On the topology of arrangements of a cubic and its inflectional tangents

By Shinzo Bannai, ${ }^{*)}$ Benoît Guerville-Ballé,**) Taketo Shirane***) and Hiro-o Tokunaga ${ }^{* * *)}$

(Communicated by Heisuke Hironaka, m.J.a., May 12, 2017)

Abstract

A k-Artal arrangement is a reducible algebraic curve composed of a smooth cubic and k inflectional tangents. By studying the topological properties of their subarrangements, we prove that for $k=3,4,5,6$, there exist Zariski pairs of k-Artal arrangements. These Zariski pairs can be distinguished in a geometric way by the number of collinear triples in the set of singular points of the arrangement contained in the cubic.

Key words: Subarrangement; Zariski pair; k-Artal arrangement.

1. Introduction. In this article, we continue to study Zariski pairs for reducible plane curves based on the idea used in [3]. A pair ($\mathcal{B}^{1}, \mathcal{B}^{2}$) of reduced plane curves in \mathbf{P}^{2} is said to be a Zariski pair if (i) both \mathcal{B}^{1} and \mathcal{B}^{2} have the same combinatorics and (ii) $\left(\mathbf{P}^{2}, \mathcal{B}^{1}\right)$ is not homeomorphic to $\left(\mathbf{P}^{2}, \mathcal{B}^{2}\right)$ (see [2] for details about Zariski pairs). As we have seen in [2], the study of Zariski pairs, roughly speaking, consists of two steps:
(i) How to construct (or find) plane curves with the same combinatorics but having some different properties.
(ii) How to distinguish the topology of $\left(\mathbf{P}^{2}, \mathcal{B}^{1}\right)$ and $\left(\mathbf{P}^{2}, \mathcal{B}^{2}\right)$.
As for the second step, various tools such as fundamental groups, Alexander invariants, braid monodromies, existence/non-existence of Galois covers and so on have been used. In [3], the first and last authors considered another elementary method in order to study Zariski k-plets for arrangements of reduced plane curves and showed its effectiveness by giving some new examples. In this article, we study the topology of arrangements of a smooth cubic and its inflectional tangents along the same line.
1.1. Subarrangements. We here reformulate our idea in [3] more precisely. Let \mathcal{B}_{o} be a (possibly

[^0]empty) reduced plane curve \mathcal{B}_{o}. We define Curve ${ }_{\text {red }}^{\mathcal{B}_{o}}$ to be the set of the reduced plane curves of the form $\mathcal{B}_{o}+\mathcal{B}$, where \mathcal{B} is a reduced curve with no common component with \mathcal{B}_{o}.

Let $\mathcal{B}=\mathcal{B}_{1}+\cdots+\mathcal{B}_{r}$ denote the irreducible decomposition of \mathcal{B}. For a subset \mathcal{I} of the power set $2^{\{1, \ldots, r\}}$ of $\{1, \ldots, r\}$, which does not contain the empty set \emptyset, we define the subset $\underline{\operatorname{Sub}}_{\mathcal{I}}\left(\mathcal{B}_{o}, \mathcal{B}\right)$ of Curve $_{\text {red }}^{\mathcal{B}_{o}}$ by:

$$
\underline{\operatorname{Sub}}_{\mathcal{I}}\left(\mathcal{B}_{o}, \mathcal{B}\right):=\left\{\mathcal{B}_{o}+\sum_{i \in I} \mathcal{B}_{i} \mid I \in \mathcal{I}\right\} .
$$

For $\mathcal{I}=2^{\{1, \ldots, r\}} \backslash \emptyset, \quad$ we \quad denote $\quad \underline{\operatorname{Sub}}\left(\mathcal{B}_{o}, \mathcal{B}\right)=$ $\underline{\operatorname{Sub}}_{\mathcal{I}}\left(\mathcal{B}_{o}, \mathcal{B}\right)$.

