4	5	6	7	8	9
n	0,1	0,1	1,2	2,3	5	8	12

4. Proof of the main theorem.

4.1. The case of 3-Artal arrangements. Using the four invariants introduced in §2, we can prove the original result of E. Artal. Let I = $\{i_1, i_2, i_3\} \subset \{1, \ldots, 9\}$ and $\mathcal{L}_I = \sum_{i \in I} L_{P_i}$.

Theorem 4.1. For a 3-Artal arrangement $C = E + \sum_{i \in I} L_{P_i} = E + \mathcal{L}_I$, we have:

(a)
$$\tilde{\Phi}_{E,\mathcal{L}_{I}}^{D_{6}}(\mathcal{C}) = \begin{cases} 1 & \text{if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text{ are collinear} \\ 0 & \text{if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text{ are not collinear} \end{cases}$$

(b)
$$\tilde{\Phi}_{E,\mathcal{L}_{I}}^{\text{Alex}}(\mathcal{C}) = \begin{cases} 1 & \text{if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text{ are collinear} \\ 0 & \text{if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text{ are not collinea} \end{cases}$$

(c)
$$\tilde{\Phi}_{E,\mathcal{L}_{I}}^{\text{split}}(\mathcal{C}) = \begin{cases} 3 & \text{if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text{ are collinear} \\ 1 & \text{if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text{ are not collinear} \end{cases}$$

(d)
$$\tilde{\Phi}_{E,\mathcal{L}_{I}}^{\text{lks}}(\mathcal{C}) = \begin{cases} 1 & \text{if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text{ are collinear} \\ 3 & \text{if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text{ are not collinear} \end{cases}$$

Proof. (a) This is the result of the last author ([7]).

- (b) This is the result of E. Artal ([1]).
- (c) By [6, Theorem 2.7], we obtain $\Phi_E^{\text{split}}(\mathcal{C}) = 3$ if the three tangent points are collinear, and $\Phi_E^{\text{split}}(\mathcal{C}) = 1$ otherwise.
- (d) Using the same arguments as in [5], we can prove that, in the case of 3-Artal arrangements, $\tilde{\Phi}_{E,\mathcal{L}_{I}}^{\text{split}}(\mathcal{C}) = \frac{3}{\sharp \| \mathbf{k}_{\mathcal{S}_{L}}(E)}$. Using the previous point we obtain the result.

Remark 4.2. It is also possible to consider $\tilde{\Phi}_{\mathcal{L}_{J},E}^{\text{lks}}(E)$. But in this case, we have no method to compute it in the general case. But, if E is the cubic defined by $x^3 - xz^2 - y^2z = 0$, the computation done in [4] implies the result.

Corollary 4.3. Choose $\{i_1, i_2, i_3, i_4\} \subset \{1, \ldots, 9\}$ such that $P_{i_1}, P_{i_2}, P_{i_3}$ are collinear, while $P_{i_1}, P_{i_2}, P_{i_4}$ are not collinear. Put $C_1 = E + L_{i_1} + L_{i_2} + L_{i_3}$ and $C_2 = E + L_{i_1} + L_{i_2} + L_{i_4}$. Then (C_1, C_2) is a Zariski pair.

4.2. The other cases. Choose a subset J of $\{1, \ldots, 9\}$ such that $4 \leq \sharp J \leq 6$ and let

$$\mathcal{C}:=E+\mathcal{L}_J, \,\, \mathcal{L}_J=\sum_{j\in J}L_{P_j},$$

be a k-Artal arrangement. To distinguish these arrangements in a geometric way (as the collinearity in the case of 3-Artal arrangements), let us introduce the type of a k-Artal arrangement.

Definition 4.4. For k = 4, 5, 6, we say an arrangement of the form $C = E + L_{P_1} + \cdots + L_{P_k}$ to be of Type I if the number n of collinear triples in $\{P_1, \ldots, P_k\}$ is n = k - 3, while we say C to be of Type II if the number n of collinear triples in $\{P_1, \ldots, P_k\}$ is n = k - 4.

Theorem 4.5. Let C_1 be an arrangement of Type I and C_2 be an arrangement of Type II. Then (\mathbf{P}^2, C_1) and (\mathbf{P}^2, C_2) are not homeomorphic as pairs.

