Crystals and affine Hecke algebras of type D

By Masaki KASHIWARA^{*)} and Vanessa MIEMIETZ^{**)}

(Communicated by Heisuke HIRONAKA, M.J.A., Sept. 12, 2007)

Abstract: The Lascoux-Leclerc-Thibon-Ariki theory asserts that the K-group of the representations of the affine Hecke algebras of type A is isomorphic to the algebra of functions on the maximal unipotent subgroup of the group associated with a Lie algebra \mathfrak{g} where \mathfrak{g} is \mathfrak{gl}_{∞} or the affine Lie algebra $A_{\ell}^{(1)}$, and the irreducible representations correspond to the upper global bases. Recently, N. Enomoto and the first author presented the notion of symmetric crystals and formulated analogous conjectures for the affine Hecke algebras of type B. In this note, we present similar conjectures for certain classes of irreducible representations of affine Hecke algebras of type D. The crystal for type D is a double cover of the one for type B.

Key words: Crystal bases; affine Hecke algebras; LLT conjecture.

1. Introduction. Lascoux-Leclerc-Thibon ([3]) conjectured the relations between the representations of Hecke algebras of type A and the crystal bases of the affine Lie algebras of type A. Then, S. Ariki ([1]) observed that it should be understood in the setting of affine Hecke algebras and proved the LLT conjecture in a more general framework. Recently, N. Enomoto and the first author presented the notion of symmetric crystals and conjectured that certain classes of irreducible representations of the affine Hecke algebras of type B are described by symmetric crystals ([2]).

The purpose of this note is to formulate and explain conjectures on certain classes of irreducible representations of affine Hecke algebras of type D and symmetric crystals.

Let us begin by recalling the Lascoux-Leclerc-Thibon-Ariki theory. Let \mathbf{H}_n^A be the affine Hecke algebra of type A of degree n. Let \mathbf{K}_n^A be the Grothendieck group of the abelian category of finite-dimensional \mathbf{H}_n^A -modules, and $\mathbf{K}^A = \bigoplus_{n \ge 0} \mathbf{K}_n^A$. Then it has a structure of Hopf algebra by the restriction and the induction functors. The set $I = \mathbf{C}^*$ may be regarded as a Dynkin diagram with I as the set of vertices and with edges between $a \in I$ and ap^2 . Here p is the parameter of the affine Hecke algebra, usually denoted by q. Let \mathbf{g}_I be the associated Lie algebra, and \mathbf{g}_I^- the unipotent Lie subalgebra. Let U_I be the group associated to \mathfrak{g}_I^- . Hence \mathfrak{g}_I is isomorphic to a direct sum of copies of $A_\ell^{(1)}$ if p^2 is a primitive ℓ -th root of unity and to a direct sum of copies of \mathfrak{gl}_{∞} if p has an infinite order. Then $\mathbf{C} \otimes \mathbf{K}^{\mathbf{A}}$ is isomorphic to the algebra $\mathscr{O}(U_I)$ of regular functions on U_I . Let $U_q(\mathfrak{g}_I)$ be the associated quantized enveloping algebra. Then $U_q^-(\mathfrak{g}_I)$ has an upper global basis $\{G^{\mathrm{up}}(b)\}_{b\in B(\infty)}$. By specializing $\bigoplus \mathbf{C}[q, q^{-1}]G^{\mathrm{up}}(b)$ at q = 1, we obtain $\mathscr{O}(U_I)$. Then the LLTA theory says that the elements associated to irreducible $\mathbf{H}^{\mathbf{A}}$ -modules corresponds to the image of the upper global basis.

In [2], N. Enomoto and the first author gave analogous conjectures for affine Hecke algebras of type B. In the type B case, we have to replace $U_a^-(\mathfrak{g}_I)$ and its upper global basis with a new object, the symmetric crystals. It is roughly stated as follows. Let $\mathbf{H}_n^{\mathbf{B}}$ be the affine Hecke algebra of type B of degree *n*. Let K_n^B be the Grothendieck group of the abelian category of finite-dimensional modules over H_n^B , and $K^B = \bigoplus_{n \ge 0} K_n^B$. Then K^B has a structure of a Hopf bimodule over K^A . The group U_I has the anti-involution θ induced by the involution $a \mapsto a^{-1}$ of $I = \mathbf{C}^*$. Let U_I^{θ} be the θ -fixed point set of U_I . Then $\mathscr{O}(U_I^{\theta})$ is a quotient ring of $\mathscr{O}(U_I)$. The action of $\mathscr{O}(U_I) \simeq \mathbf{C} \otimes \mathbf{K}^{\mathbf{A}}$ on $\mathbf{C} \otimes \mathbf{K}^{\mathbf{B}}$, in fact, descends to the action of $\mathscr{O}(U_I^{\theta})$. They introduced the algebra $\mathcal{B}_{\theta}(\mathfrak{g})$, a kind of a *q*-analogue of the ring of differential operators on U_I^{θ} and then $V_{\theta}(\lambda)$, a qanalogue of $\mathscr{O}(U_I^{\theta})$. The module $V_{\theta}(\lambda)$ is an irreducible $\mathcal{B}_{\theta}(\mathfrak{g})$ -module generated by the highest weight vector ϕ_{λ} . Then they conjectured that:

(i) $V_{\theta}(\lambda)$ has a crystal basis and an upper global basis.

