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Abstract: A positive integer n is the area of a Heron triangle if and only if there is a non-

zero rational number � such that the elliptic curve

EðnÞ� : Y 2 ¼ XðX � n�ÞðX þ n��1Þ

has a rational point of order different than two. Such integers n are called �-congruent numbers.

In this paper, we show that for a given positive integer p, and a given non-zero rational number � ,

there exist infinitely many �-congruent numbers in every residue class modulo p whose

corresponding elliptic curves have rank at least two.
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1. Introduction. A positive integer n is

called a congruent number if it is equal to the area

of a right triangle with rational sides. It is well-

known that a given positive integer n is congruent if

and only if the elliptic curve

EðnÞ : Y 2 ¼ XðX2 � n2Þ

has a rational point of order different than two.

In [6], Goins and Maddox proved that a positive

integer n is the area of a Heron triangle (a triangle

with rational sides) if and only if there exists a non-

zero rational number � such that the elliptic curve

EðnÞ� : Y 2 ¼ XðX � n�ÞðX þ n��1Þ

has a rational point of order different than two, thus

generalizing the congruent number problem. Such

an integer n is called a �-congruent number. In [2]

and [3], Chahal showed that there exist infinitely

many congruent numbers contained in every resi-

due class modulo 8. In [1], Bennett generalized

this result to show that there are infinitely many

congruent numbers contained in every residue

class modulo m for any positive integer m. In [5],

Davis and Spearman generalized Bennett’s result

to �-congruent numbers for any non-zero rational

number � .

The purpose of this paper is to expand upon the

result in [5] to rank two �-congruent numbers; that

is �-congruent numbers whose associated elliptic

curves have rank at least two.

2. Some useful lemmas. We begin by

proving three lemmas that will be imperative to

the proof of our main result.

Lemma 1. Let a; b; p 2 Z be fixed with

gcdða; bÞ ¼ 1. Let 0 6¼ � 2 Z. Define the following

quantities

Gð�Þ ¼ ðð4a6b4p4Þða2 þ b2Þ�2 þ 1Þ
ðð4a4b6p4Þð2a2 þ b2Þ�2 þ 4a3b3p2�þ 1Þ
ððabp2Þða4 � a2b2 � b4Þ�� 1Þ;

Hð�Þ ¼ ðð4a4b6p4Þð2a2 þ b2Þ�2 þ 4a3b3p2�þ 1Þ
ððabp2Þða4 � a2b2 � b4Þ�� 1Þ;

Kð�Þ ¼ ðð4a6b4p4Þða2 þ b2Þ�2 þ 1Þ
ððabp2Þða4 � a2b2 � b4Þ�� 1Þ:

Then there are at most finitely many values of

� such that ð�abÞGð�Þ; ð�abÞHð�Þ, and ð�abÞKð�Þ
are rational squares.

Proof. The quantities ð�abÞ and Gð�Þ are

relatively prime, hence it suffices to show that

Gð�Þ is a rational square for at most finitely many

values of �. Consider the equations

~G : GðXÞ ¼ �Y 2:

These two equations define genus 2 curves over Q.

Let ð�; yÞ 2 ~GðQÞ, the set of rational points on ~G,

with � 2 Z. The restriction of � to the integers

implies that y is also an integer. Thus ð�; yÞ is an
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integral point on a genus 2 curve. Siegel’s Theo-

rem [7] implies that there are at most finitely many

integral points on ~G, hence there are at most finitely

many such pairs ð�; yÞ.
The quantities ð�abÞ and Hð�Þ are relatively

prime. Consider the equations

~H : HðXÞ ¼ �Y 2:

These two equations define elliptic curves over Q.

Let ð�; yÞ 2 ~HðQÞ with � 2 Z. The restriction of � to

the integers implies that y is also an integer. Hence

ð�; yÞ is an integral point on ~H. Siegel’s Theorem [7]

implies that at most finitely many of these can

exist.

The quantities ð�abÞ and Kð�Þ are relatively

prime. As in the previous case,

~K : KðXÞ ¼ �Y 2

define elliptic curves over Q. The argument is then

the same. �

Lemma 2. Let a; b; p; k be fixed, non-zero

integers. Let 0 6¼ ‘ 2 Z. Define the following quanti-

ties

Að‘Þ ¼ 4a6b4p4k2ða2 þ b2Þðp‘þ 1Þ8 þ 1;

Bð‘Þ ¼ 4a4b6p4k2ð2a2 þ b2Þðp‘þ 1Þ8

þ 4a3b3p2kðp‘þ 1Þ4 þ 1;

Cð‘Þ ¼ ðkðp‘þ 1Þ4abÞ
ðabp2kða4 � a2b2 � b4Þðp‘þ 1Þ4 � 1Þ:

Then there are at most finitely many values for

‘ such that the above expressions are rational

squares.

Proof. It is clear that Að‘Þ is always positive.

