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Abstract: The Lascoux-Leclerc-Thibon-Ariki theory asserts that the K-group of the

representations of the affine Hecke algebras of type A is isomorphic to the algebra of functions on

the maximal unipotent subgroup of the group associated with a Lie algebra g where g is gl1 or the

affine Lie algebra A
ð1Þ
‘ , and the irreducible representations correspond to the upper global bases.

Recently, N. Enomoto and the first author presented the notion of symmetric crystals and

formulated analogous conjectures for the affine Hecke algebras of type B. In this note, we present

similar conjectures for certain classes of irreducible representations of affine Hecke algebras of

type D. The crystal for type D is a double cover of the one for type B.
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1. Introduction. Lascoux-Leclerc-Thibon([3])

conjectured the relations between the representa-

tions of Hecke algebras of type A and the crystal

bases of the affine Lie algebras of type A. Then, S.

Ariki ([1]) observed that it should be understood

in the setting of affine Hecke algebras and proved

the LLT conjecture in a more general framework.

Recently, N. Enomoto and the first author presented

the notion of symmetric crystals and conjectured

that certain classes of irreducible representations of

the affine Hecke algebras of type B are described by

symmetric crystals ([2]).

The purpose of this note is to formulate and

explain conjectures on certain classes of irreducible

representations of affine Hecke algebras of type D

and symmetric crystals.

Let us begin by recalling the Lascoux-

Leclerc-Thibon-Ariki theory. Let HA
n be the affine

Hecke algebra of type A of degree n. Let KA
n

be the Grothendieck group of the abelian category

of finite-dimensional HA
n -modules, and KA ¼L

n>0 K
A
n . Then it has a structure of Hopf algebra

by the restriction and the induction functors. The

set I ¼ C� may be regarded as a Dynkin diagram

with I as the set of vertices and with edges between

a 2 I and ap2. Here p is the parameter of the affine

Hecke algebra, usually denoted by q. Let gI be the

associated Lie algebra, and g�I the unipotent Lie

subalgebra. Let UI be the group associated to g�I .
Hence gI is isomorphic to a direct sum of copies of

A
ð1Þ
‘ if p2 is a primitive ‘-th root of unity and to a

direct sum of copies of gl1 if p has an infinite order.

Then C�KA is isomorphic to the algebra OðUIÞ of
regular functions on UI . Let UqðgIÞ be the associated
quantized enveloping algebra. Then U�

q ðgIÞ has an

upper global basis fGupðbÞgb2Bð1Þ. By specializingL
C½q; q�1�GupðbÞ at q ¼ 1, we obtain OðUIÞ. Then

the LLTA theory says that the elements associated

to irreducible HA-modules corresponds to the image

of the upper global basis.

In [2], N. Enomoto and the first author gave

analogous conjectures for affine Hecke algebras of

type B. In the type B case, we have to replace

U�
q ðgIÞ and its upper global basis with a new object,

the symmetric crystals. It is roughly stated as

follows. Let HB
n be the affine Hecke algebra of

type B of degree n. Let KB
n be the Grothendieck

group of the abelian category of finite-dimensional

modules over HB
n , and KB ¼ �n>0K

B
n . Then KB has a

structure of a Hopf bimodule over KA. The group UI
has the anti-involution � induced by the involution

a 7! a�1 of I ¼ C�. Let U�
I be the �-fixed point set of

UI . Then OðU�
I Þ is a quotient ring of OðUIÞ. The

action of OðUIÞ ’ C�KA on C�KB, in fact,

descends to the action of OðU�
I Þ. They introduced

the algebra B�ðgÞ, a kind of a q-analogue of the ring

of differential operators on U�
I and then V�ð�Þ, a q-

analogue of OðU�
I Þ. The module V�ð�Þ is an irredu-

cible B�ðgÞ-module generated by the highest weight

vector ��. Then they conjectured that:

(i) V�ð�Þ has a crystal basis and an upper global

basis.
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(ii) KB is isomorphic to a specialization of V�ð�Þ at
q ¼ 1 as an OðUIÞ-module, and the irreducible

representations correspond to the upper glob-

al basis of V�ð�Þ at q ¼ 1.

The representations of HB
n such that some of Xi

have an eigenvalue �1 are excluded.