²⁰⁰⁰ Mathematics Subject Classification. Primary 17B37, 20C08; Secondary 20G05.

^{*)} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan.

 $^{^{\}ast\ast)}$ Mathematisches Institut, Universität zu Köln, 50931 Köln, Germany.

[Vol. 83(A),

(ii) K^{B} is isomorphic to a specialization of $V_{\theta}(\lambda)$ at q = 1 as an $\mathcal{O}(U_I)$ -module, and the irreducible representations correspond to the upper global basis of $V_{\theta}(\lambda)$ at q = 1.

The representations of $\mathbf{H}_n^{\mathbf{B}}$ such that some of X_i have an eigenvalue ± 1 are excluded.

In this note, we treat the affine Hecke algebras of type D. Let $\mathbf{H}_n^{\mathrm{D}}$ be the affine Hecke algebra of type D of degree n ($\mathbf{H}_0^{\mathrm{D}} = \mathbf{C} \oplus \mathbf{C}$, $\mathbf{H}_1^{\mathrm{D}} = \mathbf{C}[X_1^{\pm}]$, see §3.1). Let K_n^{D} be the Grothendieck group of finitedimensional H_n^D -modules, and set $K^D = \bigoplus_{n \ge 0} K_n^D$. In D-case, we use the same algebra $\mathcal{B}_{\theta}(\mathfrak{g})$, but, instead of $V_{\theta}(\lambda)$, we use a $\mathcal{B}_{\theta}(\mathfrak{g})$ -module V_{θ} generated by a pair of highest weight vectors ϕ_{\pm} (see §2.2). Our conjecture (see $\S3.4$) is then:

- (i) V_{θ} has a crystal basis and an upper global basis.
- (ii) K^{D} is isomorphic to a specialization of V_{θ} at q = 1, and the irreducible representations correspond to the upper global basis of V_{θ} at q = 1.

The representations of $\mathbf{H}_n^{\mathrm{D}}$ such that some of X_i have an eigenvalue ± 1 are again excluded.

Note that the crystal basis for type D is a double cover of the one for type B.

2. Symmetric crystals.

2.1. Quantized universal enveloping algebras. We shall recall the quantized universal enveloping algebra $U_q(\mathfrak{g})$. Let I be an index set (for simple roots), and Q the free **Z**-module with a basis $\{\alpha_i\}_{i\in I}$. Let $(\bullet, \bullet): Q \times Q \to \mathbf{Z}$ be a symmetric bilinear form such that $(\alpha_i, \alpha_i)/2 \in \mathbb{Z}_{>0}$ for any i and $(\alpha_i^{\vee}, \alpha_j) \in \mathbf{Z}_{\leq 0}$ for $i \neq j$ where $\alpha_i^{\vee} := 2\alpha_i / (\alpha_i, \alpha_i)$. Let q be an indeterminate and set $\mathbf{K} := \mathbf{Q}(q)$. We define its subrings \mathbf{A}_0 , \mathbf{A}_{∞} and \mathbf{A} as follows:

$$\begin{split} \mathbf{A}_0 &= \{ f/g; f(q), g(q) \in \mathbf{Q}[q], g(0) \neq 0 \}, \\ \mathbf{A}_\infty &= \{ f/g; f(q^{-1}), g(q^{-1}) \in \mathbf{Q}[q^{-1}], g(0) \neq 0 \}, \\ \mathbf{A} &= \mathbf{Q}[q, q^{-1}]. \end{split}$$

Definition 2.1. The quantized universal enveloping algebra $U_q(\mathfrak{g})$ is the K-algebra generated by the elements e_i, f_i and invertible elements t_i $(i \in$ I) with the following defining relations.