Consider the equation

~A : AðXÞ ¼ Y 2:

This equation defines a genus 3 curve over Q. Let

ð‘; yÞ 2 ~AðQÞ with ‘ 2 Z. The restriction of ‘ to the

integers implies that y must also be an integer. Thus

ð‘; yÞ is an integral point on a genus 3 curve. As in

Lemma 1, Siegel’s Theorem [7] implies there can

only be finitely many of these.

The equations

~B : BðXÞ ¼ �Y 2

define genus 3 curves over Q. The same argument in

the previous paragraph now applies.

The quantities ðkðp‘þ 1Þ4abÞ and ðabp2kða4 �
a2b2 � b4Þðp‘þ 1Þ4 � 1Þ are relatively prime. Thus if

the equation Cð‘Þ ¼ �y2 has a rational solution,

then both ðkðp‘þ 1Þ4abÞ and ðabp2kða4 � a2b2 �
b4Þðp‘þ 1Þ4 � 1Þ must be rational squares. The

equations

~C : ðabp2kÞða4 � a2b2 � b4ÞðpX þ 1Þ4 � 1 ¼ �Y 2

define elliptic curves over Q. Let ð‘; zÞ 2 ~CðQÞ with

‘ 2 Z. The restriction of ‘ to the integers implies

that z is an integer. Hence ð‘; zÞ is an integral point

on ~C. By Siegel’s Theorem [7], there are only

finitely many of these. �

Lemma 3. Let a; b; p; k be fixed, non-zero

integers with p > 0 and gcdða; bÞ ¼ 1. Let �ð‘Þ ¼
kðp‘þ 1Þ4 and nð‘Þ ¼ ��ð‘ÞGð�ð‘ÞÞ where G is the

same as in Lemma 1 and ‘ 2 Z. Then there are

infinitely many integers of the form nð‘Þ belonging to

every residue class modulo p.

Proof. We have that

nð‘Þ � ��ð‘Þð�1Þ � �ð‘Þ � kðp‘þ 1Þ4 � k (mod pÞ:

Varying ‘ implies that there are infinitely many

integers of the form nð‘Þ congruent to k modulo p.

As k in Z was fixed arbitrarily, the result follows.

�

3. The main result. We now prove the

main result which will come as a corollary to the

next theorem. First we recall the fundamental 2-

descent map given by Cohen in [4], Definition 8.2.3,

p. 536, and Silverman and Tate in [8], Proposition,

p. 85. Let E : Y 2 ¼ X3 þ aX2 þ bX be an elliptic

curve over Q, let O denote the point at infinity on

E, and let EðQÞ denote the group of rational points

on E. Let ðQ�Þ2 denote the set of all squared non-

zero rational numbers. Then the fundamental 2-

descent map � : EðQÞ ! Q=ðQ�Þ2 is given by

�ðP Þ ¼
1 (mod ðQ�Þ2Þ if P ¼ O
b (mod ðQ�Þ2Þ if P ¼ ð0; 0Þ
XðP Þ (mod ðQ�Þ2Þ otherwise

8><
>:

where XðP Þ denotes the X-coordinate of P 2 EðQÞ.
The rank r of E then satisfies the relation

j�ðEðQÞÞjj2rþ2

(see [4], Proposition 8.2.8, p. 539). We now present

our first theorem.

Theorem 1. Let 0 6¼ � ¼ a=b 2 Q be a fixed

rational number with gcdða; bÞ ¼ 1. Let p; k 2 Z be

fixed, non-zero integers, and let ‘ 2 Z be any

integer. Let �ð‘Þ ¼ kðp‘þ 1Þ4, and let Gð�ð‘ÞÞ;
Hð�ð‘ÞÞ; Kð�ð‘ÞÞ, Að‘Þ; Bð‘Þ; Cð‘Þ be as in Lemmas
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1 and 2. Let nð‘Þ be defined as in Lemma 3.

Consider

Enð‘Þ
� : Y 2 ¼ XðX � nð‘Þ�ÞðX þ nð‘Þ��1Þ:

Then Enð‘Þ
� is an elliptic curve and has rank at least

two for all but finitely many values of ‘.

Proof. Let O denote the point at infinity on

Enð‘Þ
� . The discriminant for Enð‘Þ

� is zero if and only

if either

4a3b3p2ð2a3b3p2�ð‘Þ þ ab5p2�ð‘Þ þ 1Þ�ð‘Þ þ 1 ¼ 0

or

abp2ða4 � a2b2 � b4Þ�ð‘Þ � 1 ¼ 0:

The former equation is an octic polynomial in

the variable ‘ and hence can have at most 8 possible

integral solutions, and the latter is a quartic in ‘

and hence can have at most 4 possible integral

solutions. Therefore Enð‘Þ
� is an elliptic curve with at

most finitely many exceptions.