In this note, we treat the affine Hecke algebras

of type D. Let HD
n be the affine Hecke algebra of

type D of degree n (HD
0 ¼ C�C, HD

1 ¼ C½X�
1 �, see

§3.1). Let KD
n be the Grothendieck group of finite-

dimensional HD
n -modules, and set KD ¼

L
n>0 K

D
n .

In D-case, we use the same algebra B�ðgÞ, but,

instead of V�ð�Þ, we use a B�ðgÞ-module V� generated

by a pair of highest weight vectors �� (see §2.2).

Our conjecture (see §3.4) is then:

(i) V� has a crystal basis and an upper global

basis.

(ii) KD is isomorphic to a specialization of V�
at q ¼ 1, and the irreducible representations

correspond to the upper global basis of V� at

q ¼ 1.

The representations of HD
n such that some of Xi

have an eigenvalue �1 are again excluded.

Note that the crystal basis for type D is a

double cover of the one for type B.

2. Symmetric crystals.

2.1. Quantized universal enveloping alge-

bras. We shall recall the quantized universal

enveloping algebra UqðgÞ. Let I be an index set

(for simple roots), and Q the free Z-module with a

basis f�igi2I . Let ð�; �Þ : Q�Q! Z be a symmetric

bilinear form such that ð�i; �iÞ=2 2 Z>0 for any i

and ð�_
i ; �jÞ 2 Z60 for i 6¼ j where �_

i :¼ 2�i=ð�i; �iÞ.
Let q be an indeterminate and set K :¼ QðqÞ. We

define its subrings A0, A1 and A as follows:

A0 ¼ ff=g; fðqÞ; gðqÞ 2 Q½q�; gð0Þ 6¼ 0g;
A1 ¼ ff=g; fðq�1Þ; gðq�1Þ 2 Q½q�1�; gð0Þ 6¼ 0g;
A ¼ Q½q; q�1�:
Definition 2.1. The quantized universal

enveloping algebra UqðgÞ is the K-algebra generated

by the elements ei; fi and invertible elements ti ði 2
IÞ with the following defining relations.

(1) The ti’s commute with each other.

(2) tjei t
�1
j ¼ qð�j;�iÞ ei and tjfit

�1
j ¼ q�ð�j;�iÞfi for

any i; j 2 I.

(3) ½ei; fj� ¼ �ij
ti � t�1

i

qi � q�1
i

for i, j 2 I, where qi :¼

qð�i;�iÞ=2.
(4) (Serre relation) For i 6¼ j,

Xb
k¼0

ð�1ÞkeðkÞi eje
ðb�kÞ
i ¼

Xb
k¼0

ð�1Þkf ðkÞi fjf
ðb�kÞ
i ¼ 0:

Here b ¼ 1� ð�_
i ; �jÞ and

e
ðkÞ
i ¼ eki =½k�i!; f

ðkÞ
i ¼ fki =½k�i!;

½k�i ¼ ðqki � q�ki Þ=ðqi � q�1
i Þ; ½k�i! ¼ ½1�i 	 	 	 ½k�i:

Let us denote by U�
q ðgÞ (resp. Uþ

q ðgÞ) the

subalgebra of UqðgÞ generated by the fi’s (resp.

the ei’s). Let e
0
i and e�i be the operators on U�

q ðgÞ
defined by

½ei; a� ¼
ðe�i aÞti � t�1

i e0ia

qi � q�1
i

ða 2 U�
q ðgÞÞ:

Then these operators satisfy the following formula

similar to derivations:

e0iðabÞ ¼ e0iðaÞbþ ðAdðtiÞaÞe0ib;
e�i ðabÞ ¼ ae�i bþ ðe�i aÞðAdðtiÞbÞ:

The algebra U�
q ðgÞ has a unique symmetric bilinear

form ð�; �Þ such that ð1; 1Þ ¼ 1 and

ðe0ia; bÞ ¼ ða; fibÞ for any a; b 2 U�
q ðgÞ.