- (1) The t_i 's commute with each other. (2) $t_j e_i t_j^{-1} = q^{(\alpha_j, \alpha_i)} e_i$ and $t_j f_i t_j^{-1} = q^{-(\alpha_j, \alpha_i)} f_i$ for
- (3) $[e_i, f_j] = \delta_{ij} \frac{t_i t_i^{-1}}{q_i q_i^{-1}}$ for $i, j \in I$, where $q_i :=$ $a^{(\alpha_i,\alpha_i)/2}$.
- (4) (Serre relation) For $i \neq j$,

$$\sum_{k=0}^{b} (-1)^{k} e_{i}^{(k)} e_{j} e_{i}^{(b-k)} = \sum_{k=0}^{b} (-1)^{k} f_{i}^{(k)} f_{j} f_{i}^{(b-k)} = 0.$$

Here $b = 1 - (\alpha_{i}^{\vee}, \alpha_{j})$ and
 $e_{i}^{(k)} = e_{i}^{k} / [k]_{i}!, \quad f_{i}^{(k)} = f_{i}^{k} / [k]_{i}!,$
 $[k]_{i} = (q_{i}^{k} - q_{i}^{-k}) / (q_{i} - q_{i}^{-1}), \quad [k]_{i}! = [1]_{i} \cdots [k]_{i}.$

Let us denote by $U_q^-(\mathfrak{g})$ (resp. $U_q^+(\mathfrak{g})$) the subalgebra of $U_q(\mathfrak{g})$ generated by the f_i 's (resp. the e_i 's). Let e'_i and e^*_i be the operators on $U^-_q(\mathfrak{g})$ defined by

$$[e_i, a] = rac{(e_i^*a)t_i - t_i^{-1}e_i'a}{q_i - q_i^{-1}} \quad (a \in U_q^-(\mathfrak{g})).$$

Then these operators satisfy the following formula similar to derivations:

$$e'_{i}(ab) = e'_{i}(a)b + (\mathrm{Ad}(t_{i})a)e'_{i}b,$$

 $e^{*}_{i}(ab) = ae^{*}_{i}b + (e^{*}_{i}a)(\mathrm{Ad}(t_{i})b).$

The algebra $U_q^-(\mathfrak{g})$ has a unique symmetric bilinear form (\bullet, \bullet) such that (1, 1) = 1 and

$$(e'_i a, b) = (a, f_i b)$$
 for any $a, b \in U_a^-(\mathfrak{g})$.

It is non-degenerate and satisfies $(e_i^*a, b) = (a, bf_i)$.

2.2. Symmetry. Let θ be an automorphism of I such that $\theta^2 = id$ and $(\alpha_{\theta(i)}, \alpha_{\theta(j)}) = (\alpha_i, \alpha_j).$ Hence it extends to an automorphism of the root lattice Q by $\theta(\alpha_i) = \alpha_{\theta(i)}$, and induces an automorphism of $U_q(\mathfrak{g})$.

Let $\mathcal{B}_{\theta}(\mathfrak{g})$ be the **K**-algebra generated by E_i, F_i , and invertible elements K_i $(i \in I)$ satisfying the following defining relations:

- (i) the K_i 's commute with each other,
- (ii) $K_{\theta(i)} = K_i$ for any $i \in I$,

(2.1)

(iii)
$$K_i E_j K_i^{-1} = q^{(\alpha_i + \alpha_{\theta(i)}, \alpha_j)} E_j$$

and $K_i F_j K_i^{-1} = q^{(\alpha_i + \alpha_{\theta(i)}, -\alpha_j)} F_j$

$$\begin{cases} \text{for } i, j \in I, \\ (\text{iv}) \quad E_i F_j = q^{-(\alpha_i, \alpha_j)} F_j E_i + (\delta_{i,j} + \delta_{\theta(i),j} K_i) \\ \text{for } i, j \in I, \end{cases}$$

(v) the E_i 's and the F_i 's satisfy the Serre relations.

Hence $\mathcal{B}_{\theta}(\mathfrak{g}) \simeq U_q^-(\mathfrak{g}) \otimes \mathbf{K}[K_i^{\pm 1}; i \in I] \otimes U_q^+(\mathfrak{g})$. We set $E_i^{(n)} = E_i^n/[n]_i!$ and $F_i^{(n)} = F_i^n/[n]_i!$. Proposition 2.2.

- (i) There exists a $\mathcal{B}_{\theta}(\mathfrak{g})$ -module V_{θ} generated by linearly independent vectors ϕ_+ and $\phi_$ such that
 - (a) $E_i \phi_{\pm} = 0$ for any $i \in I$,

136

(b) $K_i \phi_{\pm} = \phi_{\mp}$ for any $i \in I$,

(c)
$$\{u \in V_{\theta}; E_i u = 0 \text{ for any } i \in I\}$$

 $= \mathbf{K}\phi_+ \oplus \mathbf{K}\phi_-.$ Moreover such a V_{θ} is unique up to an isomorphism.

(ii) There exists a unique symmetric bilinear form
(•,•) on V_θ such that (φ_{ε1}, φ_{ε2}) = δ_{ε1,ε2} for
ε₁, ε₂ ∈ {+, -} and (E_iu, v) = (u, F_iv) for any
i ∈ I and u, v ∈ V_θ, and it is non-degenerate.