We now proceed by descent via 2-isogeny. Let

� denote the fundamental 2-descent map as in the

beginning of Section 3. It will suffice to show that

j�ðEnð‘Þ
� ðQÞÞj � 16:

Notice that ð0; 0Þ 2 Enð‘Þ
� ðQÞ and

�ðð0; 0ÞÞ � �ðnð‘ÞÞ2 � �1 (mod ðQ�Þ2Þ;

thus we have f�1g � �ðEnð‘Þ
� ðQÞÞ. We also have

ðnð‘Þ�; 0Þ 2 Enð‘Þ
� ðQÞ. If

�ððnð‘Þ�; 0ÞÞ � �1 (mod ðQ�Þ2Þ;

then

ð�ð‘ÞabÞGð�ð‘ÞÞ � �1 (mod ðQ�Þ2Þ:

Lemma 1 implies that this equation is true for only

finitely many values of �ð‘Þ, hence for only finitely

many values of ‘. Thus

f�1;��ððnð‘Þ�; 0ÞÞg � �ðEnð‘Þ
� ðQÞÞ

and j�ðEnð‘Þ
� ðQÞÞj � 4 for all but finitely many

values of ‘. Henceforth, for simplicity, we will just

list the generators of �ðEnð‘Þ
� ðQÞÞ.

The equation

XðP1Þ ¼ �ð�ð‘ÞÞ2ð4a2b4p2Þðð4a6b4p4Þða2 þ b2Þ
ð�ð‘ÞÞ2 þ 1Þððabp2Þða4 � a2b2 � b4Þ
ð�ð‘ÞÞ � 1Þ2

is the X-coordinate of a point P1 2 Enð‘Þ
� ðQÞ. We see

that

�ðP1Þ � �Að‘Þ (mod ðQ�Þ2Þ:

Lemma 2 implies the equation

�ðP1Þ � �1 (mod ðQ�Þ2Þ

is true for at most finitely many values of ‘. If

�ðP1Þ � ��ððnð‘Þ�; 0ÞÞ (mod ðQ�Þ2Þ;

then

�ðP1Þ�ððnð‘Þ�; 0ÞÞ � ð�ð‘ÞabÞHð�ð‘ÞÞ
� �1 (mod ðQ�Þ2Þ:

Lemma 1 implies this equation is true for at most

finitely many values of �ð‘Þ, hence for only finitely

many values of ‘. Thus

h�1; �ððnð‘Þ; 0ÞÞ; �ðP1Þi � �ðEnð‘Þ
� ðQÞÞ

and j�ðEnð‘Þ
� ðQÞÞj � 8 for all but finitely many

values of ‘.

The equation

XðP2Þ ¼ a�1 � ðð�ð‘ÞbÞðð4a6b4p4Þða2 þ b2Þð�ð‘ÞÞ2 þ 1Þ

ð2a5bp2�ð‘Þ � 1Þ2

ððabp2Þða4 � a2b2 � b4Þ�ð‘Þ � 1ÞÞ

is the X-coordinate of a point P2 2 Enð‘Þ
� ðQÞ.

Applying � gives

�ðP2Þ �
ð�ð‘ÞbÞKð�ð‘ÞÞ

a

� ð�ð‘ÞabÞKð�ð‘ÞÞ (mod ðQ�Þ2Þ:

Lemma 1 implies that

�ðP2Þ � �1 (mod ðQ�Þ2Þ

is true for at most finitely many values of �ð‘Þ,
hence for only finitely many values of ‘. If

�ðP2Þ � ��ððnð‘Þ�; 0ÞÞ (mod ðQ�Þ2Þ;

then

�ðP2Þ�ððnð‘Þ�; 0ÞÞ � Bð‘Þ � �1 (mod ðQ�Þ2Þ:

Lemma 2 implies this equation is true for at most

finitely many values of ‘. If

�ðP1Þ � ��ðP2Þ (mod ðQ�Þ2Þ;

then

�ðP1Þ�ðP2Þ � Cð‘Þ � �1 (mod ðQ�Þ2Þ:

Lemma 2 implies this equation is true for at most

finitely many values of ‘. Thus
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h�1; �ððnð‘Þ�; 0ÞÞ; �ðP1Þ; �ðP2Þi � �ðEnð‘Þ
� ðQÞÞ

and j�ðEnð‘Þ
� ðQÞÞj � 16 for all but finitely many

values of ‘. Thus the rank of Enð‘Þ
� is at least two

with at most finitely many exceptions. �

Corollary 1. Let 0 6¼ � ¼ a=b 2 Q be a fixed

rational number with gcdða; bÞ ¼ 1 and let p; k 2 Z

be fixed integers with p positive. Then there exist

infinitely many rank two �-congruent numbers n

with n � k (mod pÞ.
Proof. Let n ¼ nð‘Þ where nð‘Þ is the same as

in Theorem 1. Then Enð‘Þ
� is an elliptic curve with

rank at least two, with at most finitely many

exceptions by Theorem 1. Hence nð‘Þ is a rank two

�-congruent number for all but finitely many values

of ‘. Furthermore, nð‘Þ � k (mod pÞ so that the

result follows from Lemma 3. �
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