Furthermore if C_1 and C_2 have the same combinatorics, C_1, C_2 form a Zariski pair.

Proof. Let C be a k-Artal arrangement (k = 4, 5, 6). We denote by $\underline{\operatorname{Sub}}(E, \mathcal{L}_J)_3$ the set of 3-Artal arrangements contained in $\underline{\operatorname{Sub}}(E, \mathcal{L}_J)$. Let $\Phi_{\mathcal{L},3}^{D_6}$, $\Phi_{\mathcal{L},3}^{\operatorname{Alex}}$, $\Phi_{\mathcal{L},3}^{\operatorname{split}}$ and $\Phi_{\mathcal{L},3}^{\operatorname{ks}}$ be the restrictions of $\tilde{\Phi}_{E,\mathcal{L}_J}^{D_6}$, $\tilde{\Phi}_{E,\mathcal{L}_J}^{\operatorname{Alex}}$, $\tilde{\Phi}_{E,\mathcal{L}_J}^{\operatorname{split}}$ and $\tilde{\Phi}_{E,\mathcal{L}_J}^{\operatorname{ks}}$ to $\underline{\operatorname{Sub}}(E, \mathcal{L}_J)_3$, respectively. Then by Theorem 4.1, we have

$$\begin{aligned} & \sharp(\Phi_{\mathcal{C},3}^{D_6^{-1}}(1)) \\ &= \sharp(\Phi_{\mathcal{C},3}^{\text{Alex}^{-1}}(1)) \\ &= \sharp(\Phi_{\mathcal{C},3}^{\text{split}^{-1}}(3)) \\ &= \sharp(\Phi_{\mathcal{C},3}^{\text{lks}^{-1}}(1)) \\ &= \begin{cases} k-3 & \text{if } \mathcal{C} \text{ is Type I} \\ k-4 & \text{if } \mathcal{C} \text{ is Type II.} \end{cases} \end{aligned}$$

If a homeomorhism $h : (\mathbf{P}^2, \mathcal{C}_1) \to (\mathbf{P}^2, \mathcal{C}_2)$ exists, it follows that $h_{\natural}(\underline{\operatorname{Sub}}(\mathcal{C}_1)_3) = \underline{\operatorname{Sub}}(\mathcal{C}_2)_3$. This contradicts the above values. Hence our statements follow.

Remark 4.6. Here are two remarks:

- (i) If the *j*-invariant of the cubic E is not equal to 0, no three inflectional tangent lines are concurrent. Hence C_1 and C_2 have only double points as their singularities and their combinatorics are the same.
- (ii) We note that for k = 1, 2, 7, 8, 9 it can be proved that there do not exist Zariski pairs consisting of k-Artal arrangements with only double points as their singularities.

Acknowledgement. The second author is supported by a JSPS post-doctoral grant.

References

- [1] E. Artal Bartolo, Sur les couples de Zariski, J. Algebraic Geom. 3 (1994), no. 2, 223–247.
- [2] E. Artal Bartolo, J. I. Cogolludo and H. Tokunaga, A survey on Zariski pairs, in Algebraic geometry in East Asia—Hanoi 2005, 1–100, Adv. Stud. Pure Math., 50, Math. Soc. Japan, Tokyo, 2008.
- [3] S. Bannai and H. Tokunaga, Geometry of bisections of elliptic surfaces and Zariski N-plets for conic arrangements, Geom. Dedicata 178 (2015), 219–237.
- [4] B. Guerville-Ballé and J.-B. Meilhan, A linking invariant for algebraic curves, arXiv:1602.04916.
- [5] B. Guerville-Ballé and T. Shirane, Non-homotopicity of the linking set of algebraic plane curves, arXiv:1607.04951.
- [6] T. Shirane, A note on splitting numbers for Galois covers and π_1 -equivalent Zariski k-plets, Proc. Amer. Math. Soc. **145** (2017), no. 3, 1009–1017.
- [7] H. Tokunaga, A remark on E. Artal's paper, Kodai Math. J. 19 (1996), no. 2, 207–217.