Such a V_{θ} is constructed as follows. Let \mathscr{S} be the quantum shuffle algebra (see [5]) generated by words $\langle i_1, \ldots, i_l \rangle$ for $i_1, \ldots, i_l \in I$ and $l \geq 1$ and ϕ''_+ and ϕ''_- as two empty words. We assign to a word $\langle i_1, \ldots, i_l \rangle$ the weight $-(\alpha_{i_1} + \cdots + \alpha_{i_l})$. We define the actions of E_i , F_i and K_i on \mathscr{S} as follows:

$$\begin{split} F_i \phi_{+}^{\prime\prime} &= \langle i \rangle, \quad F_i \phi_{-}^{\prime\prime} &= \langle \theta i \rangle, \\ E_i \langle j \rangle &= \delta_{i,j} \phi_{+}^{\prime\prime} + \delta_{i,\theta j} \phi_{-}^{\prime\prime}, \\ K_i \phi_{\pm}^{\prime\prime} &= \phi_{\mp}^{\prime\prime}, \\ K_i \langle i_1, \dots, i_l \rangle &= q^{-(\alpha_i + \alpha_{\theta(i)}, \alpha_{i_1} + \dots + \alpha_{i_l})} \\ &\quad \cdot \langle i_1, \dots, i_l \rangle = q^{-(\alpha_i + \alpha_{\theta(i)}, \alpha_{i_1} + \dots + \alpha_{i_l})} \\ E_i \langle i_1, \dots, i_l \rangle &= \delta_{i,i_1} \langle i_2, \dots, i_l \rangle, \\ F_i \langle i_1, \dots, i_l \rangle &= \langle i \rangle * \langle i_1, \dots, i_l \rangle \\ &\quad + q^{(\alpha_i, \operatorname{wt}(\langle i_1, \dots, i_{l-1}, \theta(i_l) \rangle))} \langle i_1, \dots, i_{l-1}, \theta(i_l) \rangle * \langle \theta i \rangle \\ &= \sum_{\nu=0}^l q^{-(\alpha_i, \alpha_{i_1} + \dots + \alpha_{i_{l-1}} + \alpha_{\theta(i_l}))} \\ &\quad + q^{-(\alpha_i, \alpha_1 + \dots + \alpha_{i_{l-1}} + \alpha_{\theta(i_l)})} \\ \sum_{\nu=0}^l q^{-(\alpha_{\theta(i)}, \alpha_{\nu+1} + \dots + \alpha_{i_{l-1}} + \alpha_{\theta(i_l)})} \\ &\quad \cdot \langle i_1, \dots, i_\nu, \theta(i), i_{\nu+1}, \dots, i_{l-1}, \theta(i_l) \rangle \end{split}$$

for $i, j \in I$, $l \ge 1$ and $i_1, \ldots, i_l \in I$.

Then the operators E_i , F_i and K_i satisfy the commutation relations (2.1) except the Serre relations for the E_i 's.

Consider the $U_q^-(\mathfrak{g})$ -module $V' = U_q^-(\mathfrak{g})\phi'_+ \oplus U_q^-(\mathfrak{g})\phi'_-$ generated by a pair of vacuum vectors ϕ'_{\pm} . There exists a unique $U_q^-(\mathfrak{g})$ -linear map $\psi : V' \to \mathscr{S}$ such that $\phi'_{\pm} \mapsto \phi''_{\pm}$. We define an action of $\mathcal{B}_{\theta}(\mathfrak{g})$ on V' by

$$\begin{split} K_i(a\phi'_{\pm}) &= (\operatorname{Ad}(t_i t_{\theta(i)})a)\phi'_{\mp}, \\ E_i(a\phi'_{\pm}) &= e'_i(a)\phi'_{\pm} + Ad(t_i)(e^*_{\theta i}(a))\phi'_{\mp}, \\ F_i(a\phi'_{\pm}) &= f_i a\phi'_{\pm} \end{split}$$

for $a \in U_q^-(\mathfrak{g})$. Then ψ commutes with the actions of E_i , F_i and K_i , and its image $\psi(V')$ is V_{θ} .

Hereafter we assume further that

(2.2) there is no $i \in I$ such that $\theta(i) = i$.

Under this condition, we conjecture that V_{θ} has a crystal basis. This means the following. We define the modified root operators:

$$\widetilde{E}_i(u) = \sum_{n \geqslant 1} F_i^{(n-1)} u_n \text{ and } \widetilde{F}_i(u) = \sum_{n \geqslant 0} F_i^{(n+1)} u_n$$

when writing $u = \sum_{n \ge 0} F_i^{(n)} u_n$ with $E_i u_n = 0$. Let L_{θ} be the **A**₀-submodule of V_{θ} generated by $\widetilde{F}_{i_1} \cdots \widetilde{F}_{i_\ell} \phi_{\pm}$ ($\ell \ge 0$ and $i_1, \ldots, i_\ell \in I$), and define the subset $B_{\theta} \subset L_{\theta}/qL_{\theta}$ by:

$$B_{\theta} := \{ \widetilde{F}_{i_1} \cdots \widetilde{F}_{i_\ell} \phi_{\pm} \mod qL_{\theta}; \ell \ge 0, i_1, \dots, i_\ell \in I \}.$$

Conjecture 2.3.