Let A be a set and suppose that a map

$$
\Phi_{\mathcal{B}_{o}}: \underline{\text { Curve }}_{\text {red }}^{\mathcal{B}_{o}} \rightarrow A
$$

with the following property is given: for $\mathcal{B}_{o}+$ $\mathcal{B}^{1}, \mathcal{B}_{o}+\mathcal{B}^{2} \in \underline{\text { Curve }}_{\text {red }}^{\mathcal{B}_{o}}$, if there exists a homeomorphism $h:\left(\mathbf{P}^{2}, \mathcal{B}_{o}+\mathcal{B}^{1}\right) \rightarrow\left(\mathbf{P}^{2}, \mathcal{B}_{o}+\mathcal{B}^{2}\right) \quad$ with $h\left(\mathcal{B}_{o}\right)=\mathcal{B}_{o}$, then $\Phi_{\mathcal{B}_{o}}\left(\mathcal{B}_{o}+\mathcal{B}^{1}\right)=\Phi_{\mathcal{B}_{o}}\left(\mathcal{B}_{o}+\mathcal{B}^{2}\right)$.

We denote by $\tilde{\Phi}_{\mathcal{B}_{o}, \mathcal{B}}$ the restriction of $\Phi_{\mathcal{B}_{o}}$ to $\underline{\operatorname{Sub}}\left(\mathcal{B}_{o}, \mathcal{B}\right)$. Note that if there exists a homeomorphism $h:\left(\mathbf{P}^{2}, \mathcal{B}_{o}+\mathcal{B}^{1}\right) \rightarrow\left(\mathbf{P}^{2}, \mathcal{B}_{o}+\mathcal{B}^{2}\right)$ for $\mathcal{B}_{o}+$ $\mathcal{B}^{1}, \mathcal{B}_{o}+\mathcal{B}^{2} \in$ Curve $_{\text {red }}^{\mathcal{B}_{o}}$ with $h\left(\mathcal{B}_{o}\right)=\mathcal{B}_{o}$, then we have the induced map $h_{\natural}: \underline{\operatorname{Sub}}\left(\mathcal{B}_{o}, \mathcal{B}^{1}\right) \rightarrow$ $\underline{\operatorname{Sub}}\left(\mathcal{B}_{o}, \mathcal{B}^{2}\right)$ such that $\tilde{\Phi}_{\mathcal{B}_{o}, \mathcal{B}^{1}}=\tilde{\Phi}_{\mathcal{B}_{o}, \mathcal{B}^{2}} \circ h_{\natural}:$

Remark 1.1. In $\S 2$ we give four explicit examples for $\Phi_{\mathcal{B}_{o}}$ and $\tilde{\Phi}_{\mathcal{B}_{o}, \mathcal{B}}$ allowing to distinguish
the k-Artal arrangements (see $\S 1.2$ for the definition), using the Alexander polynomial, the existence of D_{6}-covers, the splitting numbers and the linking set.

If $\mathcal{D}_{o}+\mathcal{D}^{1}, \mathcal{D}_{o}+\mathcal{D}^{2} \in$ Curve $_{\text {red }}^{\mathcal{D}_{o}}$ have the same combinatorics, then any homeomorphism $h:\left(\mathcal{T}^{1}, \mathcal{D}_{o}+\mathcal{D}^{1}\right) \rightarrow\left(\mathcal{T}^{2}, \mathcal{D}_{o}+\mathcal{D}^{2}\right)$ with $h\left(\mathcal{D}_{o}\right)=\mathcal{D}_{o}$ induces a map $h_{\natural}: \underline{\operatorname{Sub}}\left(\mathcal{D}_{o}, \mathcal{D}^{1}\right) \rightarrow \underline{\operatorname{Sub}}\left(\mathcal{D}_{o}, \mathcal{D}^{2}\right)$, where \mathcal{T}^{i} is a tubular neighborhood of $\mathcal{D}_{o}+\mathcal{D}^{i}$ for $i=1,2$. Let $\left(\mathcal{D}_{o}+\mathcal{D}^{1}, \mathcal{D}_{o}+\mathcal{D}^{2}\right)$ be a Zariski pair of curves in Curve ${ }_{\text {red }}^{\mathcal{D}_{o}}$ such that