It is non-degenerate and satisfies ðe�i a; bÞ ¼ ða; bfiÞ.
2.2. Symmetry. Let � be an automorphism

of I such that �2 ¼ id and ð��ðiÞ; ��ðjÞÞ ¼ ð�i; �jÞ.
Hence it extends to an automorphism of the root

lattice Q by �ð�iÞ ¼ ��ðiÞ, and induces an auto-

morphism of UqðgÞ.
Let B�ðgÞ be the K-algebra generated by Ei, Fi,

and invertible elements Ki (i 2 I) satisfying the

following defining relations:8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

(i) the Ki’s commute with each other,

(ii) K�ðiÞ ¼ Ki for any i 2 I,

(iii) KiEjK
�1
i ¼ qð�iþ��ðiÞ;�jÞEj

and KiFjK
�1
i ¼ qð�iþ��ðiÞ;��jÞFj

for i; j 2 I,

(iv) EiFj ¼ q�ð�i;�jÞFjEi þ ð�i;j þ ��ðiÞ;jKiÞ
for i; j 2 I,

(v) the Ei’s and the Fi’s satisfy the Serre

relations.

ð2:1Þ

Hence B�ðgÞ ’ U�
q ðgÞ �K½K�1

i ; i 2 I� � Uþ
q ðgÞ. We

set E
ðnÞ
i ¼ En

i =½n�i! and F
ðnÞ
i ¼ Fn

i =½n�i!.
Proposition 2.2.

(i) There exists a B�ðgÞ-module V� generated

by linearly independent vectors �þ and ��
such that

(a) Ei�� ¼ 0 for any i 2 I,
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(b) Ki�� ¼ �
 for any i 2 I,

(c) fu 2 V�;Eiu ¼ 0 for any i 2 Ig
¼ K�þ �K��.

Moreover such a V� is unique up to an iso-

morphism.

(ii) There exists a unique symmetric bilinear form

ð�; �Þ on V� such that ð�"1 ; �"2Þ ¼ �"1;"2 for

"1; "2 2 fþ;�g and ðEiu; vÞ ¼ ðu; FivÞ for any

i 2 I and u; v 2 V�, and it is non-degenerate.

Such a V� is constructed as follows. Let S be

the quantum shuffle algebra (see [5]) generated by

words hi1; 	 	 	 ; ili for i1; 	 	 	 ; il 2 I and l � 1 and �00þ
and �00� as two empty words. We assign to a word

hi1; 	 	 	 ; ili the weight �ð�i1 þ 	 	 	 þ �ilÞ. We define

the actions of Ei, Fi and Ki on S as follows:

Fi�
00
þ ¼ hii; Fi�

00
� ¼ h�ii;

Eihji ¼ �i;j�
00
þ þ �i;�j�

00
�;

Ki�
00
� ¼ �00
;

Kihi1; 	 	 	 ; ili ¼ q�ð�iþ��ðiÞ;�i1þ			þ�il Þ

	 hi1; 	 	 	 ; il�1; �ðilÞi;
Eihi1; 	 	 	 ; ili ¼ �i;i1hi2; 	 	 	 ; ili;
Fihi1; . . . ; ili ¼ hii � hi1; . . . ; ili

þ qð�i;wtðhi1;...;il�1;�ðilÞiÞÞhi1; . . . ; il�1; �ðilÞi � h�ii

¼
Xl
�¼0

q�ð�i;�i1þ			þ�i� Þhi1; . . . ; i�; i; i�þ1; . . . ; ili

þ q�ð�i;�1þ			þ�il�1
þ��ðilÞÞ

Xl
�¼0

q�ð��ðiÞ;��þ1þ			þ�il�1
þ��ðilÞÞ

	 hi1; . . . ; i�; �ðiÞ; i�þ1; . . . ; il�1; �ðilÞi
for i; j 2 I, l > 1 and i1; . . . ; il 2 I.

Then the operators Ei, Fi and Ki satisfy the

commutation relations (2.1) except the Serre rela-

tions for the Ei’s.