- (i) $\widetilde{F}_i L_\theta \subset L_\theta$ and $\widetilde{E}_i L_\theta \subset L_\theta$,
- (i) $P_i L_{\theta} \subset L_{\theta}$ and $L_i L_{\theta} \subset L_{\theta}$, (ii) B_{θ} is a basis of L_{θ}/qL_{θ} ,
- (iii) $\widetilde{F}_i B_\theta \subset B_\theta$, and $\widetilde{E}_i B_\theta \subset B_\theta \sqcup \{0\}$.
- Moreover we conjecture that V_{θ} has a global crystal basis. Namely, let – be the bar-operator of V_{θ} , which is characterized by: $\overline{q} = q^{-1}$, – commutes with the E_i 's, and $(\phi_{\pm})^- = \phi_{\pm}$ (such an operator exists). Let us denote by $\mathcal{B}_{\theta}(\mathfrak{g})^{\text{up}}_{\mathbf{A}}$ the **A**-subalgebra of $\mathcal{B}_{\theta}(\mathfrak{g})$ generated by $E_i^{(n)}$, F_i and $K_i^{\pm 1}$ ($i \in I$). Let $(V_{\theta})_{\mathbf{A}}$ be the largest $\mathcal{B}_{\theta}(\mathfrak{g})^{\text{up}}_{\mathbf{A}}$ -submodule of V_{θ} such

that $(V_{\theta})_{\mathbf{A}} \cap (\mathbf{K}\phi_{+} + \mathbf{K}\phi_{-}) = \mathbf{A}\phi_{+} + \mathbf{A}\phi_{-}.$ **Conjecture 2.4.** $(L_{\theta}, L_{\theta}^{-}, (V_{\theta})_{\mathbf{A}})$ is balanced. Namely, $E := L_{\theta} \cap L^{-} \cap (V_{\theta}) \longrightarrow L_{\theta}/qL_{\theta}$ is an

Namely, $E := L_{\theta} \cap L_{\theta}^{-} \cap (V_{\theta})_{\mathbf{A}} \to L_{\theta}/qL_{\theta}$ is an isomorphism. Let $G^{\mathrm{up}}: L_{\theta}/qL_{\theta} \xrightarrow{\sim} E$ be its inverse. Then $\{G^{\mathrm{up}}(b); b \in B_{\theta}\}$ forms a basis of V_{θ} . We call this basis the *upper global basis* of V_{θ} .

Remark 2.5. Assume that Conjectures 2.3 and 2.3 hold.

- (i) We have $\{b \in B_{\theta}; \widetilde{E}_i b = 0 \text{ for any } i \in I\} = \{\phi_+, \phi_-\}.$
- (ii) There exists a unique involution σ of the $\mathcal{B}_{\theta}(\mathfrak{g})$ -module V_{θ} such that $\sigma(\phi_{\pm}) = \phi_{\mp}$. It extends to the involution σ of \mathscr{S} by $\sigma(\langle i_1, \ldots, i_l \rangle) = \langle i_1, \ldots, i_{l-1}, \theta(i_l) \rangle$. It induces also involutions of L_{θ} and B_{θ} .
- (iii) We have $\sigma(b) \neq b$ for any $b \in B_{\theta}$.
- (iv) We conjecture that $\widetilde{F}_i b \neq \widetilde{F}_j b$ for any $b \in B_\theta$ and $i \neq j \in I$.
- (v) In [2], a $\mathcal{B}_{\theta}(\mathfrak{g})$ -module $V_{\theta}(\lambda) = \mathcal{B}_{\theta}(\mathfrak{g})\phi_{\lambda}$ and its crystal basis $B_{\theta}(\lambda)$ are introduced. We have a monomorphism of $\mathcal{B}_{\theta}(\mathfrak{g})$ -modules

$$\iota: V_{\theta}(\lambda) \rightarrowtail V_{\theta}$$

with $\lambda = 0$, which sends ϕ_{λ} to $\phi_{+} + \phi_{-}$. Its image coincides with $\{v \in V_{\theta}; \sigma(v) = v\}$.