- it is distinguished by $\Phi_{\mathcal{D}_{o}}:$ Curve $_{\text {red }}^{\mathcal{D}_{o}} \rightarrow A$, i.e., any homeomorphism $h:\left(\mathcal{T}^{1}, \mathcal{D}_{o}+\mathcal{D}^{1}\right) \rightarrow\left(\mathcal{T}^{2}\right.$, $\left.\mathcal{D}_{o}+\mathcal{D}^{2}\right)$ necessarily satisfies $h\left(\mathcal{D}_{o}\right)=\mathcal{D}_{o}$ and $\Phi_{\mathcal{D}_{o}}\left(\mathcal{D}_{o}+\mathcal{D}^{1}\right) \neq \Phi_{\mathcal{D}_{o}}\left(\mathcal{D}_{o}+\mathcal{D}^{2}\right)$, and
- the combinatorial type of $\mathcal{D}_{o}+\mathcal{D}^{1}$ and $\mathcal{D}_{o}+\mathcal{D}^{2}$ is $\underline{\mathrm{C}}$.
Assuming the existence of such a Zariski pair for the combinatorial type $\underline{\mathbf{C}}$, we construct Zariski pairs with glued combinatorics. We first note that the following proposition is immediate:

Proposition 1.2. Choose $\mathcal{B}_{o}+\mathcal{B}^{1}, \mathcal{B}_{o}+\mathcal{B}^{2} \in$ Curve $_{\text {red }}^{\mathcal{B}_{o}}$ with the same combinatorial type. Let $\underline{\operatorname{Sub}}_{\mathrm{C}}\left(\mathcal{B}_{o}, \mathcal{B}^{j}\right)(j=1,2)$ be the sets of subarrangements of $\mathcal{B}_{o}+\mathcal{B}^{j}$ having the combinatorial type $\underline{\mathrm{C}}$ ($j=1,2$), respectively. If
(i) any homeomorphism $h:\left(\mathcal{T}^{1}, \mathcal{B}_{o}+\mathcal{B}^{1}\right) \rightarrow\left(\mathcal{T}^{2}\right.$, $\left.\mathcal{B}_{o}+\mathcal{B}^{2}\right)$ necessarily satisfies $\quad h\left(\mathcal{B}_{o}\right)=\mathcal{B}_{o}$, where \mathcal{T}^{i} is a tubular neighborhood of $\mathcal{B}_{o}+\mathcal{B}^{i}$ for $i=1,2$, and
(ii) for some elements $a_{1} \in A$,

$$
\begin{aligned}
& \sharp\left(\tilde{\Phi}_{\mathcal{B}_{o}, \mathcal{B}^{1}}^{-1}\left(a_{1}\right) \cap{\left.\underline{\operatorname{Sub}_{\underline{C}}}\left(\mathcal{B}_{o}, \mathcal{B}^{1}\right)\right)}^{\neq} \sharp\left(\tilde{\Phi}_{\mathcal{B}_{o}, \mathcal{B}^{2}}^{-1}\left(a_{1}\right) \cap{\left.\underline{\operatorname{Sub}_{\underline{C}}}\left(\mathcal{B}_{o}, \mathcal{B}^{2}\right)\right),}^{2}\right)\right.
\end{aligned}
$$

then $\left(\mathcal{B}_{o}+\mathcal{B}^{1}, \mathcal{B}_{o}+\mathcal{B}^{2}\right)$ is a Zariski pair.
Remark 1.3. If for all automorphism σ of the combinatorics of $\mathcal{B}_{o}+\mathcal{B}^{j}, \quad \sigma\left(\mathcal{B}_{o}\right)=\mathcal{B}_{o}$ then hypothesis (i) of Proposition 1.2 is always verified. In particular, it is the case if $\operatorname{deg}\left(\mathcal{B}_{o}\right) \neq \operatorname{deg}\left(\mathcal{B}_{i}\right)$, for $i=1, \ldots, r$.
1.2. Artal arrangements. In this article, we apply Proposition 1.2 to distinguish Zariski pairs formed by Artal arrangements. These curves are defined as follows:

Let E be a smooth cubic, let $P_{i}(1 \leq i \leq 9)$ be its 9 inflection points and let $L_{P_{i}}$ be the tangent lines at $P_{i}(1 \leq i \leq 9)$, respectively.