Consider the U�
q ðgÞ-module V 0 ¼ U�

q ðgÞ�0þ�
U�
q ðgÞ�0� generated by a pair of vacuum vectors

�0�. There exists a unique U�
q ðgÞ-linear map  :

V 0 ! S such that �0� 7! �00�. We define an action of

B�ðgÞ on V 0 by

Kiða�0�Þ ¼ ðAdðtit�ðiÞÞaÞ�0
;
Eiða�0�Þ ¼ e0iðaÞ�0� þ AdðtiÞðe��iðaÞÞ�0
;
Fiða�0�Þ ¼ fia�

0
�

for a 2 U�
q ðgÞ. Then  commutes with the actions

of Ei, Fi and Ki, and its image  ðV 0Þ is V�.
Hereafter we assume further that

there is no i 2 I such that �ðiÞ ¼ i.ð2:2Þ

Under this condition, we conjecture that V� has a

crystal basis. This means the following. We define

the modified root operators:

eEEiðuÞ ¼
X
n>1

F
ðn�1Þ
i un and eFFiðuÞ ¼ X

n>0

F
ðnþ1Þ
i un

when writing u ¼
P

n>0 F
ðnÞ
i un with Eiun ¼ 0.

Let L� be the A0-submodule of V� generated byeFFi1 	 	 	 eFFi‘�� (‘ > 0 and i1; . . . ; i‘ 2 I ), and define

the subset B� � L�=qL� by:

B� :¼ f eFFi1 	 	 	 eFFi‘�� mod qL�; ‘ > 0; i1; . . . ; i‘ 2 Ig:

Conjecture 2.3.

(i) eFFiL� � L� and eEEiL� � L�,

(ii) B� is a basis of L�=qL�,

(iii) eFFiB� � B�, and eEEiB� � B� t f0g.
Moreover we conjecture that V� has a global

crystal basis. Namely, let � be the bar-operator of

V�, which is characterized by: q ¼ q�1, � commutes

with the Ei’s, and ð��Þ� ¼ �� (such an operator

exists). Let us denote by B�ðgÞupA the A-subalgebra

of B�ðgÞ generated by E
ðnÞ
i , Fi and K

�1
i (i 2 I). Let

ðV�ÞA be the largest B�ðgÞupA -submodule of V� such

that ðV�ÞA \ ðK�þ þK��Þ ¼ A�þ þA��.
Conjecture 2.4. ðL�; L�

� ; ðV�ÞAÞ is balanced.
Namely, E :¼ L� \ L�

� \ ðV�ÞA ! L�=qL� is an

isomorphism. Let Gup:L�=qL� �! E be its inverse.

Then fGupðbÞ; b 2 B�g forms a basis of V�. We call

this basis the upper global basis of V�.

Remark 2.5. Assume that Conjectures 2.3

and 2.3 hold.

(i) We have fb 2 B�; eEEib ¼ 0 for any i 2 Ig ¼
f�þ; ��g.

(ii) There exists a unique involution � of

the B�ðgÞ-module V� such that �ð��Þ ¼ �
. It
extends to the involution � of S by

�ðhi1; . . . ; iliÞ ¼ hi1; . . . ; il�1; �ðilÞi. It induces

also involutions of L� and B�.

(iii) We have �ðbÞ 6¼ b for any b 2 B�.

(iv) We conjecture that eFFib 6¼ eFFjb for any b 2 B�

and i 6¼ j 2 I.

(v) In [2], a B�ðgÞ-module V�ð�Þ ¼ B�ðgÞ�� and its

crystal basis B�ð�Þ are introduced. We have a

monomorphism of B�ðgÞ-modules

� : V�ð�Þ � V�

with � ¼ 0, which sends �� to �þ þ ��.
Its image coincides with fv 2 V�;�ðvÞ ¼ vg.
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Any element b 2 B�ð�Þ is sent to b0 þ �ðb0Þ for
some b0 2 B�. Moreover, we have �ðGupðbÞÞ ¼
Gupðb0Þ þ �ðGupðb0ÞÞ. In particular, we have

B�ð�Þ ’ B�=:

Here  is the equivalence relation given by

b  �b.

3. Affine Hecke algebra of type D.

3.1. Definition. For p 2 C� and n 2 Z>2, the

affine Hecke algebra HD
n of type Dn is the C-algebra

generated by Ti (0 6 i < n) and invertible elements

Xi (1 6 i 6 n) satisfying the defining relations:

(i) the Xi’s commute with each other,

(ii) the Ti’s satisfy the braid relation: T1T0 ¼ T0T1,

T0T2T0 ¼ T2T0T2, TiTiþ1Ti ¼ Tiþ1TiTiþ1 (1 6

i < n� 1), TiTj ¼ TjTi (1 6 i < j� 1 < n� 1

or i ¼ 0 < 3 6 j < n),

(iii) ðTi � pÞðTi þ p�1Þ ¼ 0 (0 6 i < n),

(iv) T0X
�1
1 T0 ¼ X2, TiXiTi ¼ Xiþ1 (1 6 i < n), and

TiXj ¼ XjTi if 1 � i 6¼ j; j� 1 or i ¼ 0 and

j � 3.