137

No. 7]

Any element $b \in B_{\theta}(\lambda)$ is sent to $b' + \sigma(b')$ for some $b' \in B_{\theta}$. Moreover, we have $\iota(G^{up}(b)) =$ $G^{up}(b') + \sigma(G^{up}(b'))$. In particular, we have

$$B_{\theta}(\lambda) \simeq B_{\theta}/\sim.$$

Here \sim is the equivalence relation given by $b \sim \sigma b$.

3. Affine Hecke algebra of type D.

3.1. Definition. For $p \in \mathbf{C}^*$ and $n \in \mathbf{Z}_{\geq 2}$, the affine Hecke algebra $\mathbf{H}_n^{\mathrm{D}}$ of type D_n is the **C**-algebra generated by T_i $(0 \leq i < n)$ and invertible elements X_i $(1 \leq i \leq n)$ satisfying the defining relations:

(i) the X_i 's commute with each other,

- (ii) the T_i 's satisfy the braid relation: $T_1T_0 = T_0T_1$, $T_0T_2T_0 = T_2T_0T_2$, $T_iT_{i+1}T_i = T_{i+1}T_iT_{i+1}$ ($1 \le i < n-1$), $T_iT_j = T_jT_i$ ($1 \le i < j-1 < n-1$ or $i = 0 < 3 \le j < n$),
- (iii) $(T_i p)(T_i + p^{-1}) = 0 \ (0 \le i < n),$
- (iv) $T_0 X_1^{-1} T_0 = X_2, T_i X_i T_i = X_{i+1} \ (1 \le i < n)$, and $T_i X_j = X_j T_i$ if $1 \le i \ne j, j-1$ or i = 0 and $j \ge 3$.

We define $H_0^D = \mathbf{C} \oplus \mathbf{C}$ and $H_1^D = \mathbf{C}[X_1^{\pm 1}]$. We assume that $p \in \mathbf{C}^*$ satisfies

$$(3.1) p^2 \neq 1.$$

Let us denote by Pol_n the Laurent polynomial ring $\mathbb{C}[X_1^{\pm 1}, \ldots, X_n^{\pm 1}]$, and by Pol_n its quotient field $\mathbb{C}(X_1, \ldots, X_n)$. Then $\operatorname{H}_n^{\mathrm{D}}$ is isomorphic to the tensor product of Pol_n and the subalgebra generated by the T_i 's that is isomorphic to the Hecke algebra of type D_n . We have

$$T_i a = (s_i a) T_i + (p - p^{-1}) \frac{a - s_i a}{1 - X^{-\alpha_i^{\vee}}} \text{ for } a \in \mathbf{Pol}_n.$$

Here, $X^{-\alpha_i^{\vee}} = X_1^{-1}X_2^{-1}$ (i = 0) and $X^{-\alpha_i^{\vee}} = X_iX_{i+1}^{-1}$ $(1 \leq i < n)$. The s_i 's are the Weyl group action on \mathbf{Pol}_n : $(s_0a)(X_1, \ldots, X_n) = a(X_2^{-1}, X_1^{-1}, \ldots, X_n)$ and $(s_ia)(X_1, \ldots, X_n) = a(X_1, \ldots, X_{i+1}, X_i, \ldots, X_n)$ for $1 \leq i < n$.

3.2. Intertwiner. The algebra H_n^D acts faithfully on $H_n^D / \sum_i H_n^D (T_i - p) \simeq \mathbf{Pol}_n$. Set $\varphi_i = (1 - X^{-\alpha_i^{\vee}})T_i - (p - p^{-1}) \in H_n^D$ and $\tilde{\varphi}_i = (p^{-1} - pX^{-\alpha_i^{\vee}})^{-1}\varphi_i \in \mathbf{Pol}_n \otimes_{\mathbf{Pol}_n} H_n^D$. Then the action of $\tilde{\varphi}_i$ on \mathbf{Pol}_n coincides with s_i . They are called intertwiners.

3.3. Affine Hecke algebra of type A. The affine Hecke algebra $\operatorname{H}_{n}^{\operatorname{A}}$ of type A_{n} is isomorphic to the subalgebra of $\operatorname{H}_{n}^{\operatorname{D}}$ generated by T_{i} $(1 \leq i < n)$ and $X_{i}^{\pm 1}$ $(1 \leq i \leq n)$. For a finite-dimensional $\operatorname{H}_{n}^{\operatorname{A}}$ -module M, let us decompose

.

(3.2)

where

$$M_a = \{ u \in M; (X_i - a_i)^N u = 0$$

for any *i* and $N \gg 0 \}$

 $M = \bigoplus_{a \in (\mathbf{C}^*)^n} M_a$

for $a = (a_1, \ldots, a_n) \in (\mathbf{C}^*)^n$. For a subset $I \subset \mathbf{C}^*$, we say that M is of type I if all the eigenvalues of X_i belong to I. The group \mathbf{Z} acts on \mathbf{C}^* by $\mathbf{Z} \ni n : a \mapsto ap^{2n}$. By well-known results in type A, it is enough to treat the irreducible modules of type I for an orbit I with respect to the \mathbf{Z} -action on \mathbf{C}^* in order to study the irreducible modules over the affine Hecke algebras of type A.