Definition 1.4. Choose a subset $I \subset$ $\{1, \ldots, 9\}$. We call an arrangement $\mathcal{C}=E+$
$\sum_{i \in I} L_{P_{i}}$ an Artal arrangement for I. In particular, if $k=\sharp(I)$, we call \mathcal{C} a k-Artal arrangement.

The idea is to apply Proposition 1.2 to the case when $\mathcal{B}_{o}=E$ and $\mathcal{B}=\sum_{i \in I} L_{P_{i}}$. Let \mathcal{C}^{1} and \mathcal{C}^{2} be two k-Artal arrangements. Note that if there exists a homeomorphism $h:\left(\mathbf{P}^{2}, \mathcal{C}^{1}\right) \rightarrow\left(\mathbf{P}^{2}, \mathcal{C}^{2}\right), h(E)=E$ always holds. In [1], E. Artal gave an example of a Zariski pair for 3-Artal arrangements. Based on this example, we make use of our method to find other examples of Zariski pairs of k-Artal arrangements and obtain the following

Theorem 1.5. There exist Zariski pairs for k-Artal arrangements for $k=4,5,6$.

Remark 1.6. Note that the case of $k=5$ is considered in [4], where it is shown that there exists a Zariski pair for 5-Artal arrangements.
2. Some explicit examples for $\boldsymbol{\Phi}_{\mathcal{B}_{o}}$. We here introduce four examples for $\Phi_{\mathcal{B}_{0}}$. The last two were recently considered by the second author and J.-B. Meilhan [4] and the third author [6], respectively.
2.1. $D_{2 p}$-covers. For terminologies and notation, we use those introduced in [2, §3], freely.

Let $D_{2 p}$ be the dihedral group of order $2 p$. Let $\operatorname{Cov}_{b}\left(\mathbf{P}^{2}, 2 \mathcal{B}, D_{2 p}\right)$ be the set of isomorphism classes of $D_{2 p}$-covers branched at $2 \mathcal{B}$.

We now define $\Phi_{\mathcal{B}_{o}}^{D_{2 p}}: \underline{\text { Curve }}_{\text {red }}^{\mathcal{B}_{o}} \rightarrow\{0,1\}$ as follows:
$\Phi_{\mathcal{B}_{o}}^{D_{2 p}}\left(\mathcal{B}_{o}+\mathcal{B}\right)=\left\{\begin{array}{l}1 \text { if } \operatorname{Cov}_{b}\left(\mathbf{P}^{2}, 2\left(\mathcal{B}_{o}+\mathcal{B}\right), D_{2 p}\right) \neq \emptyset \\ 0 \text { if } \operatorname{Cov}_{b}\left(\mathbf{P}^{2}, 2\left(\mathcal{B}_{o}+\mathcal{B}\right), D_{2 p}\right)=\emptyset .\end{array}\right.$
Note that $\Phi_{\mathcal{B}_{o}}^{D_{2 p}}$ satisfies the required condition described in the Introduction. Thus, we define the map $\tilde{\Phi}_{\mathcal{B}_{o}, \mathcal{B}}^{D_{6}}$ as the restriction of $\Phi_{\mathcal{B}_{o}}^{D_{6}}$ to $\underline{\operatorname{Sub}}\left(\mathcal{B}_{o}, \mathcal{B}\right)$.
2.2. Alexander polynomials. For the Alexander polynomials of reduced plane curves, see $[2, \S 2]$. Let $\Delta:$ Curve $_{\text {red }}^{\mathcal{B}_{o}} \rightarrow \mathbf{C}[t]$ be the map assigning to a curve of Curve $_{\text {red }}^{\mathcal{B}_{o}}$ its Alexander polynomial. We define the map $\Phi_{\mathcal{B}_{o}}^{\text {Alex }}:$ Curve $_{\text {red }}^{\mathcal{B}_{o}} \rightarrow$ $\{0,1\}$ by:

$$
\Phi_{\mathcal{B}_{o}}^{\text {Alex }}\left(\mathcal{B}_{o}+\mathcal{B}^{\prime}\right)= \begin{cases}1 & \text { if } \Delta\left(\mathcal{B}_{o}+\mathcal{B}^{\prime}\right) \neq 1 \\ 0 & \text { if } \Delta\left(\mathcal{B}_{o}+\mathcal{B}^{\prime}\right)=1\end{cases}
$$

As previously, we define $\tilde{\Phi}_{\mathcal{B}_{o}, \mathcal{B}}^{\text {Alex }}$ as the restriction of $\Phi_{\mathcal{B}_{o}}^{\text {Alex }}$ to $\underline{\operatorname{Sub}}\left(\mathcal{B}_{o}, \mathcal{B}\right)$.
2.3. Splitting numbers. Let $\mathcal{B}_{o}+\mathcal{B}$ be a reduced curves such that \mathcal{B}_{o} is smooth, and let m be the degree of \mathcal{B}. Let $\pi_{\mathcal{B}}: X \rightarrow \mathbf{P}^{2}$ be the unique cover branched over \mathcal{B}, corresponding to the surjection of $\pi_{1}\left(\mathbf{P}^{2} \backslash \mathcal{B}\right) \rightarrow \mathbf{Z} / m \mathbf{Z}$ sending all meri-
dians of the \mathcal{B}_{i} to 1 . The splitting number of \mathcal{B}_{o} for $\pi_{\mathcal{B}}$, denoted by $s_{\pi_{\mathcal{B}}}\left(\mathcal{B}_{o}\right)$ is the number of irreducible components of the pull-back $\pi_{\mathcal{B}}^{*} \mathcal{B}_{o}$ of \mathcal{B}_{o} by $\pi_{\mathcal{B}}$ (see [6] for the general definition). By [6, Proposition 1.3], the application:

$$
\Phi_{\mathcal{B}_{o}}^{\text {split }}:\left\{\begin{array}{ccc}
\text { Curve }_{\text {red }}^{\mathcal{K}_{o}} & \longrightarrow & \mathbf{N}^{*} \\
\mathcal{B}_{o}+\mathcal{B} & \longmapsto & s_{\pi_{\mathcal{B}}}\left(\mathcal{B}_{o}\right)
\end{array},\right.
$$

verify the condition of Proposition 1.2 , where \mathbf{N}^{*} is the set of integers more than 0 . We can then define the map $\tilde{\Phi}_{\mathcal{B}_{o}, \mathcal{B}}^{\text {split }}: \underline{\operatorname{Sub}}\left(\mathcal{B}_{o}, \mathcal{B}\right) \rightarrow \mathbf{N}^{*}$ as the restriction of $\Phi_{\mathcal{B}_{o}}^{\text {split }}$ to $\underline{\operatorname{Sub}}\left(\mathcal{B}_{o}, \mathcal{B}\right)$.
2.4. Linking set. Let \mathcal{B}_{o} be a non-empty curve, with smooth irreducible components. A cycle of \mathcal{B}_{o} is a S^{1} embedded in \mathcal{B}_{o}. For $\mathcal{B}_{o}+\mathcal{B} \in$ Curve $_{\text {red }}^{\mathcal{B}_{o}}$, we define the linking set of \mathcal{B}_{o}, denoted by $\mathrm{lks}_{\mathcal{B}}\left(\mathcal{B}_{o}\right)$, as the set of classes in $\mathbf{H}_{1}\left(\mathbf{P}^{2} \backslash \mathcal{B}\right) / \operatorname{Ind}_{\mathcal{B}_{o}}$ of the cycles of \mathcal{B}_{o} which do not intersect \mathcal{B}, where $\operatorname{Ind}_{\mathcal{B}_{o}}$ is the subgroup of $\mathrm{H}_{1}\left(\mathbf{P}^{2} \backslash \mathcal{B}\right)$ generated by the meridians in \mathcal{B}_{o} around the points of $\mathcal{B}_{o} \cap \mathcal{B}$. This definition is weaker than [4, Definition 3.9]. By [4, Theorem 3.13], the map defined by:

$$
\Phi_{\mathcal{B}_{o}}^{\mathrm{lks}}:\left\{\begin{array}{ccc}
\text { Curve }_{\text {red }}^{\mathcal{B}_{o}} & \longrightarrow & \mathbf{N}^{*} \cup\{\infty\} \\
\mathcal{B}_{o}+\mathcal{B} & \longmapsto & \sharp \mathrm{lks}_{\mathcal{B}}\left(\mathcal{B}_{o}\right)
\end{array}\right.
$$

verify the condition of Proposition 1.2 . We can thus define the map $\tilde{\Phi}_{\mathcal{B}_{o}, \mathcal{B}}^{\mathrm{ks}}$ as the restriction of $\Phi_{\mathcal{B}_{o}}^{\mathrm{kss}}$ to $\underline{\operatorname{Sub}}\left(\mathcal{B}_{o}, \mathcal{B}\right)$.
3. The geometry of inflection points of a smooth cubic. Let $E \subset \mathbf{P}^{2}$ be a smooth cubic curve and let $O \in E$ be an inflection point of E. In this section we consider the elliptic curve (E, O). The following facts are well-known:
(a) The set of inflection points of E can be identified with $(\mathbf{Z} / 3 \mathbf{Z})^{\oplus 2} \subset E$, the subgroup of three torsion points of E. This identification comes from the cubic group law with neutral element, a flex.
(b) Let P, Q, R be distinct inflection points of E. Then P, Q, R are collinear if and only if $P+Q+R=O \in(\mathbf{Z} / 3 \mathbf{Z})^{\oplus 2}$.
From the above facts we can study the geometry of inflection points and the following proposition follows:

Proposition 3.1. Let E be a cubic curve and $\left\{P_{1}, \ldots, P_{k}\right\} \in E$ be a set of distinct inflection points of E. Let n be the number of triples $\left\{P_{i_{1}}, P_{i_{2}}, P_{i_{3}}\right\} \subset\left\{P_{1}, \ldots, P_{k}\right\}$ such that they are collinear. Then the possible values of n for $k=3, \ldots, 9$ are as in the following table:

Table

k	3	4	5	6	7	8	9
n	0,1	0,1	1,2	2,3	5	8	12

4. Proof of the main theorem.

4.1. The case of 3 -Artal arrangements. Using the four invariants introduced in $\S 2$, we can prove the original result of E . Artal. Let $I=$ $\left\{i_{1}, i_{2}, i_{3}\right\} \subset\{1, \ldots, 9\}$ and $\mathcal{L}_{I}=\sum_{i \in I} L_{P_{i}}$.

Theorem 4.1. For a 3-Artal arrangement $\mathcal{C}=E+\sum_{i \in I} L_{P_{i}}=E+\mathcal{L}_{I}$, we have:
(a) $\tilde{\Phi}_{E, \mathcal{L}_{I}}^{D_{6}}(\mathcal{C})= \begin{cases}1 & \text { if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text { are collinear } \\ 0 & \text { if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text { are not collinear }\end{cases}$
(b) $\tilde{\Phi}_{E, \mathcal{L}_{I}}^{\text {Alex }}(\mathcal{C})= \begin{cases}1 & \text { if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text { are collinear } \\ 0 & \text { if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text { are not collinear }\end{cases}$
(c) $\quad \tilde{\Phi}_{E, \mathcal{L}_{I}}^{\text {split }}(\mathcal{C})= \begin{cases}3 & \text { if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text { are collinear } \\ 1 & \text { if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text { are not collinear }\end{cases}$
(d) $\tilde{\Phi}_{E, \mathcal{L}_{I}}^{1 \mathrm{kks}}(\mathcal{C})= \begin{cases}1 & \text { if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text { are collinear } \\ 3 & \text { if } P_{i_{1}}, P_{i_{2}}, P_{i_{3}} \text { are not collinear }\end{cases}$