We define HD
0 ¼ C�C and HD

1 ¼ C½X�1
1 �.

We assume that p 2 C� satisfies

p2 6¼ 1:ð3:1Þ

Let us denote by Poln the Laurent polynomial ring

C½X�1
1 ; . . . ; X�1

n �, and by gPolPoln its quotient field

CðX1; . . . ; XnÞ. Then HD
n is isomorphic to the tensor

product of Poln and the subalgebra generated by

the Ti’s that is isomorphic to the Hecke algebra

of type Dn. We have

Tia ¼ ðsiaÞTi þ ðp� p�1Þ
a� sia

1�X��_
i

for a 2 Poln:

Here, X��_
i ¼ X�1

1 X�1
2 (i ¼ 0) and X��_

i ¼ XiX
�1
iþ1

(1 6 i < n). The si’s are the Weyl group action on

Poln: ðs0aÞðX1; . . . ; XnÞ ¼ aðX�1
2 ; X�1

1 ; . . . ; XnÞ and

ðsiaÞðX1; . . . ; XnÞ ¼ aðX1; . . . ; Xiþ1; Xi; . . . ; XnÞ for

1 6 i < n.

3.2. Intertwiner. The algebra HD
n acts

faithfully on HD
n =

P
iH

D
n ðTi � pÞ ’ Poln. Set ’i ¼

ð1�X��_
i ÞTi � ðp� p�1Þ 2 HD

n and ~’’i ¼ ðp�1 �
pX��_

i Þ�1’i 2 gPolPoln �Poln H
D
n . Then the action of ~’’i

on Poln coincides with si. They are called inter-

twiners.

3.3. Affine Hecke algebra of type A. The

affine Hecke algebra HA
n of type An is isomorphic to

the subalgebra of HD
n generated by Ti (1 6 i < n)

and X�1
i (1 6 i 6 n). For a finite-dimensional HA

n -

module M, let us decompose

M ¼
L

a2ðC�Þn
Mað3:2Þ

where

Ma ¼ fu 2M; ðXi � aiÞNu ¼ 0

for any i and N � 0g

for a ¼ ða1; . . . ; anÞ 2 ðC�Þn. For a subset I � C�,
we say that M is of type I if all the eigenvalues

of Xi belong to I. The group Z acts on C� by

Z 3 n : a 7! ap2n. By well-known results in type A,

it is enough to treat the irreducible modules of type

I for an orbit I with respect to the Z-action on C�

in order to study the irreducible modules over the

affine Hecke algebras of type A.

3.4. Representations of affine Hecke lge-

bras of type D. For n;m > 0, set Fn;m :¼
C½X�1

1 ; . . . ; X�1
nþm;D

�1� where
D :¼

Y
16i6n<j6nþm

ðXi � p2XjÞðXi � p�2XjÞ

	 ðXi � p2X�1
j ÞðXi � p�2X�1

j Þ
	 ðXi �XjÞðXi �X�1

j Þ:
Then we can embed HD

m into HD
nþm �Polnþm Fn;m by

T0 7! ~’’n 	 	 	 ~’’1 ~’’nþ1 	 	 	 ~’’2T0 ~’’2 	 	 	 ~’’nþ1 ~’’1 	 	 	 ~’’n;
Ti 7! Tiþn ð1 6 i < mÞ;
Xi 7! Xiþn ð1 6 i 6 mÞ:

Its image commutes with HD
n � HD

nþm. Hence

HD
nþm�PolnþmFn;m

is a right HD
n � HD

m-module.

For a finite-dimensional HD
n -module M, we

decompose M as in (3.2). The semidirect product

group Z2 � Z ¼ f1;�1g � Z acts on C� by ð	; nÞ :
a 7! a	p2n.