3.4. Representations of affine Hecke lgebras of type D. For $n, m \ge 0$, set $\mathbf{F}_{n,m} := \mathbf{C}[X_1^{\pm 1}, \ldots, X_{n+m}^{\pm 1}, D^{-1}]$ where

$$D := \prod_{1 \le i \le n < j \le n+m} (X_i - p^2 X_j) (X_i - p^{-2} X_j)$$
$$\cdot (X_i - p^2 X_j^{-1}) (X_i - p^{-2} X_j^{-1})$$
$$\cdot (X_i - X_j) (X_i - X_i^{-1}).$$

Then we can embed $\mathbf{H}_{m}^{\mathbf{D}}$ into $\mathbf{H}_{n+m}^{\mathbf{D}} \otimes_{\mathbf{Pol}_{n+m}} \mathbf{F}_{n,m}$ by

$$T_{0} \mapsto \tilde{\varphi}_{n} \cdots \tilde{\varphi}_{1} \tilde{\varphi}_{n+1} \cdots \tilde{\varphi}_{2} T_{0} \tilde{\varphi}_{2} \cdots \tilde{\varphi}_{n+1} \tilde{\varphi}_{1} \cdots \tilde{\varphi}_{n},$$

$$T_{i} \mapsto T_{i+n} \quad (1 \leq i < m),$$

$$X_{i} \mapsto X_{i+n} \quad (1 \leq i \leq m).$$

Its image commutes with $H_n^D \subset H_{n+m}^D$. Hence $H_{n+m}^D \otimes_{\mathbf{P}ol_{n+m}\mathbf{F}_{n,m}}$ is a right $H_n^D \otimes H_m^D$ -module. For a finite-dimensional H_n^D -module M, we

For a finite-dimensional H_n^D -module M, we decompose M as in (3.2). The semidirect product group $\mathbb{Z}_2 \times \mathbb{Z} = \{1, -1\} \times \mathbb{Z}$ acts on \mathbb{C}^* by $(\epsilon, n) : a \mapsto a^{\epsilon} p^{2n}$.

Let I and J be $\mathbb{Z}_2 \times \mathbb{Z}$ -invariant subsets of \mathbb{C}^* such that $I \cap J = \emptyset$. Then for an $\mathrm{H}_n^{\mathrm{D}}$ -module N of type I and $\mathrm{H}_m^{\mathrm{D}}$ -module M of type J, the action of Pol_{n+m} on $N \otimes M$ extends to an action of $\mathbf{F}_{n,m}$. We set

$$N\diamond M$$

$$:= (\mathrm{H}_{n+m}^{\mathrm{D}} \otimes_{\mathbf{P}\mathrm{ol}_{n+m}} \mathbf{F}_{n,m}) \underset{(\mathrm{H}_{n}^{\mathrm{D}} \otimes \mathrm{H}_{m}^{\mathrm{D}}) \otimes_{\mathbf{P}\mathrm{ol}_{n+m}} \mathbf{F}_{n,m}}{\otimes} (N \otimes M).$$

Lemma 3.1.

- (i) Let N be an irreducible H^D_n-module of type I and M an irreducible H^D_m-module of type J. Then N ◊ M is an irreducible H^D_{n+m}-module of type I ∪ J.
- (ii) Conversely if L is an irreducible H^D_n-module of type I ∪ J, then there exists an integer m (0 ≤ m ≤ n), an irreducible H^D_m-module N of

type I and an irreducible H^{D}_{n-m} -module M of type J such that $L \simeq N \diamond M$.

(iii) Assume that a $\mathbf{Z}_2 \times \mathbf{Z}$ -orbit I decomposes into $I = I_+ \sqcup I_-$ where I_{\pm} are \mathbf{Z} -orbits and $I_- = (I_+)^{-1}$. Then for any irreducible $\mathrm{H}_n^{\mathrm{D}}$ module L of type I, there exists an irreducible $\mathrm{H}_n^{\mathrm{A}}$ -module M such that $L \simeq \mathrm{Ind}_{\mathrm{H}_n^{\mathrm{A}}} M$. Hence in order to study H^{D} -modules, it is

Hence in order to study H^D-modules, it is enough to study irreducible modules of type I for a $\mathbf{Z}_2 \times \mathbf{Z}$ -orbit I in \mathbf{C}^* such that I is a \mathbf{Z} -orbit, namely $I = \pm \{p^n; n \in \mathbf{Z}_{odd}\}$ or $I = \pm \{p^n; n \in \mathbf{Z}_{even}\}.$

For a $\mathbb{Z}_2 \times \mathbb{Z}$ -invariant subset I of \mathbb{C}^* , we define $K_{I,n}^{\mathbb{D}}$ to be the Grothendieck group of the abelian category of finite-dimensional $\mathbb{H}_n^{\mathbb{D}}$ -modules of type I. We set $K_I^{\mathbb{D}} = \bigoplus_{n \ge 0} K_{I,n}^{\mathbb{D}}$.