Proof. (a) This is the result of the last author ([7]).
(b) This is the result of E. Artal ([1]).
(c) By $\left[6\right.$, Theorem 2.7], we obtain $\Phi_{E}^{\text {split }}(\mathcal{C})=3$ if the three tangent points are collinear, and $\Phi_{E}^{\text {split }}(\mathcal{C})=1$ otherwise.
(d) Using the same arguments as in [5], we can prove that, in the case of 3 -Artal arrangements, $\tilde{\Phi}_{E, \mathcal{L}_{I}}^{\text {split }}(\mathcal{C})=\frac{3}{\sharp 1 \mathrm{ks}_{\mathcal{L}_{I}}(E)}$. Using the previous point we obtain the result.
Remark 4.2. It is also possible to consider $\tilde{\Phi}_{\mathcal{L}_{\mathcal{L}}, E}^{\mathrm{ks}}(E)$. But in this case, we have no method to compute it in the general case. But, if E is the cubic defined by $x^{3}-x z^{2}-y^{2} z=0$, the computation done in [4] implies the result.

Corollary 4.3. Choose $\quad\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\} \subset$ $\{1, \ldots, 9\}$ such that $P_{i_{1}}, P_{i_{2}}, P_{i_{3}}$ are collinear, while $P_{i_{1}}, P_{i_{2}}, P_{i_{4}}$ are not collinear. Put $\mathcal{C}_{1}=E+L_{i_{1}}+$ $L_{i_{2}}+L_{i_{3}}$ and $\mathcal{C}_{2}=E+L_{i_{1}}+L_{i_{2}}+L_{i_{4}}$. Then $\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ is a Zariski pair.
4.2. The other cases. Choose a subset J of $\{1, \ldots, 9\}$ such that $4 \leq \sharp J \leq 6$ and let

$$
\mathcal{C}:=E+\mathcal{L}_{J}, \mathcal{L}_{J}=\sum_{j \in J} L_{P_{j}},
$$

be a k-Artal arrangement. To distinguish these arrangements in a geometric way (as the collinearity in the case of 3 -Artal arrangements), let us
introduce the type of a k-Artal arrangement.
Definition 4.4. For $k=4,5,6$, we say an arrangement of the form $\mathcal{C}=E+L_{P_{1}}+\cdots+L_{P_{k}}$ to be of Type I if the number n of collinear triples in $\left\{P_{1}, \ldots, P_{k}\right\}$ is $n=k-3$, while we say \mathcal{C} to be of Type II if the number n of collinear triples in $\left\{P_{1}, \ldots, P_{k}\right\}$ is $n=k-4$.

Theorem 4.5. Let \mathcal{C}_{1} be an arrangement of Type I and \mathcal{C}_{2} be an arrangement of Type II. Then $\left(\mathbf{P}^{2}, \mathcal{C}_{1}\right)$ and $\left(\mathbf{P}^{2}, \mathcal{C}_{2}\right)$ are not homeomorphic as pairs.

Furthermore if \mathcal{C}_{1} and \mathcal{C}_{2} have the same combinatorics, $\mathcal{C}_{1}, \mathcal{C}_{2}$ form a Zariski pair.