Let I and J be Z2 � Z-invariant subsets of C�

such that I \ J ¼ ;. Then for an HD
n -module N of

type I and HD
m-module M of type J , the action of

Polnþm on N �M extends to an action of Fn;m. We

set

N �M
:¼ ðHD

nþm �Polnþm Fn;mÞ �
ðHD

n�HD
mÞ�PolnþmFn;m

ðN �MÞ:

Lemma 3.1.

(i) Let N be an irreducible HD
n -module of type I

and M an irreducible HD
m-module of type J.

Then N �M is an irreducible HD
nþm-module of

type I [ J.
(ii) Conversely if L is an irreducible HD

n -module of

type I [ J, then there exists an integer m

ð0 6 m 6 nÞ, an irreducible HD
m-module N of
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type I and an irreducible HD
n�m-module M of

type J such that L ’ N �M.

(iii) Assume that a Z2 � Z-orbit I decomposes into

I ¼ Iþ t I� where I� are Z-orbits and

I� ¼ ðIþÞ�1. Then for any irreducible HD
n -

module L of type I, there exists an irreducible

HA
n -module M such that L ’ Ind

HD
n

HA
n

M.

Hence in order to study HD-modules, it is

enough to study irreducible modules of type I for a

Z2 � Z-orbit I in C� such that I is a Z-orbit, namely

I ¼ �fpn;n 2 Zoddg or I ¼ �fpn;n 2 Zeveng.
For a Z2 � Z-invariant subset I of C�, we

define KD
I;n to be the Grothendieck group of the

abelian category of finite-dimensional HD
n -modules

of type I. We set KD
I ¼

L
n>0 K

D
I;n.

We take the case

I ¼ fpn;n 2 Zoddg

and assume that any of �1 is not contained in I.

The set I may be regarded as the set of vertices of a

Dynkin diagram. Let us define an automorphism �

of I by a 7! a�1. Let gI be the associated Lie algebra

(gI is isomorphic to gl1 if p has an infinite order,

and isomorphic to A
ð1Þ
‘ if p2 is a primitive ‘-th root

of unity).

For a finite-dimensional HD
n -module M and

a 2 I, let EaM be the generalized a-eigenspace of

Xn on M, regarded as an HD
n�1-module. Let FaM be

the HD
nþ1-module Ind

HD
nþ1

HD
n�C½X�

nþ1
�ðM � ðaÞÞ where ðaÞ

is the 1-dimensional representation of C½X�1
nþ1� on

which Xnþ1 acts as a. Then Ea and Fa are exact
functors and define Ea : K

D
I;n ! KD

I;n�1 and Fa :
KD
I;n ! KD

I;nþ1.

For an irreducible M 2 KD
I;n and a 2 I, define

~eeaM 2 KD
I;n�1 to be the socle of EaM. Define ~ffaM 2

KD
I;nþ1 to be the cosocle of FaM. In fact, ~ffaM is

always irreducible, and ~eeaM is a zero module or

irreducible.

The ring HD
0 ¼ C�C has two irreducible

modules ��. We understand

EaððbÞÞ ¼ ~eeaððbÞÞ ¼
�� if a ¼ b�1,

0 otherwise,

�

Fað��Þ ¼ ~ffað��Þ ¼ ða�1Þ:

Let V� be as in Proposition 2.2.

Conjecture 3.2.

(i) KD is isomorphic to ðV�ÞA=ðq � 1ÞðV�ÞA.
(ii) V� has a crystal basis and an upper global

basis.

(iii) The elements of KD
I associated to irreducible

representations correspond to the upper glob-

al basis of V� at q ¼ 1.

(iv) The operators ~FFi and ~EEi correspond to ~ffi and
~eei, respectively.

Consider ~HH ¼ HD
n �C½��=ð�2 � 1Þ with multi-

plication �T1 ¼ T0�, X1� ¼ �X�1
1 and � commuting

with all other generators. Then ~HH is isomorphic

to the specialization of the affine Hecke algebra

of type B in which the generator for the node

corresponding to the short root has eigenvalues

�1. This explains why the crystal graph in the

above case is a double covering of the crystal

graph for the same Z2 � Z-orbit in type B. (See

Remark 2.5 (v).)
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