We take the case

$$I = \{p^n; n \in \mathbf{Z}_{\text{odd}}\}$$

and assume that any of ± 1 is not contained in I. The set I may be regarded as the set of vertices of a Dynkin diagram. Let us define an automorphism θ of I by $a \mapsto a^{-1}$. Let \mathfrak{g}_I be the associated Lie algebra $(\mathfrak{g}_I \text{ is isomorphic to } \mathfrak{gl}_{\infty} \text{ if } p$ has an infinite order, and isomorphic to $\mathcal{A}_{\ell}^{(1)}$ if p^2 is a primitive ℓ -th root of unity).

For a finite-dimensional $\operatorname{H}_{n}^{\operatorname{D}}$ -module M and $a \in I$, let $E_{a}M$ be the generalized a-eigenspace of X_{n} on M, regarded as an $\operatorname{H}_{n-1}^{\operatorname{D}}$ -module. Let $F_{a}M$ be the $\operatorname{H}_{n+1}^{\operatorname{D}}$ -module $\operatorname{Ind}_{\operatorname{H}_{n}^{\operatorname{D}}\otimes\operatorname{C}[X_{n+1}^{\pm}]}^{\operatorname{H}_{n+1}^{\operatorname{D}}}(M\otimes(a))$ where (a) is the 1-dimensional representation of $\operatorname{C}[X_{n+1}^{\pm 1}]$ on which X_{n+1} acts as a. Then E_{a} and F_{a} are exact functors and define $E_{a}:\operatorname{K}_{I,n}^{\operatorname{D}}\to\operatorname{K}_{I,n-1}^{\operatorname{D}}$ and $F_{a}:$

For an irreducible $M \in K_{I,n}^{D}$ and $a \in I$, define $\tilde{e}_{a}M \in K_{I,n-1}^{D}$ to be the socle of $E_{a}M$. Define $\tilde{f}_{a}M \in K_{I,n+1}^{D}$ to be the cosocle of $F_{a}M$. In fact, $\tilde{f}_{a}M$ is always irreducible, and $\tilde{e}_{a}M$ is a zero module or irreducible.

The ring $H_0^D = \mathbf{C} \oplus \mathbf{C}$ has two irreducible modules ϕ_{\pm} . We understand

$$E_a((b)) = \tilde{e}_a((b)) = \begin{cases} \phi_{\pm} & \text{if } a = b^{\pm 1}, \\ 0 & \text{otherwise,} \end{cases}$$

$$F_a(\phi_{\pm}) = \tilde{f}_a(\phi_{\pm}) = (a^{\pm 1}).$$

Let V_{θ} be as in Proposition 2.2. Conjecture 3.2.

- (i) K^{D} is isomorphic to $(V_{\theta})_{\mathbf{A}}/(q-1)(V_{\theta})_{\mathbf{A}}$.
- (ii) V_{θ} has a crystal basis and an upper global basis.
- (iii) The elements of K_I^D associated to irreducible representations correspond to the upper global basis of V_{θ} at q = 1.
- (iv) The operators \vec{F}_i and \vec{E}_i correspond to \hat{f}_i and \tilde{e}_i , respectively.

Consider $\tilde{H} = H_n^D \otimes \mathbb{C}[\theta]/(\theta^2 - 1)$ with multiplication $\theta T_1 = T_0 \theta$, $X_1 \theta = \theta X_1^{-1}$ and θ commuting with all other generators. Then \tilde{H} is isomorphic to the specialization of the affine Hecke algebra of type B in which the generator for the node corresponding to the short root has eigenvalues ± 1 . This explains why the crystal graph in the above case is a double covering of the crystal graph for the same $\mathbb{Z}_2 \times \mathbb{Z}$ -orbit in type B. (See Remark 2.5 (v).)

Acknowledgment. The first author is partially supported by Grant-in-Aid for Scientific Research (B) 18340007, Japan Society for the Promotion of Science.

References

- [1] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m, 1, n), J. Math. Kyoto Univ. **36** (1996), no. 4, 789–808.
- N. Enomoto and M. Kashiwara, Symmetric crystals and affine Hecke algebras of type B, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 8, 131–136.
- [3] A. Lascoux, B. Leclerc and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205–263.
- M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516.
- [5] B. Leclerc, Dual canonical bases, quantum shuffles and q-characters, Math. Z. 246 (2004), no. 4, 691–732.