Proof. Let \mathcal{C} be a k-Artal arrangement $(k=$ $4,5,6)$. We denote by $\underline{\operatorname{Sub}}\left(E, \mathcal{L}_{J}\right)_{3}$ the set of 3-Artal arrangements contained in $\underline{\operatorname{Sub}}\left(E, \mathcal{L}_{J}\right)$. Let $\Phi_{\mathcal{C}, 3}^{D_{6}}$, $\Phi_{\tilde{\mathcal{C}}^{\mathrm{C}, 3}}^{\text {Alex }}, \Phi_{\mathcal{C}, 3}^{\text {split }}$ and $\Phi_{\tilde{\mathcal{C}}^{\mathrm{C}, 3}}^{\mathrm{lks}}$ be the restrictions of $\tilde{\Phi}_{E, \mathcal{L}_{J}}^{D_{6},}$, $\tilde{\Phi}_{E, \mathcal{L}_{J}}^{\text {Alex }}, \tilde{\Phi}_{E, \mathcal{L}_{J}}^{\text {split }}$ and $\tilde{\Phi}_{E, \mathcal{L}_{J}}^{\mathrm{lks}}$, to $\underline{\operatorname{Sub}}\left(E, \mathcal{L}_{J}\right)_{3}$, respectively. Then by Theorem 4.1, we have

$$
\left.\begin{array}{rl}
\sharp\left(\Phi_{\mathcal{C}, 3}^{D_{6}-1}(1)\right) \\
& =\sharp\left(\Phi_{\mathcal{C}, 3}^{\mathrm{Alex}}(1)\right) \\
& =\sharp\left(\Phi_{\mathcal{C}, 3}^{\text {slit }}-1\right. \\
\hline
\end{array}(3)\right) .
$$

If a homeomorhism $h:\left(\mathbf{P}^{2}, \mathcal{C}_{1}\right) \rightarrow\left(\mathbf{P}^{2}, \mathcal{C}_{2}\right)$ exists, it follows that $h_{\natural}\left(\underline{\operatorname{Sub}}\left(\mathcal{C}_{1}\right)_{3}\right)=\underline{\operatorname{Sub}}\left(\mathcal{C}_{2}\right)_{3}$. This contradicts the above values. Hence our statements follow.

Remark 4.6. Here are two remarks:
(i) If the j-invariant of the cubic E is not equal to 0 , no three inflectional tangent lines are concurrent. Hence \mathcal{C}_{1} and \mathcal{C}_{2} have only double points as their singularities and their combinatorics are the same.
(ii) We note that for $k=1,2,7,8,9$ it can be proved that there do not exist Zariski pairs consisting of k-Artal arrangements with only double points as their singularities.
Acknowledgement. The second author is supported by a JSPS post-doctoral grant.

References

[1] E. Artal Bartolo, Sur les couples de Zariski, J. Algebraic Geom. 3 (1994), no. 2, 223-247.
[2] E. Artal Bartolo, J. I. Cogolludo and H. Tokunaga, A survey on Zariski pairs, in Algebraic geometry in East Asia-Hanoi 2005, $1-100$, Adv. Stud. Pure Math., 50, Math. Soc. Japan, Tokyo, 2008.
[3] S. Bannai and H. Tokunaga, Geometry of bisections of elliptic surfaces and Zariski N-plets for conic arrangements, Geom. Dedicata 178 (2015), 219-237.
[4] B. Guerville-Ballé and J.-B. Meilhan, A linking invariant for algebraic curves, arXiv:1602.04916.
[5] B. Guerville-Ballé and T. Shirane, Non-homotopicity of the linking set of algebraic plane curves, arXiv:1607.04951.
[6] T. Shirane, A note on splitting numbers for Galois covers and π_{1}-equivalent Zariski k-plets, Proc. Amer. Math. Soc. 145 (2017), no. 3, 1009-1017.
[7] H. Tokunaga, A remark on E. Artal's paper, Kodai Math. J. 19 (1996), no. 2, 207-217.

[^0]: 2010 Mathematics Subject Classification. Primary 14H50, 14H45, 14F45, 51H30.
 *) Department of Natural Sciences, National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka, Ibaraki 312-8508, Japan.
 **) Department of Mathematics, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei, Tokyo 184-8501, Japan.
 ${ }^{* * *)}$ National Institute of Technology, Ube College, 2-14-1 Tokiwadai, Ube, Yamaguchi 755-8555, Japan.
 ****) Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.

